JP6748469B2 - Improvement of salt tolerance and/or osmotic tolerance of plants using bacteria of the genus Commonas - Google Patents

Improvement of salt tolerance and/or osmotic tolerance of plants using bacteria of the genus Commonas Download PDF

Info

Publication number
JP6748469B2
JP6748469B2 JP2016072241A JP2016072241A JP6748469B2 JP 6748469 B2 JP6748469 B2 JP 6748469B2 JP 2016072241 A JP2016072241 A JP 2016072241A JP 2016072241 A JP2016072241 A JP 2016072241A JP 6748469 B2 JP6748469 B2 JP 6748469B2
Authority
JP
Japan
Prior art keywords
plants
plant
tolerance
osmotic
myk102
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016072241A
Other languages
Japanese (ja)
Other versions
JP2017176128A (en
Inventor
潤太 平山
潤太 平山
剛 伊沢
剛 伊沢
玲 池内
玲 池内
金井 理
理 金井
宗弘 野田
宗弘 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2016072241A priority Critical patent/JP6748469B2/en
Publication of JP2017176128A publication Critical patent/JP2017176128A/en
Application granted granted Critical
Publication of JP6748469B2 publication Critical patent/JP6748469B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/13Abiotic stress
    • Y02A40/135Plants tolerant to salinity

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Description

本発明はエンドファイトであるコマモナス(Comamonas)属細菌を農業上有用な植物に人為的に感染させることにより、これらの植物に塩耐性及び/又は浸透圧耐性を付与する方法、並びに、コマモナス(Comamonas)属細菌を含む塩耐性及び/又は浸透圧耐性を付与するための微生物製剤等に関する。 The present invention provides a method for imparting salt tolerance and/or osmolarity to these plants by artificially infecting an agriculturally useful plant with an endophyte Comamonas genus bacterium, and Comamonas (Comamonas). ) A microbial preparation for imparting salt resistance and/or osmotic pressure resistance containing a genus bacterium and the like.

作物は様々な環境ストレスにさらされており、環境ストレスによる負荷が大きいと、収量の減少等が生じる。環境ストレスの一例として、土壌中の塩濃度が高まることによりもたらされる塩害が挙げられる。塩害は主に灌漑農業地において排水不良により塩類が土壌中に蓄積することで発生するが、海岸地域における海水の流入や、ハウス栽培等において長期の施肥に起因する塩類の集積によって生じる場合もある。塩害は世界規模で大きな問題となっており、塩害による作物生産量の減少は世界の経済損失として年間273億ドルに達すると報告されている(非特許文献1)。 Crops are exposed to various environmental stresses, and if the environmental stresses exert a large load, yields will decrease. An example of environmental stress is salt damage caused by an increase in salt concentration in soil. Salt damage is mainly caused by the accumulation of salt in the soil due to poor drainage in irrigated agricultural land, but it may also be caused by the inflow of seawater in coastal areas and the accumulation of salt resulting from long-term fertilization during greenhouse cultivation. .. Salt damage has become a major problem on a global scale, and it has been reported that a decrease in crop production due to salt damage will reach $27.3 billion annually as an economic loss in the world (Non-Patent Document 1).

塩害への対策には、灌漑耕作地の排水管理の最適化が重要な技術の一つである。しかし、排水管理の最適化には大型の土木機械や大量の水資源を必要とする場合が多く、塩害を解消するまでに多大な経費と時間がかかる。また、作物自身の塩耐性を向上させるために、交配育種及び突然変異体の選抜による品種改良、並びに遺伝子導入及び遺伝子組み換えによる強化株の作出が試みられている。しかしながら、交配育種や選抜による品種改良は、望ましい形質を有する品種を得るまでに多大な時間と労力が必要であり、遺伝子操作により得られた食用作物の商業的栽培は、現在のところ日本では行われていない。
したがって、植物の作物の塩耐性を向上させる簡便な方法が求められている。
Optimization of drainage management of irrigated cultivated land is one of the important technologies for measures against salt damage. However, optimization of wastewater management often requires a large civil engineering machine and a large amount of water resources, and it takes a great deal of money and time to eliminate salt damage. Further, in order to improve the salt tolerance of the crop itself, attempts have been made to improve varieties by selecting breeding and mutants, and to produce enhanced strains by gene transfer and gene recombination. However, breeding by breeding or selection requires a great deal of time and labor to obtain varieties with desirable traits, and commercial cultivation of food crops obtained by genetic engineering is currently not performed in Japan. I have not been forgiven.
Therefore, there is a need for a simple method for improving the salt tolerance of plant crops.

M. Qadir et al., Natural Resource Forum, 2014, 38:282-295M. Qadir et al., Natural Resource Forum, 2014, 38:282-295

本発明は、微生物学的な手段によって、簡便に農業上有用な植物の塩耐性及び/又は浸透圧耐性を付与することを目的とする。 It is an object of the present invention to easily impart salt and/or osmotic pressure resistance to plants useful in agriculture by microbiological means.

本発明は、以下の態様を包含する。
(1)コマモナス(Comamonas)属に属し、農業上有用な植物体内に共生して該植物に塩耐性及び/又は浸透圧耐性を付与する能力を有する細菌を、該植物に人為的に感染させる工程を含む、農業上有用な植物に塩耐性及び/又は浸透圧耐性を付与する方法。
(2)農業上有用な植物が、アブラナ科植物、キク科植物、マメ科植物、イネ科植物、ナス科植物、ユリ科植物、セリ科植物、及びウリ科植物からなる群から選択される植物である、(1)に記載の方法。
(3)前記細菌が、配列番号1に示す塩基配列と97%以上の同一性を有する塩基配列を含む16S rDNAを有する、(1)又は(2)に記載の方法。
(4)前記細菌がComamonas sp. MYK102(受託番号NITE P-01769)、又は、農業上有用な植物体内に共生して該植物に塩耐性及び/又は浸透圧耐性を付与する能力を有する、その変異株である、(1)〜(3)のいずれかに記載の方法。
(5)前記細菌が、配列番号2に示す塩基配列と97%以上の同一性を有する塩基配列を含む16S rDNAを有する、(1)又は(2)に記載の方法。
(6)前記細菌がComamonas sp. MYK103(受託番号NITE P-01770)、又は、農業上有用な植物体内に共生して該植物に塩耐性及び/又は浸透圧耐性を付与する能力を有する、その変異株である、(1)、(2)、又は(5)に記載の方法。
(7)コマモナス(Comamonas)属に属し、農業上有用な植物体内に共生して該植物に塩耐性及び/又は浸透圧耐性を付与する能力を有する細菌を有効成分として含有する、農業上有用な植物の塩耐性及び/又は浸透圧耐性を増加させるための微生物製剤。
(8)農業上有用な植物が、アブラナ科植物、キク科植物、マメ科植物、イネ科植物、ナス科植物、ユリ科植物、セリ科植物、及びウリ科植物からなる群から選択される植物である、(7)に記載の微生物製剤。
(9)前記細菌がComamonas sp. MYK102(受託番号NITE P-01769)、又は、農業上有用な植物体内に共生して該植物に塩耐性及び/又は浸透圧耐性を付与する能力を有する、その変異株である、(7)又は(8)に記載の微生物製剤。
(10)前記細菌がComamonas sp. MYK103(受託番号NITE P-01770)、又は、農業上有用な植物体内に共生して該植物に塩耐性及び/又は浸透圧耐性を付与する能力を有する、その変異株である、(7)又は(8)に記載の微生物製剤。
The present invention includes the following aspects.
(1) A step of artificially infecting a plant with a bacterium belonging to the genus Comamonas and having the ability to coexist in an agriculturally useful plant body and impart salt resistance and/or osmotic resistance to the plant. A method for imparting salt tolerance and/or osmotic tolerance to an agriculturally useful plant, which comprises:
(2) The agriculturally useful plant is a plant selected from the group consisting of a cruciferous plant, an Asteraceae plant, a leguminous plant, a Gramineae plant, a Solanaceae plant, a Liliaceae plant, a Seriaceae plant, and a Cucurbitaceae plant. The method according to (1).
(3) The method according to (1) or (2), wherein the bacterium has 16S rDNA containing a nucleotide sequence having 97% or more identity with the nucleotide sequence shown in SEQ ID NO: 1.
(4) The bacterium has the ability to coexist in Comamonas sp. MYK102 (Accession No. NITE P-01769) or in an agriculturally useful plant body to impart salt tolerance and/or osmotic resistance to the plant, The method according to any one of (1) to (3), which is a mutant strain.
(5) The method according to (1) or (2), wherein the bacterium has 16S rDNA containing a base sequence having 97% or more identity with the base sequence shown in SEQ ID NO: 2.
(6) The bacterium has the ability to coexist in Comamonas sp. MYK103 (Accession No. NITE P-01770) or in an agriculturally useful plant to impart salt tolerance and/or osmotic tolerance to the plant, The method according to (1), (2), or (5), which is a mutant strain.
(7) Agriculturally useful, which contains, as an active ingredient, a bacterium belonging to the genus Comamonas and having the ability to coexist in an agriculturally useful plant body and impart salt tolerance and/or osmotic pressure resistance to the plant. Microbial formulations for increasing salt tolerance and/or osmotic tolerance of plants.
(8) The plant useful for agriculture is selected from the group consisting of cruciferous plants, asteraceae plants, legume plants, gramineous plants, solanaceous plants, lily plants, seriaceous plants, and cucurbitaceous plants. The microbial preparation according to (7).
(9) The bacterium has the ability to coexist in Comamonas sp. MYK102 (Accession No. NITE P-01769) or in an agriculturally useful plant body to impart salt tolerance and/or osmotic pressure resistance to the plant, The microbial preparation according to (7) or (8), which is a mutant strain.
(10) The bacterium has the ability to coexist in Comamonas sp. MYK103 (Accession No. NITE P-01770) or in an agriculturally useful plant to impart salt tolerance and/or osmotic tolerance to the plant, The microbial preparation according to (7) or (8), which is a mutant strain.

