JP6753540B1 - Polyolefin film and mold release film - Google Patents

Polyolefin film and mold release film Download PDF

Info

Publication number
JP6753540B1
JP6753540B1 JP2019555044A JP2019555044A JP6753540B1 JP 6753540 B1 JP6753540 B1 JP 6753540B1 JP 2019555044 A JP2019555044 A JP 2019555044A JP 2019555044 A JP2019555044 A JP 2019555044A JP 6753540 B1 JP6753540 B1 JP 6753540B1
Authority
JP
Japan
Prior art keywords
film
polyolefin
less
raw material
polyolefin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019555044A
Other languages
Japanese (ja)
Other versions
JPWO2020071291A1 (en
Inventor
一馬 岡田
一馬 岡田
大倉 正寿
正寿 大倉
康平 山中
康平 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=70055161&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6753540(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2020137991A priority Critical patent/JP6962426B2/en
Application granted granted Critical
Publication of JP6753540B1 publication Critical patent/JP6753540B1/en
Publication of JPWO2020071291A1 publication Critical patent/JPWO2020071291A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/28Shaping by stretching, e.g. drawing through a die; Apparatus therefor of blown tubular films, e.g. by inflation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/10Polypropylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene

Abstract

離型性、品位に優れたポリオレフィンフィルムを提供することを課題とする。本発明のポリオレフィンフィルムは、少なくとも片面(A面)の平均粗さSaが65〜600nmであり、前記A面の山高さSp及びA面の谷深さSvの比であるSp/Svの値が、2.5以下であり、ヘイズが30%以下である。An object of the present invention is to provide a polyolefin film having excellent releasability and quality. The polyolefin film of the present invention has an average roughness Sa of at least one side (A side) of 65 to 600 nm, and the value of Sp / Sv, which is the ratio of the peak height Sp of the A side and the valley depth Sv of the A side, is , 2.5 or less, and haze is 30% or less.

Description

本発明は、離型性、品位に優れた、離型用フィルムとして好適に用いることのできるポリオレフィンフィルムに関する。 The present invention relates to a polyolefin film having excellent releasability and quality and which can be suitably used as a releasable film.

ポリオレフィンフィルムは、透明性、機械特性、電気特性等に優れるため、包装用途、離型用途、テープ用途、ケーブルラッピングやコンデンサをはじめとする電気用途等の様々な用途に用いられている。特に、表面の離型性や機械特性に優れることから、プラスチック製品や建材や光学部材など、様々な部材の離型用フィルムや工程フィルムとして好適に用いられる。 Since the polyolefin film is excellent in transparency, mechanical properties, electrical properties, etc., it is used in various applications such as packaging applications, mold release applications, tape applications, and electrical applications such as cable wrapping and capacitors. In particular, since it has excellent surface releasability and mechanical properties, it is suitably used as a releasable film or process film for various members such as plastic products, building materials, and optical members.

離型用フィルムへの要求特性は、その使用用途によって適宜設定されるが、近年、感光性樹脂などの粘着性を有する樹脂層のカバーフィルムとして用いられる場合がある。粘着性を有する樹脂層をカバーする場合、カバーフィルムの離型性が悪いと、剥がす際にきれいに剥離できず、保護面である樹脂層の形状が変化したり、保護面に剥離痕が残る場合がある。そこで、フィルム表面を粗面化し、樹脂層との接触面積を低減することで、離型性を向上させる手法が用いられる場合がある。しかしながら、カバーフィルム表面の粗度を高めていくと、粗大突起が形成しやすく、たとえば光学用部材の離型フィルムとして用いた際に、フィルムの表面凹凸が光学用部材に転写して製品の視認性に影響を及ぼす場合があった。以上のことから、光学部材など要求特性の高い離型フィルムで用いるためには、粗大突起を形成せずに、均一かつ微細に粗面化した、離型性、品位を兼ね備えたフィルムが求められる場合がある。 The required characteristics of the release film are appropriately set depending on the intended use, but in recent years, it may be used as a cover film for a resin layer having adhesiveness such as a photosensitive resin. When covering an adhesive resin layer, if the cover film has poor releasability, it cannot be peeled off cleanly when peeled off, the shape of the resin layer that is the protective surface changes, or peeling marks remain on the protective surface. There is. Therefore, a method of improving the releasability by roughening the surface of the film and reducing the contact area with the resin layer may be used. However, if the roughness of the surface of the cover film is increased, coarse protrusions are likely to be formed. For example, when used as a release film for an optical member, the surface unevenness of the film is transferred to the optical member and the product is visually recognized. It may affect sexuality. From the above, in order to use it in a release film having high required characteristics such as an optical member, a film having a uniform and finely roughened surface without forming coarse protrusions and having both releasability and quality is required. In some cases.

粗面化の手段としては、たとえば特許文献1、2には、ポリプロピレンの結晶形態の一つであるβ晶の球晶を形成し延伸することで、フィルム表面にクレーターを形成することで粗面化し、工程搬送性を高めた例が記載されている。また、特許文献3には、フィルム内に粒子を添加し、一軸延することで、粗面化し、工程搬送性を高めた例が記載されている。また、特許文献4には、フィルムの内層に粒子を添加し、延伸することで粗面化した例が記載されている。 As a means of roughening, for example, in Patent Documents 1 and 2, a rough surface is formed by forming a crater on the film surface by forming and stretching β-crystal spherulites, which is one of the crystal forms of polypropylene. An example is described in which the process transportability is improved. Further, Patent Document 3 describes an example in which particles are added to a film and uniaxially stretched to roughen the surface and improve process transferability. Further, Patent Document 4 describes an example in which particles are added to the inner layer of a film and stretched to roughen the surface.

国際公開第2016/006578号International Publication No. 2016/006578 特開2017−125184号公報JP-A-2017-125184 特開2005−138386号公報Japanese Unexamined Patent Publication No. 2005-138386 特許第6115687号公報Japanese Patent No. 6115687

しかしながら前述の特許文献1、2に記載の方法では、表面粗度が不十分である問題があった。また特許文献3に記載の方法も、同様に表面粗度が不十分であった。さらに特許文献4に記載の方法は、硬度の高い粒子によって粗大突起が形成され、光学用部材の樹脂層に凹凸転写する場合があった。 However, the methods described in Patent Documents 1 and 2 described above have a problem that the surface roughness is insufficient. Further, the method described in Patent Document 3 also has insufficient surface roughness. Further, in the method described in Patent Document 4, coarse protrusions may be formed by particles having high hardness, and uneven transfer may occur to the resin layer of the optical member.

そこで本発明の課題は、上記した問題点を解決することにある。すなわち、離型性、品位に優れたポリオレフィンフィルムを提供することにある。 Therefore, an object of the present invention is to solve the above-mentioned problems. That is, it is an object of the present invention to provide a polyolefin film having excellent releasability and quality.

上述した課題を解決し、目的を達成するために、本発明のポリオレフィンフィルムは、少なくとも片面(A面)の平均粗さSaが65〜500nmであり、A面の山高さSp、及び谷深さSvの比であるSp/Svの値が2.5以下であり、フィルムのヘイズが30%以下であることを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the polyolefin film of the present invention has an average roughness Sa of at least one side (A side) of 65 to 500 nm, a mountain height Sp of the A side, and a valley depth. The Sp / Sv value, which is the ratio of Sv, is 2.5 or less, and the haze of the film is 30% or less.

本発明のポリオレフィンフィルムは、離型性、耐熱性、品位に優れることから、離型用フィルムとして好適に使用することができる。 Since the polyolefin film of the present invention is excellent in mold release property, heat resistance, and quality, it can be suitably used as a mold release film.

本発明のポリオレフィンフィルムは、少なくとも片面(A面)の平均粗さSaが65〜600nmであり、前記A面の山高さSp及びA面の谷深さSvの比であるSp/Svの値が2.5以下であり、ヘイズが30%以下である。
本発明のポリオレフィンフィルムの少なくとも片面(A面)の平均粗さSaは、より好ましくは150〜480nm、さらに好ましくは200〜400nmである。Saが65nm未満の場合、表面保護用の離型フィルムとして用いたとき、被着体との接触面積が大きく、被着体の粘着が強い場合、きれいに剥離できず、被着体表面の形状が変化したり、被着体表面に剥離痕が残る場合がある。また、Saが600nmを超えると、表面保護用の離型フィルムとして用いたとき、被着体との接触面積が小さく、貼り合わせの搬送中に剥離してしまう場合がある。Saを65〜600nmの範囲とするには、フィルムの原料組成を後述する範囲とし、また、製膜条件を後述する範囲とし、特に、フィルム表層に融点の低い樹脂を添加し、その融点以上の温度で、延伸することで、フィルム表面を部分的に溶融させることで粗面化することが効果的である。また、背面の打痕転写や、フィルムの搬送性の観点から、フィルムの両面共にSaが65〜600nmであることが好ましい。
The polyolefin film of the present invention has an average roughness Sa of at least one side (A side) of 65 to 600 nm, and the value of Sp / Sv, which is the ratio of the peak height Sp of the A side and the valley depth Sv of the A side, is It is 2.5 or less and the haze is 30% or less.
The average roughness Sa of at least one side (A side) of the polyolefin film of the present invention is more preferably 150 to 480 nm, still more preferably 200 to 400 nm. When Sa is less than 65 nm, when used as a release film for surface protection, the contact area with the adherend is large, and if the adherend has strong adhesion, it cannot be peeled off cleanly and the shape of the adherend surface becomes It may change or a peeling mark may remain on the surface of the adherend. Further, if Sa exceeds 600 nm, when used as a release film for surface protection, the contact area with the adherend is small, and it may be peeled off during the transportation of bonding. In order to set Sa to the range of 65 to 600 nm, the raw material composition of the film is set to the range described later, and the film forming conditions are set to the range described later. In particular, a resin having a low melting point is added to the film surface layer, and the temperature is equal to or higher than the melting point. It is effective to roughen the surface of the film by partially melting it by stretching it at a temperature. Further, from the viewpoint of dent transfer on the back surface and transportability of the film, it is preferable that Sa is 65 to 600 nm on both sides of the film.

なお、フィルムの両面共に、Saが65〜600nmである場合は、Saの値が小さい方の面をA面と定義する。両面のSaが同一であった場合は、山高さSpの値が小さい方の面をA面と定義する。両面のSa、Spが共に同一であった場合は、谷深さSvの値が小さい方の面をA面と定義する。 When Sa is 65 to 600 nm on both sides of the film, the side having the smaller Sa value is defined as the A side. If the Sa on both sides are the same, the side with the smaller mountain height Sp value is defined as the A side. When both Sa and Sp are the same, the surface having the smaller valley depth Sv value is defined as the A surface.

本発明のポリオレフィンフィルムにおいて、前記A面の山高さSp及びA面の谷深さSvの比であるSp/Svの値は、より好ましくは2.0以下、さらに好ましくは1.5以下である。Sp/Svの値は、谷深さに対する山高さの比を表す指標であり、Sp/Svの値が低いということは、面内の最大高さが低く、粗大突起の突起高さが低いことを意味する。また、谷深さが深く、貼り合わせる被着体との接触面積が低くなるため、離型性が高まることを意味する。Sp/Svの値が2.5を超えると、例えば光学用部材の離型フィルムとして用いた際に、離形性が不足したり、フィルムの表面凹凸が光学用部材に転写する場合があり、特に被着体の粘着が強い場合、きれいに剥離できず、被着体表面の形状が変化したり、被着体表面に剥離痕が残る場合がある。Sp/Svの値の下限は、特に限定されないが、実質的には0.05程度が下限である。また、背面の打痕転写や、フィルムの搬送性の観点から、フィルムの両面共にSp/Svの値が2.5以下であることが好ましい。Sp/Svの値を2.5以下とするには、フィルムの原料組成を後述する範囲とし、また、製膜条件を後述する範囲とし、特に表層の厚みや、低融点樹脂の割合、延伸温度を制御して、フィルム表面の低融点樹脂を部分溶融させながら延伸することで、均一に凹みを形成しながら、突起高さを一定に抑えることが効果的である。 In the polyolefin film of the present invention, the value of Sp / Sv, which is the ratio of the peak height Sp of the A surface to the valley depth Sv of the A surface, is more preferably 2.0 or less, still more preferably 1.5 or less. .. The Sp / Sv value is an index showing the ratio of the mountain height to the valley depth, and a low Sp / Sv value means that the maximum height in the plane is low and the protrusion height of the coarse protrusion is low. Means. In addition, since the valley depth is deep and the contact area with the adherend to be bonded is small, it means that the releasability is improved. If the Sp / Sv value exceeds 2.5, for example, when used as a release film for an optical member, the releasability may be insufficient or the surface unevenness of the film may be transferred to the optical member. In particular, when the adherend is strongly adhered, it cannot be peeled off cleanly, the shape of the adherend surface may change, or peeling marks may remain on the adherend surface. The lower limit of the Sp / Sv value is not particularly limited, but is substantially about 0.05. Further, from the viewpoint of dent transfer on the back surface and transportability of the film, it is preferable that the Sp / Sv value is 2.5 or less on both sides of the film. In order to set the Sp / Sv value to 2.5 or less, the raw material composition of the film is set to the range described later, and the film forming conditions are set to the range described later, especially the thickness of the surface layer, the ratio of the low melting point resin, and the stretching temperature. It is effective to keep the height of the protrusions constant while forming dents uniformly by stretching the low melting point resin on the film surface while partially melting the film.

本発明のポリオレフィンフィルムのヘイズは、より好ましくは20%以下、さらに好ましくは10%以下、最も好ましくは5%以下である。ヘイズ値が30%を超えると、フィルムの透明性が低いため、感光性樹脂と貼り合わせ後、欠点観察などの工程検査を行う際に妨げとなる場合がある。ヘイズ値の下限は、特に限定されないが、実質的には0.1%程度が下限である。ヘイズ値を30%以下とするには、フィルムの原料組成を後述する範囲とし、また、製膜条件を後述する範囲とし、特に表層に添加する低融点樹脂と、フィルムの主成分を構成するポリオレフィン樹脂との相溶性を高めることが効果的である。 The haze of the polyolefin film of the present invention is more preferably 20% or less, further preferably 10% or less, and most preferably 5% or less. If the haze value exceeds 30%, the transparency of the film is low, which may hinder the process inspection such as defect observation after bonding with the photosensitive resin. The lower limit of the haze value is not particularly limited, but is substantially about 0.1%. In order to reduce the haze value to 30% or less, the raw material composition of the film is set to the range described later, and the film forming conditions are set to the range described later. In particular, the low melting point resin added to the surface layer and the polyolefin constituting the main component of the film are set. It is effective to increase the compatibility with the resin.

