JP6749747B2 - Inorganic antibacterial composition and use thereof - Google Patents

Inorganic antibacterial composition and use thereof Download PDF

Info

Publication number
JP6749747B2
JP6749747B2 JP2015158935A JP2015158935A JP6749747B2 JP 6749747 B2 JP6749747 B2 JP 6749747B2 JP 2015158935 A JP2015158935 A JP 2015158935A JP 2015158935 A JP2015158935 A JP 2015158935A JP 6749747 B2 JP6749747 B2 JP 6749747B2
Authority
JP
Japan
Prior art keywords
zinc
aqueous solution
carbonate
inorganic antibacterial
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015158935A
Other languages
Japanese (ja)
Other versions
JP2017036244A (en
Inventor
悦郎 宇田川
悦郎 宇田川
木綿子 越前谷
木綿子 越前谷
圭美 中田
圭美 中田
山本 修
修 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Mineral Co Ltd
Original Assignee
JFE Mineral Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Mineral Co Ltd filed Critical JFE Mineral Co Ltd
Priority to JP2015158935A priority Critical patent/JP6749747B2/en
Publication of JP2017036244A publication Critical patent/JP2017036244A/en
Application granted granted Critical
Publication of JP6749747B2 publication Critical patent/JP6749747B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Materials For Medical Uses (AREA)
  • Cosmetics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

本発明は、無機抗菌性組成物、その用途である無機抗菌性組成物を含む、化粧品、衣料品、樹脂材、セラミック材または金属材に関する。 The present invention relates to an inorganic antibacterial composition, and a cosmetic, clothing, resin material, ceramic material or metal material containing the inorganic antibacterial composition, which is its use.

無機系抗菌剤は有機系抗菌剤と比較して、耐熱性、耐久性に優れ、不揮発性で効果も持続的である点から現在市場が拡大している。しかし無機系抗菌剤の代表として挙げられる銀は、変色、高価といった問題がある。そこで、人体に安全で安価な無機系抗菌剤として挙げられるのが金属酸化物である。中でも酸化亜鉛は暗所でも抗菌効果を発現し、さらに水中で中性を示すという点から様々な応用が期待される。 Compared with organic antibacterial agents, inorganic antibacterial agents are currently expanding the market because they are superior in heat resistance and durability, non-volatile, and persistent in effect. However, silver, which is a typical inorganic antibacterial agent, has problems such as discoloration and cost. Therefore, a metal oxide is mentioned as an inorganic antibacterial agent which is safe and inexpensive for the human body. Among them, zinc oxide is expected to have various applications because it exhibits an antibacterial effect even in a dark place and exhibits neutrality in water.

特許文献1は酸化亜鉛薄膜からなることを特徴とする抗菌性材料であるとされており、ドナー元素のドーピングも行えるとしている。しかし、スパッタ法によって形成される膜形状であるため利用範囲が限られ、たとえば化粧品への配合や繊維等への固定には不適当である。 Patent Document 1 is said to be an antibacterial material characterized by comprising a zinc oxide thin film, and is said to be able to dope a donor element. However, since it is a film shape formed by a sputtering method, its range of use is limited, and it is unsuitable for, for example, compounding into cosmetics or fixing to fibers or the like.

特許文献2は、IIIB族金属元素およびIVB族金属元素から選択される金属元素を含有する、導電性の付与された酸化亜鉛微粒子からなる抗菌・防黴剤を記載する。その製造法として、酸化亜鉛粒子に第二成分金属を添加浸透させる方法が提供されている([0022])。しかし本願出願人の知見では、この製造法ではドナー元素が亜鉛と置換固溶することは困難である。また、酸化亜鉛中に第二成分を置換型固溶させるためには、800℃以上の高温が必要となり、出発酸化亜鉛がナノサイズの粒子であっても、粒成長することで表面積の低下が著しくなる。 Patent Document 2 describes an antibacterial/antifungal agent comprising zinc oxide fine particles to which electroconductivity is added, containing a metal element selected from Group IIIB metal elements and Group IVB metal elements. As a method for producing the same, a method of adding and permeating a second component metal into zinc oxide particles is provided ([0022]). However, according to the knowledge of the applicant of the present application, it is difficult for this manufacturing method to replace the donor element with zinc to form a solid solution. Further, in order to make the substitutional solid solution of the second component in zinc oxide, a high temperature of 800° C. or higher is required, and even if the starting zinc oxide is nano-sized particles, the growth of the particles reduces the surface area. It will be noticeable.

特許文献3では、水を反応溶媒として亜鉛イオン、炭酸イオン、および水酸イオンをpH保持環境で反応させて、生成する塩基性炭酸亜鉛を焼成することにより製造される酸化亜鉛を有効成分とする、抗菌防黴剤が記載されている。この製造方法では亜鉛以外の金属を用いていない。また、この製造法における焼成温度は150℃〜450℃であると提示されている([0013])。この焼成温度では酸化亜鉛の結晶成長も不十分であり、たとえ亜鉛以外の金属を添加して焼成しても、沈殿物中で固溶の促進がされない。 In Patent Document 3, zinc ion produced by reacting zinc ion, carbonate ion, and hydroxide ion in a pH maintaining environment with water as a reaction solvent and calcining the basic zinc carbonate produced is used as an active ingredient. , Antibacterial and antifungal agents are described. No metal other than zinc is used in this manufacturing method. Further, it is proposed that the firing temperature in this production method is 150°C to 450°C ([0013]). At this firing temperature, the crystal growth of zinc oxide is insufficient, and even if a metal other than zinc is added and fired, solid solution is not promoted in the precipitate.

特開2009-143841号公報JP 2009-143841 JP 特開2002-104823号公報JP 2002-104823 特許3938447号Patent 3938447

本発明では、耐熱性・耐久性・安全性に優れる特徴を有し、暗所でも効果を発現する安価な無機系抗菌剤として、上記の問題を解決し抗菌効果を格段に向上させた酸化亜鉛粉末、およびその製造法を提供する。 In the present invention, as an inexpensive inorganic antibacterial agent having excellent heat resistance, durability, and safety, and exhibiting an effect even in a dark place, zinc oxide having solved the above problems and remarkably improved antibacterial effect. A powder and a manufacturing method thereof are provided.