本明細書において「コマモナス(Comamonas)属細菌」は、農業上有用な植物体内に共生して該植物に塩耐性及び/又は浸透圧耐性を付与する能力を有する、エンドファイト細菌を指す。一般に、「エンドファイト」なる用語は、植物に共生する微生物をいう。 As used herein, the term "Comamonas bacterium" refers to an endophytic bacterium that has the ability to symbiosis in an agriculturally useful plant to impart salt tolerance and/or osmotic tolerance to the plant. Generally, the term "endophyte" refers to a microorganism that is symbiotic with a plant.

本発明により、微生物学的な手段、すなわちエンドファイトとして使用可能なComamonas属細菌(例えばMYK102株又はMYK103株)によって、農業上有用な植物に、簡便に塩耐性及び/又は浸透圧耐性を付与することが可能となる。 According to the present invention, a microbiological means, that is, a bacterium belonging to the genus Comamonas that can be used as an endophyte (for example, MYK102 strain or MYK103 strain) is easily imparted salt tolerance and/or osmotic tolerance to an agriculturally useful plant. It becomes possible.

1.細菌
本発明に用いることができる細菌は、コマモナス(Comamonas)属に属する細菌であって、農業上有用な植物、例えば、アブラナ科植物、キク科植物、マメ科植物、イネ科植物、ナス科植物、ユリ科植物、セリ科植物、及びウリ科植物からなる群から選択される植物の体内に共生して、該植物に塩耐性及び/又は浸透圧耐性を付与する能力を有する細菌であれば特に限定されない。
1. Bacteria Bacteria that can be used in the present invention are bacteria belonging to the genus Comamonas, and are useful for agricultural purposes, for example, cruciferous plants, asteraceae plants, legumes, grasses, and eggplants. A bacterium having the ability of symbiotic in the body of a plant selected from the group consisting of plants, lilies, plants of the Umbelliferae, and plants of the family Cucurbitaceae to impart salt tolerance and/or osmotic resistance to the plant. There is no particular limitation.

本明細書では、コマモナス(Comamonas)属細菌は、上記の一方又は両方の能力を植物体に付与することができるエンドファイト細菌であり、自然界から単離された細菌だけでなく、そのような細菌に突然変異処理を施して産生された変異体も包含する。 As used herein, a bacterium belonging to the genus Comamonas is an endophytic bacterium capable of imparting one or both of the above-mentioned abilities to a plant, and is not only a bacterium isolated from the natural world, but also such a bacterium. It also includes a mutant produced by subjecting the above to a mutation treatment.

上記細菌の具体例として、Comamonas属細菌である、Comamonas sp. MYK102(受託番号 NITE P-01769;以下では、単に「MYK102株」又は「NITE P-01769株」と称することもある)又はComamonas sp. MYK103(受託番号 NITE P-01770;以下では、単に「MYK103株」又は「NITE P-01770株」と称することもある)、或いは、上記の一方又は両方の能力を有する、その変異株が挙げられる。 As a specific example of the bacterium, a Comamonas genus bacterium, Comamonas sp. MYK102 (accession number NITE P-01769; hereinafter, may be simply referred to as "MYK102 strain" or "NITE P-01769 strain") or Comamonas sp .MYK103 (accession number NITE P-01770; hereinafter sometimes simply referred to as "MYK103 strain" or "NITE P-01770 strain"), or a mutant strain thereof having one or both of the above capabilities To be

上記のComamonas sp. MYK102及びComamonas sp. MYK103は、野生のキクから単離された株である。Comamonas sp. MYK102及びComamonas sp. MYK103は、2013年12月27日に、国内寄託機関である、独立行政法人製品評価技術基盤機構、特許微生物寄託センター(〒292-0818千葉県木更津市かずさ鎌足2-5-8)に本出願人により寄託され、それぞれ、受託番号 NITE P-01769及びNITE P-01770が付与されている。なお、「NITE P-01769」及び「NITE P-01770」の受託証中の微生物の識別の表示は、当初それぞれ「Delftia sp. MYK102」及び「Delftia sp. MYK103」となっていたが、2014年2月28日付で表示の変更が認められ、それぞれ「Comamonas sp. MYK102」及び「Comamonas sp. MYK103」に修正された。 The above-mentioned Comamonas sp. MYK102 and Comamonas sp. MYK103 are strains isolated from wild chrysanthemum. On December 27, 2013, Comamonas sp. MYK102 and Comamonas sp. MYK103 were registered as domestic depository institutions, the Japan Institute for Product Evaluation Technology, Patent Microorganism Depositary Center (Kazusa Kamaza, Kisarazu City, Chiba Prefecture 292-0818). 2-5-8) has been deposited by the applicant and has been given accession numbers NITE P-01769 and NITE P-01770, respectively. In addition, the indication of the identification of microorganisms in the trust certificate of "NITE P-01769" and "NITE P-01770" was originally "Delftia sp. MYK102" and "Delftia sp. MYK103", respectively. The display change was recognized on February 28, and was corrected to "Comamonas sp. MYK102" and "Comamonas sp. MYK103", respectively.

このMYK102株及びMYK103株は、種々の細菌の属及び種について、16SrDNA遺伝子の部分配列(本件の場合、Comamonas sp. MYK102(受託番号NITE P-01769)株については配列番号1、及びComamonas sp. MYK103(受託番号NITE P-01770)株については配列番号2)を用いて、相同性検索を行った。その結果、Comamonas sp. MYK102については、相同性の高い上位3種についてComamonas koreensis strain IHB B 1392と99%、Comamonas sp. D1と99%、Comamonas sp. TWNG17と99%の高い配列同一性が確認されたことから、Comamonas属に属する細菌であると同定された。また、Comamonas sp. MYK102は、Delftia sp. TS40とも97%の配列相同性を示した。 The MYK102 strain and the MYK103 strain are, for various bacterial genera and species, a partial sequence of the 16S rDNA gene (in this case, Comamonas sp.MYK102 (accession number NITE P-01769), SEQ ID NO: 1 and Comamonas sp. A homology search was performed using the MYK103 (accession number NITE P-01770) strain using SEQ ID NO:2). As a result, for Comamonas sp.MYK102, high sequence homology was confirmed for the top three highly homologous species: Comamonas koreensis strain IHB B 1392 and 99%, Comamonas sp.D1 and 99%, and Comamonas sp.TWNG17 and 99%. Therefore, it was identified as a bacterium belonging to the genus Comamonas. Further, Comamonas sp. MYK102 showed 97% sequence homology with Delftia sp. TS40.

同様に、Comamonas sp. MYK103については、相同性の高い上位3種についてComamonas koreensis strain IHB B 1392と99%、Comamonas sp. D1と99%、Comamonas sp. TWNG17と99%の高い配列同一性が確認されたことから、Comamonas属に属する細菌であると同定された。また、Comamonas sp. MYK103は、Delftia sp. TS40とも97%の配列相同性を示した。 Similarly, for Comamonas sp.MYK103, high sequence homology was confirmed for the top three highly homologous species: Comamonas koreensis strain IHB B 1392 and 99%, Comamonas sp. D1 and 99%, and Comamonas sp.TWNG17 and 99%. Therefore, it was identified as a bacterium belonging to the genus Comamonas. Further, Comamonas sp. MYK103 showed 97% sequence homology with Delftia sp. TS40.

また、MYK102株は、表1に示す基質資化性を、MYK103株は表2に示す基質資化性を、それぞれ有している。 The MYK102 strain has the substrate-utilizing ability shown in Table 1, and the MYK103 strain has the substrate-utilizing ability shown in Table 2.