本発明のポリオレフィンフィルムは、前記A面の山高さSp、及び、前記A面の平均粗さSaの比であるSp/Saの値が13未満であることが好ましい。Sp/Saの値は、平均粗さに対する山高さの比を表す指標であり、Sp/Saの値が低いということは、面内の最大高さが低く、粗大突起の突起高さが低いことを意味する。Sp/Saの値が13未満の場合、例えば光学用部材の離型フィルムとして用いた際に、フィルムの表面凹凸の光学用部材への転写が起こりにくく、粘着性の高い被着体でも、良好な剥離性を実現できる。Sp/Saの値の下限は特に限定されないが、実質的には0.1程度である。また、背面の打痕転写やフィルムの搬送性の観点から、フィルムの両面共にSp/Saの値が13未満であることが好ましい。Sp/Saの値を13未満とするには、フィルムの原料組成を後述する範囲とし、また、製膜条件を後述する範囲とし、特に、表層の厚みや、低融点樹脂の割合を制御することで、フィルム表面で部分溶融する樹脂量を均一に制御することが効果的である。 In the polyolefin film of the present invention, it is preferable that the value of Sp / Sa, which is the ratio of the mountain height Sp of the A surface and the average roughness Sa of the A surface, is less than 13. The Sp / Sa value is an index showing the ratio of the mountain height to the average roughness, and a low Sp / Sa value means that the maximum height in the plane is low and the protrusion height of the coarse protrusion is low. Means. When the Sp / Sa value is less than 13, for example, when used as a release film for an optical member, transfer of the surface unevenness of the film to the optical member is unlikely to occur, and even a highly adhesive adherend is good. Achieves excellent peelability. The lower limit of the Sp / Sa value is not particularly limited, but is substantially about 0.1. Further, from the viewpoint of dent transfer on the back surface and transportability of the film, it is preferable that the Sp / Sa value is less than 13 on both sides of the film. In order to set the Sp / Sa value to less than 13, the raw material composition of the film should be in the range described later, and the film forming conditions should be in the range described later, and in particular, the thickness of the surface layer and the ratio of the low melting point resin should be controlled. Therefore, it is effective to uniformly control the amount of resin that partially melts on the film surface.

本発明のポリオレフィンフィルムは、厚み方向の弾性率が2.3GPa以下であることが好ましい。より好ましくは2.0GPa以下、さらに好ましくは1.8GPa以下である。厚み方向の弾性率が2.3GPa以下の場合、例えば光学用部材の離型フィルムとして用いた際に、硬度の低い被着体でも打痕転写がしにくく、品位の点で好ましい。厚み方向の弾性率の下限は特に限定されないが、実質的に0.5GPaである。厚み方向の弾性率を2.3GPa以下とするには、フィルムの原料組成を後述する範囲とし、また、製膜条件を後述する範囲とし、特に、表層に低融点樹脂を添加し、表面を軟化させることが効果的である。 The polyolefin film of the present invention preferably has an elastic modulus in the thickness direction of 2.3 GPa or less. It is more preferably 2.0 GPa or less, still more preferably 1.8 GPa or less. When the elastic modulus in the thickness direction is 2.3 GPa or less, for example, when used as a release film for an optical member, dent transfer is difficult even with an adherend having low hardness, which is preferable in terms of quality. The lower limit of the elastic modulus in the thickness direction is not particularly limited, but is substantially 0.5 GPa. In order to reduce the elastic modulus in the thickness direction to 2.3 GPa or less, the raw material composition of the film is set to the range described later, and the film forming conditions are set to the range described later. In particular, a low melting point resin is added to the surface layer to soften the surface. It is effective to let them.

本発明のポリオレフィンフィルムは、示差操作熱量計DSCで30℃から260℃まで昇温した際に、165℃以上に融解ピークを有することが好ましい。より好ましくは168℃以上、さらに好ましくは170℃以上である。本発明のポリオレフィンフィルムが165℃以上に融解ピークを有する場合、例えば離型フィルムとして用いた際に、被着体と貼り合わせた後に高温の熱のかかる工程を通過する際でも、フィルムの軟化により変形せず、品位の点で好ましい。融解ピーク温度の上限は特に限定されないが、実質的に180℃である。融解ピーク温度を165℃以上とするには、フィルムの原料組成を後述する範囲とし、また、製膜条件を後述する範囲とし、特に、フィルム内層に高融点の樹脂を使用し、内層の耐熱性を高めることが効果的である。 The polyolefin film of the present invention preferably has a melting peak at 165 ° C. or higher when the temperature is raised from 30 ° C. to 260 ° C. by a differential operating calorimeter DSC. It is more preferably 168 ° C. or higher, and even more preferably 170 ° C. or higher. When the polyolefin film of the present invention has a melting peak at 165 ° C. or higher, for example, when it is used as a release film, even when it is subjected to a process of applying high temperature heat after being bonded to an adherend, due to the softening of the film. It does not deform and is preferable in terms of quality. The upper limit of the melting peak temperature is not particularly limited, but is substantially 180 ° C. In order to set the melting peak temperature to 165 ° C. or higher, the raw material composition of the film is set to the range described later, and the film forming conditions are set to the range described later. In particular, a high melting point resin is used for the inner layer of the film, and the heat resistance of the inner layer is set. It is effective to increase.

本発明のポリオレフィンフィルムは、フィッシュアイの個数が5.0個/m以下であることが好ましい。より好ましくは4.0個/m以下、さらに好ましくは3.0個/m以下である。フィッシュアイの個数が5.0個/m以下の場合、ディスプレイ部材など高品位が求められる製品の保護フィルムや製造用基材フィルムとして用いた際に歩留まり低下を抑えられ、品位、生産性の点で好ましい。フィッシュアイの個数は少ないほど好ましく、その下限は0個/mである。フィッシュアイの個数を5.0個/m以下とするためには、原料の組成や調整方法、フィルムの積層構成を後述する範囲内とし、原料中の添加剤成分や熱劣化してフィッシュアイの原因となるような樹脂の使用量を低減させることが効果的である。また、フィルム製膜時の条件を後述する範囲内とし、原料を溶融してシート化するまでにろ過により異物を除去することや、樹脂の滞留部を低減させることが効果的である。The polyolefin film of the present invention preferably has 5.0 fish eyes / m 2 or less. It is more preferably 4.0 pieces / m 2 or less, and further preferably 3.0 pieces / m 2 or less. When the number of fish eyes is 5.0 / m 2 or less, the decrease in yield can be suppressed when used as a protective film for products that require high quality such as display members or as a base film for manufacturing, and the quality and productivity can be improved. It is preferable in that. The smaller the number of fish eyes, the more preferable, and the lower limit thereof is 0 / m 2 . In order to reduce the number of fish eyes to 5.0 / m 2 or less, the composition and adjustment method of the raw material and the laminated structure of the film should be within the range described later, and the additive components in the raw material and the fish eyes are thermally deteriorated. It is effective to reduce the amount of resin used, which causes the above. Further, it is effective to set the conditions at the time of film formation within the range described later, remove foreign substances by filtration until the raw materials are melted and formed into a sheet, and reduce the retention portion of the resin.

本発明のポリオレフィンフィルムは、主収縮方向、及び、その直交方向の150℃15分の熱収縮率の和が8.0%以下であることが好ましく、6.0%以下がより好ましく。4.0%以下が更に好ましい。なお、本発明における主収縮方向とはフィルム面内において、任意の方向を0°とした場合に、該任意の方向に対して15°、30°、45°、60°、75°、90°、105°、120°、135°、150°、165°の角度をなす各々の方向で熱収縮率を測定したとき、最も高い値を示す方向をいう。 In the polyolefin film of the present invention, the sum of the heat shrinkage ratios at 150 ° C. and 15 minutes in the main shrinkage direction and the orthogonal direction thereof is preferably 8.0% or less, more preferably 6.0% or less. 4.0% or less is more preferable. The main contraction direction in the present invention is 15 °, 30 °, 45 °, 60 °, 75 °, 90 ° with respect to the arbitrary direction when the arbitrary direction is 0 ° in the film surface. , 105 °, 120 °, 135 °, 150 °, 165 °, the direction showing the highest value when the heat shrinkage rate is measured in each direction.

本発明においては、フィルムを製膜する方向に平行な方向を製膜方向、長手方向あるいはMD方向と称し、フィルム面内で製膜方向に直交する方向を幅方向あるいはTD方向と称する。主収縮方向、及び、その直交方向の150℃15分の熱収縮率の和が8.0%以下の場合、例えば離型フィルムとして用いた際に、被着体と貼り合わせた後に高温の熱のかかる工程を通過する際に、フィルムが変形せず、被着体から剥がれたり、シワが入るなどの不具合が起こりにくく好ましい。熱収縮率の下限は特に限定されないが、フィルムが膨張する場合もあり、実質的には−2.0%程度が下限である。熱収縮率の和を8.0%以下とするには、フィルムの原料組成を後述する範囲とし、また、製膜条件を後述する範囲とし、特に、フィルム内層に高融点の樹脂を使用することや、二軸延伸後の熱固定、弛緩条件を後述する範囲とすることが効果的である。 In the present invention, the direction parallel to the film forming direction is referred to as the film forming direction, the longitudinal direction or the MD direction, and the direction orthogonal to the film forming direction in the film plane is referred to as the width direction or the TD direction. When the sum of the heat shrinkage rate at 150 ° C. and 15 minutes in the main shrinkage direction and its orthogonal direction is 8.0% or less, for example, when used as a release film, high temperature heat after bonding with an adherend. It is preferable that the film does not deform when passing through such a step, and problems such as peeling from the adherend and wrinkling are unlikely to occur. The lower limit of the heat shrinkage rate is not particularly limited, but the film may expand, and the lower limit is substantially −2.0%. In order to make the sum of the heat shrinkage ratio 8.0% or less, the raw material composition of the film should be in the range described later, and the film forming conditions should be in the range described later, and in particular, a resin having a high melting point should be used for the inner layer of the film. It is also effective to set the heat fixing and relaxation conditions after biaxial stretching within the range described later.

本発明のポリオレフィンフィルムは、130℃で測定した場合の主収縮方向の直交方向の最大点強度が70MPa以上であることが好ましく、75MPa以上がより好ましく、80MPa以上が更に好ましい。主収縮方向の直交方向の最大点強度が70MPa未満の場合、例えば、熱のかかる工程でフィルムを搬送する際に、フィルムが破断してしまう場合がある。破断強度の上限は特に限定されないが、実質的に200MPa程度である。130℃で測定した場合の主収縮方向の直交方向の最大点強度を70MPa以上とするには、フィルムの原料組成を後述する範囲とし、また、製膜条件を後述する範囲とし、特に、フィルム内層に高融点の樹脂を使用することや、二軸延伸時の延伸条件、延伸後の熱固定、弛緩条件を後述する範囲とすることが効果的である。 The polyolefin film of the present invention preferably has a maximum point strength of 70 MPa or more, more preferably 75 MPa or more, and even more preferably 80 MPa or more in the direction orthogonal to the main contraction direction when measured at 130 ° C. If the maximum point strength in the direction orthogonal to the main shrinkage direction is less than 70 MPa, the film may break, for example, when the film is conveyed in a process of applying heat. The upper limit of the breaking strength is not particularly limited, but is substantially about 200 MPa. In order to set the maximum point strength in the direction orthogonal to the main shrinkage direction to 70 MPa or more when measured at 130 ° C., the raw material composition of the film is set to the range described later, and the film forming conditions are set to the range described later, particularly the inner layer of the film. It is effective to use a resin having a high melting point, and to set the stretching conditions at the time of biaxial stretching, the heat fixing after stretching, and the relaxation conditions within the range described later.

本発明のポリオレフィンフィルムの厚みは用途によって適宜調整されるものであり特に限定はされないが、0.5μm以上100μm以下であることがハンドリング性の観点から好ましい。フィルムの厚みは、1μm以上40μm以下であることがより好ましく、1μm以上30μm以下であることがさらに好ましく、1μm以上15μm以下であることが特に好ましい。厚みは他の物性を低下させない範囲内で、押出機のスクリュー回転数、未延伸シートの幅、製膜速度、延伸倍率などにより調整可能である。 The thickness of the polyolefin film of the present invention is appropriately adjusted depending on the intended use and is not particularly limited, but is preferably 0.5 μm or more and 100 μm or less from the viewpoint of handleability. The thickness of the film is more preferably 1 μm or more and 40 μm or less, further preferably 1 μm or more and 30 μm or less, and particularly preferably 1 μm or more and 15 μm or less. The thickness can be adjusted by adjusting the screw rotation speed of the extruder, the width of the unstretched sheet, the film forming speed, the stretching ratio, and the like within a range that does not deteriorate other physical properties.

次に本発明のポリオレフィンフィルムの原料について説明するが、必ずしもこれに限定されるものではない。
本発明のポリオレフィンフィルムは、少なくとも表層と内層からなる積層構成であって、少なくとも一方の表層に、融点が50℃以上135℃以下のポリプロピレン樹脂(以下、融点が50℃以上135℃以下のポリプロピレン樹脂を、ポリプロピレン原料Iともいう)を含有することが好ましい。より好ましくは60℃以上130℃以下、さらに好ましくは60℃以上120℃以下、最も好ましくは60℃以上100℃以下のポリプロピレン樹脂を含有することが好ましい。予熱/延伸ロールを搬送する際に、フィルム表面の溶融、ロールへの粘着を起こさない観点から、ポリプロピレン原料Iの融点は50℃以上が好ましい。また、延伸時にフィルム表面を部分的に溶融し粗面化する観点から、ポリプロピレン原料Iの融点は135℃以下が好ましい。ポリプロピレン原料Iの含有量は、ポリプロピレン原料Iが含まれる表層を100質量%とした際に、10質量%以上80質量%以下であることが好ましく、20質量%以上70質量%以下であることがより好ましく、30質量%以上60質量%以下であることが更に好ましい。
Next, the raw material of the polyolefin film of the present invention will be described, but the present invention is not necessarily limited to this.
The polyolefin film of the present invention has a laminated structure consisting of at least a surface layer and an inner layer, and a polypropylene resin having a melting point of 50 ° C. or higher and 135 ° C. or lower (hereinafter, a polypropylene resin having a melting point of 50 ° C. or higher and 135 ° C. or lower) is formed on at least one surface layer. Is also preferably contained as a polypropylene raw material I). It is more preferable to contain a polypropylene resin of 60 ° C. or higher and 130 ° C. or lower, more preferably 60 ° C. or higher and 120 ° C. or lower, and most preferably 60 ° C. or higher and 100 ° C. or lower. The melting point of the polypropylene raw material I is preferably 50 ° C. or higher from the viewpoint of preventing the film surface from melting and sticking to the roll when the preheating / stretching roll is conveyed. Further, from the viewpoint of partially melting the film surface during stretching to roughen the surface, the melting point of the polypropylene raw material I is preferably 135 ° C. or lower. The content of the polypropylene raw material I is preferably 10% by mass or more and 80% by mass or less, and preferably 20% by mass or more and 70% by mass or less, when the surface layer containing the polypropylene raw material I is 100% by mass. More preferably, it is 30% by mass or more and 60% by mass or less.

