JP6747440B2 - Resin composition for film formation, sealing film using the same, sealing film with support, and semiconductor device - Google Patents

Resin composition for film formation, sealing film using the same, sealing film with support, and semiconductor device Download PDF

Info

Publication number
JP6747440B2
JP6747440B2 JP2017525264A JP2017525264A JP6747440B2 JP 6747440 B2 JP6747440 B2 JP 6747440B2 JP 2017525264 A JP2017525264 A JP 2017525264A JP 2017525264 A JP2017525264 A JP 2017525264A JP 6747440 B2 JP6747440 B2 JP 6747440B2
Authority
JP
Japan
Prior art keywords
film
sealing film
resin composition
resin
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017525264A
Other languages
Japanese (ja)
Other versions
JPWO2016204183A1 (en
Inventor
徳彦 坂本
徳彦 坂本
信次 土川
信次 土川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Publication of JPWO2016204183A1 publication Critical patent/JPWO2016204183A1/en
Application granted granted Critical
Publication of JP6747440B2 publication Critical patent/JP6747440B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

本発明は、フィルム形成用樹脂組成物に関し、特に、優れた取り扱い性と耐熱性を両立するフィルム形成用樹脂組成物に関する。さらに、本発明は、半導体チップの封止及び電子部品を実装した基板の埋め込み等への適用を可能とした、フィルム形成用樹脂組成物を用いた封止フィルム、支持体付き封止フィルム、及びこれらを用いた半導体装置に関する。 TECHNICAL FIELD The present invention relates to a film-forming resin composition, and particularly to a film-forming resin composition that has both excellent handleability and heat resistance. Further, the present invention enables application to sealing of semiconductor chips and embedding of a substrate on which electronic components are mounted, a sealing film using a resin composition for film formation, a sealing film with a support, and The present invention relates to a semiconductor device using these.

半導体チップ等の半導体素子の封止は、通常、固形又は液状の樹脂組成物(封止材)を用いてモールド成形で行われている。近年、より簡便に半導体素子を封止するために、基板上に搭載した複数個の半導体素子を、フィルム状樹脂組成物を用いて一度に樹脂封止することが提案されている(特許文献1)。 A semiconductor element such as a semiconductor chip is usually sealed by molding using a solid or liquid resin composition (sealing material). In recent years, in order to more easily seal a semiconductor element, it has been proposed to seal a plurality of semiconductor elements mounted on a substrate at once with a film-shaped resin composition (Patent Document 1). ).

特開2004−327623号公報JP, 2004-327623, A

半導体素子を封止するフィルム状樹脂組成物は、例えば、有機溶媒が含まれる樹脂ワニスを支持体に塗布、乾燥することで製造できる。このように製造されるフィルム状樹脂組成物においては、有機溶媒をある程度残すことで半硬化状態での取り扱い性を付与している。 The film-shaped resin composition for sealing the semiconductor element can be produced, for example, by applying a resin varnish containing an organic solvent on a support and drying the resin varnish. In the film-shaped resin composition produced in this manner, the organic solvent is left to some extent to impart handleability in a semi-cured state.

しかし、フィルムの膜厚が増大すると、樹脂ワニスに含まれる揮発成分(主に有機溶媒)が揮発しづらいため、揮発成分を十分に低減できないという問題点がある。揮発成分を十分に低減できていない場合、半導体素子等を封止し、フィルム状樹脂組成物を熱硬化した際に、ボイド等の不良が発生しやすくなる。したがって、半導体素子等を封止するフィルム状樹脂組成物においては、揮発成分が十分に低減されていて、且つ取り扱い性が良好であることが要求される。他方で、半導体素子を封止するフィルム状樹脂組成物においては、耐熱性及び信頼性の観点から、硬化後の樹脂が十分に高いガラス転移温度を有することが要求される。 However, when the film thickness increases, there is a problem that the volatile component (mainly the organic solvent) contained in the resin varnish is hard to volatilize, so that the volatile component cannot be sufficiently reduced. When the volatile component is not sufficiently reduced, defects such as voids are likely to occur when the semiconductor element or the like is sealed and the film-shaped resin composition is thermoset. Therefore, in the film-shaped resin composition for sealing the semiconductor element and the like, it is required that the volatile components are sufficiently reduced and the handleability is good. On the other hand, in the film-shaped resin composition for sealing a semiconductor element, the resin after curing is required to have a sufficiently high glass transition temperature from the viewpoint of heat resistance and reliability.

本発明は、このような事情に鑑みなされたものであり、揮発成分を低減しても取り扱い性が良好である封止フィルムを形成でき、且つ十分に高い耐熱性(高ガラス転移温度)を有する硬化物を形成できるフィルム形成用樹脂組成物、封止フィルム、支持体付き封止フィルム、及びこれらを用いた半導体装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and it is possible to form a sealing film that has good handleability even when the volatile component is reduced, and has sufficiently high heat resistance (high glass transition temperature). An object of the present invention is to provide a resin composition for film formation capable of forming a cured product, a sealing film, a sealing film with a support, and a semiconductor device using these.

上記課題を解決するために、本発明者らが検討を進めた結果、液状エポキシ樹脂、シアネート樹脂、及びオイルゲル化剤を含む樹脂組成物が、それを用いて形成したフィルム中の揮発成分を低減しても取り扱い性が良好であり、且つ十分に高いガラス転移温度(高い耐熱性)を有する硬化物を形成できることを見出し、かかる知見に基づいて本発明を完成するに至った。 In order to solve the above problems, as a result of the present inventors' investigation, as a result, a resin composition containing a liquid epoxy resin, a cyanate resin, and an oil gelling agent reduces volatile components in a film formed using the same. However, it has been found that a cured product having good handleability and a sufficiently high glass transition temperature (high heat resistance) can be formed, and the present invention has been completed based on such findings.