すなわち本発明は、以下を提供する。
(1)モル比でZn/Al=1超〜10000、またはモル比でZn/Ga=1超〜10000である、アルミニウム塩水溶液またはガリウム塩水溶液と、亜鉛塩水溶液、炭酸塩水溶液、およびアルカリ水溶液の沈殿物生成反応で生成される炭酸水和物を700℃以上の温度で熱処理して得られる無機抗菌性組成物。
(2)前記沈殿物生成反応で得られる沈殿物が、塩基性炭酸亜鉛並びに、亜鉛、アルミニウムおよび・またはガリウムの沈殿物を含む(1)に記載の無機抗菌性組成物。
(3)前記炭酸水和物が下式(1)で表されるハイドロジンカイトまたはその水和物を含有する(1)または(2)に記載の無機抗菌性組成物。
4〜6(CO1〜3(OH)6〜7 (1)
M:亜鉛元素、アルミニウム、およびガリウムからなる群から選択される少なくとも一つの金属を示す。
(4)上記(1)ないし(3)のいずれかに記載の無機抗菌性組成物および化粧料用担体を含む化粧品。
(5)上記(1)ないし(3)のいずれかに記載の無機抗菌性組成物を繊維に固定する抗菌性繊維または前記抗菌性繊維を用いた抗菌性衣料品。
(6)上記(1)ないし(3)のいずれかに記載の無機抗菌性組成物を含む、または前記無機抗菌性組成物を含むコーティングを有する、樹脂材、セラミック材、または金属材。
(7)上記(1)ないし(3)のいずれか1項に記載の無機抗菌性組成物を含む医薬品、または前記無機抗菌性組成物を含む、または前記無機抗菌性組成物を含むコーティングを有する医療用物品。
That is, the present invention provides the following.
(1) Aluminum salt aqueous solution or gallium salt aqueous solution, zinc salt aqueous solution, carbonate aqueous solution, and alkaline aqueous solution having a molar ratio of Zn/Al = more than 1 to 10,000 or a molar ratio of Zn/Ga = more than 1 to 10000 An inorganic antibacterial composition obtained by heat-treating a carbonate hydrate produced in the precipitation producing reaction of 1. at a temperature of 700° C. or higher.
(2) The inorganic antibacterial composition according to (1), wherein the precipitate obtained by the precipitate formation reaction contains basic zinc carbonate and a precipitate of zinc, aluminum and/or gallium.
(3) The inorganic antibacterial composition according to (1) or (2), wherein the carbonate hydrate contains a hydrozincite represented by the following formula (1) or a hydrate thereof.
M 4-6 (CO 3 ) 1-3 (OH) 6-7 (1)
M: At least one metal selected from the group consisting of zinc element, aluminum, and gallium.
(4) A cosmetic containing the inorganic antibacterial composition according to any one of (1) to (3) and a carrier for cosmetics.
(5) An antibacterial fiber for fixing the inorganic antibacterial composition according to any one of (1) to (3) to a fiber, or an antibacterial clothing using the antibacterial fiber.
(6) A resin material, a ceramic material, or a metal material containing the inorganic antibacterial composition according to any one of the above (1) to (3) or having a coating containing the inorganic antibacterial composition.
(7) A drug containing the inorganic antibacterial composition according to any one of (1) to (3) above, or a coating containing the inorganic antibacterial composition or containing the inorganic antibacterial composition. Medical article.

本発明の無機抗菌性組成物は、塩基性炭酸亜鉛から脱水、脱炭酸することで得られる従来の酸化亜鉛に比べ、大腸菌などの菌類の増殖を防止し、かつ死滅能力に優れた抗菌剤である。 The inorganic antibacterial composition of the present invention is an antibacterial agent that prevents the growth of fungi such as Escherichia coli and is excellent in killing ability as compared with conventional zinc oxide obtained by dehydration and decarboxylation from basic zinc carbonate. is there.

抗菌性評価に用いる実験条件を説明する模式図である。It is a schematic diagram explaining the experimental conditions used for antibacterial property evaluation.

1.本発明の無機抗菌性組成物
本発明は、モル比でZn/Al=1超〜10000、またはモル比でZn/Ga=1超〜10000である、アルミニウム塩水溶液またはガリウム塩水溶液と、亜鉛塩水溶液、炭酸塩水溶液、およびアルカリ水溶液の沈殿物生成反応で生成される炭酸水和物を700℃以上の温度で熱処理して得られる無機抗菌性組成物(以下、本発明の組成物ということがある)である。
以下で説明するように、本発明の組成物は、亜鉛酸化物にアルミニウムまたはガリウムがドープされた組成物である。その特徴は焼成前の前駆体の形態に特徴があり、その製造条件は、亜鉛塩水溶液、炭酸塩水溶液、アルミニウムまたはガリウム塩水溶液、およびアルカリ剤を混合し、水溶液のpHを一定に保持して攪拌して沈殿物を生成する反応時に一定に保持される異なるpH値によって結晶性の異なる前駆体が生成され、異なる前駆体を焼成するとそれぞれ異なる亜鉛酸化物が得られる。
1. Inorganic antibacterial composition of the present invention The present invention relates to an aluminum salt aqueous solution or a gallium salt aqueous solution having a molar ratio of Zn/Al = more than 1 to 10,000, or a molar ratio of Zn/Ga = more than 1 to 10,000, and a zinc salt. An inorganic antibacterial composition obtained by heat-treating a carbonate hydrate produced by a precipitation producing reaction of an aqueous solution, an aqueous carbonate solution, and an alkaline aqueous solution at a temperature of 700° C. or higher (hereinafter, referred to as the composition of the present invention. Yes).
As described below, the composition of the present invention is a composition in which zinc oxide is doped with aluminum or gallium. Its characteristic is the form of the precursor before firing, and its manufacturing conditions are as follows: zinc salt aqueous solution, carbonate aqueous solution, aluminum or gallium salt aqueous solution, and an alkaline agent are mixed, and the pH of the aqueous solution is kept constant. Precursors of different crystallinity are produced by different pH values which are kept constant during the reaction of stirring to produce a precipitate, and different zinc oxides are obtained by firing different precursors.

