JP6754170B2 - Power cable and its manufacturing method - Google Patents

Power cable and its manufacturing method Download PDF

Info

Publication number
JP6754170B2
JP6754170B2 JP2015031149A JP2015031149A JP6754170B2 JP 6754170 B2 JP6754170 B2 JP 6754170B2 JP 2015031149 A JP2015031149 A JP 2015031149A JP 2015031149 A JP2015031149 A JP 2015031149A JP 6754170 B2 JP6754170 B2 JP 6754170B2
Authority
JP
Japan
Prior art keywords
power cable
conductor
manufacturing
strands
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015031149A
Other languages
Japanese (ja)
Other versions
JP2016152228A (en
Inventor
隆志 佐合
隆志 佐合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2015031149A priority Critical patent/JP6754170B2/en
Publication of JP2016152228A publication Critical patent/JP2016152228A/en
Application granted granted Critical
Publication of JP6754170B2 publication Critical patent/JP6754170B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables

Landscapes

  • Insulated Conductors (AREA)

Description

本発明は電力ケーブル及びその製造方法に関し、特に、海底敷設ケーブル、浮遊式海中ケーブル(ライザーケーブル)、大電流送電向けの直流及び交流XLPE(架橋ポリエチレン)ケーブル等の分割導体を用いた電力ケーブル及びその製造方法に関する。 The present invention relates to a power cable and a method for manufacturing the same, and in particular, a power cable using a split conductor such as a submarine laying cable, a floating underwater cable (riser cable), a DC and AC XLPE (cross-linked polyethylene) cable for high current transmission, and a power cable. Regarding the manufacturing method.

一般に、海底敷設ケーブル、浮遊式海中ケーブル(ライザーケーブル)、大電流送電向けの直流及び交流XLPE(架橋ポリエチレン)ケーブル等のような導体断面積の大きい電力ケーブルでは、その導体として分割導体を用いることが多い。 In general, for power cables with a large conductor cross-linked area such as submarine laying cables, floating underwater cables (riser cables), DC and AC XLPE (cross-linked polyethylene) cables for high-current transmission, use split conductors as the conductors. There are many.

分割導体は、銅又はアルミニウム等の複数本の素線を撚り合わせて扇形状に圧縮成形してセグメント導体を形成し、複数本(通常は4〜7本)のセグメント導体を撚り合わせることにより製造される。 The split conductor is manufactured by twisting a plurality of strands of copper or aluminum to form a fan shape by compression molding to form a segment conductor, and twisting a plurality of (usually 4 to 7) segment conductors. Will be done.

従来の電力ケーブルでは、分割導体に電気絶縁性能をもたせるため、素線単体に絶縁材料を被覆したり、酸化皮膜を形成させていた(以下、この技術を従来例1という)。 In the conventional power cable, in order to give the divided conductor an electrical insulation performance, a single wire is coated with an insulating material or an oxide film is formed (hereinafter, this technique is referred to as Conventional Example 1).

他の従来の電力ケーブルでは、絶縁層中にボイドや水トリーが発生しないように、分割導体に止水性能や吸水性能をもたせるため、セグメント導体間に止水性能や吸水性能を備えたテープを介在させていた(以下、この技術を従来例2という)。 In other conventional power cables, in order to give the split conductor water-stopping performance and water-absorbing performance so that voids and water trees do not occur in the insulating layer, a tape having water-stopping performance and water-absorbing performance is used between the segment conductors. It was intervened (hereinafter, this technique is referred to as Conventional Example 2).

特許文献1には、円形圧縮導体及び丸撚り導体に止水性能をもたせるため、素線間にゴム等の止水材料を入れて、物理的に止水する構造が開示されている(以下、この技術を従来例3という) Patent Document 1 discloses a structure in which a water-stopping material such as rubber is inserted between wires to physically stop water in order to give water-stopping performance to a circular compressed conductor and a round-twisted conductor (hereinafter, This technique is called Conventional Example 3)