また、ポリプロピレン原料Iは、ホモポリプロピレン樹脂であることが好ましい。つまり本発明のポリオレフィンフィルムは、前述の融点が50℃以上135℃以下のポリプロピレン樹脂として、ホモポリプロピレン樹脂を含有することが好ましい。少なくとも一方の表層に含有されるポリプロピレン原料Iがランダムコポリマーやブロックコポリマーなどの共重合体である場合、エチレンなどのモノマー成分がフィッシュアイ発生の要因となる場合がある。 Further, the polypropylene raw material I is preferably a homopolypropylene resin. That is, the polyolefin film of the present invention preferably contains a homopolypropylene resin as the polypropylene resin having a melting point of 50 ° C. or higher and 135 ° C. or lower. When the polypropylene raw material I contained in at least one surface layer is a copolymer such as a random copolymer or a block copolymer, a monomer component such as ethylene may cause fish eye generation.

少なくとも一方の表層に含有されるポリプロピレン原料Iとして好ましく用いられるホモポリプロピレン樹脂としては、プロピレンの単独重合体であって、重合触媒としてメタロセン触媒を用いて製造されたものが好ましい。ホモポリプロピレン樹脂の重量平均分子量は4万〜20万であることが好ましい(Mw:重量平均分子量、Mn:数平均分子量)。以上のような特徴を有するホモポリプロピレン樹脂としては、低立体規則性ポリプロピレン樹脂である出光興産(株)製“エルモーデュ”などの市販品を適宜選択の上、使用することができる。 As the homopolypropylene resin preferably used as the polypropylene raw material I contained in at least one surface layer, a homopolymer of propylene, which is produced by using a metallocene catalyst as a polymerization catalyst, is preferable. The weight average molecular weight of the homopolypropylene resin is preferably 40,000 to 200,000 (Mw: weight average molecular weight, Mn: number average molecular weight). As the homopolypropylene resin having the above characteristics, a commercially available product such as "El Modu" manufactured by Idemitsu Kosan Co., Ltd., which is a low stereoregular polypropylene resin, can be appropriately selected and used.

本発明のポリオレフィンフィルムは、単層構成であってもよい。単層構成の本発明のポリオレフィンフィルムの主成分、並びに、積層構成の本発明のポリオレフィンフィルムの内層の主成分は、ポリオレフィン樹脂(以下、ポリオレフィンフィルムの内層の主成分のポリオレフィン樹脂を、ポリオレフィン原料IIともいう)が好ましい。本発明において「主成分」とは、特定の成分が全成分中に占める割合が50質量%以上100質量%以下であることを意味し、より好ましくは90質量%以上100質量%以下、さらに好ましくは95質量%以上100質量%以下、より一層好ましくは96質量%以上100質量%以下、特に好ましくは97質量%以上100質量%以下、最も好ましくは98質量%以上100質量%以下である。 The polyolefin film of the present invention may have a single layer structure. The main component of the polyolefin film of the present invention having a single layer structure and the main component of the inner layer of the polyolefin film of the present invention having a laminated structure are a polyolefin resin (hereinafter, the polyolefin resin as the main component of the inner layer of the polyolefin film is used as the polyolefin raw material II. Also referred to as) is preferable. In the present invention, the "main component" means that the ratio of the specific component to all the components is 50% by mass or more and 100% by mass or less, more preferably 90% by mass or more and 100% by mass or less, further preferably. Is 95% by mass or more and 100% by mass or less, more preferably 96% by mass or more and 100% by mass or less, particularly preferably 97% by mass or more and 100% by mass or less, and most preferably 98% by mass or more and 100% by mass or less.

本発明のポリオレフィンフィルムに用いるポリオレフィン原料IIは、強度や耐熱性の観点からポリプロピレン原料が好ましく、その中でもホモポリプロピレンが好ましく用いられる。 As the polyolefin raw material II used in the polyolefin film of the present invention, a polypropylene raw material is preferable from the viewpoint of strength and heat resistance, and among them, homopolypropylene is preferably used.

ポリオレフィン原料IIは、融点が155℃以上であることが好ましく、より好ましくは160℃以上、さらに好ましくは165℃以上である。融点が155℃未満である場合、耐熱性に乏しく、例えば離型フィルムとして用いた際に、被着体と貼り合わせた後に熱のかかる工程を通過する際に、本フィルムが軟化し、張力方向に伸びてしまい、被着体が変形する場合がある。 The polyolefin raw material II preferably has a melting point of 155 ° C. or higher, more preferably 160 ° C. or higher, and even more preferably 165 ° C. or higher. When the melting point is less than 155 ° C., the heat resistance is poor. For example, when the film is used as a release film, the film softens and the tension direction when it passes through a process in which heat is applied after being bonded to an adherend. The adherend may be deformed.

ポリオレフィン原料IIは、好ましくは冷キシレン可溶部(以下CXS)が4質量%以下であり、かつメソペンタッド分率が0.90以上であることが好ましい。これらを満たさないと製膜安定性に劣ったり、フィルムの強度が低下したり、寸法安定性および耐熱性の低下が大きくなる場合がある。 The polyolefin raw material II preferably has a cold xylene-soluble portion (hereinafter, CXS) of 4% by mass or less and a mesopentad fraction of 0.90 or more. If these conditions are not satisfied, the film forming stability may be inferior, the strength of the film may be lowered, and the dimensional stability and heat resistance may be significantly lowered.

ここで冷キシレン可溶部(CXS)とは、試料をキシレンで完全溶解せしめた後、室温で析出させたときに、キシレン中に溶解しているポリオレフィン成分のことをいい、立体規則性の低い、分子量が低い等の理由で結晶化し難い成分に該当しているものと考えられる。このような成分が多く樹脂中に含まれているとフィルムの熱寸法安定性に劣ることがある。従って、CXSは4質量%以下であることが好ましいが、更に好ましくは3質量%以下であり、特に好ましくは2質量%以下である。CXSは低いほど好ましいが、0.1質量%程度が下限である。このようなCXSとするには、樹脂を得る際の触媒活性を高める方法、得られた樹脂を溶媒あるいはオレフィンモノマー自身で洗浄する方法が使用できる。 Here, the cold xylene-soluble portion (CXS) refers to a polyolefin component dissolved in xylene when the sample is completely dissolved in xylene and then precipitated at room temperature, and has low stereoregularity. , It is considered that it corresponds to a component that is difficult to crystallize because of its low molecular weight. If a large amount of such a component is contained in the resin, the thermal dimensional stability of the film may be inferior. Therefore, the CXS is preferably 4% by mass or less, more preferably 3% by mass or less, and particularly preferably 2% by mass or less. The lower the CXS, the more preferable, but the lower limit is about 0.1% by mass. For such CXS, a method of increasing the catalytic activity when obtaining the resin and a method of washing the obtained resin with a solvent or the olefin monomer itself can be used.

ポリオレフィン原料IIとしてポリプロピレン原料を用いる場合は、メソペンタッド分率は0.90以上であることが好ましく、更に好ましくは0.94以上である。メソペンタッド分率は核磁気共鳴法(NMR法)で測定されるポリプロピレンの結晶相の立体規則性を示す指標であり、該数値が高いものほど結晶化度が高く、融点が高くなり、高温での寸法安定性が高くなるので好ましい。メソペンタッド分率の上限については特に規定するものではない。このように立体規則性の高い樹脂を得るには、得られた樹脂パウダーをn−ヘプタン等の溶媒で洗浄する方法や、触媒および/または助触媒の選定、組成の選定を適宜行う方法等が好ましく採用される。 When a polypropylene raw material is used as the polyolefin raw material II, the mesopentad fraction is preferably 0.90 or more, and more preferably 0.94 or more. The mesopentad fraction is an index showing the stereoregularity of the polypropylene crystal phase measured by nuclear magnetic resonance spectroscopy (NMR method), and the higher the value, the higher the crystallinity, the higher the melting point, and the higher the temperature. This is preferable because it increases dimensional stability. The upper limit of the mesopentad fraction is not specified. In order to obtain a resin having such high stereoregularity, a method of washing the obtained resin powder with a solvent such as n-heptane, a method of appropriately selecting a catalyst and / or a cocatalyst, a method of appropriately selecting a composition, and the like are used. It is preferably adopted.

また、ポリオレフィン原料IIとしては、より好ましくはメルトフローレート(MFR)が1〜10g/10分(230℃、21.18N荷重)、より好ましくは1〜8g/10分(230℃、21.18N荷重)であり、特に2〜5g/10分(230℃、21.18N荷重)の範囲のものが、製膜性やフィルム強度の観点から好ましい。メルトフローレート(MFR)を上記の値とするためには、ポリオレフィン原料IIの平均分子量や分子量分布を制御する方法などが採用される。 Further, as the polyolefin raw material II, the melt flow rate (MFR) is more preferably 1 to 10 g / 10 minutes (230 ° C., 21.18 N load), and more preferably 1 to 8 g / 10 minutes (230 ° C., 21.18 N). The load) is particularly preferably in the range of 2 to 5 g / 10 minutes (230 ° C., 21.18 N load) from the viewpoint of film forming property and film strength. In order to set the melt flow rate (MFR) to the above value, a method of controlling the average molecular weight and the molecular weight distribution of the polyolefin raw material II is adopted.

ポリオレフィン原料IIとしては、本発明の目的を損なわない範囲で他の不飽和炭化水素による共重合成分などを含有してもよいし、重合体がブレンドされていてもよい。このような共重合成分やブレンド物を構成する単量体成分として例えばエチレン、プロピレン(共重合されたブレンド物の場合)、1−ブテン、1−ペンテン、3−メチルペンテン−1、3−メチルブテンー1、1−ヘキセン、4−メチルペンテン−1、5−エチルヘキセン−1、1−オクテン、1−デセン、1−ドデセン、ビニルシクロヘキセン、スチレン、アリルベンゼン、シクロペンテン、ノルボルネン、5−メチル−2−ノルボルネンなどが挙げられる。共重合量またはブレンド量は、寸法安定性の点から、共重合量では1mol%未満とし、ブレンド量では10質量%未満とするのが好ましい。 The polyolefin raw material II may contain a copolymerization component of other unsaturated hydrocarbons or the like as long as the object of the present invention is not impaired, or a polymer may be blended. Examples of the monomer components constituting such copolymerization components and blends include ethylene, propylene (in the case of a copolymerized blend), 1-butene, 1-pentene, 3-methylpentene-1, 3-methylbutene. 1,1-Hexene, 4-methylpentene-1,5-ethylhexene-1,1-octene, 1-decene, 1-dodecene, vinylcyclohexene, styrene, allylbenzene, cyclopentene, norbornene, 5-methyl-2- Norbornene and the like can be mentioned. From the viewpoint of dimensional stability, the copolymerization amount or the blend amount is preferably less than 1 mol% in the copolymerization amount and less than 10% by mass in the blend amount.

ポリオレフィン原料IIがエチレン成分を含む場合、ポリオレフィン原料II中に含まれるエチレン成分の含有量は、10質量%以下であることが好ましい。より好ましくは5質量%以下、更に好ましくは3質量%以下である。エチレン成分の含有量が多いほど、結晶性が低下して、透明性を向上させやすいが、エチレン成分の含有量が10質量%を超えると、強度が低下したり、耐熱性が低下して熱収縮率が悪化したりする場合がある。また、押出工程中で樹脂が劣化しやすくなり、フィルム中のフィッシュアイが生じやすくなる場合がある。 When the polyolefin raw material II contains an ethylene component, the content of the ethylene component contained in the polyolefin raw material II is preferably 10% by mass or less. It is more preferably 5% by mass or less, still more preferably 3% by mass or less. The higher the content of the ethylene component, the lower the crystallinity and the easier it is to improve the transparency. However, if the content of the ethylene component exceeds 10% by mass, the strength is lowered or the heat resistance is lowered to heat. The shrinkage rate may worsen. In addition, the resin tends to deteriorate during the extrusion process, and fish eyes in the film may easily occur.

本発明のポリオレフィンフィルムは、透明性、耐熱性の観点からフィルムを構成するポリマー中に含まれるポリプロピレンポリマーの含有量が95質量%以上であることが好ましい。より好ましくは96質量%以上、更に好ましくは97質量%以上であり、特に好ましくは98質量%以上である。 From the viewpoint of transparency and heat resistance, the polyolefin film of the present invention preferably contains a polypropylene polymer contained in the polymer constituting the film in an amount of 95% by mass or more. It is more preferably 96% by mass or more, further preferably 97% by mass or more, and particularly preferably 98% by mass or more.

本発明のポリオレフィンフィルムの表層は、ポリエチレン原料の含有量が3%未満であることが好ましい。より好ましくは2%未満、さらに好ましくは1%未満、最も好ましくは0.5%未満である。マット粗面のポリオレフィンフィルムは、ポリプロピレン原料とポリエチレン原料をブレンドすることにより粗面表面を形成する場合が多い。しかしながら、この方法では、ポリエチレン起因のフィッシュアイが多くなる場合があること、フィルム表面が削れることによる異物が増加する場合があるなど、品位が悪化する場合があり、好ましくない。 The surface layer of the polyolefin film of the present invention preferably contains a polyethylene raw material of less than 3%. It is more preferably less than 2%, even more preferably less than 1%, and most preferably less than 0.5%. A polyolefin film with a matte rough surface often forms a rough surface by blending a polypropylene raw material and a polyethylene raw material. However, this method is not preferable because the quality may be deteriorated, such as an increase in fish eyes caused by polyethylene and an increase in foreign substances due to scraping of the film surface.