沈殿物の形態を決定する具体的な製造条件は、パラメーターを以下のI、IIとすると、
I組成
1. モル比で、Zn/Al=5以上、Zn/Ga=10以上
2. モル比で、Zn/Al=1超〜5未満、Zn/Ga=1超〜10未満
II沈殿反応時のpH
a. 低pH、pH7.5未満、
b. 好適pH、pH7.5〜9.5、
c. 高pH、pH9.5超、
で表すことができる。
1)沈殿反応時のpHがaで組成が1の場合:a−1または、
沈殿反応時のpHがaで組成が2の場合:a−2
この条件では、炭酸水和物としては結晶性の低い混合物である。
2)沈殿反応時のpHがbで組成が1の場合:b−1
この条件では、前駆体がハイドロジンカイト単相(90質量%以上)であり、
4〜6(CO1〜3(OH)6〜7 (1)で示され、Mが亜鉛元素およびアルミニウム元素、または亜鉛元素およびガリウム元素である。ここで、M:亜鉛元素、アルミニウム、およびガリウムからなる群から選択される少なくとも一つの金属を示す。モル比でZn/Al=5以上であり、またはモル比でZn/Ga=10以上である、モル比の上限は大きくなるほど前駆体がドープ金属の少ない炭酸亜鉛主体のハイドロジンカイトが得られドープ金属の効果が見られなくなる。ドープ金属を前駆体中のハイドロジンカイト相に入れることはドープ金属量が少なくなると製造が困難(確実なドーピングが困難となり、抗菌能にバラツキが生じる)になるので、Zn/Al、またはZn/Gaのモル比の上限は10000以下が好ましく、より好ましくは1000以下である。
3)沈殿反応時のpHがbで組成が2の場合:b−2
この条件では、亜鉛アルミ炭酸水酸化物、および亜鉛ガリウム炭酸水酸化物の異相が存在し、焼成によってスピネル相であるZnAl、ZnGa、およびAl、Gaなどの存在も認められた。このことから、これら異相が粒界に析出することで、導電性が劣化し、抗菌能の低下も認められた。
4)沈殿反応時のpHがcで組成が1の場合:c−1または、
沈殿反応時のpHがcで組成が2の場合:c−2
この条件では、前駆体に水酸化物、酸化物の異相が認められた。
The specific manufacturing conditions for determining the morphology of the precipitate are as follows:
I composition 1. The molar ratio is Zn/Al=5 or more, Zn/Ga=10 or more. In terms of molar ratio, Zn/Al = more than 1 and less than 5, Zn/Ga = more than 1 and less than 10
II pH during precipitation reaction
a. Low pH, less than pH 7.5,
b. Suitable pH, pH 7.5-9.5,
c. High pH, pH over 9.5,
Can be expressed as
1) When the pH during the precipitation reaction is a and the composition is 1: a-1 or
When the pH during the precipitation reaction is a and the composition is 2: a-2
Under this condition, the mixture has low crystallinity as a carbonate hydrate.
2) When the pH during the precipitation reaction is b and the composition is 1: b-1
Under this condition, the precursor is a hydrozincite single phase (90 mass% or more),
M 4-6 (CO 3 ) 1-3 (OH) 6-7 (1), and M is a zinc element and an aluminum element, or a zinc element and a gallium element. Here, M: at least one metal selected from the group consisting of elemental zinc, aluminum, and gallium. The molar ratio is Zn/Al=5 or more, or the molar ratio is Zn/Ga=10 or more. As the upper limit of the molar ratio is increased, a zinc carbonate-based hydrozincite containing less precursor as the precursor is obtained, and the doped metal is obtained. The effect of can not be seen. Since it is difficult to manufacture the dope metal in the hydrozincite phase in the precursor when the amount of the dope metal is small (certain doping becomes difficult and the antibacterial activity varies), Zn/Al or Zn/Ga The upper limit of the molar ratio is preferably 10000 or less, more preferably 1000 or less.
3) When the pH during the precipitation reaction is b and the composition is 2: b-2
Under this condition, a heterogeneous phase of zinc aluminum carbonate hydroxide and zinc gallium carbonate hydroxide exists, and ZnAl 2 O 4 , ZnGa 2 O 4 , and Al 2 O 3 , Ga 2 O 3 which are spinel phases by firing are present. The existence of such as. From this, it was confirmed that the precipitation of these different phases at the grain boundaries deteriorates the conductivity and reduces the antibacterial activity.
4) When the pH during the precipitation reaction is c and the composition is 1: c-1 or
When the pH during the precipitation reaction is c and the composition is 2: c-2
Under this condition, a hydroxide and a different phase of the oxide were observed in the precursor.

酸化亜鉛の抗菌メカニズムには諸説あり、亜鉛イオンが細胞膜を破壊する機構、酸化亜鉛表面から発生する過酸化水素が細菌のDNAまたは酵素等を損傷して死滅させる機構等が考えられている。本発明者はこのうち、過酸化水素発生による抗菌性発現の効果が大きいと考え、本発明に至った。この過酸化水素は、酸化亜鉛が持つキャリアが粒子表面で酸素や水と接触することにより発生する。よって、組成物中の電子の数であるキャリア濃度の増加、キャリア移動度の向上を促すことで過酸化水素発生量が高まり、抗菌活性が向上すると考えることができる。 There are various theories about the antibacterial mechanism of zinc oxide, and the mechanism by which zinc ion destroys the cell membrane, the mechanism by which hydrogen peroxide generated from the surface of zinc oxide kills DNA or enzymes of bacteria and kills them are considered. The inventor of the present invention has considered that the effect of exhibiting antibacterial properties due to generation of hydrogen peroxide is large, and has reached the present invention. This hydrogen peroxide is generated when the carrier of zinc oxide comes into contact with oxygen or water on the particle surface. Therefore, it can be considered that by increasing the carrier concentration, which is the number of electrons in the composition, and promoting the carrier mobility, the hydrogen peroxide generation amount is increased and the antibacterial activity is improved.

このキャリア濃度の増加、移動度の向上を実現するため、酸化亜鉛へのAl、Gaの分子レベルでのドーピング、および固溶の促進、結晶性の向上がなされるような製造法の発明にいたった。 In order to realize the increase in carrier concentration and the improvement in mobility, doping of zinc oxide with Al and Ga at the molecular level, promotion of solid solution, and improvement of crystallinity were invented. It was