特許文献2には、介在物が存在しない分割導体を用いた架橋ポリエチレン絶縁電力ケーブルが開示されている(以下、この技術を従来例4という)。
特開平1−217803号公報 特開平9−106713号公報
Patent Document 2 discloses a cross-linked polyethylene insulated power cable using a split conductor in which no inclusions are present (hereinafter, this technique is referred to as Conventional Example 4).
Japanese Unexamined Patent Publication No. 1-217803 Japanese Unexamined Patent Publication No. 9-106713

図4はセグメント導体に成形される前の従来例1の素線絶縁構造を示す断面図である。図4に示すように、従来例1の素線絶縁構造では、絶縁を施していない素線50と絶縁を施している素線51とが隣り合わないように配列するため、素線の配列や使用量に配慮する必要があり、作業ミス等のリスクがあるという課題があった。 FIG. 4 is a cross-sectional view showing a wire insulating structure of Conventional Example 1 before being formed into a segment conductor. As shown in FIG. 4, in the wire insulation structure of the conventional example 1, the wires 50 that are not insulated and the wires 51 that are insulated are arranged so as not to be adjacent to each other. There is a problem that it is necessary to consider the amount of use and there is a risk of work mistakes.

また、絶縁を施している素線51だけで配列した場合には、製造コストの増大を伴うだけでなく、製造に係るリードタイムが長くなり、生産性が低下するという課題があった。 Further, when arranging only with the insulated wires 51, there is a problem that not only the manufacturing cost is increased but also the lead time related to the manufacturing is lengthened and the productivity is lowered.

従来例2では、止水性能や吸水性能を備えたテープが素線間の隙間を物理的に埋めることができないため、例えば高水圧の環境下で使用することが困難であるという課題があった。 In the conventional example 2, there is a problem that it is difficult to use the tape having water-stopping performance and water-absorbing performance in an environment of high water pressure, for example, because the gap between the wires cannot be physically filled. ..

従来例3では、止水材料を用いるため、部品点数が増えて製造コストの増大を招くという課題があった。 In the conventional example 3, since the water blocking material is used, there is a problem that the number of parts increases and the manufacturing cost increases.

従来例4では、素線間の隙間を物理的に埋めることができないため、例えば高水圧の環境下で使用することが困難であるという課題があった。 Conventional Example 4 has a problem that it is difficult to use it in an environment of high water pressure, for example, because the gap between the strands cannot be physically filled.

本発明は、上記課題を解決するためになされたものであり、素線間の電気絶縁性能及び止水性能の両方を兼ね備え、作業ミスや製造コストを低減させ、生産性を向上させ、高水圧の環境下でも使用可能な電力ケーブル及びその製造方法を提供することを目的とする。 The present invention has been made to solve the above problems, and has both electrical insulation performance and water blocking performance between wires, reduces work mistakes and manufacturing costs, improves productivity, and has high water pressure. It is an object of the present invention to provide a power cable and a manufacturing method thereof that can be used even in the above environment.

本発明の電力ケーブルの製造方法は、分割導体を有する電力ケーブルの製造方法において、
(1)絶縁を施していない複数本の断面円形の素線を束ね撚り合せた素線撚合体に電気絶縁性を有する熱可塑性樹脂を周囲を覆うように充填して複数本のセグメント導体を形成する工程と、
(2)形成された複数本の前記セグメント導体を前記熱可塑性樹脂同士が接する状態で撚り合わせて前記分割導体を形成する工程と、
(3)前記分割導体に絶縁層を被覆する工程と、
を有し、
前記絶縁層の被覆時に受ける温度で前記熱可塑性樹脂を軟化させ、前記素線間が電気絶縁性を有するように前記素線間の隙間を埋める、
ことを特徴とするものである。
The method for manufacturing a power cable of the present invention is a method for manufacturing a power cable having a split conductor.
(1) A plurality of uninsulated strands having a circular cross section are bundled and twisted together, and a thermoplastic resin having electrical insulation is filled so as to cover the periphery to form a plurality of segment conductors. And the process to do
(2) A step of twisting the formed plurality of the segment conductors in a state where the thermoplastic resins are in contact with each other to form the divided conductor.
(3) A step of coating the divided conductor with an insulating layer and
Have,
The thermoplastic resin is softened at the temperature received when the insulating layer is coated, and the gaps between the strands are filled so that the strands have electrical insulation .
It is characterized by that.