すなわち、本発明は、液状エポキシ樹脂(A)、シアネート樹脂(B)、及びオイルゲル化剤(C)を含むフィルム形成用樹脂組成物を提供する。 That is, the present invention provides a resin composition for film formation containing a liquid epoxy resin (A), a cyanate resin (B), and an oil gelling agent (C).

本発明のフィルム形成用樹脂組成物によれば、揮発成分を低減しても取り扱い性が良好であり、且つ十分に高いガラス転移温度を有する硬化物を形成できる封止フィルムを得ることができる。 According to the resin composition for film formation of the present invention, it is possible to obtain a sealing film which has good handleability even when the volatile component is reduced and which can form a cured product having a sufficiently high glass transition temperature.

本発明のフィルム形成用樹脂組成物は、下記一般式(1)で示されるフェノール性水酸基を有するシロキサン樹脂(D)を更に含むことができる。 The film-forming resin composition of the present invention may further contain a siloxane resin (D) having a phenolic hydroxyl group represented by the following general formula (1).

Figure 0006747440
[一般式(1)中、Rは各々独立に炭素数1〜5のアルキレン基であり、mは5〜100の整数である。]
Figure 0006747440
[In the general formula (1), each R is independently an alkylene group having 1 to 5 carbon atoms, and m is an integer of 5 to 100. ]

本発明のフィルム形成用樹脂組成物は、無機充填材(E)を更に含むことができる。 The film-forming resin composition of the present invention may further contain an inorganic filler (E).

本発明は、また、上記本発明に係るフィルム形成用樹脂組成物を用いてなる封止フィルムを提供する。 The present invention also provides a sealing film using the resin composition for film formation according to the present invention.

本発明の封止フィルムの厚さは、30〜250μmとすることができる。 The thickness of the sealing film of the present invention can be 30 to 250 μm.

本発明は、また、上記本発明に係る封止フィルムの少なくとも1つの面に支持体が設けられた支持体付き封止フィルムを提供する。 The present invention also provides a support-equipped sealing film in which a support is provided on at least one surface of the sealing film according to the present invention.

本発明は、また、上記本発明に係る封止フィルム、又は上記本発明に係る支持体付き封止フィルムの封止フィルムによって封止された半導体素子を備える半導体装置を提供する。 The present invention also provides a semiconductor device comprising a semiconductor element sealed by the sealing film according to the present invention or the sealing film of the sealing film with a support according to the present invention.

本発明によれば、揮発成分を低減しても取り扱い性が良好である封止フィルムを形成でき、且つ十分に高いガラス転移温度を有する硬化物を形成できるフィルム形成用樹脂組成物、封止フィルム、支持体付き封止フィルム、及びこれらを用いた半導体装置を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the resin composition for film formation which can form the sealing film which has favorable handleability, even if it reduces a volatile component, and can form the hardened|cured material which has a sufficiently high glass transition temperature, sealing film. It is possible to provide a sealing film with a support, and a semiconductor device using these.

半導体装置の製造方法の一実施形態を説明するための模式断面図である。FIG. 9 is a schematic cross-sectional view for explaining the embodiment of the method for manufacturing the semiconductor device. 半導体装置の製造方法の一実施形態を説明するための模式断面図である。FIG. 9 is a schematic cross-sectional view for explaining the embodiment of the method for manufacturing the semiconductor device.

以下、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.

本実施形態のフィルム形成用樹脂組成物(以下、樹脂組成物と呼ぶことがある)は、液状エポキシ樹脂(A)(以下、成分(A)と呼ぶことがある)、シアネート樹脂(B)(以下、成分(B)と呼ぶことがある)、及びオイルゲル化剤(C)(以下、成分(C)と呼ぶことがある)を含むものである。 The resin composition for forming a film of the present embodiment (hereinafter sometimes referred to as a resin composition) includes a liquid epoxy resin (A) (hereinafter sometimes referred to as a component (A)), a cyanate resin (B) ( Hereinafter, it may include a component (B) and an oil gelling agent (C) (hereinafter, may be referred to as a component (C)).

本実施形態のフィルム形成用樹脂組成物によれば、揮発成分を低減しても取り扱い性が良好であり、且つ十分に高いガラス転移温度を有する硬化物を形成できる封止フィルムを得ることができる。 According to the film-forming resin composition of the present embodiment, it is possible to obtain a sealing film which has good handleability even when the volatile component is reduced and which can form a cured product having a sufficiently high glass transition temperature. ..

本実施形態のフィルム形成用樹脂組成物が、揮発成分を十分に低減できる理由については、必ずしも明らかではないが、本発明者らは以下のように推察している。フィルム形成用樹脂組成物からなる樹脂ワニスを支持体に塗布、乾燥して封止フィルムを製造する場合、支持体が設けられていない側の樹脂組成物は、支持体が設けられている側の樹脂組成物に比べて、乾燥が進み易い。そのため、支持体が設けられていない側の樹脂組成物の乾燥が進み、支持体が設けられている側の樹脂組成物中の揮発成分(主に有機溶媒)の揮発が妨げられていると考えられる。本実施形態の樹脂組成物においては、液状エポキシ樹脂(A)を配合することで、支持体が設けられていない側の樹脂組成物の過度な乾燥を抑制することができ、支持体が設けられている側の樹脂組成物の揮発成分を十分に揮発させることができると考えられる。さらに、オイルゲル化剤(C)を配合することで、液状エポキシ樹脂(A)、及びシアネート樹脂(B)からなる樹脂組成物をゲル化させ、液状の樹脂に起因する過度なタックを抑制することができると考えられる。 The reason why the resin composition for film formation of the present embodiment can sufficiently reduce the volatile components is not necessarily clear, but the present inventors speculate as follows. When a resin varnish made of a resin composition for film formation is applied to a support and dried to produce a sealing film, the resin composition on the side where the support is not provided is the resin on the side where the support is provided. Compared to the resin composition, it is easy to dry. Therefore, it is considered that drying of the resin composition on the side where the support is not provided progresses, and volatilization of volatile components (mainly organic solvent) in the resin composition on the side where the support is provided is prevented. To be In the resin composition of the present embodiment, by mixing the liquid epoxy resin (A), excessive drying of the resin composition on the side where the support is not provided can be suppressed, and the support is provided. It is considered that the volatile components of the resin composition on the holding side can be sufficiently volatilized. Further, by blending the oil gelling agent (C), the resin composition comprising the liquid epoxy resin (A) and the cyanate resin (B) is gelated, and excessive tackiness caused by the liquid resin is suppressed. It is thought that you can do it.