2.本発明の無機抗菌性組成物の製造方法
(沈殿物の製造)
本発明の無機抗菌性組成物は、アルミニウムおよび・またはガリウムの存在下で、亜鉛塩水溶液、炭酸塩水溶液、およびアルカリ水溶液の沈殿物生成反応で生成される前駆体の炭酸水和物を焼成して得られる。前駆体の炭酸水和物は、亜鉛塩水溶液、炭酸塩水溶液、およびアルカリ水溶液の沈殿物生成反応によって得られる反応物、および未反応物としての原料、副生物および原料から混入する不純物の混合物である。
好ましくは、アルミニウムおよび・またはガリウムの金属塩水溶液と亜鉛塩水溶液とを、ZnとAlの割合が、モル比でZn/Al=1超〜10000、またはZnとGaの割合がモル比でZn/Ga=1超〜10000の範囲で混合する。ただし未反応物を予想してAlまたはGaを過剰量用いることができる。混合する際に、鉱化材またはpH調製剤としての炭酸ナトリウム、炭酸水素ナトリウム、水酸化ナトリウム水溶液を用い、炭酸水素ナトリウム水溶液のpHを6.5〜10.5、好ましくは7.5〜9.5の範囲で一定値に保ち攪拌する状態で、金属塩水溶液と炭酸塩水溶液の混合液に、水酸化ナトリウム水溶液を滴下し、アルカリ沈殿法によって生成される沈殿物を得る。
沈殿物は、炭酸水和物を含む沈殿物であり、好ましくは塩基性炭酸亜鉛並びに、亜鉛、アルミニウムおよび・またはガリウムの沈殿物を含む。より好ましくは焼成工程のための前駆体としてハイドロジンカイトを主成分として有する沈殿物を得るのが好ましい。
金属塩水溶液を滴下後、10〜30時間攪拌後、吸引濾過による固液分離、真空乾燥するのが好ましい。原料の炭酸源、亜鉛源、および鉱化材は後述するものに限定されるものではない。炭酸源には(NH)CO、NaCO、好ましくは、NaH(CO)水溶液が挙げられ、亜鉛源は硫酸亜鉛、塩化亜鉛、酢酸亜鉛、硝酸亜鉛の中から選択され、鉱化材としてNH、またはNaOHの使用が挙げられる。Al源,Ga源は、硫酸塩、塩化塩、酢酸塩、硝酸塩から選択される。
焼成工程の前駆体としてのより好ましい沈殿物は、下式(1)で表されるハイドロジンカイトまたはその水和物を含有する。
4〜6(CO1〜3(OH)6〜7 (1)
M:亜鉛元素、アルミニウム、およびガリウムからなる群から選択される少なくとも一つの金属を示す。
ハイドロジンカイトの存在は沈殿物をX線分析し、XRD(X−線回折法)のピークによって確認できる。
(焼成処理)
上記のアルカリ沈殿法で得られた沈殿物(前駆体)を、700℃以上、好ましくは1000℃超から1300℃以下の温度、さらに好ましくは1100℃〜1250℃の温度で大気中などの酸化性雰囲気で熱処理して、ZnとAlの割合が、モル比でZn/Al=1超〜10000、またはZnとGaの割合がモル比でZn/Ga=1超〜10000である無機抗菌性組成物を得る。
焼成処理は、前駆体をペレットに成型して行ってもよく、ペレットを作成することなく、粉体のまま焼成してもよい。
2. Method for producing inorganic antibacterial composition of the present invention (production of precipitate)
The inorganic antibacterial composition of the present invention calcinates a carbonate hydrate of a precursor produced by a precipitation-forming reaction of a zinc salt aqueous solution, a carbonate aqueous solution, and an alkaline aqueous solution in the presence of aluminum and/or gallium. Obtained. Carbonate hydrate of the precursor is a mixture of a reaction product obtained by a precipitation generation reaction of an aqueous zinc salt solution, an aqueous carbonate solution, and an aqueous alkali solution, and raw materials as unreacted substances, by-products, and impurities mixed from the raw materials. is there.
Preferably, the metal salt aqueous solution of aluminum and/or gallium and the zinc salt aqueous solution are mixed such that the molar ratio of Zn and Al is Zn/Al=1 to 10000 or the molar ratio of Zn and Ga is Zn/Al. Ga=more than 1 and mixed in the range of 10,000. However, it is possible to use an excessive amount of Al or Ga in anticipation of unreacted substances. At the time of mixing, sodium carbonate, sodium hydrogencarbonate or sodium hydroxide aqueous solution as a mineralizer or pH adjuster is used, and the pH of the sodium hydrogencarbonate aqueous solution is 6.5 to 10.5, preferably 7.5 to 9 An aqueous sodium hydroxide solution is added dropwise to a mixed solution of an aqueous metal salt solution and an aqueous carbonate solution with stirring at a constant value within a range of 0.5 to obtain a precipitate produced by an alkaline precipitation method.
The precipitate is a precipitate containing a carbonate hydrate, preferably a basic zinc carbonate and a precipitate of zinc, aluminum and/or gallium. More preferably, it is preferable to obtain a precipitate containing hydrogenzincite as a main component as a precursor for the firing step.
After dropping the aqueous metal salt solution, it is preferable to stir for 10 to 30 hours, then perform solid-liquid separation by suction filtration and vacuum dry. The raw material carbonic acid source, zinc source, and mineralizing material are not limited to those described below. The carbonate source (NH 4) CO 3, Na 2 CO 3, preferably, NaH (CO 3) solution and the like, zinc source is selected zinc sulfate, zinc chloride, zinc acetate, among zinc nitrate, mineral The use of NH 3 or NaOH as the chemical agent may be mentioned. The Al source and Ga source are selected from sulfates, chlorides, acetates, and nitrates.
A more preferable precipitate as a precursor in the firing step contains a hydrozincite represented by the following formula (1) or a hydrate thereof.
M 4-6 (CO 3 ) 1-3 (OH) 6-7 (1)
M: At least one metal selected from the group consisting of zinc element, aluminum, and gallium.
The presence of hydrogenzite can be confirmed by XRD (X-ray diffractometry) peaks by X-ray analysis of the precipitate.
(Baking treatment)
The precipitate (precursor) obtained by the above-mentioned alkaline precipitation method is oxidized at 700° C. or higher, preferably at a temperature of more than 1000° C. to 1300° C. or less, more preferably 1100° C. to 1250° C. Inorganic antibacterial composition obtained by heat treatment in an atmosphere, the ratio of Zn and Al being Zn/Al=1 to more than 10000 in molar ratio, or the ratio of Zn and Ga being Zn/Ga=1 to more than 10000 in molar ratio. To get
The firing treatment may be performed by molding the precursor into pellets, or the powder may be fired without forming pellets.

3.本発明の無機抗菌性組成物の用途
本発明の組成物の用途は限定されない。具体的に例示すれば以下が例示できる。
(1)本発明の無機抗菌性組成物は、創傷治療剤と共に用いることで、抗菌性のある安全性、保存性の高い医薬品とすることができる。また創傷被覆材中に混合または表面に塗布して有用な医療品として用いることができる。
(2)本発明の無機抗菌性組成物は、化粧料用担体と共に用いることで、抗菌性のある安全性、保存性の高い化粧品とすることができる。
化粧料用担体品を例示すれば、清浄用化粧品、頭髪化粧品、基礎化粧品、メークアップ化粧品、芳香化粧品、日焼け化粧品、日焼け止め化粧品、爪化粧品、アイライナー化粧品、口唇化粧品、口腔化粧品、入浴用化粧品を例示することができる。特にUVAカット化粧料においては、酸化亜鉛の紫外線吸収が期待できるなど、より好適な利用方法である。
3. Use of the inorganic antibacterial composition of the present invention The use of the composition of the present invention is not limited. The following can be given as specific examples.
(1) When the inorganic antibacterial composition of the present invention is used together with a wound healing agent, it can be made into an antibacterial drug having high safety and shelf life. It can also be used as a useful medical product by mixing it in a wound dressing or applying it on the surface.
(2) By using the inorganic antibacterial composition of the present invention together with a carrier for cosmetics, it is possible to obtain a cosmetic product having antibacterial properties and high safety and storability.
Examples of carrier products for cosmetics include cleaning cosmetics, hair cosmetics, basic cosmetics, makeup cosmetics, fragrance cosmetics, tanning cosmetics, sunscreen cosmetics, nail cosmetics, eyeliner cosmetics, lip cosmetics, oral cosmetics, bath cosmetics. Can be illustrated. In particular, for UVA-cut cosmetics, it is a more preferable use method because it is expected that zinc oxide absorbs ultraviolet rays.