前記(1)の工程の後に、前記セグメント導体を断面略扇形に圧縮成形する工程を有してもよい。 After the step (1), there may be a step of compression molding the segment conductor into a substantially fan-shaped cross section.

本発明の電力ケーブルによれば、複数本の素線を撚り合せた素線撚合体に電気絶縁性を有する熱可塑性樹脂を充填してセグメント導体を形成した分割導体を有するので、熱可塑性樹脂を所定温度で軟化させることにより、素線間の隙間を埋めることができ、素線間の電気絶縁性能及び止水性能の両方を兼ね備えることができる。 According to the power cable of the present invention, since the wire-twisted body obtained by twisting a plurality of wires has a split conductor in which a thermoplastic resin having electrical insulation is filled to form a segment conductor, the thermoplastic resin can be used. By softening at a predetermined temperature, the gap between the wires can be filled, and both the electrical insulation performance and the water blocking performance between the wires can be obtained.

また、絶縁を施していない素線だけを用いることができるので、素線の配列や使用量に配慮する必要がなくなり、作業ミスや製造コストを低減させ、素線単体に絶縁材料を被覆したり、酸化皮膜を形成させる必要がないので、製造に係るリードタイムを短縮させて生産性を向上させることができる。 In addition, since it is possible to use only uninsulated wires, it is not necessary to consider the arrangement and amount of wires used, reducing work mistakes and manufacturing costs, and coating the wires alone with an insulating material. Since it is not necessary to form an oxide film, the lead time for manufacturing can be shortened and the productivity can be improved.

さらに、素線間を熱可塑性樹脂で隙間なく充填させることができるので、高水圧の環境下など幅広い用途に使用することができる。 Further, since the wires can be filled with the thermoplastic resin without gaps, it can be used in a wide range of applications such as in a high water pressure environment.

本発明の実施形態例に係る電力ケーブルの製造方法によれば、上記効果を奏する電力ケーブルを提供できるとともに、絶縁層の被覆時に受ける温度で分割導体に充填された熱可塑性樹脂を軟化させるので、絶縁層の被覆工程と熱可塑性樹脂の軟化工程とを同時に行うことができ、生産性を向上させることができる。 According to the method for manufacturing a power cable according to an embodiment of the present invention, it is possible to provide a power cable that exhibits the above effects, and at the same time, the thermoplastic resin filled in the divided conductor is softened at the temperature received when the insulating layer is coated. The coating step of the insulating layer and the softening step of the thermoplastic resin can be performed at the same time, and the productivity can be improved.

本発明の実施形態例に係る電力ケーブルの構造を示す断面図である。It is sectional drawing which shows the structure of the power cable which concerns on embodiment of this invention. (A)〜(C)は本発明の実施形態例に係る電力ケーブルの製造方法を説明するための説明図である。(A) to (C) are explanatory views for explaining the manufacturing method of the electric power cable which concerns on embodiment of this invention. セグメント導体の素線撚合体を扇形状に圧縮成形する成形機を説明するための説明図である。It is explanatory drawing for demonstrating the molding machine which compression-molds the wire-twisted body of a segment conductor into a fan shape. セグメント導体に成形される前の従来例1の素線絶縁構造を示す断面図である。It is sectional drawing which shows the wire insulation structure of the prior art example 1 before being formed into a segment conductor.

以下、本発明の実施の形態について説明する。図1は本発明の実施形態例に係る電力ケーブルの構造を示す断面図である。 Hereinafter, embodiments of the present invention will be described. FIG. 1 is a cross-sectional view showing the structure of a power cable according to an embodiment of the present invention.

図1に示すように、本発明の実施形態例に係る電力ケーブル1は、海底敷設ケーブル、浮遊式海中ケーブル(ライザーケーブル)、大電流送電向けの直流及び交流XLPE(架橋ポリエチレン)ケーブル等のような分割導体2を有する電力ケーブルである。 As shown in FIG. 1, the power cable 1 according to the embodiment of the present invention includes a submarine laying cable, a floating underwater cable (riser cable), a DC and AC XLPE (cross-linked polyethylene) cable for high current transmission, and the like. It is a power cable having a split conductor 2.