なお、本明細書において、封止フィルムとは、半導体チップ等の半導体素子及び電子部品などを封止又は埋め込むために用いられるフィルム状樹脂組成物のことをいう。 In the present specification, the term "sealing film" refers to a film-shaped resin composition used for sealing or embedding semiconductor elements such as semiconductor chips and electronic components.

成分(A)の液状エポキシ樹脂としては、25℃にて液状を示すものであれば特に限定はされず、例えば、ビスフェノールA系、ビスフェノールF系、ビフェニル系、ノボラック系、ジシクロペンタジエン系、多官能フェノール系、ナフタレン系、アラルキル変性系、脂環式系及びアルコール系等のグリシジルエーテル、グリシジルアミン系、並びにグリシジルエステル系樹脂が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。上記の中でも、取り扱い性付与の観点から、ビスフェノールF型エポキシ樹脂が好ましい。 The liquid epoxy resin as the component (A) is not particularly limited as long as it shows a liquid state at 25° C., and examples thereof include bisphenol A-based, bisphenol F-based, biphenyl-based, novolac-based, dicyclopentadiene-based and Examples thereof include functional phenol type, naphthalene type, aralkyl modified type, alicyclic type and alcohol type glycidyl ether, glycidyl amine type and glycidyl ester type resins. These may be used alone or in combination of two or more. Among the above, a bisphenol F type epoxy resin is preferable from the viewpoint of imparting handleability.

本明細書において、25℃にて液状を示すエポキシ樹脂とは、E型粘度計で測定した25℃における粘度が400Pa・s以下であるものを指す。 In the present specification, the epoxy resin which shows a liquid state at 25°C refers to an epoxy resin having a viscosity at 25°C measured by an E-type viscometer of 400 Pa·s or less.

フィルム形成用樹脂組成物における成分(A)の配合量は、封止フィルムに良好な柔軟性を付与する観点から、硬化物を形成する成分全量を基準として((E)成分等の無機物及び揮発成分を除く成分全量を基準として)、10〜80質量%であることが好ましく、15〜75質量%であることがより好ましく、20〜70質量%であることが更に好ましい。 The blending amount of the component (A) in the resin composition for film formation is based on the total amount of components forming a cured product (inorganic substances such as the (E) component and volatilization from the viewpoint of imparting good flexibility to the sealing film). It is preferably 10 to 80% by mass, more preferably 15 to 75% by mass, still more preferably 20 to 70% by mass, based on the total amount of the components excluding the components).

成分(B)のシアネート樹脂としては、1分子中に少なくとも2個のシアナト基を有する化合物であれば特に限定はされず、フェノールノボラック型シアネート樹脂、ビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、ビスフェノールF型シアネート樹脂、及びテトラメチルビスフェノールF型シアネート樹脂等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。上記の中でも、誘電特性、耐熱性、難燃性、低熱膨張性、及び安価である点から、ビスフェノールA型シアネート樹脂、フェノールノボラック型シアネート樹脂が好ましい。 The cyanate resin of the component (B) is not particularly limited as long as it is a compound having at least two cyanato groups in one molecule, and it is a phenol novolac type cyanate resin, a bisphenol A type cyanate resin, a bisphenol E type cyanate resin, Examples thereof include bisphenol F-type cyanate resin and tetramethylbisphenol F-type cyanate resin. These may be used alone or in combination of two or more. Among the above, bisphenol A type cyanate resin and phenol novolac type cyanate resin are preferable from the viewpoints of dielectric properties, heat resistance, flame retardancy, low thermal expansion, and low cost.

シアネート樹脂の市販品としては、ビスフェノールA型シアネート樹脂(ロンザジャパン株式会社製;商品名Primaset BADCy)、フェノールノボラック型シアネート樹脂(ロンザジャパン株式会社製;商品名Primaset PT−30)等が挙げられる。 Examples of commercially available cyanate resins include bisphenol A type cyanate resin (manufactured by Lonza Japan Co., Ltd.; trade name Primaset BADCy), phenol novolac type cyanate resin (manufactured by Lonza Japan Co., Ltd.; trade name Primaset PT-30).

成分(B)の配合量は、成分(A)100質量部に対して、25〜400質量部であることが好ましく、50〜250質量部であることがより好ましく、60〜150質量部であることが更に好ましい。成分(B)の配合量を25質量部以上とすることで、フィルム形成用樹脂組成物の耐熱性、難燃性、耐薬品性が向上する傾向にあり、400質量部以下とすることで耐湿性が確保されやすくなる。 The blending amount of the component (B) is preferably 25 to 400 parts by mass, more preferably 50 to 250 parts by mass, and 60 to 150 parts by mass with respect to 100 parts by mass of the component (A). More preferably. By adjusting the compounding amount of the component (B) to 25 parts by mass or more, the heat resistance, flame retardancy, and chemical resistance of the film-forming resin composition tend to improve. It becomes easy to secure the property.