具体的には、クレンジング、石鹸、液体ボディー洗浄、洗髪用化粧品類、シャンプー、リンス、ヘアーローション、ヘアーエッセンス、ヘアークリーム、ヘアートリートメント、ヘアーカラーリング剤、毛髪仕上げ用化粧品、育毛剤、化粧水、美容液類、化粧クリーム、乳液、パック、ジェル、マスク、エッセンス、ボディーローション、ボディークリーム、ひげ剃り用化粧料、ハンドケア剤、ファンデーション、チークメイクアップ、香水、コロン、日焼け止めクリーム、サンケア製品、マニキュア、美爪剤、アイメイクアップベース、アイメイクアップ、リップメイクアップ、口紅、歯磨き剤、洗口剤、浴用剤、さらに点眼液、座薬等に本発明の無機抗菌性組成物を含有させることができる。 Specifically, cleansing, soap, liquid body wash, hair wash cosmetics, shampoo, conditioner, hair lotion, hair essence, hair cream, hair treatment, hair coloring agent, hair finishing cosmetic, hair restorer, lotion, Serums, makeup creams, emulsions, packs, gels, masks, essences, body lotions, body creams, shaving cosmetics, hand care agents, foundations, cheek makeup, perfumes, colognes, sunscreens, sun care products, manicures. It is possible to add the inorganic antibacterial composition of the present invention to a nail enamel, eye make-up base, eye make-up, lip make-up, lipstick, toothpaste, mouthwash, bath agent, eye drops, suppositories, etc. it can.

(3)本発明の無機抗菌性組成物は、繊維に固定して抗菌性繊維、または前記抗菌性繊維を用いた抗菌性衣料品に用いれば有用性が高い。
繊維としては、天然繊維、合成繊維、ガラス繊維や金属繊維等の無機繊維を使用することができ、中でも溶融紡糸が可能な熱可塑性樹脂の合成繊維が好ましく使用される。合成繊維を形成する熱可塑性樹脂の例としては、ポリエステル、ポリアミド、ポリオレフィン、アクリル、ビニロン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ乳酸、シルク、セルロース等を挙げることができ、用途等に応じて選択して使用することができる。また、複数種を組み合わせて使用してもよい。具体的には、たとえば、無機抗菌性組成物とバインダー樹脂との分散液を、繊維に含浸して乾燥させる方法が例示できる。
(3) The inorganic antibacterial composition of the present invention is highly useful when fixed to a fiber and used for an antibacterial fiber or an antibacterial clothing article using the antibacterial fiber.
As the fibers, inorganic fibers such as natural fibers, synthetic fibers, glass fibers and metal fibers can be used, and among them, synthetic fibers of thermoplastic resin capable of melt spinning are preferably used. Examples of the thermoplastic resin forming the synthetic fiber include polyester, polyamide, polyolefin, acrylic, vinylon, polystyrene, polyvinyl chloride, polyvinylidene chloride, polylactic acid, silk, cellulose, etc. Can be selected and used. Also, a plurality of types may be used in combination. Specifically, for example, a method of impregnating fibers with a dispersion liquid of an inorganic antibacterial composition and a binder resin and drying it can be exemplified.

バインダー樹脂としては、ホットメルトパウダー、ラテックス、および水分散型エマルジョンよりなる群から選ばれる1種または2種以上の成分を含んでいても良く、市販の材料の中から適当なものを使用する事ができる。その具体例として、ホットメルトパウダーとしては、ポリエチレン、エチレン酢酸ビニル共重合樹脂(EVA)、ポリエステル、ポリアミド等が挙げられる。ラテックスとしては、SBR,NBR,ポリウレタン等のゴム系ラテックス、ポリアクリレート、ポリ酢酸ビニル、エチレン酢酸ビニル共重合樹脂(EVA)等の樹脂系ラテックス等が挙げられる。また水分散型エマルジョンとしては、アクリル系、アクリルスチレン系、アクリルシリコン系、ポリウレタン系、ポリエステル系、ポリアミド系等を挙げることができる。これらのバインダー樹脂の中で無機抗菌性組成物を水分散体として繊維基材に含浸塗布させるためには、水分散型エマルジョンが特に好ましく使用できる。 The binder resin may contain one or more components selected from the group consisting of hot-melt powder, latex, and water-dispersion type emulsion, and an appropriate one of commercially available materials should be used. You can Specific examples of the hot melt powder include polyethylene, ethylene vinyl acetate copolymer resin (EVA), polyester and polyamide. Examples of the latex include rubber-based latex such as SBR, NBR and polyurethane, resin-based latex such as polyacrylate, polyvinyl acetate and ethylene vinyl acetate copolymer resin (EVA). Examples of the water-dispersed emulsion include acrylic type, acrylic styrene type, acrylic silicone type, polyurethane type, polyester type, polyamide type and the like. In order to impregnate and apply the inorganic antibacterial composition as an aqueous dispersion to the fiber substrate among these binder resins, an aqueous dispersion type emulsion can be particularly preferably used.

本発明の無機抗菌性組成物を繊維に固定する抗菌性繊維または抗菌性繊維を用いた抗菌性衣料品としては、一般の衣料品の他に、建築用繊維製品、不織布製品が挙げられ、床材、壁材として無機抗菌性組成物を有する材料が有用である。また、建築や自動車部品としてのエアフィルター用途等に好適に用いることができる。特に、建築材料、自動車キャビン内では、本発明の無機抗菌性組成物を含む抗菌性繊維を好適に用いることができる。 The antibacterial fiber for fixing the inorganic antibacterial composition of the present invention to the fiber or the antibacterial clothing using the antibacterial fiber, in addition to general clothing, building fiber products, non-woven fabric products, floor Materials having an inorganic antibacterial composition are useful as materials and wall materials. Further, it can be suitably used for construction and air filter applications as automobile parts. In particular, in building materials and automobile cabins, the antibacterial fiber containing the inorganic antibacterial composition of the present invention can be preferably used.