分割導体2は、複数本の銅又はアルミニウムなどからなる素線3を撚り合せた素線撚合体4に電気絶縁性を有する熱可塑性樹脂5を充填して形成された4〜7本の複数本(図1では4本)のセグメント導体6を撚り合わせて形成されている。 The split conductor 2 is a plurality of 4 to 7 conductors formed by filling a wire-twisted body 4 in which a wire wire 3 made of a plurality of copper or aluminum or the like is twisted with a thermoplastic resin 5 having electrical insulation. It is formed by twisting (four in FIG. 1) segment conductors 6.

熱可塑性樹脂5としては、製造工程間のハンドリングや現地まで運搬の際に、曲げる必要があるので弾性を有することが好ましく、例えば熱可塑性エラストマーが好ましい。スチレン系、オレフィン系、塩ビ系、ウレタン系、アミド系などがあるが特に限定するものではない。 The thermoplastic resin 5 is preferably elastic because it needs to be bent during handling between manufacturing processes and transportation to the site, and for example, a thermoplastic elastomer is preferable. There are styrene type, olefin type, vinyl chloride type, urethane type, amide type and the like, but the present invention is not particularly limited.

分割導体2に充填された熱可塑性樹脂5は、所定温度で軟化され、これによって、素線3間の隙間が埋められることになる。 The thermoplastic resin 5 filled in the divided conductor 2 is softened at a predetermined temperature, whereby the gap between the strands 3 is filled.

分割導体2上には内部半導電層7が被覆され、内部半導電層7上には架橋ポリエチレンからなる絶縁層8が被覆される。絶縁層8上には、半導電性樹脂や半導電性布テープ等よりなる外部半導電層9が被覆され、外部半導電層9上には、銅テープ等よりなる金属遮蔽層10が被覆されている。さらに、金属遮蔽層10上に、塩化ビニル樹脂よりなる防食層11が被覆されている。 The inner semi-conductive layer 7 is coated on the divided conductor 2, and the insulating layer 8 made of cross-linked polyethylene is coated on the inner semi-conductive layer 7. The insulating layer 8 is coated with an external semi-conductive layer 9 made of a semi-conductive resin, a semi-conductive cloth tape, or the like, and the outer semi-conductive layer 9 is coated with a metal shielding layer 10 made of a copper tape or the like. ing. Further, the metal shielding layer 10 is coated with an anticorrosion layer 11 made of a vinyl chloride resin.

図2(A)〜(C)は本発明の実施形態例に係る電力ケーブル1の製造方法を説明するための説明図である。 2 (A) to 2 (C) are explanatory views for explaining the manufacturing method of the power cable 1 according to the embodiment of the present invention.

まず、複数本の素線3を撚り合せた素線撚合体4に電気絶縁性を有する熱可塑性樹脂5を充填してセグメント導体6を形成する(図2(A)参照)。熱可塑性樹脂5は取り扱いやすいように、テープ状或いはひも状のような固体状態で素線撚合体4に入れられる。 First, the strands 4 in which a plurality of strands 3 are twisted are filled with a thermoplastic resin 5 having electrical insulation to form a segment conductor 6 (see FIG. 2 (A)). The thermoplastic resin 5 is put into the wire-twisted body 4 in a solid state such as a tape or a string so that it can be easily handled.

次いで、例えば図3に示す成形機12によって、セグメント導体6を断面略扇形に圧縮成形する(図2(B)参照)。 Next, for example, the segment conductor 6 is compression-molded into a substantially fan-shaped cross section by the molding machine 12 shown in FIG. 3 (see FIG. 2 (B)).

図3はセグメント導体の素線撚合体4を扇形状に圧縮成形する成形機を説明するための説明図である。 FIG. 3 is an explanatory diagram for explaining a molding machine that compression-molds the strands of the segment conductors 4 into a fan shape.