成分(C)のオイルゲル化剤は、油溶性に効く炭化水素基と、自己集合性に効く水素結合性官能基(ヒドロキシ基、カルボキシ基、アミノ基、アミド基等)とを有することができる。成分(C)のオイルゲル化剤としては、ヒドロキシステアリン酸、特に12−ヒドロキシステアリン酸等のヒドロキシ脂肪酸、n−ラウロイル−L−グルタミン酸−α,γ−ジブチルアミド、ジ−p−メチルベンジリデンソルビトールグルシトール、1,3:2,4−ビス−O−ベンジリデン−D−グルシトール、1,3:2,4−ビス−O−(4−メチルベンジリデン)−D−ソルビトール、ビス(2−エチルヘキサノアト)ヒドロキシアルミニウム、下記一般式(2)〜(14)で表わされる化合物等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。これらの中でも、12−ヒドロキシステアリン酸、n−ラウロイル−L−グルタミン酸−α,γ−ジブチルアミド、及び1,3:2,4−ビス−O−ベンジリデン−D−グルシトールの少なくとも1種がより好ましい。 The oil gelling agent of the component (C) can have a hydrocarbon group effective for oil solubility and a hydrogen-bonding functional group effective for self-assembly (hydroxy group, carboxy group, amino group, amide group, etc.). Examples of the oil gelling agent as the component (C) include hydroxystearic acid, particularly hydroxy fatty acid such as 12-hydroxystearic acid, n-lauroyl-L-glutamic acid-α,γ-dibutylamide, di-p-methylbenzylidene sorbitol gluci. Tol, 1,3:2,4-bis-O-benzylidene-D-glucitol, 1,3:2,4-bis-O-(4-methylbenzylidene)-D-sorbitol, bis(2-ethylhexanoato) ) Hydroxyaluminum, compounds represented by the following general formulas (2) to (14), and the like can be given. These may be used alone or in combination of two or more. Among these, at least one of 12-hydroxystearic acid, n-lauroyl-L-glutamic acid-α,γ-dibutylamide, and 1,3:2,4-bis-O-benzylidene-D-glucitol is more preferable. ..

Figure 0006747440
[一般式(2)中、n1は3〜10の整数、n2は2〜6の整数、Rは炭素数1〜20の飽和炭化水素基、Xは硫黄原子又は酸素原子である。]
Figure 0006747440
[In general formula (2), n1 is an integer of 3 to 10, n2 is an integer of 2 to 6, R 1 is a saturated hydrocarbon group having 1 to 20 carbon atoms, and X 1 is a sulfur atom or an oxygen atom. ]

Figure 0006747440
[一般式(3)中、Rは炭素数1〜20の飽和炭化水素基、Yは結合手(単結合)又はベンゼン環(フェニレン基)である。]
Figure 0006747440
[In the general formula (3), R 2 is a saturated hydrocarbon group having 1 to 20 carbon atoms, and Y 1 is a bond (single bond) or a benzene ring (phenylene group). ]

Figure 0006747440
[一般式(4)中、Rは炭素数1〜20の飽和炭化水素基、Yは結合手又はベンゼン環である。]
Figure 0006747440
[In the general formula (4), R 3 is a saturated hydrocarbon group having 1 to 20 carbon atoms, and Y 2 is a bond or a benzene ring. ]

Figure 0006747440
[一般式(5)中、Rは炭素数1〜20の飽和炭化水素基である。]
Figure 0006747440
[In the general formula (5), R 4 is a saturated hydrocarbon group having 1 to 20 carbon atoms. ]

Figure 0006747440
Figure 0006747440

Figure 0006747440
[一般式(7)中、R及びRは、それぞれ独立に炭素数1〜20の飽和炭化水素基である。]
Figure 0006747440
[In the general formula (7), R 5 and R 6 are each independently a saturated hydrocarbon group having 1 to 20 carbon atoms. ]

Figure 0006747440
[一般式(8)中、Rは、炭素数1〜20の飽和炭化水素基である。]
Figure 0006747440
[In general formula (8), R 7 is a saturated hydrocarbon group having 1 to 20 carbon atoms. ]

Figure 0006747440
[一般式(9)中、Rは、炭素数1〜20の飽和炭化水素基である。]
Figure 0006747440
[In the general formula (9), R 8 is a saturated hydrocarbon group having 1 to 20 carbon atoms. ]

Figure 0006747440
[一般式(10)中、Phは、フェニル基を示す。]
Figure 0006747440
[In general formula (10), Ph represents a phenyl group. ]

Figure 0006747440
[一般式(11)中、R及びR10は、それぞれ独立に炭素数1〜20の飽和炭化水素基である。]
Figure 0006747440
[In the general formula (11), R 9 and R 10 are each independently a saturated hydrocarbon group having 1 to 20 carbon atoms. ]

Figure 0006747440
Figure 0006747440

Figure 0006747440
Figure 0006747440

Figure 0006747440
[一般式(14)中、R11は、2価の炭素数1〜10の飽和炭化水素基であり、R12及びR13は、それぞれ独立に炭素数1〜20の飽和炭化水素基である。R12及びR13の上記飽和炭化水素基は、分子骨格中に少なくとも1つの水酸基を有する炭素数1〜20の飽和炭化水素基であってもよい。]
Figure 0006747440
[In the general formula (14), R 11 is a divalent saturated hydrocarbon group having 1 to 10 carbon atoms, and R 12 and R 13 are each independently a saturated hydrocarbon group having 1 to 20 carbon atoms. .. The saturated hydrocarbon group for R 12 and R 13 may be a saturated hydrocarbon group having 1 to 20 carbon atoms and having at least one hydroxyl group in the molecular skeleton. ]