Figure 0006748469
Figure 0006748469

Figure 0006748469
Figure 0006748469

本発明で使用できる細菌としては、新規Comamonas属細菌であるMYK102株又はMYK103株と同等の上記の植物に塩耐性及び/又は浸透圧耐性を付与する能力を有する細菌、例えば、Comamonas属に属し、上記のいずれか1つ又は複数の能力を有し、かつ、配列番号1又は配列番号2に示す塩基配列又は該塩基配列と等価な配列を少なくとも一部分に含む16SrDNAを有する細菌、並びにComamonas属に属し、上記の一方又は両方の能力を有し、かつ、MYK102株又はMYK103株と実質的に同等の上記の基質資化性を有する細菌が挙げられるがこれらには限定されない。ここで、配列番号1又は2に示す塩基配列と等価な配列とは、配列番号1又は2に示す塩基配列と好ましくは97%以上、98%以上、又は99%以上、さらに好ましくは99.5%以上、99.7%以上、99.8%以上、又は99.9%以上の同一性を有する塩基配列を意味する。同一性の値は、複数の塩基配列間の同一性を演算するソフトウェア(例えば、FASTA、DANASYS、及びBLAST)を用いてデフォルトの設定で算出した値を示す。また、実質的に同等の基質資化性を有するとは、MYK102株又はMYK103株の基質資化性と比べて、表1又は表2に記載の資化される基質のうち、資化されない基質が、数個以下、例えば3個以下、2個以下、又は1個であることを意味する。 As the bacterium that can be used in the present invention, a bacterium having the ability to impart salt tolerance and/or osmotic resistance to the above plants equivalent to the MYK102 strain or the MYK103 strain, which is a novel Comamonas genus bacterium, for example, belongs to the genus Comamonas, A bacterium having any one or more of the above capabilities and having 16S rDNA containing at least a part of the nucleotide sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2 or a sequence equivalent to the nucleotide sequence, and belonging to the genus Comamonas , A bacterium having one or both of the above-mentioned capabilities and having the above-mentioned substrate-utilizing ability substantially equivalent to the MYK102 strain or the MYK103 strain, but not limited thereto. Here, the sequence equivalent to the base sequence shown in SEQ ID NO: 1 or 2 is preferably 97% or more, 98% or more, or 99% or more, more preferably 99.5% or more with the base sequence shown in SEQ ID NO: 1 or 2. , 99.7% or higher, 99.8% or higher, or 99.9% or higher identity. The identity value indicates a value calculated by default setting using software (for example, FASTA, DANASYS, and BLAST) that calculates the identity between a plurality of nucleotide sequences. In addition, having substantially the same substrate assimilating ability means that among the assimilating substrates shown in Table 1 or Table 2 which are not assimilating, as compared with the substrate assimilating ability of the MYK102 strain or the MYK103 strain. Is several or less, for example, three or less, two or less, or one.

さらにまた、MYK102株又はMYK103株が人為的に突然変異誘発処理されて産生されたその変異株であって、農業上有用な植物、例えばアブラナ科植物、キク科植物、マメ科植物、イネ科植物、ナス科植物、ユリ科植物、セリ科植物、及びウリ科植物からなる群から選択される植物の体内に共生して、該植物に塩耐性及び/又は浸透圧耐性を付与する能力を有する変異株もまた、本発明で使用することができる。 Furthermore, the MYK102 strain or MYK103 strain is a mutant strain produced by artificially performing mutagenesis treatment, and is an agriculturally useful plant, for example, a cruciferous plant, an Asteraceae plant, a leguminous plant, a grass family plant. , A mutation having the ability to coexist in the body of a plant selected from the group consisting of solanaceous plants, lily plants, umbilical plants, and cucurbitaceae plants to impart salt resistance and/or osmotic resistance to the plants. Strains can also be used in the present invention.

本発明で使用できるComamonas属細菌を自然界から分離するときには、農業上有用な植物の根、茎、葉等の植物体構成部から、該植物に共生する細菌類を培養により分離し、上記の能力の一方又は両方について、上記の配列番号1又は配列番号2に示す塩基配列との配列同一性について、及び/又は、上記の基質資化性について、選抜試験を行い得る。 When the Comamonas bacterium that can be used in the present invention is isolated from the natural world, the roots, stems, leaves, and the like of agriculturally useful plants are isolated from the plant constituent parts by culturing, and the bacteria which are symbiotic to the plant are cultured, One or both of them may be subjected to a selection test for sequence identity with the nucleotide sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2 and/or for substrate assimilation.

また、突然変異誘発処理を行う場合には、MYK102株又はMYK103株に対し任意の適当な変異原を用いて突然変異が行われ得る。 In addition, when the mutagenesis treatment is performed, the MYK102 strain or the MYK103 strain can be mutated using any appropriate mutagen.

ここで、「変異原」なる用語は、広義の意味を有し、例えば変異原作用を有する薬剤のみならずUV照射等の高エネルギー線照射のような変異原作用を有する処理も含むものとする。適当な変異原の例として、エチルメタンスルホネート、UV照射、ガンマ線照射、X線照射、重イオンビーム照射、N−メチル−N'−ニトロ−N−ニトロソグアニジン、ブロモウラシルのようなヌクレオチド塩基類似体、及びアクリジン類が挙げられるが、他の任意の効果的な変異原もまた使用され得る。 Here, the term "mutagen" has a broad meaning, and includes not only a drug having a mutagenic action but also a treatment having a mutagenic action such as high energy ray irradiation such as UV irradiation. Examples of suitable mutagens include ethyl methanesulfonate, UV irradiation, gamma irradiation, X-ray irradiation, heavy ion beam irradiation, nucleotide base analogs such as N-methyl-N'-nitro-N-nitrosoguanidine, bromouracil. , And acridines, but any other effective mutagen can also be used.

或いは、細菌に変異を導入する他の手段には、遺伝子組換え法を利用する方法がある。 Alternatively, as another means for introducing a mutation into bacteria, there is a method using a gene recombination method.

本発明に用いられる細菌は、振とう培養等の通常の培養法により、Comamonas属細菌について通常使用されるような条件下で培養されうる。培養に用いる培地としては炭素源としてグルコース、シュークロース、デンプン、デキストリン等の糖類を、窒素源として硫酸アンモニウム、塩化アンモニウム、硝酸アンモニウム等のアンモニウム塩、硝酸塩等の無機窒素源、又は、酵母エキス、コーン・スティープ・リーカー、肉エキス、小麦胚芽、ポリペプトン、サトウキビ絞り粕(バカス)、ビールカス、大豆粉、米糠、魚粉等の有機窒素源を、無機塩としてリン酸一カリ、硫酸マグネシウム、硫酸マンガン、硫酸第一鉄等の、リン、カリウム、マンガン、マグネシウム、鉄等を含む塩類を、それぞれ含有する合成又は天然の培地が挙げられる。培養温度は、通常、20〜37℃、好ましくは27〜32℃で、12〜48時間、好気的条件下で行うことができる。 The bacterium used in the present invention can be cultivated by a usual culturing method such as shaking culturing under the conditions usually used for Comamonas genus bacteria. As the medium used for culture, glucose, sucrose, starch, sugars such as dextrin as a carbon source, ammonium sulfate as a nitrogen source, ammonium chloride, ammonium salts such as ammonium nitrate, inorganic nitrogen sources such as nitrate, or yeast extract, corn. Organic nitrogen sources such as steep liquor, meat extract, wheat germ, polypeptone, sugar cane shavings (baccas), beer dregs, soybean flour, rice bran, and fish meal are used as inorganic salts of potassium monophosphate, magnesium sulfate, manganese sulfate, and sulfate sulfate. Examples of the medium include synthetic or natural media containing salts such as iron, etc., each containing phosphorus, potassium, manganese, magnesium, iron and the like. The culture temperature is usually 20 to 37° C., preferably 27 to 32° C., and the culture can be performed for 12 to 48 hours under aerobic conditions.

本発明の方法には、細菌の培養液をそのまま使用することができるが、細菌の培養液を膜分離、遠心分離、濾過分離等の方法により分離した、細菌の高濃度物を用いることもできる。 In the method of the present invention, the culture solution of bacteria can be used as it is, but a high concentration product of bacteria obtained by separating the culture solution of bacteria by a method such as membrane separation, centrifugation or filtration separation can also be used. ..