図3に示すように、成形機12は一対の成形ロール13,14からなる。一方の成形ロール13の外周面にはV形状の凹溝13aが形成され、他方の成形ロール14の外周面には内側に緩くカーブを描いて凹んだ弧状の凹溝14aが形成されている。成形ロール13,14のそれぞれの回転軸13b,14bが平行で、且つ、両外周面同士が接触するように組み合わされて両凹溝13a,14aにより扇形状の成形穴15が形成され、回転軸13b,14b及び成形穴15の中心軸線の回りを矢印方向へ回転(自転、公転)する。成形ロール13,14の少なくとも成形穴15の回りの回転(公転)は、モータ等の駆動源(図示省略)の駆動により行われる。 As shown in FIG. 3, the molding machine 12 includes a pair of molding rolls 13 and 14. A V-shaped concave groove 13a is formed on the outer peripheral surface of one molding roll 13, and an arc-shaped concave groove 14a that is gently curved and recessed inward is formed on the outer peripheral surface of the other molding roll 14. The rotating shafts 13b and 14b of the molding rolls 13 and 14 are parallel to each other and are combined so that the outer peripheral surfaces of the molding rolls 13b and 14b are in contact with each other to form a fan-shaped molding hole 15 by the concave grooves 13a and 14a. Rotate (rotate, revolve) around the central axis of 13b, 14b and the molding hole 15 in the direction of the arrow. The rotation (revolution) of the forming rolls 13 and 14 at least around the forming hole 15 is performed by driving a drive source (not shown) such as a motor.

断面略円形状のセグメント導体6を成形機12の成形ロール13,14の成形穴15内に挿通させ、成形ロール13,14から半径方向内側へ圧縮力を加えることにより、成形ロール13,14の回転(自転)に伴って扇形状に圧縮成形する。 A segment conductor 6 having a substantially circular cross section is inserted into the forming holes 15 of the forming rolls 13 and 14 of the forming machine 12, and a compressive force is applied from the forming rolls 13 and 14 inward in the radial direction to form the forming rolls 13 and 14. It is compression-molded into a fan shape as it rotates (rotates).

次いで、成形された複数本(図2では4本)のセグメント導体6を撚り合わせて断面略円形状の分割導体2を形成する(図2(C)参照)。 Next, a plurality of molded segment conductors 6 (4 in FIG. 2) are twisted to form a split conductor 2 having a substantially circular cross section (see FIG. 2C).

その後、分割導体2上に内部半導電層7を被覆し、内部半導電層7上に架橋ポリエチレンからなる絶縁層8を被覆する。 After that, the inner semi-conductive layer 7 is coated on the divided conductor 2, and the insulating layer 8 made of cross-linked polyethylene is coated on the inner semi-conductive layer 7.

次いで、絶縁層8上に半導電性樹脂や半導電性布テープ等よりなる外部半導電層9を被覆し、外部半導電層9上に銅テープ等よりなる金属遮蔽層10を被覆する。さらに、金属遮蔽層10上に塩化ビニル樹脂よりなる防食層11を被覆する。 Next, the insulating layer 8 is coated with an external semi-conductive layer 9 made of a semi-conductive resin, a semi-conductive cloth tape, or the like, and the outer semi-conductive layer 9 is coated with a metal shielding layer 10 made of a copper tape or the like. Further, the anticorrosion layer 11 made of vinyl chloride resin is coated on the metal shielding layer 10.

絶縁層8の被覆時に受ける温度(約150℃)で分割導体2に充填された熱可塑性樹脂5を軟化させ、これによって、素線3間の隙間を埋めることになる。 The thermoplastic resin 5 filled in the divided conductor 2 is softened at the temperature (about 150 ° C.) received when the insulating layer 8 is coated, thereby filling the gap between the strands 3.

以上の工程によって、本発明の実施形態例に係る電力ケーブル1が製造される。 Through the above steps, the power cable 1 according to the embodiment of the present invention is manufactured.