成分(C)の配合量は、成分(A)、及び成分(B)の総和100質量部に対して0.1〜30質量部が好ましく、0.3〜25質量部がより好ましく、0.5〜20質量部が更に好ましく、1〜10質量部であることが特に好ましく、2〜8質量部であることが極めて好ましい。成分(C)の配合量が0.1質量部以上であると、樹脂を十分にゲル化することができ、30質量部以下であるとシアネート樹脂が有する優れた耐熱性を保持できる。 The blending amount of the component (C) is preferably 0.1 to 30 parts by mass, more preferably 0.3 to 25 parts by mass, and more preferably 0.1 to 30 parts by mass based on 100 parts by mass of the total of the components (A) and (B). 5 to 20 parts by mass is more preferable, 1 to 10 parts by mass is particularly preferable, and 2 to 8 parts by mass is extremely preferable. When the blending amount of the component (C) is 0.1 part by mass or more, the resin can be sufficiently gelated, and when it is 30 parts by mass or less, the excellent heat resistance of the cyanate resin can be maintained.

本実施形態のフィルム形成用樹脂組成物には、必要に応じて硬化促進剤を配合してもよい。硬化促進剤としては、例えば、p−(α−クミル)フェノール、モノ(α−メチルベンジル)フェノール、及びジ(α−メチルベンジル)フェノール等の単官能フェノール類、ナフテン酸亜鉛、ナフテン酸銅、ナフテン酸コバルト、及びオクチル酸錫等の有機金属塩、トリエチルアミン、ピリジン、及びトリブチルアミン等のアミン類、メチルイミダゾール及びフェニルイミダゾール等のイミダゾール類、トリフェニルホスフィン等のリン系触媒などが挙げられる。これらは、1種を単独で用いても、2種以上を混合して用いてもよい。 A curing accelerator may be added to the film-forming resin composition of the present embodiment, if necessary. Examples of the curing accelerator include monofunctional phenols such as p-(α-cumyl)phenol, mono(α-methylbenzyl)phenol, and di(α-methylbenzyl)phenol, zinc naphthenate, copper naphthenate, and the like. Examples thereof include organic metal salts such as cobalt naphthenate and tin octylate, amines such as triethylamine, pyridine, and tributylamine, imidazoles such as methylimidazole and phenylimidazole, and phosphorus-based catalysts such as triphenylphosphine. These may be used alone or in combination of two or more.

本実施形態のフィルム形成用樹脂組成物は、一般式(1)で示されるフェノール性水酸基を有するシロキサン樹脂(D)(以下、成分(D)と呼ぶことがある)を含んでもよい。 The film-forming resin composition of the present embodiment may include a siloxane resin (D) having a phenolic hydroxyl group represented by the general formula (1) (hereinafter sometimes referred to as component (D)).

Figure 0006747440
[一般式(1)中、Rは各々独立に炭素数1〜5のアルキレン基であり、mは5〜100の整数である。]
Figure 0006747440
[In the general formula (1), each R is independently an alkylene group having 1 to 5 carbon atoms, and m is an integer of 5 to 100. ]

成分(D)のシロキサン樹脂は、上記の一般式(1)で示される構造の両末端にフェノール性水酸基を含有するシロキサン樹脂であれば特に限定されない。このようなシロキサン樹脂としては、例えば、信越化学工業株式会社製、商品名X−22−1876(水酸基価:120mgKOH/g)、商品名X−22−1875(水酸基価:60mgKOH/g)、商品名X−22−1821(水酸基価:30mgKOH/g)、商品名X−22−1822(水酸基価:20mgKOH/g)、商品名X−26−1064(水酸基価:25mgKOH/g)、東レ・ダウコーニング株式会社製、商品名BY16−752A(水酸基価:30mgKOH/g)、商品名BY16−799(水酸基価:60mgKOH/g)が挙げられる。これらは、信越化学工業株式会社又は東レ・ダウコーニング株式会社等から商業的に入手できる。これらの中で、耐熱性、低熱膨張性、及び溶剤溶解性に優れる点から、信越化学工業株式会社製、商品名X−22−1876(水酸基価:120mgKOH/g)、商品名X−22−1875(水酸基価:60mgKOH/g)、商品名X−22−1821(水酸基価:30mgKOH/g)、東レ・ダウコーニング株式会社製、商品名BY16−752A(水酸基価:30mgKOH/g)、商品名BY16−799(水酸基価:60mgKOH/g)が好ましい。 The siloxane resin of the component (D) is not particularly limited as long as it is a siloxane resin having a phenolic hydroxyl group at both ends of the structure represented by the general formula (1). As such a siloxane resin, for example, manufactured by Shin-Etsu Chemical Co., Ltd., product name X-22-1876 (hydroxyl value: 120 mgKOH/g), product name X-22-1875 (hydroxyl value: 60 mgKOH/g), product Name X-22-1821 (hydroxyl value: 30 mg KOH/g), trade name X-22-1822 (hydroxyl value: 20 mg KOH/g), trade name X-26-1064 (hydroxyl value: 25 mg KOH/g), Toray Dow The product name BY16-752A (hydroxyl group value: 30 mgKOH/g) and the product name BY16-799 (hydroxyl group value: 60 mgKOH/g) manufactured by Corning Co., Ltd. may be mentioned. These are commercially available from Shin-Etsu Chemical Co., Ltd. or Toray Dow Corning Co., Ltd. Of these, from the viewpoint of excellent heat resistance, low thermal expansion property, and solvent solubility, Shin-Etsu Chemical Co., Ltd. product name X-22-1876 (hydroxyl value: 120 mgKOH/g), product name X-22- 1875 (hydroxyl value: 60 mgKOH/g), trade name X-22-1821 (hydroxyl value: 30 mgKOH/g), manufactured by Toray Dow Corning, trade name BY16-752A (hydroxyl value: 30 mgKOH/g), trade name BY16-799 (hydroxyl value: 60 mg KOH/g) is preferred.