本発明のポリオレフィンフィルムが二層構成である場合、少なくとも一方の表層は、低粘度のポリオレフィン原料IIIを含有することが好ましい。ポリオレフィン原料IIIとしては、好ましくはMFRの下限が5g/10分(230℃、21.18N荷重)以上、より好ましくは、6g/10分以上、さらに好ましくは、10g/10分以上である。MFRの上限は、好ましくは60g/10分以下、さらに好ましくは30g/10分以下である。粘度の異なるポリプロピレン原料をブレンドすることによって、ある種の微細混合状態を形成することができ、品位を損ねること無く、均一微細な粗面構造を形成することが可能となる。 When the polyolefin film of the present invention has a two-layer structure, it is preferable that at least one surface layer contains a low-viscosity polyolefin raw material III. As the polyolefin raw material III, the lower limit of MFR is preferably 5 g / 10 minutes (230 ° C., 21.18 N load) or more, more preferably 6 g / 10 minutes or more, and further preferably 10 g / 10 minutes or more. The upper limit of MFR is preferably 60 g / 10 minutes or less, and more preferably 30 g / 10 minutes or less. By blending polypropylene raw materials having different viscosities, it is possible to form a kind of fine mixed state, and it is possible to form a uniform and fine rough surface structure without impairing the quality.

本発明のポリオレフィンフィルムには、本発明の目的を損なわない範囲で種々の添加剤、例えば結晶核剤、酸化防止剤、熱安定剤、すべり剤、帯電防止剤、ブロッキング防止剤、充填剤、粘度調整剤、着色防止剤などを含有せしめることもできる。 The polyolefin film of the present invention contains various additives such as crystal nucleating agent, antioxidant, heat stabilizer, slip agent, antistatic agent, antiblocking agent, filler, and viscosity as long as the object of the present invention is not impaired. It can also contain an adjusting agent, an anticoloring agent and the like.

これらの中で、酸化防止剤の種類および添加量の選定は酸化防止剤のブリードアウトの観点から重要である。かかる酸化防止剤としては、立体障害性を有するフェノール系のものが好ましく、複数種類の酸化防止剤を併用する場合、少なくとも1種は分子量500以上の高分子量型のものが好ましい。その具体例としては種々のものが挙げられるが、例えば2,6−ジ−t−ブチル−p−クレゾール(BHT:分子量220.4)とともに1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン(例えばBASF社製“Irganox”(登録商標)1330:分子量775.2)またはテトラキス[メチレン−3(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン(例えばBASF社製“Irganox”(登録商標)1010:分子量1177.7)等を併用することが好ましい。これら酸化防止剤の総含有量は、ポリオレフィン原料全量に対して0.03〜1.0質量%の範囲が好ましい。酸化防止剤が少なすぎると押出工程でポリマーが劣化してフィルムが着色したり、長期耐熱性に劣る場合がある。酸化防止剤が多すぎるとこれら酸化防止剤のブリードアウトにより透明性が低下する場合がある。より好ましい含有量は0.05〜0.9質量%であり、特に好ましくは0.1〜0.8質量%である。 Among these, the selection of the type and amount of antioxidant is important from the viewpoint of bleed-out of antioxidant. As such an antioxidant, a phenolic one having steric hindrance is preferable, and when a plurality of kinds of antioxidants are used in combination, at least one of them is preferably a high molecular weight type having a molecular weight of 500 or more. Specific examples thereof include various examples. For example, 1,3,5-trimethyl-2,4,6-with 2,6-di-t-butyl-p-cresol (BHT: molecular weight 220.4). Tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene (eg, BASF's "Irganox"® 1330: molecular weight 775.2) or tetrakis [methylene-3 (3,5-di-) It is preferable to use t-butyl-4-hydroxyphenyl) propionate] methane (for example, "Irganox" (registered trademark) 1010 manufactured by BASF, Inc., molecular weight 1177.7) or the like. The total content of these antioxidants is preferably in the range of 0.03 to 1.0% by mass with respect to the total amount of the polyolefin raw material. If the amount of antioxidant is too small, the polymer may deteriorate in the extrusion process, the film may be colored, or the long-term heat resistance may be poor. If there are too many antioxidants, the bleed-out of these antioxidants may reduce transparency. A more preferable content is 0.05 to 0.9% by mass, and particularly preferably 0.1 to 0.8% by mass.

本発明のポリオレフィンフィルムに用いるポリオレフィン原料I、及びポリオレフィンIIには、本発明の目的に反しない範囲で、結晶核剤を添加することができる。また、それ自身でα晶またはβ晶の結晶核剤効果を有する分岐鎖状ポリプロピレンを含有してもよいが、別種のα晶核剤(ジベンジリデンソルビトール類、安息香酸ナトリウム等)、β晶核剤(1,2−ヒドロキシステアリン酸カリウム、安息香酸マグネシウム、N,N’−ジシクロヘキシル−2,6−ナフタレンジカルボキサミド等のアミド系化合物、キナクリドン系化合物等)等を含有してもよい。但し、上記別種の核剤の過剰な添加は、フィルムの延伸性の低下やボイド形成等による透明性や強度の低下を引き起こす場合があるため、添加量は通常0.5質量%以下、好ましくは0.1質量%以下、更に好ましくは0.05質量%以下である。 A crystal nucleating agent can be added to the polyolefin raw material I and the polyolefin II used in the polyolefin film of the present invention within a range not contrary to the object of the present invention. Further, although branched polypropylene having a crystal nucleating effect of α crystal or β crystal by itself may be contained, another α crystal nucleating agent (dibenzylidene sorbitols, sodium benzoate, etc.), β crystal nuclei. Agents (amide compounds such as potassium 1,2-hydroxystearate, magnesium benzoate, N, N'-dicyclohexyl-2,6-naphthalenedicarboxamide, quinacridone compounds, etc.) may be contained. However, excessive addition of the above-mentioned other type of nucleating agent may cause a decrease in the stretchability of the film and a decrease in transparency and strength due to void formation and the like. It is 0.1% by mass or less, more preferably 0.05% by mass or less.

本発明のポリオレフィンフィルムは、有機粒子および無機粒子を含まないことが好ましい。本発明のポリオレフィンフィルムに使用するポリプロピレンは、有機粒子や無機粒子との親和性が低いため、粒子が脱落して工程や製品を汚染する場合や、硬度の高い粒子によって、粗大突起が形成し、光学用部材の樹脂層に凹凸転写する場合があり、ディスプレイ部材など高品位が求められる製品の保護フィルムや製造用基材フィルムとして用いる際は、有機粒子や無機粒子等の滑剤を含有しないことが好ましい。 The polyolefin film of the present invention preferably does not contain organic particles and inorganic particles. Since polypropylene used in the polyolefin film of the present invention has low affinity with organic particles and inorganic particles, coarse protrusions may be formed when the particles fall off and contaminate the process or product, or when the particles have high hardness. Concavo-convex transfer may occur to the resin layer of the optical member, and when used as a protective film for products that require high quality such as display members or as a base film for manufacturing, it should not contain lubricants such as organic particles and inorganic particles. preferable.

本発明のポリオレフィンフィルムは、上述した原料を用い、二軸延伸することが好ましい。二軸延伸の方法としては、インフレーション同時二軸延伸法、ステンター同時二軸延伸法、ステンター逐次二軸延伸法のいずれによっても得られるが、その中でも、製膜安定性、厚み均一性、フィルムの高剛性と寸法安定性を制御する点においてステンター逐次二軸延伸法を採用することが好ましい。 The polyolefin film of the present invention is preferably biaxially stretched using the above-mentioned raw materials. The biaxial stretching method can be obtained by any of the simultaneous biaxial stretching method for inflation, the simultaneous biaxial stretching method for stenters, and the sequential biaxial stretching method for stenters. Among them, film forming stability, thickness uniformity, and film It is preferable to adopt the Stentor sequential biaxial stretching method in terms of controlling high rigidity and dimensional stability.

次に本発明のポリオレフィンフィルムの製造方法の一態様を、例として説明するが、必ずしもこれに限定されるものではない。 Next, one aspect of the method for producing a polyolefin film of the present invention will be described as an example, but the present invention is not necessarily limited thereto.

まず、ポリプロピレン原料Iを50質量部とポリオレフィン原料IIを50質量部をドライブレンドしてA層(表層)用の単軸押出機に供給し、ポリオレフィン原料IIをB層(内層)用の単軸押出機に供給し、200〜280℃、より好ましくは220〜280℃、更に好ましくは240〜270℃にて溶融押出を行う。そして、ポリマー管の途中に設置したフィルターにて異物や変性ポリマーなどを除去した後、マルチマニホールド型のA層/B層/A層複合Tダイにて積層し、キャスティングドラム上に吐出し、A層/B層/A層の層構成を有する積層未延伸シートを得る。この際、積層厚み比は、1/8/1〜1/60/1の範囲が好ましい。上記範囲とすることで、ポリプロピレン原料Iを含有する表層がフィルム表面に薄く均一に形成され、延伸時に形成される突起の高さの均一性が増し、粗大突起の形成を抑制することができる。 First, 50 parts by mass of polypropylene raw material I and 50 parts by mass of polyolefin raw material II are dry-blended and supplied to a single-screw extruder for layer A (surface layer), and polyolefin raw material II is supplied to a single-screw extruder for layer B (inner layer). It is supplied to an extruder and melt extrusion is performed at 200 to 280 ° C., more preferably 220 to 280 ° C., and even more preferably 240 to 270 ° C. Then, after removing foreign substances and modified polymers with a filter installed in the middle of the polymer tube, they are laminated with a multi-manifold type A layer / B layer / A layer composite T-die, discharged onto a casting drum, and A. A laminated unstretched sheet having a layer structure of a layer / B layer / A layer is obtained. At this time, the laminated thickness ratio is preferably in the range of 1/8/1 to 1/60/1. Within the above range, the surface layer containing the polypropylene raw material I is formed thinly and uniformly on the film surface, the uniformity of the height of the protrusions formed during stretching is increased, and the formation of coarse protrusions can be suppressed.

また、キャスティングドラムは表面温度が40〜100℃、好ましくは60〜100℃、更に好ましくは75〜100℃である。また、A層/B層の2層積層構成としても構わない。2層積層構成とする場合は、表層であるA層は、融点が50℃以上135℃以下のポリプロピレン樹脂を含有することが好ましい。キャスティングドラムへの密着方法としては静電印加法、水の表面張力を利用した密着方法、エアナイフ法、プレスロール法、水中キャスト法などのうちいずれの手法を用いてもよいが、フィルムの平面性が良好でかつ表面粗さの制御が可能なエアナイフ法が好ましい。エアナイフのエア温度は、40〜80℃で、吹き出しエア速度は130〜150m/sが好ましい。また、フィルムの振動を生じさせないために製膜下流側にエアが流れるようにエアナイフの位置を適宜調整することが好ましい。 The surface temperature of the casting drum is 40 to 100 ° C, preferably 60 to 100 ° C, and more preferably 75 to 100 ° C. Further, a two-layer laminated structure of A layer / B layer may be used. In the case of a two-layer laminated structure, the surface layer A preferably contains a polypropylene resin having a melting point of 50 ° C. or higher and 135 ° C. or lower. As the adhesion method to the casting drum, any of the electrostatic application method, the adhesion method using the surface tension of water, the air knife method, the press roll method, the underwater casting method, etc. may be used, but the flatness of the film The air knife method is preferable because it has good surface roughness and can control the surface roughness. The air temperature of the air knife is preferably 40 to 80 ° C., and the blown air speed is preferably 130 to 150 m / s. Further, it is preferable to appropriately adjust the position of the air knife so that air flows to the downstream side of the film formation so as not to cause vibration of the film.

得られた未延伸シートは、縦延伸工程に導入される。縦延伸工程では、まず80℃以上130℃以下、好ましくは90℃以上120℃以下、更に好ましくは100℃以上110℃以下に保たれた複数の金属ロールに未延伸シートを接触させて予熱し、周速差を設けたロール間で長手方向に3〜8倍に延伸した後、室温まで冷却する。延伸温度は130℃以上160℃以下、好ましくは140℃以上155℃以下、更に好ましくは145℃以上150℃以下である。縦延伸の予熱工程は低温で搬送し、一気に高温で延伸することで、縦延伸後の一軸延伸フィルム表面に高融点部と低融点部を形成することができ、フィルムを粗面化する上で重要となる。予熱温度と延伸温度が大きく異なる場合、フィルムが高温の延伸ロールに触れた際に幅方向に収縮する。その際に、不均一にフィルムが収縮することで、流れ方向のシワが入る場合がある。その対策として、延伸ロールにセラミックロールを用いることができる。セラミックロール上では、フィルムが滑りやすくなり、フィルムが均一に収縮することでシワ無く延伸が可能であることを見出した。延伸倍率は3倍未満であるとフィルムの配向が弱くなり、強度が低下する場合があることから、3倍以上6倍以下が好ましく、4倍以上5.5倍以下が更に好ましい。 The obtained unstretched sheet is introduced into the longitudinal stretching step. In the longitudinal stretching step, first, the unstretched sheet is brought into contact with a plurality of metal rolls kept at 80 ° C. or higher and 130 ° C. or lower, preferably 90 ° C. or higher and 120 ° C. or lower, and more preferably 100 ° C. or higher and 110 ° C. or lower to preheat. After stretching 3 to 8 times in the longitudinal direction between the rolls provided with the peripheral speed difference, the mixture is cooled to room temperature. The stretching temperature is 130 ° C. or higher and 160 ° C. or lower, preferably 140 ° C. or higher and 155 ° C. or lower, and more preferably 145 ° C. or higher and 150 ° C. or lower. In the preheating step of longitudinal stretching, by transporting at a low temperature and stretching at a high temperature at a stretch, a high melting point portion and a low melting point portion can be formed on the surface of the uniaxially stretched film after the longitudinal stretching, and the film can be roughened. It becomes important. When the preheating temperature and the stretching temperature are significantly different, the film shrinks in the width direction when it comes into contact with the hot stretching roll. At that time, the film shrinks unevenly, which may cause wrinkles in the flow direction. As a countermeasure, a ceramic roll can be used as the stretching roll. It has been found that the film becomes slippery on the ceramic roll, and the film shrinks uniformly so that the film can be stretched without wrinkles. If the draw ratio is less than 3 times, the orientation of the film becomes weak and the strength may decrease. Therefore, it is preferably 3 times or more and 6 times or less, and more preferably 4 times or more and 5.5 times or less.