(4)さらに、本発明の無機抗菌性組成物は、無機抗菌性組成物を含む、または前記無
機抗菌性組成物を含むコーティングを有する、樹脂材、セラミック材、または金属材の用途に有用である。具体的には、本発明の無機抗菌性組成物は、樹脂材、セラミック材、または金属材中に含有されて、抗菌性材料として用いることができる。また、樹脂バインダーに混合されて、樹脂パネル、セラミックパネル、金属パネルなどにコーティングされて用いられれば、構造部材を抗菌性にすることができるので有用である。
(4) Furthermore, the inorganic antibacterial composition of the present invention is useful for applications of resin materials, ceramic materials, or metal materials containing an inorganic antibacterial composition or having a coating containing the inorganic antibacterial composition. is there. Specifically, the inorganic antibacterial composition of the present invention can be used as an antibacterial material by being contained in a resin material, a ceramic material, or a metal material. Further, it is useful if it is mixed with a resin binder and used by being coated on a resin panel, a ceramic panel, a metal panel or the like, since the structural member can be made antibacterial.

(5)また、本発明の無機抗菌性組成物を含む医薬品としては、創傷治癒剤等の外用薬
に、用いることができ、または本発明の無機抗菌性組成物を含む、または前記無機抗菌性組成物を含むコーティングを有する医療用物品としては、創傷治癒剤に用いられる創傷被覆材が例示できる。
(5) Further, the pharmaceutical composition containing the inorganic antibacterial composition of the present invention can be used as an external medicine such as a wound healing agent, or contains the inorganic antibacterial composition of the present invention, or the inorganic antibacterial composition Examples of medical articles having a coating containing the composition include wound dressings used for wound healing agents.

以下に実施例を用いて本発明を具体的に説明するが、本発明は実施例に限定されない。 The present invention will be specifically described below with reference to examples, but the present invention is not limited to the examples.

<本発明の無機抗菌性組成物の製造>
反応容器に0.04M炭酸水素ナトリウム水溶液を500mL調整し、これとは別に滴下反応溶液として硝酸亜鉛と硝酸アルミニウムを混合して全モル濃度を0.1Mとした金属塩水溶液を1000mL用意した。pH調製液として30質量%水酸化ナトリウム水溶液を準備した。
ポンプを接続したpHコントローラを用いて、上記の炭酸水素ナトリウム溶液のpHを9.0に保ち攪拌を行った状態で、金属塩水溶液および水酸化ナトリウム水溶液を滴下した。金属塩水溶液を全て滴下した後、反応液は20時間攪拌させた。
20時間攪拌後、反応液を遠心分離によって固液分離し、得られた固体は水洗、遠心分離を3回繰り返した。このように洗浄した沈殿物を真空乾燥して塩基性炭酸亜鉛を得た。
この塩基性炭酸亜鉛をプレス機にてφ20mm、重さ2gのペレットに成型した後、このペレットを1200℃、4時間の条件で焼成を行った。
<Production of the inorganic antibacterial composition of the present invention>
In a reaction vessel, 500 mL of 0.04 M sodium hydrogen carbonate aqueous solution was prepared, and separately, 1000 mL of a metal salt aqueous solution having a total molar concentration of 0.1 M was prepared by mixing zinc nitrate and aluminum nitrate as a dropping reaction solution. A 30 mass% sodium hydroxide aqueous solution was prepared as a pH adjusting solution.
Using a pH controller connected to a pump, while maintaining the pH of the above sodium hydrogen carbonate solution at 9.0 and stirring the mixture, an aqueous solution of metal salt and an aqueous solution of sodium hydroxide were added dropwise. After all the metal salt aqueous solution was dropped, the reaction solution was stirred for 20 hours.
After stirring for 20 hours, the reaction solution was subjected to solid-liquid separation by centrifugation, and the obtained solid was washed with water and centrifuged three times. The precipitate washed in this way was vacuum dried to obtain basic zinc carbonate.
The basic zinc carbonate was molded into a pellet having a diameter of 20 mm and a weight of 2 g by a press machine, and the pellet was fired at 1200° C. for 4 hours.

<抗菌性評価サンプルの製造>
(実施例1)
前記製造条件にて、pHを9.0に保持、0.1M金属塩水溶液が、亜鉛とアルミニウムのモル比は199/1(99.5:0.5)であり、焼成温度を1200℃として製造した。
(実施例2)
前記製造条件にて、pHを9.0に保持、0.1M金属塩水溶液が、亜鉛とガリウムのモル比が99/1(99:1.0)であり、焼成温度を1200℃として製造した。
(実施例3)
前記製造条件にて、pHを9.0に保持、0.1M金属塩水溶液が、亜鉛とアルミニウムのモル比は199/1(99.5:0.5)であり、焼成温度を1000℃として製造した。
<Production of antibacterial evaluation sample>
(Example 1)
Under the above-mentioned production conditions, the pH was maintained at 9.0, the 0.1 M metal salt aqueous solution had a molar ratio of zinc and aluminum of 199/1 (99.5:0.5), and the firing temperature was 1200°C. Manufactured.
(Example 2)
Under the above manufacturing conditions, the pH was maintained at 9.0, the 0.1 M metal salt aqueous solution was manufactured with the molar ratio of zinc and gallium being 99/1 (99:1.0) and the firing temperature being 1200°C. ..
(Example 3)
Under the above production conditions, the pH was maintained at 9.0, the 0.1 M metal salt aqueous solution had a molar ratio of zinc and aluminum of 199/1 (99.5:0.5), and the firing temperature was 1000°C. Manufactured.

(実施例4)
前記製造条件にて、pHを9.0に保持、0.1M金属塩水溶液が、亜鉛とアルミニウムのモル比は199/1(99.5:0.5)であり、焼成温度を1300℃として製造した。
(実施例5)
前記製造条件にて、pHを9.0に保持、0.1M金属塩水溶液が、亜鉛とアルミニウムのモル比は9/1(90:10)であり、焼成前の前駆体の組成がハイドロジンカイト単相でない、亜鉛アルミニウム炭酸水酸化物を含む前駆体を焼成温度を1200℃として製造した。
(実施例6)
前記製造条件にて、pHを9.0に保持、0.1M金属塩水溶液が、亜鉛とガリウムのモル比は4/1(80:20)であり、焼成前の前駆体の組成がハイドロジンカイト単相でない、亜鉛ガリウム炭酸水酸化物を含む前駆体を焼成温度を1200℃として製造した。
(Example 4)
Under the above-mentioned production conditions, the pH was maintained at 9.0, the 0.1 M metal salt aqueous solution had a molar ratio of zinc and aluminum of 199/1 (99.5:0.5), and the firing temperature was 1300°C. Manufactured.
(Example 5)
Under the above-mentioned production conditions, the pH was maintained at 9.0, the 0.1M metal salt aqueous solution had a zinc/aluminum molar ratio of 9/1 (90:10), and the composition of the precursor before firing was hydrozincite. A precursor containing zinc aluminum carbonate hydroxide, which is not a single phase, was produced at a firing temperature of 1200°C.
(Example 6)
Under the above-mentioned production conditions, the pH was maintained at 9.0, the 0.1 M metal salt aqueous solution had a molar ratio of zinc and gallium of 4/1 (80:20), and the composition of the precursor before firing was hydrozincite. A precursor containing zinc gallium carbonate hydroxide, which is not a single phase, was manufactured at a firing temperature of 1200°C.