本発明の方法ではまた、細菌の培養液を乾燥させたものを使用することができる。また、細菌の培養液を活性炭、珪藻土、タルク、ゼオライト、ピートモス、パーライト、ベントナイト、モンモリナイト、バーミュキュライト等の多孔吸着体に吸着させ乾燥させたものを使用することができる。多孔吸着体は、1種類でもよいし、複数の担体を組合せて用いてもよい。乾燥方法は通常の方法でよく、例えば凍結乾燥、減圧乾燥でよい。これらの乾燥物は乾燥後さらにボールミル等の粉砕手段で粉砕されてもよい。 In the method of the present invention, a dried bacterial culture can also be used. In addition, it is possible to use a product obtained by adsorbing a bacterial culture solution to a porous adsorbent such as activated carbon, diatomaceous earth, talc, zeolite, peat moss, perlite, bentonite, montmorillonite, vermiculite, etc., and drying. One kind of porous adsorbent may be used, or a plurality of carriers may be used in combination. The drying method may be an ordinary method, for example, freeze drying or vacuum drying. These dried materials may be further crushed by a crushing means such as a ball mill after drying.

細菌は、上記の培養液、高濃度物又は乾燥物としてそれ自体単独で本発明の用途に用いることができるが、更なる他の任意成分と組み合わせて通常の微生物製剤と同様の形態(例えば粉剤、水和剤、粒剤、乳剤、液剤、懸濁液、フロアブル剤、塗布剤等の形態)に製剤化して用いることもできる。組み合わせて使用することができる任意成分としては例えば固体担体、補助剤のような植物への適用が許容される材料が挙げられる。 The bacterium can be used alone in the application of the present invention as the above-mentioned culture solution, high-concentration product or dried product, but it can be used in combination with other optional components in the same form as a normal microbial preparation (for example, powder formulation). , Wettable powder, granules, emulsions, solutions, suspensions, flowable agents, coating agents, etc.). Examples of optional components that can be used in combination include solid carriers, auxiliary substances, and other materials that are acceptable for application to plants.

2.農業上有用な植物
本発明の方法で使用可能な対象植物は、以下のものに限定されないが、例えばアブラナ科植物、キク科植物、マメ科植物、イネ科植物、ナス科植物、ユリ科植物、セリ科植物及びウリ科植物からなる群から選択される、好ましくはキク科植物、マメ科植物、ナス科植物、ユリ科植物、セリ科植物及びウリ科植物からなる群から選択される、農業上有用な植物が挙げられる。
2. Agriculturally useful plants The target plants that can be used in the method of the present invention are not limited to the following, but include, for example, Brassicaceae plants, Asteraceae plants, Legume plants, Gramineae plants, Solanaceae plants, Liliaceae plants, Selected from the group consisting of plants belonging to Umbelliferae and plants belonging to the family Cucurbitaceae, preferably selected from the group consisting of plants belonging to the family Asteraceae, legumes, solanaceous plants, plants belonging to the family Liliaceae, plants belonging to the family Uliaceae, and plants belonging to the family Cucurbitaceae. Useful plants are mentioned.

本明細書で使用される「農業上有用な植物」は、例えば野菜類、穀類植物等の作物、果樹等の農業において生産対象となる植物を指す。 As used herein, “agriculturally useful plant” refers to a plant such as vegetables, cereal plants, and other crops, fruit trees, and other plants to be produced in agriculture.

アブラナ科植物としては、例えばアブラナ、カブ、チンゲンサイ、ノザワナ、カラシナ、タカナ、コブタカナ、水菜、コールラビー、ルッコラ、クレソン、タアサイ、カリフラワー、キャベツ、ケール、ハクサイ、コマツナ、ダイコン、ハツカダイコン、ブロッコリー、メキャベツ、ワサビ、セイヨウワサビ、シロイヌナズナが挙げられる。 Examples of cruciferous plants include canola, turnip, bok choy, nozawana, mustard, tacana, kobuta cana, mizuna, kohlraby, arugula, watercress, taasai, cauliflower, cabbage, kale, Chinese cabbage, komatsuna, radish, radish, broccoli, cabbages, wasabi. , Horseradish, and Arabidopsis.

キク科植物としては、例えばレタス、サニーレタス、シュンギク、キク等が挙げられる。 Examples of the Asteraceae plant include lettuce, sunny lettuce, chrysanthemum, chrysanthemum, and the like.

マメ科植物としては、例えばダイズ、アズキ、ラッカセイ、インゲンマメ、エンドウマメ、ハナマメ、ソラマメ、ササゲ、ヒヨコマメ、リョクトウ、レンズマメ、ライマメ、バンバラマメが挙げられる。 Examples of legumes include soybean, azuki bean, peanut, kidney bean, pea, lentil, broad bean, cowpea, chickpea, mung bean, lentil, lima bean, bambara groundnut.

イネ科植物としては、例えばイネ、コムギ、オオムギ、ライムギ、ライコムギ、ハトムギ、ソルガム、エンバク、トウモロコシ、サトウキビ、アワ、ヒエ等の穀類が挙げられる。イネ科植物としてはさらに、例えばシバ、バッファローグラス、バミューダグラス、ウィーピンググラス、センチピードグラス、カーペットグラス、ダリスグラス、キクユグラス、セントオーガスチングラス等の飼料又は牧草が挙げられる。 Examples of grasses include cereals such as rice, wheat, barley, rye, triticale, adlay, sorghum, oat, corn, sugar cane, millet and millet. Examples of grasses include feed or grass such as grass, buffalo grass, bermudagrass, weeping grass, centipede grass, carpet grass, dallis grass, kikuyu grass and St. Augustine grass.

ナス科植物としては、例えばナス、トマト、ピーマン、シシトウ、トウガラシ、ジャガイモ、クコ、パプリカ、ハラペーニョ、ハバネロ等が挙げられる。 Examples of the solanaceous plant include eggplant, tomato, bell pepper, citrus pepper, capsicum, potato, wolfberry, paprika, jalapeno, habanero and the like.

ユリ科植物としては、例えばタマネギ、ネギ、ラッキョウ、ニンニク、ニラ、アサツキ、ユリ、アスパラガス、エシャロット、ワケギ等が挙げられる。 Examples of Liliaceae plants include onions, leeks, lacquer, garlic, leeks, Asatsuki, lilies, asparagus, shallots and scallions.

セリ科植物としては、ニンジン、ミツバ、パセリ、セロリ、セリ、アシタバ、スープセロリ、チャーベル、フェンネル等が挙げられる。 Examples of plants of the Umbelliferae family include carrots, honeywort, parsley, celery, celery, ashitaba, soup celery, charvel, and fennel.

ウリ科植物としては、例えばキュウリ、カボチャ、ゴーヤ、スイカ、ズッキーニ、トウガン、ヘチマ、メロン、ユウガオ等が挙げられる。 Examples of the Cucurbitaceae plant include cucumber, pumpkin, bitter gourd, watermelon, zucchini, squirrel, loofah, melon, sardine and the like.

3.塩耐性及び/又は浸透圧耐性を付与するための方法
一態様において、本発明は、コマモナス(Comamonas)属に属し、該植物に塩耐性及び/又は浸透圧耐性を付与する能力を有する細菌を、該植物に人為的に感染させる工程を含む、農業上有用な植物に塩耐性及び/又は浸透圧耐性を付与する方法を提供する。
3. Method for Conferring Salt Tolerance and/or Osmotic Tolerance In one aspect, the present invention provides a bacterium belonging to the genus Comamonas, which has the ability to impart salt tolerance and/or osmotic tolerance to the plant, Provided is a method for imparting salt tolerance and/or osmotic tolerance to an agriculturally useful plant, which comprises a step of artificially infecting the plant.

本明細書において、「植物に塩耐性を付与する」とは、塩ストレスの存在下で、塩ストレスによる生育(生長)阻害又は収量低下を低減することを指す。同様に、本明細書において、「植物に浸透圧耐性を付与する」とは、浸透圧ストレスの存在下で、浸透圧ストレスによる生育(生長)阻害又は収量低下を低減することを指す。本発明の細菌の接種によって塩耐性及び/又は浸透圧耐性が付与されたか否かは、塩ストレス及び/又は浸透圧ストレスの存在下で、本発明の細菌を接種した植物と、本発明の細菌を接種していない対照の生育(生長)又は収量を比較することで調べることができる。 In the present specification, “to impart salt tolerance to a plant” means to reduce growth (growth) inhibition or yield reduction due to salt stress in the presence of salt stress. Similarly, in the present specification, "to impart osmotic resistance to a plant" refers to reducing growth (growth) inhibition or yield reduction due to osmotic stress in the presence of osmotic stress. Whether or not salt tolerance and/or osmotic pressure resistance was imparted by inoculation of the bacterium of the present invention depends on the plant inoculated with the bacterium of the present invention in the presence of salt stress and/or osmotic stress, and the bacterium of the present invention. It can be examined by comparing the growth (growth) or yield of a control not inoculated with.