次いで縦一軸延伸フィルムをテンターに導いてフィルムの端部をクリップで把持し予熱後、幅方向に7〜13倍に横延伸する。縦一軸延伸フィルム表面の低融点部を部分的に溶融しながら延伸することで、低融点部は延伸倍率が高くなり、フィルム表面の実質的な延伸倍率に差が生まれることで、フィルム表面が粗面化する。このことから、予熱、及び延伸温度は165〜180℃であり、より好ましくは170〜180℃、更に好ましくは173〜180℃である。この様に、非常に高温で横延伸するには、内層は高融点の樹脂を主成分とし、フィルムの表層にのみ低融点樹脂を添加することで達成可能となる。 Next, the longitudinally uniaxially stretched film is guided to a tenter, the end of the film is gripped with a clip, preheated, and then laterally stretched 7 to 13 times in the width direction. By stretching the low melting point portion of the surface of the vertically uniaxially stretched film while partially melting it, the stretching ratio of the low melting point portion becomes high, and a difference is created in the substantial stretching ratio of the film surface, so that the film surface becomes rough. Surface. From this, the preheating and stretching temperatures are 165 to 180 ° C, more preferably 170 to 180 ° C, and even more preferably 173 to 180 ° C. As described above, transverse stretching at a very high temperature can be achieved by using a high melting point resin as a main component in the inner layer and adding a low melting point resin only to the surface layer of the film.

続く熱処理および弛緩処理工程では、クリップで幅方向を緊張把持したまま幅方向に2〜20%の弛緩率で弛緩を与えつつ、160℃以上170℃度未満の温度で熱固定し、クリップで幅方向を緊張把持したまま80〜100℃での冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、ワインダ工程にてフィルムエッジ部をスリットし、フィルム製品ロールを巻き取る。高温で熱固定を行うことで、フィルム内の残留応力を緩和させ、熱収縮率を低下させることができる。 In the subsequent heat treatment and relaxation treatment steps, while tensioning the width direction with a clip and giving relaxation at a relaxation rate of 2 to 20% in the width direction, heat fixing is performed at a temperature of 160 ° C. or higher and lower than 170 ° C., and the width is fixed with a clip. While holding the direction tightly, it is guided to the outside of the tenter through a cooling step at 80 to 100 ° C., the clip at the end of the film is released, the film edge is slit in the winder step, and the film product roll is wound. By performing heat fixing at a high temperature, the residual stress in the film can be relaxed and the heat shrinkage rate can be reduced.

以上のようにして得られたポリオレフィンフィルムは、包装用フィルム、表面保護フィルム、工程フィルム、衛生用品、農業用品、建築用品、医療用品など様々な用途で用いることができるが、特に表面平滑性に優れることから、表面保護フィルム、工程フィルム、離型用フィルムとして好ましく用いることができる。 The polyolefin film obtained as described above can be used for various purposes such as packaging films, surface protective films, process films, sanitary products, agricultural products, construction products, medical products, etc., but especially for surface smoothness. Since it is excellent, it can be preferably used as a surface protective film, a process film, and a release film.

以下、実施例により本発明を詳細に説明する。なお、特性は以下の方法により測定、評価を行った。
(1)フィルム厚み
マイクロ厚み計(アンリツ社製)を用いて測定した。フィルムを10cm四方にサンプリングし、任意に5点測定し、平均値を求めた。
Hereinafter, the present invention will be described in detail with reference to Examples. The characteristics were measured and evaluated by the following methods.
(1) Film thickness Measured using a microthickness meter (manufactured by Anritsu). The film was sampled in a 10 cm square, and 5 points were arbitrarily measured to obtain an average value.

(2)平均粗さ(Sa)、山高さ(Sp)、谷深さ(Sv)
測定は(株)菱化システムVertScan2.0 R5300GL−Lite−ACを使用して行い、付属の解析ソフトにより撮影画面を多項式4次近似にて面補正して表面形状を求めた。測定条件は下記のとおり。測定は、フィルムの両面について、それぞれn=3で行い、それぞれの面の平均値を求めることにより、各面のSa、Sp、Svとして採用した。なお、表1にはA面の値を記す。
製造元 :株式会社菱化システム
装置名 :VertScan2.0 R5300GL−Lite−AC
測定条件:CCDカメラ SONY HR−57 1/2インチ
対物レンズ:5x
中間レンズ:0.5x
波長フィルタ:530nm white
測定モード:Wave
測定ソフトウェア:VS−Measure Version5.5.1
解析ソフトウェア:VS−Viewer Version5.5.1
測定領域:1.252mm×0.939mm
(2) Average roughness (Sa), mountain height (Sp), valley depth (Sv)
The measurement was performed using Ryoka System Co., Ltd. VertScan2.0 R5300GL-Lite-AC, and the surface shape was obtained by surface-correcting the photographed screen by polynomial fourth-order approximation using the attached analysis software. The measurement conditions are as follows. The measurement was performed on both sides of the film at n = 3, and the average value of each surface was obtained and used as Sa, Sp, and Sv of each surface. Table 1 shows the values on the A side.
Manufacturer: Ryoka System Co., Ltd. Device name: VertScan2.0 R5300GL-Lite-AC
Measurement conditions: CCD camera SONY HR-57 1/2 inch objective lens: 5x
Intermediate lens: 0.5x
Wavelength filter: 530nm white
Measurement mode: Wave
Measurement software: VS-Measure Version 5.5.1
Analysis software: VS-Viewer Version 5.5.1
Measurement area: 1.252 mm x 0.939 mm

(3)フィルムのヘイズ
フィルムを、ヘイズメーター(日本電色工業社製、NDH−5000)を用いて、JIS K7136(2000)に準じて23℃でのヘイズ値(%)を3回測定し、平均値を用いた。
(4)原料、フィルムの融点
原料チップ、及びポリオレフィンフィルム5mgを試料としてアルミニウム製のパンに採取し、示差走査熱量計(セイコー電子工業製RDC220)を用いて測定した。まず、窒素雰囲気下で室温から260℃まで10℃/分で昇温(ファーストラン)し、10分間保持した後、20℃まで10℃/分で冷却する。5分保持後、再度10℃/分で昇温(セカンドラン)した際に観測される最も高温側に出現する溶融カーブの頂上の温度を融解ピーク温度とした。
(3) Haze of film The haze value (%) at 23 ° C. of the film was measured three times according to JIS K7136 (2000) using a haze meter (NDH-5000 manufactured by Nippon Denshoku Kogyo Co., Ltd.). The average value was used.
(4) Raw material, melting point of film Raw material chips and 5 mg of polyolefin film were sampled in an aluminum pan and measured using a differential scanning calorimeter (RDC220 manufactured by Seiko Electronics Co., Ltd.). First, the temperature is raised from room temperature to 260 ° C. at 10 ° C./min (first run) in a nitrogen atmosphere, held for 10 minutes, and then cooled to 20 ° C. at 10 ° C./min. The temperature at the top of the melting curve that appears on the highest temperature side observed when the temperature is raised again (second run) at 10 ° C./min after holding for 5 minutes was defined as the melting peak temperature.

(5)厚み方向の弾性率
測定には(株)エリオニクス製のナノインデンター「ENT−2100」を用いて、ISO 14577(2002)に規定された方法に準じて測定した。ポリオレフィンフィルムに、東亞合成株式会社製「“アロンアルファ”(登録商標)プロ用耐衝撃」を1滴塗布し、瞬間接着剤を介してポリオレフィンフィルムを専用のサンプル固定台に固定して測定を行った。測定には稜間角115°の三角錐ダイヤモンド圧子(Berkovich圧子)を用いた。測定データは「ENT−2100」の専用解析ソフト(version 6.18)により処理され、押込み弾性率EIT(GPa)を測定した。測定は、フィルムの両面について、それぞれn=10で行い、その平均値を求め、小さい方の値をフィルムの厚み方向の弾性率として採用した。そのため、表には両面の測定値の平均値の内、小さい方の値を記載した。
測定モード:負荷−除荷試験
最大荷重:0.5mN
最大荷重に達した時の保持時間:1秒
荷重速度、除荷速度:0.05mN/sec
(5) The elastic modulus in the thickness direction was measured by using the nano indenter "ENT-2100" manufactured by Elionix Inc. according to the method specified in ISO 14577 (2002). One drop of "Aron Alpha" (registered trademark) professional impact resistance manufactured by Toagosei Co., Ltd. was applied to the polyolefin film, and the polyolefin film was fixed to a dedicated sample fixing table via an instant adhesive for measurement. .. A triangular pyramid diamond indenter (Berkovich indenter) having an interridge angle of 115 ° was used for the measurement. The measurement data was processed by the dedicated analysis software (version 6.18) of "ENT-2100", and the indentation elastic modulus EIT (GPa) was measured. The measurement was performed on both sides of the film at n = 10, the average value was obtained, and the smaller value was adopted as the elastic modulus in the thickness direction of the film. Therefore, the smaller of the average values of the measured values on both sides is shown in the table.
Measurement mode: Load-unloading test Maximum load: 0.5mN
Holding time when the maximum load is reached: 1 second Load speed, unloading speed: 0.05 mN / sec

(6)フィッシュアイの個数
A4版に切り出したポリオレフィンフィルムを黒色の紙上におき、蛍光灯下で目視により、光の透過度合いが弱い部分をマーキングした。それらの部分を光学顕微鏡で観察し、最大長さが50μm以上の部分をフィッシュアイと判断し、フィッシュアイの個数をカウントした。評価はA4サンプルで8枚分実施し、1m四方当たりに換算した。
(6) Number of fish eyes A polyolefin film cut out into an A4 plate was placed on black paper, and a portion having a weak degree of light transmission was visually marked under a fluorescent lamp. These parts were observed with an optical microscope, and the parts having a maximum length of 50 μm or more were judged to be fish eyes, and the number of fish eyes was counted. The evaluation was carried out for 8 A4 samples and converted per 1 m square.

(7)主収縮方向、及び、その直交方向の150℃15分の熱収縮率(150℃熱収縮率)
ポリオレフィンフィルムの主収縮方向、及び、その直交方向について、幅10mm、長さ200mm(測定方向)の試料を5本切り出し、両端から25mmの位置に標線として印しを付けて、万能投影機で標線間の距離を測定し試長(l)とする。次に、試験片を紙に挟み込み荷重ゼロの状態で150℃に保温されたオーブン内で、15分間加熱後に取り出して、室温で冷却後、寸法(l)を万能投影機で測定して下記式にて求め、5本の平均値を主収縮方向、及び、その直交方向それぞれの熱収縮率とし、その和を求めた。
熱収縮率={(l−l)/l}×100(%)
(7) Heat shrinkage rate of 150 ° C. for 15 minutes in the main shrinkage direction and its orthogonal direction (150 ° C. heat shrinkage rate)
Five samples with a width of 10 mm and a length of 200 mm (measurement direction) are cut out in the main shrinkage direction of the polyolefin film and in the orthogonal direction thereof, and marked as marked lines at positions 25 mm from both ends with a universal projector. Measure the distance between the marked lines and use it as the test length (l 0 ). Next, the test piece is sandwiched between papers, heated in an oven kept at 150 ° C. with no load, heated for 15 minutes, taken out, cooled at room temperature, and then the dimension (l 1 ) is measured with a universal projector and described below. It was calculated by the formula, and the average value of the five pieces was taken as the heat shrinkage rate in each of the main shrinkage direction and the orthogonal direction thereof, and the sum was calculated.
Heat shrinkage = {(l 0 − l 1 ) / l 0 } × 100 (%)

(8)粘着テープとの離型性評価
積層構成のポリオレフィンフィルムに日東電工(株)製ポリエステル粘着テープNO.31Bをローラーで貼付し、それを19mm幅にカットしてサンプルを作製した。そのサンプルを、引っ張り試験機を用いて500mm/minの速度で剥離し、以下の基準で評価した。
○:表層と内層間で層間剥離が生じず、
一定速度で剥離が可能
△:表層と内層間で層間剥離が生じないが、
剥離抵抗がやや強く、剥離時に速度が上下する
×:表層と内層間で層間剥離が生じる、
または、剥離が非常に重く、被着体表面に剥離痕が残る
(8) Evaluation of mold releasability with adhesive tape Nitto Denko Corporation polyester adhesive tape NO. 31B was attached with a roller and cut into a width of 19 mm to prepare a sample. The sample was peeled off at a speed of 500 mm / min using a tensile tester and evaluated according to the following criteria.
◯: Delamination did not occur between the surface layer and the inner layer, and there was no delamination.
Delamination is possible at a constant speed Δ: Delamination does not occur between the surface layer and the inner layer,
Peeling resistance is a little strong, and the speed fluctuates during peeling. ×: Delamination occurs between the surface layer and the inner layer.
Or, the peeling is very heavy, and peeling marks remain on the surface of the adherend.