本発明の実施形態例に係る電力ケーブル1によれば、複数本の素線3を撚り合せた素線撚合体4に電気絶縁性を有する熱可塑性樹脂5を充填してセグメント導体6を形成した分割導体2を有するので、熱可塑性樹脂5を所定温度で軟化させることにより、素線3間の隙間を埋めることができ、素線3間の電気絶縁性能及び止水性能の両方を兼ね備えることができる。 According to the power cable 1 according to the embodiment of the present invention, the strands 4 obtained by twisting a plurality of strands 3 are filled with a thermoplastic resin 5 having electrical insulation to form a segment conductor 6. Since it has the split conductor 2, it is possible to fill the gap between the strands 3 by softening the thermoplastic resin 5 at a predetermined temperature, and it is possible to have both the electrical insulation performance and the water blocking performance between the strands 3. it can.

また、絶縁を施していない素線3だけを用いることができるので、素線3の配列や使用量に配慮する必要がなくなり、作業ミスや製造コストを低減させ、素線単体に絶縁材料を被覆したり、酸化皮膜を形成させる必要がないので、製造に係るリードタイムを短縮させて生産性を向上させることができる。 Further, since only the uninsulated wire 3 can be used, it is not necessary to consider the arrangement and the amount of the wire 3, work mistakes and manufacturing costs are reduced, and the wire itself is coated with an insulating material. Since it is not necessary to form an oxide film or to form an oxide film, the lead time for manufacturing can be shortened and the productivity can be improved.

さらに、素線3間を熱可塑性樹脂5で隙間なく充填させることができるので、高水圧の環境下など幅広い用途に使用することができる。 Further, since the wires 3 can be filled with the thermoplastic resin 5 without gaps, it can be used in a wide range of applications such as in an environment of high water pressure.

本発明の実施形態例に係る電力ケーブル1の製造方法によれば、上記効果を奏する電力ケーブルを提供できるとともに、内部半導電層7、絶縁層8、外部半導電層9の被覆時に受ける温度で分割導体2に充填された熱可塑性樹脂5を軟化させるので、絶縁層8の被覆工程と熱可塑性樹脂5の軟化工程とを同時に行うことができ、生産性を向上させることができる。 According to the method for manufacturing the power cable 1 according to the embodiment of the present invention, it is possible to provide a power cable having the above effect, and at the temperature received when the inner semiconductive layer 7, the insulating layer 8 and the outer semiconductive layer 9 are coated. Since the thermoplastic resin 5 filled in the divided conductor 2 is softened, the coating step of the insulating layer 8 and the softening step of the thermoplastic resin 5 can be performed at the same time, and the productivity can be improved.

本発明は、上記実施の形態に限定されることはなく、特許請求の範囲に記載された技術的事項の範囲内において、種々の変更が可能である。 The present invention is not limited to the above embodiment, and various modifications can be made within the scope of the technical matters described in the claims.

本発明の電力ケーブル及びその製造方法は、海底敷設ケーブル、浮遊式海中ケーブル(ライザーケーブル)、大電流送電向けの直流及び交流XLPE(架橋ポリエチレン)ケーブル等のような分割導体を有するものに利用される。 The power cable of the present invention and its manufacturing method are used for those having a split conductor such as a submarine laying cable, a floating underwater cable (riser cable), a DC and AC XLPE (cross-linked polyethylene) cable for high current transmission, and the like. Ru.

1:電力ケーブル
2:分割導体
3:素線
4:素線撚合体
5:熱可塑性樹脂
6:セグメント導体
7:内部半導電層
8:絶縁層
9:外部半導電層
10:金属遮蔽層
11:防食層
12:成形機
13:成形ロール
14:成形ロール
15:成形穴
1: Power cable 2: Divided conductor 3: Wire 4: Wire twisted 5: Thermoplastic resin 6: Segment conductor 7: Internal semi-conductive layer 8: Insulation layer 9: External semi-conductive layer 10: Metal shielding layer 11: Anticorrosion layer 12: Molding machine 13: Molding roll 14: Molding roll 15: Molding hole

Claims (2)