本明細書において、「塩ストレス」とは、栽培媒体(例えば、土壌、及び固体又は液体培地等)中の高い塩類濃度により、植物の生育(生長)又は収量が阻害される環境ストレスを意味する。塩ストレスの原因となる塩の種類は特に限定されず、例えば、NaCl、KCl、MgCl2、及びCaCl2等の塩酸塩、Na2SO4、MgSO4、及びCaSO4等の硫酸塩が挙げられる。塩ストレスへの感受性は植物により異なり得るが、本発明の方法により耐性を付与することができる具体的な塩ストレスの程度は、当業者であれば植物の科や種を考慮して適宜決定することができる。例えば、塩ストレスは、50 mM〜600 mMの濃度のNaClに1時間〜数週間継続的に曝露されたときに生じるストレスであってよい。塩ストレスは主に、高塩濃度による細胞外液の浸透圧の上昇に起因する吸水の低下、及び塩による生体内の酵素反応等の阻害の二つの機構により植物の生育を阻害することが知られている。 In the present specification, the “salt stress” means an environmental stress in which the growth (growth) or the yield of a plant is inhibited by a high salt concentration in a cultivation medium (for example, soil and a solid or liquid medium). .. The type of salt that causes salt stress is not particularly limited, and examples thereof include hydrochlorides such as NaCl, KCl, MgCl 2 , and CaCl 2 , and sulfates such as Na 2 SO 4 , MgSO 4 , and CaSO 4. .. Although the sensitivity to salt stress may vary depending on the plant, the specific degree of salt stress that can impart resistance by the method of the present invention is appropriately determined by those skilled in the art in consideration of the family and species of plants. be able to. For example, salt stress may be the stress that occurs when continuously exposed to NaCl at a concentration of 50 mM to 600 mM for 1 hour to several weeks. It is known that salt stress inhibits the growth of plants mainly by two mechanisms, that is, a decrease in water absorption due to an increase in extracellular fluid osmotic pressure due to a high salt concentration, and an inhibition of an enzymatic reaction in a living body due to salt. Has been.

本明細書において、「浸透圧ストレス」は、細胞内外の溶液の浸透圧差により植物の生育(生長)又は収量が阻害される環境ストレスを意味する。浸透圧ストレスは、高浸透圧の外液により生じる高浸透圧ストレスであっても低浸透圧の外液により生じる低浸透圧ストレスであってもよいが、好ましくは高浸透圧ストレスである。浸透圧ストレスの原因となる溶質の種類は特に限定されず、例えば、上記の塩類及びグルコース等の糖等が挙げられる。浸透圧ストレスへの感受性は植物により異なり得るが、本発明の方法により耐性を付与することができる具体的な浸透圧ストレスの程度は、当業者であれば植物の科や種を考慮して適宜決定することができる。例えば、浸透圧ストレスは、50 mM〜600 mMの濃度のNaCl に1時間〜数週間継続的に曝露されたときに生じるストレスであってよい。 In the present specification, “osmotic stress” means environmental stress in which plant growth (growth) or yield is inhibited by the difference in osmotic pressure between the intracellular and extracellular solutions. The osmotic stress may be a high osmotic stress caused by a high osmotic external liquid or a low osmotic stress caused by a low osmotic external liquid, but is preferably a high osmotic stress. The type of solute that causes osmotic stress is not particularly limited, and examples thereof include the above salts and sugars such as glucose. Although susceptibility to osmotic stress may vary depending on the plant, the specific degree of osmotic stress that can impart resistance by the method of the present invention is appropriately determined by those skilled in the art in consideration of plants and species of plants. You can decide. For example, osmotic stress may be the stress that occurs when continuously exposed to NaCl at a concentration of 50 mM to 600 mM for 1 hour to several weeks.

本発明の方法は、例えば、乾燥地域又は海岸近くの地域で生育する植物、及び海水が流入した土壌又は長期栽培等に起因して塩類が集積した土壌等で生育する植物に対して実施することができる。 The method of the present invention may be carried out, for example, on a plant that grows in an arid region or a region near the coast, and a plant that grows in a soil in which seawater flows in or a soil in which salts are accumulated due to long-term cultivation or the like. You can

植物への施用方法としては、種子コート、幼植物への潅注、塗布、又は噴霧処理する方法等が挙げられる。特に、種子又は植物体に任意に人為的に傷を付け、菌液を噴霧処理、塗布する方法が好ましい。その他の施用条件としては播種時、育苗期等圃場定植前に施用することが望ましい。また、さらに圃場栽培中に植物、場合により植物根部周囲の土壌、に噴霧処理することで効果の高発現が期待できる。 Examples of the method of applying to plants include a method of seed coating, irrigation of young plants, application, or spray treatment. In particular, a method in which seeds or plants are arbitrarily artificially scratched and the bacterial solution is sprayed and applied is preferable. As other application conditions, it is desirable to apply the seedlings before planting in the field such as seedling raising period. Further, it is expected that high effects can be expected by spraying the plants, and in some cases the soil around the roots of the plants, during field cultivation.

1つの例として、本発明の細菌を、植物に人為的に感染させるには、圃場に植えつける前の幼苗(例えば1〜4枚の本葉が出た時期の苗)に菌液を散布することができる。この場合、散布後約1〜15日目に、苗を圃場に定植し得る。植物体内に侵入した菌がやがて、植物に共生するようになると考えられる。 As one example, in order to artificially infect a plant with the bacterium of the present invention, a bacterial solution is sprayed on a seedling before being planted in a field (for example, a seedling at the time when 1 to 4 true leaves appear). be able to. In this case, seedlings can be planted in the field about 1 to 15 days after spraying. It is considered that the fungus invading the plant eventually becomes symbiotic with the plant.

菌液の濃度は、1×105〜1×1012個/ml、例えば1×108〜1×1010個/ml又はそれ以上であるが、これらの濃度範囲に限定されない。菌を懸濁する媒体は、水、緩衝液又は培地であることが好ましい。通常、高濃度菌液を水又は培地で所定濃度に希釈して使用することができる。 The concentration of the bacterial solution is 1×10 5 to 1×10 12 cells/ml, for example, 1×10 8 to 1×10 10 cells/ml or more, but is not limited to these concentration ranges. The medium for suspending the bacteria is preferably water, a buffer solution or a medium. Usually, a highly concentrated bacterial solution can be diluted with water or a medium to a predetermined concentration before use.

4.微生物製剤
本発明はさらに、コマモナス(Comamonas)属に属し、農業上有用な植物体内に共生して該植物に塩耐性及び/又は浸透圧耐性を付与する能力を有する細菌を有効成分として含有する、農業上有用な植物に塩耐性及び/又は浸透圧耐性を付与するための微生物製剤を提供する。
4. Microbial Preparation The present invention further comprises, as an active ingredient, a bacterium belonging to the genus Comamonas, which has the ability to symbiotic in an agriculturally useful plant and impart salt tolerance and/or osmotic tolerance to the plant, Provided is a microbial preparation for imparting salt tolerance and/or osmotic tolerance to an agriculturally useful plant.

農業上有用な植物の例は、上で具体的に例示した、アブラナ科植物、キク科植物、マメ科植物、イネ科植物、ナス科植物、ユリ科植物、セリ科植物、及びウリ科植物からなる群から選択される植物である。 Examples of agriculturally useful plants include those specifically exemplified above from the cruciferous plant, the asteraceae plant, the legume plant, the gramineous plant, the solanaceous plant, the lily family plant, the celery family plant, and the cucurbitaceae plant. A plant selected from the group consisting of

好ましい細菌は、Comamonas sp. MYK102(受託番号NITE P-01769)若しくはComamonas sp. MYK103(受託番号NITE P-01770)、又は農業上有用な植物体内に共生して該植物に塩耐性及び/又は浸透圧耐性を付与する能力を有する、その変異株である。 A preferred bacterium is Comamonas sp. MYK102 (accession number NITE P-01769) or Comamonas sp. MYK103 (accession number NITE P-01770), or symbiotic in an agriculturally useful plant body, salt tolerance and/or penetration into the plant. It is a mutant strain thereof having the ability to impart pressure resistance.

微生物製剤は、細菌の高濃度物、細菌の培養液を乾燥させたもの等を使用することができる。また、細菌の培養液を活性炭、珪藻土、タルク、ゼオライト、ピートモス、パーライト、ベントナイト、モンモリナイト、バーミュキュライト等の多孔吸着体に吸着させ乾燥させたものを使用することができる。多孔吸着体は、1種類でもよいし、複数の担体を組合せて用いてもよい。乾燥方法は通常の方法でよく、例えば凍結乾燥、減圧乾燥でよい。これらの乾燥物は乾燥後さらにボールミル等の粉砕手段で粉砕されてもよい。 As the microbial preparation, a high-concentration product of bacteria, a product obtained by drying a culture solution of bacteria, or the like can be used. In addition, it is possible to use a product obtained by adsorbing a bacterial culture solution to a porous adsorbent such as activated carbon, diatomaceous earth, talc, zeolite, peat moss, perlite, bentonite, montmorillonite, vermiculite, etc., and drying. One kind of porous adsorbent may be used, or a plurality of carriers may be used in combination. The drying method may be an ordinary method, for example, freeze drying or vacuum drying. These dried materials may be further crushed by a crushing means such as a ball mill after drying.