(9)被着体への転写評価
ポリオレフィンフィルムおよび厚み40μmの日本ゼオン株式会社製“ゼオノアフィルム”(登録商標)を幅100mm、長さ100mmの正方形にサンプリングし、ポリオレフィンフィルムのA面と“ゼオノアフィルム”とが接触するように重ねて、それを2枚のアクリル板(幅100mm、長さ100mm)に挟んで、2kgの荷重をかけ、23℃の雰囲気下で24時間静置した。24時間後に、“ゼオノアフィルム”の表面(ポリオレフィンフィルムが接していた面)を目視で観察し、以下の基準で評価した。
○:きれいであり、荷重をかける前と同等
△:弱い凹凸が確認される
×:強い凹凸が確認される
(9) Evaluation of transfer to an adherend A polyolefin film and "Zeonoa film" (registered trademark) manufactured by Nippon Zeon Co., Ltd. with a thickness of 40 μm were sampled into a square with a width of 100 mm and a length of 100 mm, and the A side of the polyolefin film and "Zeonoa" The films were stacked so as to be in contact with each other, sandwiched between two acrylic plates (width 100 mm, length 100 mm), loaded with a load of 2 kg, and allowed to stand for 24 hours in an atmosphere of 23 ° C. After 24 hours, the surface of the "Zeonoa film" (the surface in contact with the polyolefin film) was visually observed and evaluated according to the following criteria.
◯: Clean and equivalent to before applying load △: Weak unevenness is confirmed ×: Strong unevenness is confirmed

(10)130℃での最大点強度
ポリオレフィンフィルムの主収縮方向の直交方向について、幅10mm、長さ50mm(測定方向)の試料を切り出し、矩形のサンプル引張試験機(オリエンテック製テンシロンUCT−100)に、初期チャック間距離20mmでセットし、130℃に加熱されたオーブン中へチャックごと投入し、1分間加熱した後、引張速度を300mm/分としてフィルムの引張試験を行った。サンプルが破断するまでの最大荷重を読み取り、試験前の試料の断面積(フィルム厚み×幅(10mm))で除した値を最大点強度の応力として算出し、測定は各サンプル5回ずつ行い、その平均値で評価を行った。なお、最大点強度算出の為に用いるフィルム厚みは上記(1)で測定した値を用いた。
(10) Maximum point strength at 130 ° C. A sample having a width of 10 mm and a length of 50 mm (measurement direction) is cut out in the direction orthogonal to the main contraction direction of the polyolefin film, and a rectangular sample tensile tester (Tensilon UCT-100 manufactured by Orientec). ) With an initial distance between chucks of 20 mm, the chucks were put into an oven heated to 130 ° C., heated for 1 minute, and then a tensile test was performed on the film at a tensile speed of 300 mm / min. The maximum load until the sample breaks is read, and the value obtained by dividing by the cross-sectional area (film thickness x width (10 mm)) of the sample before the test is calculated as the stress of the maximum point strength, and the measurement is performed 5 times for each sample. The evaluation was performed using the average value. The value measured in (1) above was used as the film thickness used for calculating the maximum point strength.

(実施例1)
A層(表層)用の原料として、ポリオレフィン原料II((株)プライムポリマー社製、MFR:2.9g/10分、融点:164℃)60質量部と、ポリプロピレン原料I(出光興産(株)社製、エルモーデュS901、MFR:50g/10分、融点:80℃)40質量部とをドライブレンドして表層用の単軸の一軸押出機に供給し、B層(内層)用の原料として、上記ポリオレフィン原料IIを99.5質量部、分岐鎖状ポリプロピレン樹脂(Basell社製)0.5質量部とをドライブレンドして内層用の単軸の一軸溶融押出機に供給し、260℃で溶融押出を行い、20μmカットの焼結フィルターで異物を除去後、フィードブロック型のA/B/A複合Tダイにて1/34/1の厚み比で積層し、90℃に表面温度を制御したキャスティングドラムに吐出し、エアナイフによりキャスティングドラムに密着させた。その後、キャスティングドラム上のシートの非冷却ドラム面に、圧空エアを噴射させて冷却し、未延伸シートを得た。続いて、該シートをセラミックロールを用いて108℃に予熱し、周速差を設けた148℃のロール間でフィルムの長手方向に4.5倍延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、180℃で3秒間予熱後、176℃で8.5倍に延伸し、幅方向に12%の弛緩を与えながら167℃で熱処理をおこない、その後100℃の冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、フィルムをコアに巻き取り、厚み18μmのポリオレフィンフィルムを得た。得られたフィルムの物性および評価結果を表1に示す。
(Example 1)
As raw materials for the A layer (surface layer), 60 parts by mass of polyolefin raw material II (manufactured by Prime Polymer Co., Ltd., MFR: 2.9 g / 10 minutes, melting point: 164 ° C.) and polypropylene raw material I (Idemitsu Kosan Co., Ltd.) Made by Elmodu S901, MFR: 50 g / 10 minutes, melting point: 80 ° C.) 40 parts by mass is dry-blended and supplied to a single-screw extruder for the surface layer, and used as a raw material for the B layer (inner layer). 99.5 parts by mass of the polyolefin raw material II and 0.5 parts by mass of a branched chain polypropylene resin (manufactured by Basell) are dry-blended and supplied to a single-screw single-screw extruder for the inner layer and melted at 260 ° C. Extrusion was performed, foreign matter was removed with a 20 μm-cut sintered filter, and then laminated with a feed block type A / B / A composite T-die at a thickness ratio of 1/34/1, and the surface temperature was controlled to 90 ° C. It was discharged to the casting drum and brought into close contact with the casting drum with an air knife. Then, the uncooled drum surface of the sheet on the casting drum was cooled by injecting compressed air to obtain an unstretched sheet. Subsequently, the sheet was preheated to 108 ° C. using a ceramic roll, and stretched 4.5 times in the longitudinal direction of the film between rolls at 148 ° C. provided with a peripheral speed difference. Next, the end was gripped with a clip and introduced into a tenter type stretching machine, preheated at 180 ° C. for 3 seconds, stretched 8.5 times at 176 ° C., and at 167 ° C. while giving 12% relaxation in the width direction. A heat treatment was performed, and then the film was guided to the outside of the tenter through a cooling step of 100 ° C., the clip at the end of the film was released, and the film was wound around a core to obtain a polyolefin film having a thickness of 18 μm. Table 1 shows the physical properties of the obtained film and the evaluation results.

(実施例2)
A層(表層)用の原料として、ポリオレフィン原料II((株)プライムポリマー社製、MFR:2.9g/10分、融点:164℃)50質量部と、ポリプロピレン原料I(出光興産(株)社製、エルモーデュS901、MFR:50g/10分、融点:80℃)50質量部とをドライブレンドして表層用の単軸の一軸押出機に供給し、B層(内層)用の原料として、上記ポリオレフィン原料IIを内層用の単軸の一軸溶融押出機に供給し、260℃で溶融押出を行い、20μmカットの焼結フィルターで異物を除去後、フィードブロック型のA/B/A複合Tダイにて1/58/1の厚み比で積層し、70℃に表面温度を制御したキャスティングドラムに吐出し、エアナイフによりキャスティングドラムに密着させた。その後、キャスティングドラム上のシートの非冷却ドラム面に、圧空エアを噴射させて冷却し、未延伸シートを得た。続いて、該シートをセラミックロールを用いて112℃に予熱し、周速差を設けた143℃のロール間でフィルムの長手方向に4.5倍延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、176℃で3秒間予熱後、172℃で9.0倍に延伸し、幅方向に9%の弛緩を与えながら160℃で熱処理をおこない、その後100℃の冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、フィルムをコアに巻き取り、厚み18μmのポリオレフィンフィルムを得た。得られたフィルムの物性および評価結果を表1に示す。
(Example 2)
As raw materials for the A layer (surface layer), 50 parts by mass of polyolefin raw material II (manufactured by Prime Polymer Co., Ltd., MFR: 2.9 g / 10 minutes, melting point: 164 ° C.) and polypropylene raw material I (Idemitsu Kosan Co., Ltd.) Made by Elmodu S901, MFR: 50 g / 10 minutes, melting point: 80 ° C.) 50 parts by mass is dry-blended and supplied to a single-screw extruder for the surface layer, and used as a raw material for the B layer (inner layer). The above-mentioned polyolefin raw material II is supplied to a single-screw single-screw extruder for the inner layer, melt-extruded at 260 ° C., and after removing foreign substances with a 20 μm-cut sintering filter, a feed block type A / B / A composite T It was laminated with a die at a thickness ratio of 1/58/1, discharged to a casting drum whose surface temperature was controlled at 70 ° C., and brought into close contact with the casting drum with an air knife. Then, the uncooled drum surface of the sheet on the casting drum was cooled by injecting compressed air to obtain an unstretched sheet. Subsequently, the sheet was preheated to 112 ° C. using a ceramic roll, and stretched 4.5 times in the longitudinal direction of the film between rolls at 143 ° C. provided with a peripheral speed difference. Next, the end was gripped by a clip and introduced into a tenter type stretching machine, preheated at 176 ° C for 3 seconds, stretched 9.0 times at 172 ° C, and at 160 ° C while giving 9% relaxation in the width direction. A heat treatment was performed, and then the film was guided to the outside of the tenter through a cooling step of 100 ° C., the clip at the end of the film was released, and the film was wound around a core to obtain a polyolefin film having a thickness of 18 μm. Table 1 shows the physical properties of the obtained film and the evaluation results.

(実施例3)
A層(表層)用の原料として、ポリオレフィン原料II((株)プライムポリマー社製、MFR:2.9g/10分、融点:164℃)40質量部と、ポリプロピレン原料I(日本ポリプロ(株)社製、ウェルネックスRFX4V、MFR:6.0g/10分、融点:127℃)60質量部とをドライブレンドして表層用の単軸の一軸押出機に供給し、B層(内層)用の原料として、上記ポリプロピレン原料IIを99.5質量部、分岐鎖状ポリプロピレン樹脂(Basell社製)0.5質量部とをドライブレンドして内層用の単軸の一軸溶融押出機に供給し、260℃で溶融押出を行い、30μmカットの焼結フィルターで異物を除去後、フィードブロック型のA/B/A複合Tダイにて1/58/1の厚み比で積層し、45℃に表面温度を制御したキャスティングドラムに吐出し、エアナイフによりキャスティングドラムに密着させた。その後、キャスティングドラム上のシートの非冷却ドラム面に、圧空エアを噴射させて冷却し、未延伸シートを得た。続いて、該シートをセラミックロールを用いて128℃に予熱し、周速差を設けた132℃のロール間でフィルムの長手方向に4.1倍延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、179℃で3秒間予熱後、177℃で8.2倍に延伸し、幅方向に13%の弛緩を与えながら168℃で熱処理をおこない、その後100℃の冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、フィルムをコアに巻き取り、厚み18μmのポリオレフィンフィルムを得た。得られたフィルムの物性および評価結果を表1に示す。
(Example 3)
As raw materials for the A layer (surface layer), 40 parts by mass of polyolefin raw material II (manufactured by Prime Polymer Co., Ltd., MFR: 2.9 g / 10 minutes, melting point: 164 ° C.) and polypropylene raw material I (Nippon Polypro Co., Ltd.) Wellnex RFX4V, MFR: 6.0 g / 10 minutes, melting point: 127 ° C) 60 parts by mass is dry-blended and supplied to a single-screw extruder for the surface layer, and used for the B layer (inner layer). As raw materials, 99.5 parts by mass of the polypropylene raw material II and 0.5 parts by mass of a branched chain polypropylene resin (manufactured by Basell) are dry-blended and supplied to a single-screw single-screw extruder for an inner layer, 260. Melt extrusion is performed at ° C., foreign matter is removed with a 30 μm-cut sintered filter, laminated with a feed block type A / B / A composite T-die at a thickness ratio of 1/58/1, and the surface temperature is set to 45 ° C. Was discharged to the controlled casting drum and brought into close contact with the casting drum with an air knife. Then, the uncooled drum surface of the sheet on the casting drum was cooled by injecting compressed air to obtain an unstretched sheet. Subsequently, the sheet was preheated to 128 ° C. using a ceramic roll, and stretched 4.1 times in the longitudinal direction of the film between rolls at 132 ° C. provided with a peripheral speed difference. Next, the end was gripped with a clip and introduced into a tenter type stretching machine, preheated at 179 ° C for 3 seconds, stretched 8.2 times at 177 ° C, and at 168 ° C while giving 13% relaxation in the width direction. A heat treatment was performed, and then the film was guided to the outside of the tenter through a cooling step of 100 ° C., the clip at the end of the film was released, and the film was wound around a core to obtain a polyolefin film having a thickness of 18 μm. Table 1 shows the physical properties of the obtained film and the evaluation results.

(実施例4)
A層(表層)用の原料として、ポリオレフィン原料II((株)プライムポリマー社製、MFR:2.9g/10分、融点:164℃)80質量部と、ポリプロピレン原料I(出光興産(株)社製、エルモーデュS901、MFR:50g/10分、融点:80℃)20質量部とをドライブレンドして表層用の単軸の一軸押出機に供給し、B層(内層)用の原料として、上記ポリオレフィン原料IIを内層用の単軸の一軸溶融押出機に供給し、260℃で溶融押出を行い、20μmカットの焼結フィルターで異物を除去後、フィードブロック型のA/B/A複合Tダイにて1/58/1の厚み比で積層し、95℃に表面温度を制御したキャスティングドラムに吐出し、エアナイフによりキャスティングドラムに密着させた。その後、キャスティングドラム上のシートの非冷却ドラム面に、圧空エアを噴射させて冷却し、未延伸シートを得た。続いて、該シートをセラミックロールを用いて140℃に予熱し、周速差を設けた140℃のロール間でフィルムの長手方向に4.5倍延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、167℃で3秒間予熱後、167℃で8.0倍に延伸し、幅方向に9%の弛緩を与えながら140℃で熱処理をおこない、その後100℃の冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、フィルムをコアに巻き取り、厚み18μmのポリオレフィンフィルムを得た。得られたフィルムの物性および評価結果を表1に示す。
(Example 4)
As raw materials for the A layer (surface layer), 80 parts by mass of polyolefin raw material II (manufactured by Prime Polymer Co., Ltd., MFR: 2.9 g / 10 minutes, melting point: 164 ° C.) and polypropylene raw material I (Idemitsu Kosan Co., Ltd.) Made by Elmodu S901, MFR: 50 g / 10 minutes, melting point: 80 ° C.) 20 parts by mass are dry-blended and supplied to a single-screw extruder for the surface layer, and used as a raw material for the B layer (inner layer). The above-mentioned polyolefin raw material II is supplied to a single-screw single-screw extruder for the inner layer, melt-extruded at 260 ° C., and after removing foreign substances with a 20 μm-cut sintering filter, a feed block type A / B / A composite T It was laminated with a die at a thickness ratio of 1/58/1, discharged to a casting drum whose surface temperature was controlled at 95 ° C., and brought into close contact with the casting drum with an air knife. Then, the uncooled drum surface of the sheet on the casting drum was cooled by injecting compressed air to obtain an unstretched sheet. Subsequently, the sheet was preheated to 140 ° C. using a ceramic roll, and stretched 4.5 times in the longitudinal direction of the film between the rolls at 140 ° C. provided with a peripheral speed difference. Next, the end was gripped by a clip and introduced into a tenter type stretching machine, preheated at 167 ° C for 3 seconds, stretched 8.0 times at 167 ° C, and at 140 ° C while giving 9% relaxation in the width direction. A heat treatment was performed, and then the film was guided to the outside of the tenter through a cooling step of 100 ° C., the clip at the end of the film was released, and the film was wound around a core to obtain a polyolefin film having a thickness of 18 μm. Table 1 shows the physical properties of the obtained film and the evaluation results.