分割導体を有する電力ケーブルの製造方法において、
(1)絶縁を施していない複数本の断面円形の素線を束ね撚り合せた素線撚合体に電気絶縁性を有する熱可塑性樹脂を周囲を覆うように充填して複数本のセグメント導体を形成する工程と、
(2)形成された複数本の前記セグメント導体を前記熱可塑性樹脂同士が接する状態で撚り合わせて前記分割導体を形成する工程と、
(3)前記分割導体に絶縁層を被覆する工程と、
を有し、
前記絶縁層の被覆時に受ける温度で前記熱可塑性樹脂を軟化させ、前記素線間が電気絶縁性を有するように前記素線間の隙間を埋める、
ことを特徴とする電力ケーブルの製造方法。
In the method of manufacturing a power cable having a split conductor
(1) A plurality of uninsulated strands having a circular cross section are bundled and twisted together, and a thermoplastic resin having electrical insulation is filled so as to cover the periphery to form a plurality of segment conductors. And the process to do
(2) A step of twisting the formed plurality of the segment conductors in a state where the thermoplastic resins are in contact with each other to form the divided conductor.
(3) A step of coating the divided conductor with an insulating layer and
Have,
The thermoplastic resin is softened at the temperature received when the insulating layer is coated, and the gaps between the strands are filled so that the strands have electrical insulation.
A method of manufacturing a power cable, which is characterized in that.
前記(1)の工程の後に、前記セグメント導体を断面略扇形に圧縮成形する工程を有する、
ことを特徴とする請求項に記載の電力ケーブルの製造方法。
After the step (1), there is a step of compression molding the segment conductor into a substantially fan-shaped cross section.
The method for manufacturing a power cable according to claim 1 , wherein the power cable is manufactured.
JP2015031149A 2015-02-19 2015-02-19 Power cable and its manufacturing method Active JP6754170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015031149A JP6754170B2 (en) 2015-02-19 2015-02-19 Power cable and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015031149A JP6754170B2 (en) 2015-02-19 2015-02-19 Power cable and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2016152228A JP2016152228A (en) 2016-08-22
JP6754170B2 true JP6754170B2 (en) 2020-09-09

Family

ID=56695503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015031149A Active JP6754170B2 (en) 2015-02-19 2015-02-19 Power cable and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6754170B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63139715U (en) * 1987-03-03 1988-09-14
JPH0660733A (en) * 1992-08-10 1994-03-04 Riken Densen Kk Litz wire and manufacture thereof
JPH06168638A (en) * 1992-11-27 1994-06-14 Showa Electric Wire & Cable Co Ltd Manufacture of water infiltration preventive conductor
JP2005019392A (en) * 2003-05-30 2005-01-20 Kurabe Ind Co Ltd Airtight electric cable and manufacturing method of airtight electric cable

Also Published As

Publication number Publication date
JP2016152228A (en) 2016-08-22

Similar Documents

Publication Publication Date Title
WO2013111718A1 (en) Multicore cable and manufacturing method for same
US10262771B2 (en) Method for manufacturing a torque balanced electromechanical cable
WO2020158862A1 (en) Insulated electrical wire and wire harness
JP4984626B2 (en) Electric cable
KR102457873B1 (en) Joint sleeve and Connection structrue
JP6754170B2 (en) Power cable and its manufacturing method
US9330815B2 (en) Cable structures with insulating tape and systems and methods for making the same
KR102001961B1 (en) Power cable having flexible sectoral conductors
US2310423A (en) Means for preventing leakage of fluid through electric cables
JP2020095790A5 (en)
JP2017021904A (en) Flat cable for wiring on movable part
JP6488761B2 (en) Cable for moving part wiring
KR20080096445A (en) A method of fabricating a class 5 insulated electrical conductor
JP5832035B2 (en) Tape-wrap insulation connection for power cables
JP7121928B2 (en) Insulated wires and multicore cables
KR101200616B1 (en) Structure of stranded conductor for electrical power cable
JP6841273B2 (en) Multi-core cable
CN106024107A (en) Electric wire and manufacturing method thereof
WO2021039222A1 (en) Multicore cable and harness
JP6844963B2 (en) Power cable
KR20140130825A (en) Cable Structure
JP6480514B2 (en) Covered wire and bundled wire
WO2010130291A1 (en) A method for jointing insulated power cables
CN202363163U (en) High voltage DC submarine cable
JP2022041383A (en) Multi-core cable and method for producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20161208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190426

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200324

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200821

R151 Written notification of patent or utility model registration

Ref document number: 6754170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350