成分(D)の配合量は、成分(A)、及び成分(B)の総和100質量部に対して、10〜100質量部が好ましく、20〜90質量部がより好ましく、30〜80質量部が更に好ましい。成分(D)の配合量が10質量部以上であると、樹脂組成物の硬化物を十分に低弾性率化でき、樹脂の応力緩和性が向上する。100質量部以下であるとシアネート樹脂が有する優れた耐熱性を保持できる。 The blending amount of the component (D) is preferably 10 to 100 parts by mass, more preferably 20 to 90 parts by mass, and 30 to 80 parts by mass with respect to 100 parts by mass as the total of the components (A) and (B). Is more preferable. When the blending amount of the component (D) is 10 parts by mass or more, the cured product of the resin composition can have a sufficiently low elastic modulus and the stress relaxation property of the resin is improved. When the amount is 100 parts by mass or less, the excellent heat resistance of the cyanate resin can be maintained.

成分(D)を配合する場合、成分(A)、及び成分(B)とプレ反応させることで樹脂同士の相溶性を向上させることができる。すなわち、有機溶媒中、80〜120℃で成分(A)、及び成分(D)をエーテル化反応させた後、成分(B)とイミノカーボネ−ト化反応、及びトリアジン環化反応を進行させる。この反応による成分(B)の反応率(消失率と記す場合もある)を20〜70%となるように反応を行う。 When the component (D) is blended, the compatibility between the resins can be improved by pre-reacting with the component (A) and the component (B). That is, after the component (A) and the component (D) are etherified in an organic solvent at 80 to 120° C., the component (B) is reacted with the iminocarbonation reaction and the triazine cyclization reaction. The reaction is carried out so that the reaction rate (sometimes referred to as the disappearance rate) of the component (B) by this reaction is 20 to 70%.

プレ反応に使用可能な反応溶媒としては、特に限定されないが、エタノール、プロパノール、ブタノール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、酢酸エチル、γ−ブチロラクトン等のエステル系溶媒、テトラヒドロフラン等のエーテル系溶媒、トルエン、キシレン、メシチレン等の芳香族系溶媒、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等の窒素原子含有溶媒、ジメチルスルホキシド等の硫黄原子含有溶媒などが挙げられる。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。上記の中でも、揮発性が高くフィルム作製時に残留溶媒が残りにくい点から、シクロヘキサノン、プロピレングリコールモノメチルエーテル、メチルエチルケトン、メチルイソブチルケトン、トルエンが好ましく、メチルエチルケトン、メチルイソブチルケトン、トルエンがより好ましい。 The reaction solvent that can be used in the pre-reaction is not particularly limited, but alcohol solvents such as ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, and propylene glycol monomethyl ether, acetone, methyl ethyl ketone, methyl isobutyl ketone, ketone solvents such as cyclohexanone Solvents, ethyl acetate, ester solvents such as γ-butyrolactone, ether solvents such as tetrahydrofuran, aromatic solvents such as toluene, xylene, mesitylene, dimethylformamide, dimethylacetamide, nitrogen atom-containing solvents such as N-methylpyrrolidone, Examples thereof include a sulfur atom-containing solvent such as dimethyl sulfoxide. These may be used alone or in combination of two or more. Among the above, cyclohexanone, propylene glycol monomethyl ether, methyl ethyl ketone, methyl isobutyl ketone, and toluene are preferable, and methyl ethyl ketone, methyl isobutyl ketone, and toluene are more preferable, because they are highly volatile and a residual solvent is less likely to remain during film formation.

成分(A)と成分(D)のエーテル化反応では、必要に応じて反応触媒を使用することができる。反応触媒としては、例えば、トリエチルアミン、ピリジン、及びトリブチルアミン等のアミン類、メチルイミダゾール及びフェニルイミダゾール等のイミダゾール類、トリフェニルホスフィン等のリン系触媒が挙げられる。これらは、1種を単独で用いても、2種以上を混合して用いてもよい。これらの中でも、成分(A)及び成分(D)に対する反応性が高い点から、トリフェニルホスフィン等のリン系触媒を用いることが好ましい。 In the etherification reaction of the component (A) and the component (D), a reaction catalyst can be used if necessary. Examples of the reaction catalyst include amines such as triethylamine, pyridine, and tributylamine, imidazoles such as methylimidazole and phenylimidazole, and phosphorus-based catalysts such as triphenylphosphine. These may be used alone or in combination of two or more. Among these, it is preferable to use a phosphorus-based catalyst such as triphenylphosphine because of its high reactivity with the components (A) and (D).

エーテル化反応の後のイミノカーボネ−ト化反応、及びトリアジン環化反応では、有機金属塩を反応触媒として用いることができる。有機金属塩としては、例えば、ナフテン酸亜鉛、ナフテン酸マンガン、ナフテン酸銅、ナフテン酸コバルト、オクチル酸錫、及びオクチル酸コバルトが挙げられる。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。上記の中でも、硬化性、溶媒溶解性の観点から、ナフテン酸亜鉛、ナフテン酸銅が好ましい。 In the iminocarbonation reaction and the triazine cyclization reaction after the etherification reaction, an organic metal salt can be used as a reaction catalyst. Examples of the organic metal salt include zinc naphthenate, manganese naphthenate, copper naphthenate, cobalt naphthenate, tin octylate, and cobalt octylate. These may be used alone or in combination of two or more. Among the above, zinc naphthenate and copper naphthenate are preferable from the viewpoint of curability and solvent solubility.