(実施例5)
ポリオレフィン原料II((株)プライムポリマー社製、MFR:2.9g/10分、融点:164℃)を50質量部、ポリオレフィン原料III(住友化学(株)社製、MFR:7.5g/10分、融点:163℃)を45質量部、分岐鎖状ポリプロピレン樹脂(Basell社製)5質量部がこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、260℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットして、ポリプロピレン原料IVを得た。
A層(表層)用の原料として、ポリオレフィン原料IIを70質量部と、上記ポリプロピレン原料IVを30質量部とをドライブレンドして表層用の単軸の一軸押出機に供給し、B層(内層)用の原料として、上記ポリプロピレン原料IIを80質量部と上記ポリオレフィン原料IIIを20質量部とをドライブレンドして、内層用の単軸の一軸溶融押出機に供給し、260℃で溶融押出を行い、20μmカットの焼結フィルターで異物を除去後、フィードブロック型のA/B/A複合Tダイにて1/10/1の厚み比で積層し、98℃に表面温度を制御したキャスティングドラムに吐出し、エアナイフから圧空エアを吹きつけ、キャスティングドラムに密着させ、未延伸シートを得た。続いて、該シートをセラミックロールを用いて95℃に予熱し、周速差を設けた155℃のロール間でフィルムの長手方向に5.2倍延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、178℃で3秒間予熱後、176℃で8.8倍に延伸し、幅方向に18%の弛緩を与えながら168℃で熱処理をおこない、その後100℃の冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、フィルムをコアに巻き取り、厚み18μmのポリオレフィンフィルムを得た。得られたフィルムの物性および評価結果を表1に示す。
(Example 5)
Polyolefin raw material II (manufactured by Prime Polymer Co., Ltd., MFR: 2.9 g / 10 minutes, melting point: 164 ° C.) in 50 parts by mass, polyolefin raw material III (manufactured by Sumitomo Chemical Co., Ltd., MFR: 7.5 g / 10) Minutes, melting point: 163 ° C) 45 parts by mass and 5 parts by mass of branched chain polypropylene resin (manufactured by Basell) are supplied from the weighing hopper to the twin-screw extruder so as to be mixed at this ratio, and melted at 260 ° C. Kneading was performed, the mixture was discharged from the die in a strand shape, cooled and solidified in a water tank at 25 ° C., and cut into chips to obtain a polypropylene raw material IV.
As a raw material for the A layer (surface layer), 70 parts by mass of the polyolefin raw material II and 30 parts by mass of the polypropylene raw material IV are dry-blended and supplied to a single-screw extruder for the surface layer, and the B layer (inner layer) is supplied. ), 80 parts by mass of the polypropylene raw material II and 20 parts by mass of the polyolefin raw material III are dry-blended and supplied to a single-screw single-screw extruder for the inner layer, and melt extrusion is performed at 260 ° C. After removing foreign matter with a 20 μm-cut sintered filter, the casting drum was laminated with a feed block type A / B / A composite T-die at a thickness ratio of 1/10/1, and the surface temperature was controlled at 98 ° C. An unstretched sheet was obtained by blowing air pressure air from an air knife and bringing it into close contact with a casting drum. Subsequently, the sheet was preheated to 95 ° C. using a ceramic roll, and stretched 5.2 times in the longitudinal direction of the film between rolls at 155 ° C. provided with a peripheral speed difference. Next, the end was gripped by a clip and introduced into a tenter type stretching machine, preheated at 178 ° C. for 3 seconds, stretched 8.8 times at 176 ° C., and at 168 ° C. while giving 18% relaxation in the width direction. A heat treatment was performed, and then the film was guided to the outside of the tenter through a cooling step of 100 ° C., the clip at the end of the film was released, and the film was wound around a core to obtain a polyolefin film having a thickness of 18 μm. Table 1 shows the physical properties of the obtained film and the evaluation results.

(比較例1)
A層(表層)用の原料として、ポリオレフィン原料II((株)プライムポリマー社製、MFR:2.9g/10分、融点:164℃)50質量部と、ポリプロピレン原料I(出光興産(株)社製、エルモーデュS901、MFR:50g/10分、融点:80℃)50質量部、とをドライブレンドして表層用の単軸の一軸押出機に供給し、B層(内層)用の原料として、上記ポリオレフィン原料IIを内層用の単軸の一軸溶融押出機に供給し、260℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、フィードブロック型のA/B/A複合Tダイにて1/88/1の厚み比で積層し、30℃に表面温度を制御したキャスティングドラムに吐出し、エアナイフによりキャスティングドラムに密着させた。その後、キャスティングドラム上のシートの非冷却ドラム面に、圧空エアを噴射させて冷却し、未延伸シートを得た。続いて、該シートをセラミックロールを用いて140℃に予熱し、周速差を設けた140℃のロール間でフィルムの長手方向に4.6倍延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、160℃で3秒間予熱後、155℃で8.0倍に延伸し、幅方向に10%の弛緩を与えながら120℃で熱処理をおこない、その後100℃の冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、フィルムをコアに巻き取り、厚み12μmのポリオレフィンフィルムを得た。得られたフィルムの物性および評価結果を表1に示す。
(Comparative Example 1)
As raw materials for the A layer (surface layer), 50 parts by mass of polyolefin raw material II (manufactured by Prime Polymer Co., Ltd., MFR: 2.9 g / 10 minutes, melting point: 164 ° C.) and polypropylene raw material I (Idemitsu Kosan Co., Ltd.) Elmodu S901, MFR: 50 g / 10 minutes, melting point: 80 ° C.) 50 parts by mass, and are dry-blended and supplied to a single-screw extruder for the surface layer as a raw material for the B layer (inner layer). , The above-mentioned polyolefin raw material II is supplied to a single-screw single-screw extruder for the inner layer, melt-extruded at 260 ° C., and after removing foreign substances with a 60 μm-cut sintering filter, a feed block type A / B / A composite is used. It was laminated with a T-die at a thickness ratio of 1/88/1, discharged to a casting drum whose surface temperature was controlled at 30 ° C., and brought into close contact with the casting drum with an air knife. Then, the uncooled drum surface of the sheet on the casting drum was cooled by injecting compressed air to obtain an unstretched sheet. Subsequently, the sheet was preheated to 140 ° C. using a ceramic roll, and stretched 4.6 times in the longitudinal direction of the film between the rolls at 140 ° C. provided with a peripheral speed difference. Next, the end was gripped by a clip and introduced into a tenter type stretching machine, preheated at 160 ° C for 3 seconds, stretched 8.0 times at 155 ° C, and at 120 ° C while giving 10% relaxation in the width direction. A heat treatment was performed, and then the film was guided to the outside of the tenter through a cooling step of 100 ° C., the clip at the end of the film was released, and the film was wound around a core to obtain a polyolefin film having a thickness of 12 μm. Table 1 shows the physical properties of the obtained film and the evaluation results.

(比較例2)
B層(内層)用の原料としてポリオレフィン原料II((株)プライムポリマー社製、MFR:2.9g/10分、融点:164℃)93.3質量部と、炭酸カルシウム80質量%とポリプロピレン20質量%をコンパウンドしたマスター原料(三共精粉(株)製、2480K、炭酸カルシウム粒子:6μm)6.7質量部とをドライブレンドして内層用の単軸の溶融押出機に供給し、A層(表層)用の原料として、上記ポリオレフィン原料IIを表層用の単軸の溶融押出機に供給し、240℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、フィードブロック型のA/B複合Tダイにて8/1の厚み比で積層し、30℃に表面温度を制御したキャストドラムに吐出してキャストシートを得た。ついで、複数のセラミックロールを用いて125℃に予熱を行い、125℃のロール間でフィルムの長手方向に4.6倍延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、165℃で3秒間予熱後、160℃で8.0倍に延伸した。続く熱処理工程で、幅方向に10%の弛緩を与えながら160℃で熱処理を行ない、その後130℃で冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、フィルムをコアに巻き取り、厚み19μmのポリオレフィンフィルムを得た。得られたフィルムの物性および評価結果を表1に示す。
(Comparative Example 2)
Polyolefin raw material II (manufactured by Prime Polymer Co., Ltd., MFR: 2.9 g / 10 minutes, melting point: 164 ° C.) 93.3 parts by mass, 80% by mass of calcium carbonate and polypropylene 20 as raw materials for the B layer (inner layer). 6.7 parts by mass of a master raw material (manufactured by Sankyo Seiko Co., Ltd., 2480K, calcium carbonate particles: 6 μm) compounded in mass% is dry-blended and supplied to a single-screw melt extruder for the inner layer, and layer A is used. As a raw material for (surface layer), the polyolefin raw material II is supplied to a single-screw melt extruder for the surface layer, melt-extruded at 240 ° C., and after removing foreign substances with a 60 μm-cut sintering filter, a feed block type A cast sheet was obtained by laminating with an A / B composite T-die at a thickness ratio of 8/1 and discharging the mixture to a cast drum whose surface temperature was controlled at 30 ° C. Then, the film was preheated to 125 ° C. using a plurality of ceramic rolls, and the film was stretched 4.6 times in the longitudinal direction between the rolls at 125 ° C. Next, the end portion was gripped by a clip and introduced into a tenter type stretching machine, preheated at 165 ° C. for 3 seconds, and then stretched 8.0 times at 160 ° C. In the subsequent heat treatment step, heat treatment is performed at 160 ° C while giving 10% relaxation in the width direction, and then the film is guided to the outside of the tenter through a cooling step at 130 ° C, the clip at the end of the film is released, and the film is wound around the core. A polyolefin film having a thickness of 19 μm was obtained. Table 1 shows the physical properties of the obtained film and the evaluation results.

(比較例3)
ポリオレフィン原料II((株)プライムポリマー社製、MFR:2.9g/10分、融点:164℃)を単軸の一軸溶融押出機に供給し、240℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、50℃に表面温度を制御したキャスティングドラムに吐出し、エアナイフによりキャスティングドラムに密着させた。その後、キャスティングドラム上のシートの非冷却ドラム面に、圧空エアを噴射させて冷却し、未延伸シートを得た。続いて、該シートをセラミックロールを用いて140℃に予熱し、周速差を設けた140℃のロール間でフィルムの長手方向に4.6倍延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、170℃で3秒間予熱後、165℃で8.0倍に延伸し、幅方向に10%の弛緩を与えながら150℃で熱処理をおこない、その後100℃の冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、フィルムをコアに巻き取り、厚み25μmのポリオレフィンフィルムを得た。得られたフィルムの物性および評価結果を表1に示す。
(Comparative example 3)
Polyolefin raw material II (manufactured by Prime Polymer Co., Ltd., MFR: 2.9 g / 10 minutes, melting point: 164 ° C.) is supplied to a single-screw uniaxial melt extruder, melt-extruded at 240 ° C., and baked in a 60 μm cut. After removing the foreign matter with a knotting filter, the foreign matter was discharged to a casting drum whose surface temperature was controlled to 50 ° C., and the mixture was brought into close contact with the casting drum with an air knife. Then, the uncooled drum surface of the sheet on the casting drum was cooled by injecting compressed air to obtain an unstretched sheet. Subsequently, the sheet was preheated to 140 ° C. using a ceramic roll, and stretched 4.6 times in the longitudinal direction of the film between the rolls at 140 ° C. provided with a peripheral speed difference. Next, the end was gripped by a clip and introduced into a tenter type stretching machine, preheated at 170 ° C. for 3 seconds, stretched 8.0 times at 165 ° C., and at 150 ° C. while giving 10% relaxation in the width direction. A heat treatment was performed, and then the film was guided to the outside of the tenter through a cooling step of 100 ° C., the clip at the end of the film was released, and the film was wound around a core to obtain a polyolefin film having a thickness of 25 μm. Table 1 shows the physical properties of the obtained film and the evaluation results.

(比較例4)
ポリオレフィン原料II((株)プライムポリマー社製、MFR:2.9g/10分、融点:164℃)を50質量部、ポリオレフィン原料III(住友化学(株)社製、MFR:7.5g/10分、融点:163℃)を45質量部、分岐鎖状ポリプロピレン樹脂(Basell社製)5質量部がこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、260℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットして、ポリプロピレン原料IVを得た。
A層(表層)用の原料として、上記ポリオレフィン原料IIを70質量部と、ポリプロピレン原料IVを30質量部とをドライブレンドして表層用の単軸の一軸押出機に供給し、B層(内層)用の原料として、上記ポリオレフィン原料IIを80質量部と上記ポリオレフィン原料IIIを20質量部とをドライブレンドして、内層用の単軸の一軸溶融押出機に供給し、260℃で溶融押出を行い、20μmカットの焼結フィルターで異物を除去後、フィードブロック型のA/B/A複合Tダイにて1/34/1の厚み比で積層し、70℃に表面温度を制御したキャスティングドラムに吐出し、エアナイフから圧空エアを吹きつけ、キャスティングドラムに密着させ、未延伸シートを得た。続いて、該シートをセラミックロールを用いて133℃に予熱し、周速差を設けた138℃のロール間でフィルムの長手方向に3.9倍延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、173℃で3秒間予熱後、172℃で7.2倍に延伸し、幅方向に4%の弛緩を与えながら145℃で熱処理をおこない、その後100℃の冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、フィルムをコアに巻き取り、厚み18μmのポリオレフィンフィルムを得た。得られたフィルムの物性および評価結果を表1に示す。
(Comparative Example 4)
Polyolefin raw material II (manufactured by Prime Polymer Co., Ltd., MFR: 2.9 g / 10 minutes, melting point: 164 ° C.) in 50 parts by mass, polyolefin raw material III (manufactured by Sumitomo Chemical Co., Ltd., MFR: 7.5 g / 10) Minutes, melting point: 163 ° C) 45 parts by mass and 5 parts by mass of branched chain polypropylene resin (manufactured by Basell) are supplied from the weighing hopper to the twin-screw extruder so as to be mixed at this ratio, and melted at 260 ° C. Kneading was performed, the mixture was discharged from the die in a strand shape, cooled and solidified in a water tank at 25 ° C., and cut into chips to obtain a polypropylene raw material IV.
As a raw material for the A layer (surface layer), 70 parts by mass of the polyolefin raw material II and 30 parts by mass of the polypropylene raw material IV are dry-blended and supplied to a single-screw extruder for the surface layer, and the B layer (inner layer) is supplied. ), 80 parts by mass of the polyolefin raw material II and 20 parts by mass of the polyolefin raw material III are dry-blended and supplied to a single-screw single-screw extruder for the inner layer, and melt extrusion is performed at 260 ° C. After removing foreign matter with a 20 μm-cut sintered filter, the casting drum was laminated with a feed block type A / B / A composite T-die at a thickness ratio of 1/34/1, and the surface temperature was controlled at 70 ° C. An unstretched sheet was obtained by blowing air pressure air from an air knife and bringing it into close contact with a casting drum. Subsequently, the sheet was preheated to 133 ° C. using a ceramic roll, and stretched 3.9 times in the longitudinal direction of the film between rolls at 138 ° C. provided with a peripheral speed difference. Next, the end was gripped with a clip and introduced into a tenter type stretching machine, preheated at 173 ° C for 3 seconds, stretched 7.2 times at 172 ° C, and at 145 ° C while giving 4% relaxation in the width direction. A heat treatment was performed, and then the film was guided to the outside of the tenter through a cooling step of 100 ° C., the clip at the end of the film was released, and the film was wound around a core to obtain a polyolefin film having a thickness of 18 μm. Table 1 shows the physical properties of the obtained film and the evaluation results.