(比較例1)
実施例3と同様の条件で、ただし焼成温度を400℃として製造した。
(比較例2)
実施例3と同様の条件で、ただし焼成温度を600℃として製造した。
(比較例3)
前記製造条件にて、pHを9.0に保持、0.1M金属塩水溶液が、亜鉛とアルミニウムのモル比が1/1(50:50)であり、焼成前の前駆体の組成がハイドロジンカイト単相でない、亜鉛アルミニウム炭酸水酸化物である異相が支配的な前駆体に対して焼成温度を1200℃として製造した。
(比較例4)
前記製造条件にて、pHを9.0に保持、0.1M金属塩水溶液が、亜鉛とガリウムのモル比が1/1(50:50)であり、焼成前の前駆体の組成がハイドロジンカイト単相でない、亜鉛ガリウム炭酸水酸化物である異相が支配的な前駆体に対して焼成温度を1200℃として製造した。
(Comparative example 1)
It was manufactured under the same conditions as in Example 3, except that the firing temperature was 400°C.
(Comparative example 2)
It was manufactured under the same conditions as in Example 3, except that the firing temperature was 600°C.
(Comparative example 3)
Under the above-mentioned production conditions, the pH was maintained at 9.0, the 0.1 M metal salt aqueous solution had a molar ratio of zinc and aluminum of 1/1 (50:50), and the composition of the precursor before firing was hydrozincite. It was prepared at a firing temperature of 1200° C. for a precursor in which a heterogeneous phase of zinc aluminum carbonate hydroxide, which is not a single phase, is dominant.
(Comparative example 4)
Under the above-mentioned production conditions, the pH was maintained at 9.0, the 0.1 M metal salt aqueous solution had a molar ratio of zinc and gallium of 1/1 (50:50), and the composition of the precursor before firing was hydrozincite. The precursor was predominantly a heterogeneous phase of zinc gallium carbonate, which was not a single phase, and was prepared at a firing temperature of 1200°C.

<比表面積>
上記のサンプルは全て熱処理後、メノウ乳鉢にて粉砕を行った。それぞれのサンプルのBET比表面積を表1に表す。
<Specific surface area>
All the above samples were heat-treated and then crushed in an agate mortar. The BET specific surface area of each sample is shown in Table 1.

<抗菌性評価試験法>
上記のサンプルに対して乾熱滅菌を180℃で2時間行い、10g/Lに調製して試験液とした。図1に示すように大腸菌(E.coli NBRC 3972)に対する上記サンプルの抗菌性効果を評価した。この試験液中に細菌懸濁液(10CFUml−1)を加え、暗所において37℃で20分間振とうした。対照として、サンプルを用いない細菌懸濁液をコントロールとした。振とう後の混合液は、普通寒天培地に50μLずつ播種し、37℃で24時間培養した。培養後、寒天培地に形成されたコロニー数をN’CFU/mLとし計測した。同様に、コントロールの寒天培地からコロニー数NCFU/mLとし計測した。
<結果>
測定された菌数から、抗菌剤の効力として使用される死滅速度定数kを以下の式を用いて計算した。死滅速度定数とは、酸化亜鉛粉末の濃度を一定としたとき、酸化亜鉛と細菌懸濁液の処理時間と細菌の生存率から求められる以下の値である。
<Antibacterial evaluation test method>
The above sample was subjected to dry heat sterilization at 180° C. for 2 hours to prepare 10 g/L to prepare a test solution. As shown in FIG. 1, the antibacterial effect of the above sample against E. coli (E. coli NBRC 3972) was evaluated. A bacterial suspension (10 7 CFUml −1 ) was added to this test solution and shaken at 37° C. for 20 minutes in the dark. As a control, a bacterial suspension without a sample was used as a control. After shaking, 50 μL of the mixed solution was seeded on a regular agar medium and cultured at 37° C. for 24 hours. After culturing, the number of colonies formed on the agar medium was measured as N'CFU/mL. Similarly, the number of colonies was measured as N 0 CFU/mL from the control agar medium and counted.
<Results>
From the measured number of bacteria, the killing rate constant k used as the efficacy of the antibacterial agent was calculated using the following formula. The death rate constant is the following value obtained from the treatment time of zinc oxide and bacterial suspension and the survival rate of bacteria, when the concentration of zinc oxide powder is constant.

t:処理時間(秒)、 N:t秒振とう後の菌数、 N:0秒における菌数。 t: treatment time (seconds), N: number of bacteria after shaking for t seconds, N 0 : number of bacteria at 0 seconds.

なお抗菌活性の指標を表すに際して、N/N=NCFU/mL/N’CFU/mLとして測定し、kをそれぞれのサンプルのBET比表面積で割った表面積あたりの死滅速度定数としてk’で表し、表2に示す。 When expressing the index of antibacterial activity, it was measured as N 0 /N=N 0 CFU/mL/N′CFU/mL, and k′ was determined as a kill rate constant per surface area obtained by dividing k by the BET specific surface area of each sample. And is shown in Table 2.

実施例、比較例の評価
実施例の抗菌性組成物は、大腸菌に対しての抗菌活性が著しく向上した。抗菌活性の性能指標である、表面積あたりの死滅速度定数k’が比較例の組成物と比べて2.7倍〜163倍と格段に向上した。したがって本発明の酸化亜鉛粉末である無機抗菌性組成物は、抗菌剤として有用である。
Evaluation of Examples and Comparative Examples The antibacterial compositions of Examples markedly improved antibacterial activity against E. coli. The killing rate constant k'per surface area, which is a performance index of antibacterial activity, was significantly improved to 2.7 to 163 times that of the composition of Comparative Example. Therefore, the inorganic antibacterial composition which is the zinc oxide powder of the present invention is useful as an antibacterial agent.