細菌は、上記の培養液、高濃度物又は乾燥物としてそれ自体単独で本発明の用途に用いることができるが、更なる他の任意成分と組み合わせて通常の微生物製剤と同様の形態(例えば粉剤、水和剤、粒剤、乳剤、液剤、懸濁液、フロアブル剤、塗布剤等の形態)に製剤化して用いることもできる。組み合わせて使用することができる任意成分としては例えば固体担体、補助剤のような植物への適用が許容される材料が挙げられる。 The bacterium can be used alone in the application of the present invention as the above-mentioned culture solution, high-concentration product or dried product, but it can be used in combination with other optional components in the same form as a normal microbial preparation (for example, powder formulation). , Wettable powder, granules, emulsions, solutions, suspensions, flowable agents, coating agents, etc.). Examples of optional components that can be used in combination include solid carriers, auxiliary substances, and other materials that are acceptable for application to plants.

以下に、実施例を挙げて本発明をさらに具体的に説明するが、本発明の技術的範囲は、それらの実施例によって制限されないものとする。 Hereinafter, the present invention will be described in more detail with reference to examples, but the technical scope of the present invention is not limited to the examples.

[実施例1:MYK102株による、人工気象機栽培レタスの塩耐性、浸透圧耐性の向上]
1)方法
水耕液(OATハウス肥料A処方の1/2希釈液)に浸漬したウレタンマットにレタスのコート種子(品種:フリルアイス)を播種し、人工気象機内において22℃で、明期16時間、暗期8時間にて1週間栽培した。
Comamonas sp. MYK102株を液体培地にて24時間振とう培養した。培養液を集菌及び洗浄し、菌密度1.0×109cell / mlに調整した菌液を、本葉が1枚展開した後の植物に1植物体あたり100 μlずつ接種した。本葉が2枚展開した後に100mM NaCl又は20%(w/w)ポリエチレングリコール(PEG)を添加した水耕液に置換し、塩ストレス又は浸透圧ストレス処理した。
ストレス処理後1週間目の植物体の新鮮重量を計量した。1処理区あたり植物体12個体とし、同様の試験を3反復実施した。
[Example 1: Improvement of salt resistance and osmotic pressure resistance of lettuce cultivated in an artificial weather machine by MYK102 strain]
1) Method Lettuce coat seeds (variety: frilled ice) were sown on a urethane mat dipped in a hydroponic solution (1/2 dilution of OAT house fertilizer A formulation), and the seeds were cultivated in a climate machine at 22°C with a light period of 16 Cultivation was carried out for 1 week at a dark period of 8 hours.
The Comamonas sp. MYK102 strain was shake-cultured in a liquid medium for 24 hours. The culture solution was collected and washed, and the bacterial solution adjusted to a bacterial density of 1.0 × 10 9 cells / ml was inoculated to the plant after one true leaf was developed at 100 µl per plant. After developing two true leaves, the leaves were replaced with a hydroponic solution containing 100 mM NaCl or 20% (w/w) polyethylene glycol (PEG) and treated with salt stress or osmotic stress.
The fresh weight of the plant one week after the stress treatment was measured. The same test was repeated 3 times with 12 plants per treatment group.

2)結果
100mM NaCl処理区および20%(w/w)PEG処理区において、無処理区に比べて、それぞれ植物の新鮮重量が33%、及び13%増加していた(表3及び表4)。これは、塩ストレス及び浸透圧ストレスを与えずにMYK102株を接種した場合のレタスの7%の収量増加(データ示さず)と比較して、高い値であった。これらの結果は、MYK102株の接種が、レタスの塩耐性及び浸透圧耐性を向上させることを示唆している。
2) Results
In the 100 mM NaCl-treated group and the 20% (w/w) PEG-treated group, the fresh weight of the plants was increased by 33% and 13%, respectively, compared to the untreated group (Tables 3 and 4). This was a high value as compared to the 7% increase in lettuce yield when the MYK102 strain was inoculated without salt stress and osmotic stress (data not shown). These results suggest that inoculation of strain MYK102 improves salt and osmotic tolerance of lettuce.

Figure 0006748469
Figure 0006748469

Figure 0006748469
Figure 0006748469

[実施例2:MYK102株による、温室栽培レタスの塩耐性の向上]
1)方法
培養土をセルトレーに充填し、1セルあたり3粒ずつレタス種子(品種:グリーンウェーブ)を播種した。本葉が1枚展開した後に1セルあたり植物体1本に間引きした。MYK102株を液体培地にて24時間振とう培養し、菌密度1.0×109cell / mlに調整した培養液を間引き後の植物に1植物体あたり100 μlずつ接種して、ガラス温室内で栽培した。
本葉が2枚展開した後に0.5M NaClの水を植物体に加え、塩ストレス処理し、本葉が4枚以上展開するまで栽培した後、地際部から植物体を切除し収穫した。植物体から双葉を除去した後に新鮮重量を計量した。1処理区あたり植物体12個体とし、同様の試験を3反復実施した。
[Example 2: Improvement of salt tolerance of greenhouse-grown lettuce by MYK102 strain]
1) Method A cell tray was filled with the culture soil, and 3 lettuce seeds (variety: Green Wave) were sown in each cell, 3 grains per cell. After developing one true leaf, one plant was thinned out per cell. MYK102 strain was cultivated in a liquid medium for 24 hours with shaking, and a culture solution adjusted to a bacterial density of 1.0 × 10 9 cells / ml was inoculated to the plants after thinning at 100 μl per plant, and cultivated in a glass greenhouse. did.
After developing two true leaves, 0.5 M NaCl water was added to the plants, salt stress treatment was carried out, and the plants were cultivated until four or more true leaves were developed, and then the plants were excised from the edge part and harvested. Fresh weight was weighed after removing the leaves from the plants. The same test was repeated 3 times with 12 plants per treatment group.

2)結果
0.5M NaCl処理区において、無処理区に比べて、植物の新鮮重量が20%増加していた(表5)。これは、塩ストレスを与えずにMYK102株を接種した場合のレタスの7%の収量増加(データ示さず)と比較して、高い値であった。この結果は、MYK102株の接種が、レタスの塩耐性を向上させることを示唆している。
2) Results
The fresh weight of the plant was increased by 20% in the 0.5M NaCl-treated group as compared with the untreated group (Table 5). This was higher than the 7% increase in lettuce yield when the MYK102 strain was inoculated without salt stress (data not shown). This result suggests that inoculation of MYK102 strain improves salt tolerance of lettuce.

Figure 0006748469
Figure 0006748469

[実施例3:MYK102株による、温室栽培ネギの塩耐性の向上]
1)方法
植物として、ネギ種子(品種:おてがる小ねぎ)を播種した。本葉が1枚展開した後に1セルあたり植物体1本に間引きした。MYK102株を液体培地にて24時間振とう培養し、菌密度1.0×109cell / mlに調整した培養液を間引き後の植物に1植物体あたり100 μlずつ接種して、ガラス温室内で栽培した。
本葉が2枚展開した後に100mM NaClの水を植物体に加え、塩ストレス処理し、本葉が3枚以上展開するまで栽培した後、地際部から植物体を切除し収穫した。植物体から双葉を除去した後に新鮮重量を計量した。1処理区あたり植物体12個体とし、同様の試験を3反復実施した。
[Example 3: Improvement of salt tolerance of greenhouse-grown leeks by MYK102 strain]
1) Method As a plant, onion seeds (variety: Otaru Onion) were sown. After developing one true leaf, one plant was thinned out per cell. MYK102 strain was cultivated in a liquid medium for 24 hours with shaking, and a culture solution adjusted to a bacterial density of 1.0 × 10 9 cells / ml was inoculated to the plants after thinning at 100 μl per plant, and cultivated in a glass greenhouse. did.
After the development of two true leaves, 100 mM NaCl water was added to the plants, salt stress treatment was performed, and the plants were cultivated until three or more true leaves were developed, and then the plants were excised from the edge and harvested. Fresh weight was weighed after removing the leaves from the plants. The same test was repeated 3 times with 12 plants per treatment group.