(比較例5)
エチレン−プロピレン共重合樹脂(三井化学(株)社製、MFR:7g/10min、融点:140℃)を90質量部、高密度ポリエチレン原料(日本ポリエチレン(株)社製、融点:133℃)を10質量部がこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、220℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットして、ポリプロピレン原料Vを得た。
A層(表層)用の原料として、上記ポリプロピレン原料Vを表層用の単軸の一軸押出機に供給し、B層(内層)用の原料として、ポリオレフィン原料II((株)プライムポリマー社製、MFR:2.9g/10分、融点:164℃)を内層用の単軸の一軸溶融押出機に供給し、240℃で溶融押出を行い、20μmカットの焼結フィルターで異物を除去後、フィードブロック型のA/B/A複合Tダイにて1/34/1の厚み比で積層し、90℃に表面温度を制御したキャスティングドラムに吐出し、エアナイフから圧空エアを吹きつけ、キャスティングドラムに密着させ、未延伸シートを得た。続いて、該シートをセラミックロールを用いて108℃に予熱し、周速差を設けた148℃のロール間でフィルムの長手方向に4.6倍延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、180℃で3秒間予熱後、176℃で8.5倍に延伸し、幅方向に12%の弛緩を与えながら167℃で熱処理をおこない、その後100℃の冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、フィルムをコアに巻き取り、厚み18μmのポリオレフィンフィルムを得た。得られたフィルムの物性および評価結果を表1に示す。
(Comparative example 5)
90 parts by mass of ethylene-propylene copolymer resin (MFR: 7 g / 10 min, melting point: 140 ° C), high-density polyethylene raw material (manufactured by Japan Polyethylene Corporation, melting point: 133 ° C) Raw materials are supplied from the weighing hopper to the twin-screw extruder so that 10 parts by mass are mixed at this ratio, melt-kneaded at 220 ° C., discharged from the die in a strand shape, and cooled and solidified in a water tank at 25 ° C. , Cut into chips to obtain polypropylene raw material V.
As a raw material for the A layer (surface layer), the polypropylene raw material V is supplied to a single-screw extruder for the surface layer, and as a raw material for the B layer (inner layer), a polyolefin raw material II (manufactured by Prime Polymer Co., Ltd.). MFR: 2.9 g / 10 min, melting point: 164 ° C) is supplied to a single-screw single-screw extruder for the inner layer, melt extrusion is performed at 240 ° C, foreign matter is removed with a 20 μm-cut sintering filter, and then the feed is fed. It is laminated with a block type A / B / A composite T-die at a thickness ratio of 1/34/1, discharged to a casting drum whose surface temperature is controlled at 90 ° C., and compressed air is blown from an air knife to the casting drum. They were brought into close contact with each other to obtain an unstretched sheet. Subsequently, the sheet was preheated to 108 ° C. using a ceramic roll, and stretched 4.6 times in the longitudinal direction of the film between rolls at 148 ° C. provided with a peripheral speed difference. Next, the end was gripped with a clip and introduced into a tenter type stretching machine, preheated at 180 ° C. for 3 seconds, stretched 8.5 times at 176 ° C., and at 167 ° C. while giving 12% relaxation in the width direction. A heat treatment was performed, and then the film was guided to the outside of the tenter through a cooling step of 100 ° C., the clip at the end of the film was released, and the film was wound around a core to obtain a polyolefin film having a thickness of 18 μm. Table 1 shows the physical properties of the obtained film and the evaluation results.

Figure 0006753540
Figure 0006753540

上述のとおり、本発明のポリオレフィンフィルムは、包装用フィルム、離型用フィルム、工程フィルム、衛生用品、農業用品、建築用品、医療用品など様々な用途で用いることができる。特に、透明平滑性に優れることから、製品の表面平滑性が要求される用途の離型用フィルム、工程フィルムとして好ましく用いることができ、さらに離型性に優れることから、粘着性樹脂層のカバーフィルムなどの離型フィルムとして好ましく用いられる。 As described above, the polyolefin film of the present invention can be used in various applications such as packaging films, mold release films, process films, sanitary products, agricultural products, construction products, and medical products. In particular, since it is excellent in transparent smoothness, it can be preferably used as a mold release film or process film for applications requiring surface smoothness of products, and since it is also excellent in mold release property, it covers an adhesive resin layer. It is preferably used as a release film such as a film.

Claims (9)

少なくとも両側の表層と内層からなる積層構成を有し、
少なくとも一方の表層は、融点が50℃以上135℃以下のポリプロピレン樹脂、及び230℃、21.18Nの荷重で測定したメルトフローレートが5g/10分以上30g/10分以下のポリプロピレン樹脂の少なくとも一方を含有し、
前記内層は、融点が155℃以上のポリオレフィン樹脂を主成分とする延伸フィルムであり、
少なくとも片面(A面)の平均粗さSaが65〜600nmであり、
前記A面の山高さSp及び前記A面の谷深さSvの比であるSp/Svの値が2.5以下であり、ヘイズが30%以下である、ポリオレフィンフィルム。
It has a laminated structure consisting of at least the surface layer and the inner layer on both sides.
At least one surface layer is a polypropylene resin having a melting point of 50 ° C. or higher and 135 ° C. or lower, and a polypropylene resin having a melt flow rate of 5 g / 10 min or more and 30 g / 10 min or lower measured under a load of 230 ° C. or 21.18 N. Contains,
The inner layer is a stretched film containing a polyolefin resin having a melting point of 155 ° C. or higher as a main component.
The average roughness Sa of at least one side (A side) is 65 to 600 nm.
The value of Sp / Sv is the ratio of valley depth Sv of peak height Sp and the A face of the A surface is 2.5 or less, a haze is 30% or less, a polyolefin film.
前記融点が50℃以上135℃以下のポリプロピレン樹脂として、ホモポリプロピレン樹脂を含有する、請求項に記載のポリオレフィンフィルム。 The melting point of a 50 ° C. or higher 135 ° C. or less of a polypropylene resin, containing homopolypropylene resin, a polyolefin film according to claim 1. 前記A面の山高さSp、及び、前記A面の平均粗さSaの比であるSp/Saの値が、13未満である、請求項1または2に記載のポリオレフィンフィルム。 The polyolefin film according to claim 1 or 2 , wherein the value of Sp / Sa, which is the ratio of the mountain height Sp of the A surface and the average roughness Sa of the A surface, is less than 13. 厚み方向の弾性率が2.3GPa以下である、請求項1〜のいずれかに記載のポリオレフィンフィルム。 The polyolefin film according to any one of claims 1 to 3 , wherein the elastic modulus in the thickness direction is 2.3 GPa or less. 示差操作熱量計DSCで30℃から260℃まで昇温した際に、165℃以上に融解ピークを有する、請求項1〜のいずれかに記載のポリオレフィンフィルム。 The polyolefin film according to any one of claims 1 to 4 , which has a melting peak at 165 ° C. or higher when the temperature is raised from 30 ° C. to 260 ° C. by a differential operating calorimeter DSC. フィッシュアイの個数が5.0個/m以下である、請求項1〜のいずれかに記載のポリオレフィンフィルム。 The polyolefin film according to any one of claims 1 to 5 , wherein the number of fish eyes is 5.0 pieces / m 2 or less. 主収縮方向、及び、その直交方向の150℃15分の熱収縮率の和が8.0%以下である、請求項1〜のいずれかに記載のポリオレフィンフィルム。 The polyolefin film according to any one of claims 1 to 6 , wherein the sum of the heat shrinkage ratios of the main shrinkage direction and the heat shrinkage ratio at 150 ° C. for 15 minutes in the orthogonal direction thereof is 8.0% or less. 130℃で測定した場合のフィルム主収縮方向の直交方向の最大点強度が70MPa以上である、請求項1〜のいずれかに記載のポリオレフィンフィルム。 The polyolefin film according to any one of claims 1 to 7 , wherein the maximum point strength in the direction orthogonal to the main shrinkage direction of the film when measured at 130 ° C. is 70 MPa or more. 請求項1〜のいずれかに記載のポリオレフィンフィルムを用いてなる離型用フィルム。 A release film using the polyolefin film according to any one of claims 1 to 8 .
JP2019555044A 2018-10-05 2019-09-27 Polyolefin film and mold release film Active JP6753540B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020137991A JP6962426B2 (en) 2018-10-05 2020-08-18 Polyolefin film and release film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018189785 2018-10-05
JP2018189785 2018-10-05
PCT/JP2019/038364 WO2020071291A1 (en) 2018-10-05 2019-09-27 Polyolefin film and release film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020137991A Division JP6962426B2 (en) 2018-10-05 2020-08-18 Polyolefin film and release film

Publications (2)

Publication Number Publication Date
JP6753540B1 true JP6753540B1 (en) 2020-09-09
JPWO2020071291A1 JPWO2020071291A1 (en) 2021-02-15

Family

ID=70055161

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019555044A Active JP6753540B1 (en) 2018-10-05 2019-09-27 Polyolefin film and mold release film
JP2020137991A Active JP6962426B2 (en) 2018-10-05 2020-08-18 Polyolefin film and release film

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020137991A Active JP6962426B2 (en) 2018-10-05 2020-08-18 Polyolefin film and release film

Country Status (5)

Country Link
JP (2) JP6753540B1 (en)
KR (1) KR20210069630A (en)
CN (1) CN112771102A (en)
TW (1) TWI827693B (en)
WO (1) WO2020071291A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230641A (en) * 1988-03-10 1989-09-14 Toray Ind Inc Biaxially oriented polyester film
JPH07214660A (en) * 1994-01-27 1995-08-15 Mitsui Toatsu Chem Inc Oriented polyethylene film
JP2015107612A (en) * 2013-12-05 2015-06-11 王子ホールディングス株式会社 Biaxially oriented polypropylene film
WO2017077752A1 (en) * 2015-11-05 2017-05-11 東レ株式会社 Biaxially oriented polypropylene film, multilayered film including metal film, and film capacitor
WO2018147355A1 (en) * 2017-02-10 2018-08-16 東洋インキScホールディングス株式会社 Component mounting substrate, method for producing same, laminate, electromagnetic shielding sheet and electronic device
WO2018147334A1 (en) * 2017-02-07 2018-08-16 東レ株式会社 Biaxially oriented polypropylene film
JP2018141122A (en) * 2017-02-28 2018-09-13 東洋紡株式会社 Biaxially oriented polypropylene film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5672859A (en) 1979-11-19 1981-06-17 Asahi Optical Co Ltd Light scanner
JP2005138386A (en) 2003-11-06 2005-06-02 Toyobo Co Ltd Heat-shrinkable polyolefinic film
WO2015129851A1 (en) * 2014-02-28 2015-09-03 東レ株式会社 Biaxially oriented polypropylene film
WO2016006578A1 (en) 2014-07-09 2016-01-14 東レ株式会社 Polypropylene film and release film
JP2017125184A (en) 2016-01-07 2017-07-20 東レ株式会社 Polypropylene film and mold release film
KR102455837B1 (en) * 2017-02-07 2022-10-18 도레이 카부시키가이샤 Biaxially Oriented Polypropylene Film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230641A (en) * 1988-03-10 1989-09-14 Toray Ind Inc Biaxially oriented polyester film
JPH07214660A (en) * 1994-01-27 1995-08-15 Mitsui Toatsu Chem Inc Oriented polyethylene film
JP2015107612A (en) * 2013-12-05 2015-06-11 王子ホールディングス株式会社 Biaxially oriented polypropylene film
WO2017077752A1 (en) * 2015-11-05 2017-05-11 東レ株式会社 Biaxially oriented polypropylene film, multilayered film including metal film, and film capacitor
WO2018147334A1 (en) * 2017-02-07 2018-08-16 東レ株式会社 Biaxially oriented polypropylene film
WO2018147355A1 (en) * 2017-02-10 2018-08-16 東洋インキScホールディングス株式会社 Component mounting substrate, method for producing same, laminate, electromagnetic shielding sheet and electronic device
JP2018141122A (en) * 2017-02-28 2018-09-13 東洋紡株式会社 Biaxially oriented polypropylene film

Also Published As

Publication number Publication date
JP6962426B2 (en) 2021-11-05
WO2020071291A1 (en) 2020-04-09
CN112771102A (en) 2021-05-07
JPWO2020071291A1 (en) 2021-02-15
TW202024197A (en) 2020-07-01
JP2020203486A (en) 2020-12-24
KR20210069630A (en) 2021-06-11
TWI827693B (en) 2024-01-01

Similar Documents

Publication Publication Date Title
JP6512374B2 (en) Biaxially oriented polypropylene film
JP7047428B2 (en) Biaxially oriented polypropylene film
JP7205611B2 (en) biaxially oriented polypropylene film
CN112888729B (en) Polypropylene film and release film
JP7070426B2 (en) Laminated polypropylene film
JP7355173B2 (en) polyolefin film
JP6753540B1 (en) Polyolefin film and mold release film
JP2019007006A (en) Heat-shrinkable polypropylene film
JP6753541B1 (en) Polypropylene film and release film
WO2022210693A1 (en) Polypropylene film
WO2022210688A1 (en) Polypropylene film
JP2016064654A (en) Biaxial oriented polypropylene film and surface protective film
JPWO2021070671A1 (en) Polyolefin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200227

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200227

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200803

R151 Written notification of patent or utility model registration

Ref document number: 6753540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157