本発明の無機抗菌剤組成物は、大腸菌などの菌類の増殖を防止し、かつ死滅能力に優れた抗菌剤である。本発明の無機抗菌剤組成物を化粧品、衣料品、および家具類、建材などに、粉体として材料中に添加、またはコーティング材中に添加して用いることで、耐熱性・耐久性・安全性に優れるという特徴を有し、暗所でも効果を発現する安価な無機系抗菌剤として利用される。また、食料品中に添加、または食料品の包装材中に添加して用いることで暗所でも効果を発現する安価な無機系抗菌剤として工業的有用性が高い。 The inorganic antibacterial agent composition of the present invention is an antibacterial agent which prevents the growth of fungi such as Escherichia coli and has an excellent killing ability. By using the inorganic antibacterial composition of the present invention in cosmetics, clothing, furniture, building materials, etc., added as a powder into a material or a coating material, heat resistance, durability, and safety can be obtained. It is used as an inexpensive inorganic antibacterial agent that has excellent characteristics and exhibits effects even in the dark. Further, it is highly industrially useful as an inexpensive inorganic antibacterial agent exhibiting an effect even in the dark by using it in a food product or in a packaging material for a food product.

Claims (2)

モル比でZn/Al=1超〜10000、またはモル比でZn/Ga=1超〜10000である、アルミニウム塩水溶液またはガリウム塩水溶液と、亜鉛塩水溶液、炭酸塩水溶液、およびアルカリ水溶液の沈殿物生成反応で生成される炭酸水和物を700℃以上の温度で熱処理して無機抗菌性組成物を得る方法であって、
前記炭酸水和物が下式(1)で表されるハイドロジンカイトまたはその水和物を含有する、方法。
4〜6(CO1〜3(OH)6〜7 (1)
M:亜鉛元素、アルミニウム、およびガリウムからなる群から選択される少なくとも一つの金属を示す。
Precipitation of aluminum salt aqueous solution or gallium salt aqueous solution, zinc salt aqueous solution, carbonate aqueous solution, and alkaline aqueous solution having a molar ratio of Zn/Al = more than 1 to 10,000 or a molar ratio of Zn/Ga = more than 1 to 10000 A method for obtaining an inorganic antibacterial composition by heat-treating a carbonate hydrate produced in a production reaction at a temperature of 700° C. or higher,
The method wherein the carbonate hydrate contains a hydrozincite represented by the following formula (1) or a hydrate thereof.
M 4-6 (CO 3 ) 1-3 (OH) 6-7 (1)
M: At least one metal selected from the group consisting of zinc element, aluminum, and gallium.
前記沈殿物生成反応で得られる沈殿物が、塩基性炭酸亜鉛並びに、亜鉛、アルミニウムおよび・またはガリウムの沈殿物を含む請求項1に記載の方法。 The method according to claim 1, wherein the precipitate obtained by the precipitation-forming reaction contains basic zinc carbonate and a precipitate of zinc, aluminum and/or gallium.
JP2015158935A 2015-08-11 2015-08-11 Inorganic antibacterial composition and use thereof Active JP6749747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015158935A JP6749747B2 (en) 2015-08-11 2015-08-11 Inorganic antibacterial composition and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015158935A JP6749747B2 (en) 2015-08-11 2015-08-11 Inorganic antibacterial composition and use thereof

Publications (2)

Publication Number Publication Date
JP2017036244A JP2017036244A (en) 2017-02-16
JP6749747B2 true JP6749747B2 (en) 2020-09-02

Family

ID=58048181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015158935A Active JP6749747B2 (en) 2015-08-11 2015-08-11 Inorganic antibacterial composition and use thereof

Country Status (1)

Country Link
JP (1) JP6749747B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6697412B2 (en) * 2017-04-04 2020-05-20 Jfeミネラル株式会社 Oxide film forming material and method for producing the same
CN112218841A (en) * 2018-06-06 2021-01-12 杰富意矿物股份有限公司 Zinc oxide powder for use in zinc oxide sintered body, and processes for producing these
US20210238053A1 (en) * 2018-06-06 2021-08-05 Jfe Mineral Company, Ltd. Zinc oxide powder for producing zinc oxide sintered body, zinc oxide sintered body, and method of producing these
JP7190132B2 (en) * 2018-11-02 2022-12-15 国立大学法人北海道大学 Zinc-containing antibacterial agent
WO2021029421A1 (en) * 2019-08-15 2021-02-18 Jfeミネラル株式会社 Zinc oxide powder for producing zinc oxide sintered body, zinc oxide sintered body, and methods for production thereof
CN114635280B (en) * 2020-12-01 2024-01-26 苏州汇涵医用科技发展有限公司 Medical antiviral non-woven fabric and preparation method and application thereof

Also Published As

Publication number Publication date
JP2017036244A (en) 2017-02-16

Similar Documents

Publication Publication Date Title
JP6749747B2 (en) Inorganic antibacterial composition and use thereof
Parham et al. Antimicrobial treatment of different metal oxide nanoparticles: a critical review
US5411750A (en) Ultrafine sodium bicarbonate powder
JP6879948B2 (en) Inorganic particles containing antibacterial metal
EP0695501B1 (en) Metallic bactericidal agent
US10682298B2 (en) Process for preparing an antimicrobial particulate composition
JP2020169341A (en) Carbon black in effect pigments
JP4558122B2 (en) Antibacterial and antifungal agent and antibacterial and antifungal composition
JP4602320B2 (en) Antimicrobial action phosphate glass
Mayekar et al. Role of salt precursor in the synthesis of zinc oxide nanoparticles
CN101952525A (en) Modified mineral-based fillers
US5976511A (en) Ultraviolet rays-absorbing composition and process for producing the same
WO2007117625A2 (en) Production of silver sulfate grains
JPH08337768A (en) Ultraviolet light shielding agent and its utilization
KR20190089665A (en) Method For preparing Inorganic Antimicrobial And Inorganic Antimicrobial Prepared By The Same Method
WO2017092233A1 (en) Antibacterial polyester fiber based on silver-containing zirconium phosphate, and method for preparation thereof
US5645840A (en) Ultrafine sodium bicarbonate powder
ES2822310T3 (en) Biocidal active powder composition comprising at least one copper salt and at least one zinc salt and the method for their production
TW200814930A (en) Silver-containing inorganic disinfectant
JP2002080823A (en) Ultraviolet ray insulating agent
JP2006241636A (en) Product having preservability improved by adding functional material by specific method
JPH07116008B2 (en) Antibacterial agent
KR20220105686A (en) Manufacturing method of antimicrobial agent containing Zinc oxide and TiO2 composites
CN115636666B (en) Temperature change antibacterial composition, preparation method and application
KR102415253B1 (en) Antimicrobial composite material with immediate sterilization characteristics and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191029

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200812

R150 Certificate of patent or registration of utility model

Ref document number: 6749747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250