2)結果
100 mM NaCl処理区において、無処理区に比べて、植物の新鮮重量が33%増加していた(表6)。これは、塩ストレスを与えずにMYK102株を接種した場合のネギの23%の収量増加(データ示さず)と比較して、高い値であった。この結果は、MYK102株の接種が、ネギの塩耐性を向上させることを示唆している。
2) Results
In the 100 mM NaCl-treated group, the fresh weight of the plant was increased by 33% as compared with the untreated group (Table 6). This was a high value compared to the 23% yield increase of leeks when the MYK102 strain was inoculated without salt stress (data not shown). This result suggests that inoculation of the MYK102 strain improves salt tolerance in leeks.

Figure 0006748469
Figure 0006748469

[実施例4:MYK102株による、温室栽培ニンジンの塩ストレスの向上]
1)方法
培養土をセルトレーに充填し、1セルあたり3粒ずつニンジン種子(品種:五寸人参)を播種した。本葉が1枚展開した後に1セルあたり植物体1本に間引きした。MYK102株を液体培地にて24時間振とう培養し、菌密度1.0×109cell / mlに調整した培養液を間引き後の植物に1植物体あたり100 μlずつ接種して、ガラス温室内で栽培した。
本葉が2枚展開した後に100mM NaClの水を植物体に加え、塩ストレス処理し、本葉が3枚以上展開するまで栽培した後、地際部から植物体を切除し収穫した。植物体から双葉を除去した後に新鮮重量を計量した。1処理区あたり植物体12個体とし、同様の試験を3反復実施した。
[Example 4: Improvement of salt stress of greenhouse-grown carrots by MYK102 strain]
1) Method The culture soil was filled in a cell tray, and 3 carrot seeds (cultivar: Gojin ginseng) were sown in each cell, 3 grains per cell. After developing one true leaf, one plant was thinned out per cell. MYK102 strain was cultivated in a liquid medium for 24 hours with shaking, and a culture solution adjusted to a bacterial density of 1.0 × 10 9 cells / ml was inoculated to the plants after thinning at 100 μl per plant, and cultivated in a glass greenhouse. did.
After the development of two true leaves, 100 mM NaCl water was added to the plants, salt stress treatment was performed, and the plants were cultivated until three or more true leaves were developed, and then the plants were excised from the edge and harvested. Fresh weight was weighed after removing the leaves from the plants. The same test was repeated 3 times with 12 plants per treatment group.

2)結果
100 mM NaCl処理区において、無処理区に比べて、植物の新鮮重量が12%増加していた(表7)。これは、塩ストレスを与えずにMYK102株を接種した場合のニンジンの7%の収量増加(データ示さず)と比較して、高い値であった。この結果は、MYK102株の接種が、ニンジンの塩耐性を向上させることを示唆している。
2) Results
In the 100 mM NaCl-treated group, the fresh weight of plants was increased by 12% as compared with the untreated group (Table 7). This was a high value as compared with the 7% yield increase of carrots when the MYK102 strain was inoculated without salt stress (data not shown). This result suggests that inoculation of the MYK102 strain improves carrot salt tolerance.

Figure 0006748469
Figure 0006748469

[実施例5:MYK102株による、温室栽培ダイズの塩ストレスの向上]
1)方法
培養土をセルトレーに充填し、1セルあたり3粒ずつダイズ種子(品種:早生枝豆)を播種した。本葉が1枚展開した後に1セルあたり植物体1本に間引きした。MYK102株を液体培地にて24時間振とう培養し、菌密度1.0×109cell / mlに調整した培養液を間引き後の植物に1植物体あたり100 μlずつ接種して、ガラス温室内で栽培した。
本葉が2枚展開した後に0.5M NaClの水を植物体に加え、塩ストレス処理し、本葉が4枚以上展開するまで栽培した後、地際部から植物体を切除し収穫した。植物体から双葉を除去した後に新鮮重量を計量した。1処理区あたり植物体12個体とし、同様の試験を3反復実施した。
[Example 5: Improvement of salt stress of greenhouse-grown soybean by MYK102 strain]
1) Method The culture soil was filled in a cell tray, and 3 soybean seeds (variety: early edamame) were sown for each cell. After developing one true leaf, one plant was thinned out per cell. MYK102 strain was cultivated in a liquid medium for 24 hours with shaking, and a culture solution adjusted to a bacterial density of 1.0 × 10 9 cells / ml was inoculated to the plants after thinning at 100 μl per plant, and cultivated in a glass greenhouse. did.
After developing two true leaves, 0.5 M NaCl water was added to the plants, salt stress treatment was carried out, and the plants were cultivated until four or more true leaves were developed, and then the plants were excised from the edge part and harvested. Fresh weight was weighed after removing the leaves from the plants. The same test was repeated 3 times with 12 plants per treatment group.

2)結果
0.5 M NaCl処理区において、無処理区に比べて、植物の新鮮重量が20%増加していた(表8)。これは、塩ストレスを与えずにMYK102株を接種した場合のダイズの9%の収量増加(データ示さず)と比較して、高い値であった。この結果は、MYK102株の接種が、ダイズの塩耐性を向上させることを示唆している。
2) Results
In the 0.5 M NaCl-treated group, the fresh weight of plants was increased by 20% as compared with the untreated group (Table 8). This was a high value compared to the 9% yield increase of soybean when the MYK102 strain was inoculated without salt stress (data not shown). This result suggests that inoculation of MYK102 strain improves salt tolerance in soybean.

Figure 0006748469
Figure 0006748469

[実施例6:MYK102株による、温室栽培キュウリの塩ストレスの向上]
1)方法
培養土をセルトレーに充填し、1セルあたり1粒ずつキュウリ種子(品種:霜しらず地這)を播種した。本葉が1枚展開した後に1セルあたり植物体1本に間引きした。MYK102株を液体培地にて24時間振とう培養し、菌密度1.0×109cell / mlに調整した培養液を間引き後の植物に1植物体あたり100 μlずつ接種して、ガラス温室内で栽培した。
本葉が2枚展開した後に0.5M NaClの水を植物体に加え、塩ストレス処理し、本葉が3枚以上展開するまで栽培した後、地際部から植物体を切除し収穫した。植物体から双葉を除去した後に新鮮重量を計量した。1処理区あたり植物体12個体とし、同様の試験を3反復実施した。
[Example 6: Improvement of salt stress of greenhouse-grown cucumber by MYK102 strain]
1) Method The culture soil was filled in a cell tray, and one cucumber seed (cultivar: crawl without frost) was sown for each cell. After developing one true leaf, one plant was thinned out per cell. MYK102 strain was cultivated in a liquid medium for 24 hours with shaking, and a culture solution adjusted to a bacterial density of 1.0 × 10 9 cells / ml was inoculated to the plants after thinning at 100 μl per plant, and cultivated in a glass greenhouse. did.
After developing two true leaves, 0.5 M NaCl water was added to the plants to treat them with salt stress, and the plants were cultivated until three or more true leaves were developed. Then, the plants were excised from the edge and harvested. Fresh weight was weighed after removing the leaves from the plants. The same test was repeated 3 times with 12 plants per treatment group.

2)結果
0.5 M NaCl処理区において、無処理区に比べて、植物の新鮮重量が12%増加していた(表9)。これは、塩ストレスを与えずにMYK102株を接種した場合のキュウリの3%の収量増加(表10)と比較して、高い値であった。この結果は、MYK102株の接種が、キュウリの塩耐性を向上させることを示唆している。
2) Results
In the 0.5 M NaCl-treated group, the fresh weight of plants was increased by 12% as compared with the untreated group (Table 9). This was a high value compared to the 3% increase in cucumber yield when the MYK102 strain was inoculated without salt stress (Table 10). This result suggests that inoculation of the MYK102 strain improves the salt tolerance of cucumber.

Figure 0006748469
Figure 0006748469

Figure 0006748469
Figure 0006748469

[実施例7:MYK102株による、温室栽培トマトの塩ストレスの向上]
1)方法
培養土をセルトレーに充填し、1セルあたり1粒ずつトマト種子(品種:強力米寿)を播種した。本葉が1枚展開した後に1セルあたり植物体1本に間引きした。MYK102株を液体培地にて24時間振とう培養し、菌密度1.0×109cell / mlに調整した培養液を間引き後の植物に1植物体あたり100 μlずつ接種して、ガラス温室内で栽培した。
本葉が2枚展開した後に100mM NaClの水を植物体に加え、塩ストレス処理し、本葉が4枚以上展開するまで栽培した後、地際部から植物体を切除し収穫した。植物体から双葉を除去した後に新鮮重量を計量した。1処理区あたり植物体12個体とし、同様の試験を3反復実施した。
[Example 7: Improvement of salt stress of greenhouse-grown tomatoes by MYK102 strain]
1) Method The culture soil was filled in a cell tray, and one tomato seed (variety: strong rice longevity) was sown for each cell. After developing one true leaf, one plant was thinned out per cell. MYK102 strain was cultivated in a liquid medium for 24 hours with shaking, and a culture solution adjusted to a bacterial density of 1.0 × 10 9 cells / ml was inoculated to the plants after thinning at 100 μl per plant, and cultivated in a glass greenhouse. did.
After developing two true leaves, 100 mM NaCl water was added to the plants, salt stress treatment was performed, and the plants were cultivated until four or more true leaves were developed, and then the plants were excised from the edge and harvested. Fresh weight was weighed after removing the leaves from the plants. The same test was repeated 3 times with 12 plants per treatment group.