イミノカーボネ−ト化反応、及びトリアジン環化反応では、反応率が20%以上であると樹脂が十分に相溶し、また、反応率が70%以下であると、得られる樹脂が溶媒に不溶となるのを避けられる。 In the iminocarbonation reaction and the triazine cyclization reaction, when the reaction rate is 20% or more, the resins are sufficiently compatible with each other, and when the reaction rate is 70% or less, the obtained resin is insoluble in the solvent. Can be avoided.

なお、イミノカーボネ−ト化反応は、水酸基とシアネート基の付加反応によりイミノカーボネ−ト結合(−O−(C=NH)−O−)が生成される反応であり、トリアジン環化反応は、シアネート基が3量化しトリアジン環を形成する反応である。また、このシアネート基が3量化しトリアジン環を形成する反応により3次元網目構造化が進行するが、これによって成分(A)、成分(B)、及び成分(D)が均一に分散された樹脂組成物が製造される。 The iminocarbonation reaction is a reaction in which an iminocarbonate bond (-O-(C=NH)-O-) is generated by the addition reaction of a hydroxyl group and a cyanate group, and the triazine cyclization reaction is a cyanate group. Is a reaction to form a triazine ring by trimerization. A resin in which the component (A), the component (B), and the component (D) are uniformly dispersed by the reaction of the cyanate group to trimerize to form a triazine ring, which leads to a three-dimensional network structure. The composition is manufactured.

イミノカーボネ−ト化反応、及びトリアジン環化反応の反応率は、GPC測定により反応開始時の成分(B)のピーク面積と、所定時間反応後のピーク面積を比較し、ピーク面積の消失率から求められる。 The reaction rate of the iminocarbonation reaction and the triazine cyclization reaction was determined from the disappearance rate of the peak area by comparing the peak area of the component (B) at the start of the reaction by GPC measurement with the peak area after the reaction for a predetermined time. To be

本実施形態のフィルム形成用樹脂組成物は、無機充填材(E)(以下、成分(E)と呼ぶことがある)を含んでもよい。 The film-forming resin composition of the present embodiment may include an inorganic filler (E) (hereinafter sometimes referred to as component (E)).

成分(E)の無機充填材としては、特に限定されるものではないが、シリカ、アルミナ、タルク、マイカ、カオリン、水酸化アルミニウム、ベーマイト、水酸化マグネシウム、ホウ酸亜鉛、スズ酸亜鉛、酸化亜鉛、酸化チタン、窒化ホウ素、炭酸カルシウム、硫酸バリウム、ホウ酸アルミニウム、及びチタン酸カリウム等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。 The inorganic filler of the component (E) is not particularly limited, but silica, alumina, talc, mica, kaolin, aluminum hydroxide, boehmite, magnesium hydroxide, zinc borate, zinc stannate, zinc oxide. , Titanium oxide, boron nitride, calcium carbonate, barium sulfate, aluminum borate, and potassium titanate. These may be used alone or in combination of two or more.

上記の中でも、誘電特性、耐熱性、低熱膨張性の点から、シリカが特に好ましい。シリカとしては、例えば、湿式法で製造され含水率の高い沈降シリカ、及び乾式法で製造され結合水等をほとんど含まない乾式法シリカが挙げられる。乾式法シリカとしては、さらに、製造法の違いにより破砕シリカ、フュームドシリカ、溶融球状シリカが挙げられる。これらの中で、低熱膨張性及び樹脂に充填した際の高流動性から、溶融球状シリカが好ましい。 Among the above, silica is particularly preferable in terms of dielectric properties, heat resistance, and low thermal expansion. Examples of silica include precipitated silica produced by a wet method and having a high water content, and dry silica produced by a dry method and containing almost no bound water. Examples of the dry process silica include crushed silica, fumed silica, and fused spherical silica, depending on the production method. Of these, fused spherical silica is preferable because of its low thermal expansion property and high fluidity when filled with a resin.

成分(E)として溶融球状シリカを用いる場合、その平均粒子径は0.1〜10μmであることが好ましく、0.3〜8μmであることがより好ましい。溶融球状シリカの平均粒子径を0.1μm以上にすることで、樹脂に高充填した際の流動性を良好に保つことができ、10μm以下にすることで、粗大粒子の混入確率を減らし粗大粒子起因の不良の発生を抑えることができる。ここで、平均粒子径とは、粒子の全体積を100%として粒子径による累積度数分布曲線を求めたとき、体積50%に相当する点の粒子径であり、レーザ回折散乱法を用いた粒度分布測定装置等で測定することができる。 When fused spherical silica is used as the component (E), the average particle size thereof is preferably 0.1 to 10 μm, more preferably 0.3 to 8 μm. By setting the average particle size of the fused spherical silica to 0.1 μm or more, good fluidity can be maintained when the resin is highly filled, and by setting it to 10 μm or less, the probability of inclusion of coarse particles is reduced. It is possible to suppress the occurrence of defectiveness. Here, the average particle diameter is a particle diameter at a point corresponding to a volume of 50% when the cumulative frequency distribution curve based on the particle diameter is calculated with the total volume of the particles being 100%, and the particle diameter measured by the laser diffraction scattering method. It can be measured with a distribution measuring device or the like.

本実施形態においては、異なる粒子径のシリカを組み合わせて充填することで、さらなる高充填化が可能となり、流動性を維持したまま充填率の向上が可能となる。 In the present embodiment, by combining and filling silica having different particle diameters, it is possible to further increase the filling rate and improve the filling rate while maintaining the fluidity.