2)結果
100mM NaCl処理区において、無処理区に比べて、植物の新鮮重量が9%増加していた(表11)。これは、塩ストレスを与えずにMYK102株を接種した場合のトマトの1%の収量増加(表12)と比較して、高い値であった。この結果は、MYK102株の接種が、植物の塩耐性を向上させることを示唆している。
2) Results
In the 100 mM NaCl-treated group, the fresh weight of plants was increased by 9% as compared with the untreated group (Table 11). This was a high value as compared to the 1% yield increase of tomato (Table 12) when the MYK102 strain was inoculated without salt stress. This result suggests that inoculation of MYK102 strain improves salt tolerance of plants.

Figure 0006748469
Figure 0006748469

Figure 0006748469
Figure 0006748469

本発明は、Comamonas属細菌を農業上有用な植物に人為的に感染させることにより、これらの植物の塩耐性及び/又は浸透圧耐性を付与するため、農業上有用である。 INDUSTRIAL APPLICABILITY The present invention artificially infects agriculturally useful plants with Comamonas spp. bacteria, thereby imparting salt tolerance and/or osmotic resistance to these plants, and thus is useful agriculturally.

Claims (4)

コマモナス(Comamonas)属に属し、農業上有用な植物体内に共生して該植物に塩耐性及び/又は浸透圧耐性を付与する能力を有する細菌を、該植物に人為的に感染させる工程を含む、但し、前記細菌がComamonas sp. MYK102(受託番号NITE P−01769)、Comamonas sp. MYK103(受託番号NITE P−01770)、或いは、農業上有用な植物体内に共生して該植物に塩耐性及び/又は浸透圧耐性を付与する能力を有する、前記MYK102又はMYK103の変異株である、農業上有用な植物に塩耐性及び/又は浸透圧耐性を付与する方法。 A step of artificially infecting a plant with a bacterium belonging to the genus Comamonas, which has the ability to symbiotic in an agriculturally useful plant body to impart salt tolerance and/or osmotic tolerance to the plant, However, when the bacterium is Commonas sp. MYK102 (accession number NITE P-01769), Commonas sp. MYK103 (Accession No. NITE P-01770), or a mutant strain of MYK102 or MYK103, which has the ability to symbiotically grow into a plant useful in agriculture and impart salt tolerance and/or osmotic tolerance to the plant, A method for imparting salt tolerance and/or osmotic tolerance to an agriculturally useful plant. 農業上有用な植物が、アブラナ科植物、キク科植物、マメ科植物、イネ科植物、ナス科植物、ユリ科植物、セリ科植物、及びウリ科植物からなる群から選択される植物である、請求項1に記載の方法。 Agriculturally useful plants are plants selected from the group consisting of cruciferous plants, asteraceae plants, legumes, gramineous plants, solanaceous plants, lily plants, seriaceous plants, and cucurbitaceae plants, The method of claim 1. コマモナス(Comamonas)属に属し、農業上有用な植物体内に共生して該植物に塩耐性及び/又は浸透圧耐性を付与する能力を有する細菌を有効成分として含有する、但し、前記細菌がComamonas sp. MYK102(受託番号NITE P−01769)、Comamonas sp. MYK103(受託番号NITE P−01770)、或いは、農業上有用な植物体内に共生して該植物に塩耐性及び/又は浸透圧耐性を付与する能力を有する、前記MYK102又はMYK103の変異株である、農業上有用な植物の塩耐性及び/又は浸透圧耐性を増加させるための微生物製剤。 As an active ingredient, a bacterium belonging to the genus Commonas and having the ability to coexist in an agriculturally useful plant body to impart salt tolerance and/or osmotic resistance to the plant, provided that the bacterium is a Commonas sp. . MYK102 (accession number NITE P-01769), Commonas sp. MYK103 (Accession No. NITE P-01770), or a mutant strain of MYK102 or MYK103, which has the ability to symbiotically grow into a plant useful in agriculture and impart salt tolerance and/or osmotic tolerance to the plant, A microbial preparation for increasing salt tolerance and/or osmotic tolerance of an agriculturally useful plant. 農業上有用な植物が、アブラナ科植物、キク科植物、マメ科植物、イネ科植物、ナス科植物、ユリ科植物、セリ科植物、及びウリ科植物からなる群から選択される植物である、請求項に記載の微生物製剤。 Agriculturally useful plants are plants selected from the group consisting of cruciferous plants, asteraceae plants, legumes, gramineous plants, solanaceous plants, lily plants, seriaceous plants, and cucurbitaceae plants, The microbial preparation according to claim 3 .
JP2016072241A 2016-03-31 2016-03-31 Improvement of salt tolerance and/or osmotic tolerance of plants using bacteria of the genus Commonas Active JP6748469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016072241A JP6748469B2 (en) 2016-03-31 2016-03-31 Improvement of salt tolerance and/or osmotic tolerance of plants using bacteria of the genus Commonas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016072241A JP6748469B2 (en) 2016-03-31 2016-03-31 Improvement of salt tolerance and/or osmotic tolerance of plants using bacteria of the genus Commonas

Publications (2)

Publication Number Publication Date
JP2017176128A JP2017176128A (en) 2017-10-05
JP6748469B2 true JP6748469B2 (en) 2020-09-02

Family

ID=60008832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016072241A Active JP6748469B2 (en) 2016-03-31 2016-03-31 Improvement of salt tolerance and/or osmotic tolerance of plants using bacteria of the genus Commonas

Country Status (1)

Country Link
JP (1) JP6748469B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111944710B (en) * 2019-05-15 2022-10-04 东北林业大学 Shewanella and application thereof in improving stress resistance of plants

Also Published As

Publication number Publication date
JP2017176128A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
CN111356761B (en) Methods and compositions for biological control of plant pathogens
EP2344610B1 (en) Methods and compositions for increasing the amounts of phosphorus available for plant uptake from soils
Xu et al. Biocontrol of Fusarium crown and root rot and promotion of growth of tomato by Paenibacillus strains isolated from soil
US20090175837A1 (en) Method and agent for controlling plant disease using bacteria of genus bacillus
Khan et al. Isolation of plant growth promoting endophytic fungi from dicots inhabiting coastal sand dunes of Korea
KR20230044326A (en) Methods of screening for microorganisms that impart beneficial properties to plants
CN102046778A (en) Bacterium capable of reducing heavy metal content in plant
Kumar et al. Development of seed coating formulation using consortium of Bacillus subtilis OTPB1 and Trichoderma harzianum OTPB3 for plant growth promotion and induction of systemic resistance in field and horticultural crops
JP6267073B2 (en) New agricultural use of Escherichia bacteria
Kanchana et al. Interaction effect of combined inoculation of PGPR on growth and yield parameters of chilli var k1 (Capsicum annuum L.)
US20160183533A1 (en) Planting matrices comprising bacillus spp. microorganisms for benefiting plant growth
JP5074866B2 (en) Methods to inhibit legume feeding by pests
WO2019207822A1 (en) Plant growth promoter
JP6639901B2 (en) New agricultural uses of Pseudomonas bacteria
JP6748469B2 (en) Improvement of salt tolerance and/or osmotic tolerance of plants using bacteria of the genus Commonas
US8507252B2 (en) Plant disease controlling composition, plant disease controlling method, and novel microorganism
JP6872925B2 (en) New agricultural applications of Rahnella bacteria
Yossen et al. Effect of green manure and biocontrol agents on potato crop in Córdoba, Argentina
KR20230105465A (en) Development of a multifunctional biopesticide controlling anthracnose and bacterial diseases with plant growth stimulating effects
JP6475492B2 (en) New agricultural uses of bacteria of the genus Comamonas
Sakariyawo et al. Growth, assimilate partitioning and grain yield response of soybean (Glycine max L. Merrrill) varieties to carbon dioxide enrichment and arbuscular mycorrhizal fungi in the humid rainforest
Gouws-Meyer et al. Potato scab management with Brassica biofumigation and effect of volatiles on Streptomyces growth
EL-Morsi et al. Management of root rot and wilt diseases of date palm offshoots using certain biological control agents and its effect on growth parameters in the New Valley Governorate, Egypt
JP6267064B2 (en) New agricultural use of Stenotrophomonas bacteria
EP4230720A1 (en) Strain of rutstroemia calopus, compositions and uses

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200807

R150 Certificate of patent or registration of utility model

Ref document number: 6748469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250