成分(E)の配合量は、フィルム形成用樹脂組成物における硬化物を形成する成分全量を100質量部としたとき((E)成分等の無機物及び揮発成分を除く成分全量を100質量部としたとき)に、10〜300質量部であることが好ましく、50〜250質量部であることがより好ましい。無機充填材(E)の配合量を、上記範囲内にすることで、樹脂組成物の成形性と低熱膨張性を良好に保つことができる。 The blending amount of the component (E) is 100 parts by mass when the total amount of the components forming the cured product in the resin composition for film formation is 100 parts by mass (the total amount of the components excluding inorganic substances such as the (E) component and volatile components is 100 parts by mass) 10 to 300 parts by mass, and more preferably 50 to 250 parts by mass. By setting the compounding amount of the inorganic filler (E) within the above range, the moldability and low thermal expansion of the resin composition can be favorably maintained.

本実施形態のフィルム形成用樹脂組成物には、樹脂組成物中における無機充填材(E)の分散性を向上させるために、エポキシシラン系、メルカプトシラン系、アミノシラン系、ビニルシラン系、スチリルシラン系、メタクリロキシシラン系、アクリロキシシラン系、チタネート系、シリコーンオリゴマ等のカップリング剤を適宜添加することができる。 In order to improve the dispersibility of the inorganic filler (E) in the resin composition, the film-forming resin composition of the present embodiment has an epoxy silane type, a mercapto silane type, an amino silane type, a vinyl silane type, a styryl silane type. Coupling agents such as methacryloxysilane-based, acryloxysilane-based, titanate-based, and silicone oligomer can be added as appropriate.

また、本実施形態に係るフィルム形成用樹脂組成物には、本発明の効果を損なわない範囲で、上記以外の添加剤を配合することができる。このような添加剤としては、表面調整剤、流動調整剤、顔料、離型剤等を挙げることができる。表面調整剤としては、例えば、ポリエステル変性ポリジメチルシロキサン、ポリエーテル変性ポリジメチルシロキサン、アクリル系重合物等が挙げられる。フィルム形成用樹脂組成物に表面調整剤を配合することで、フィルム形成用樹脂組成物の支持体への濡れ性が向上する傾向がある。 Further, the film-forming resin composition according to the present embodiment may contain additives other than those described above within a range that does not impair the effects of the present invention. Examples of such additives include a surface conditioner, a flow conditioner, a pigment, and a release agent. Examples of the surface modifier include polyester-modified polydimethylsiloxane, polyether-modified polydimethylsiloxane, acrylic polymer and the like. By blending the surface modifier with the film-forming resin composition, the wettability of the film-forming resin composition to the support tends to be improved.

本実施形態の封止フィルムは、本実施形態に係るフィルム形成用樹脂組成物を用いてなるものである。 The sealing film of this embodiment is formed by using the resin composition for film formation according to this embodiment.

本実施形態の封止フィルムは、例えば、上述した成分(A)〜(C)、必要に応じて、成分(D)、(E)及びその他の成分が有機溶媒に溶解又は分散した樹脂ワニスを用いて製造することができる。 The sealing film of the present embodiment is, for example, a resin varnish obtained by dissolving or dispersing the above-mentioned components (A) to (C) and, if necessary, the components (D), (E) and other components in an organic solvent. Can be manufactured using.

樹脂ワニスは、成分(A)〜(C)、必要に応じて、成分(D)、(E)及びその他の成分を、有機溶媒と配合し、製造することができる。 The resin varnish can be produced by blending the components (A) to (C) and, if necessary, the components (D), (E) and other components with an organic solvent.

樹脂ワニスを製造する際に用いる有機溶媒としては、特に制限されないが、例えばエタノール、プロパノール、ブタノール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、酢酸エチル、γ−ブチロラクトン等のエステル系溶媒、テトラヒドロフラン等のエーテル系溶媒、トルエン、キシレン、メシチレン等の芳香族系溶媒、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等の窒素原子含有溶媒、ジメチルスルホキシド等の硫黄原子含有溶媒などが挙げられる。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。上記の中でも、揮発性が高くフィルム作製時に残留溶媒が残りにくい点から、シクロヘキサノン、プロピレングリコールモノメチルエーテル、メチルエチルケトン、メチルイソブチルケトン、トルエンが好ましく、メチルエチルケトン、メチルイソブチルケトン、トルエンがより好ましい。 The organic solvent used in producing the resin varnish is not particularly limited, for example, ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, alcohol solvents such as propylene glycol monomethyl ether, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc. Ketone solvent, ethyl acetate, ester solvent such as γ-butyrolactone, ether solvent such as tetrahydrofuran, aromatic solvent such as toluene, xylene and mesitylene, nitrogen atom such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone Examples of the solvent include a sulfur atom-containing solvent such as dimethyl sulfoxide. These may be used alone or in combination of two or more. Among the above, cyclohexanone, propylene glycol monomethyl ether, methyl ethyl ketone, methyl isobutyl ketone, and toluene are preferable, and methyl ethyl ketone, methyl isobutyl ketone, and toluene are more preferable, because they are highly volatile and a residual solvent is less likely to remain during film formation.

樹脂ワニスを製造する際の有機溶媒の配合量は、成分(A)〜(C)、並びに、必要に応じて配合される成分(D)、(E)及びその他の成分の総和を100質量部としたときに、8〜50質量部が好ましく、9〜45質量部がより好ましく、10〜40質量部が特に好ましい。有機溶媒の配合量を8質量部以上とすることで、樹脂ワニスの流動性が確保されやすくなり、50質量部以下とすることで、フィルム化において揮発させなければならない溶媒量を少なくできる。 The amount of the organic solvent used for producing the resin varnish is 100 parts by mass based on the total amount of the components (A) to (C), and optionally the components (D), (E) and other components. In this case, 8 to 50 parts by mass is preferable, 9 to 45 parts by mass is more preferable, and 10 to 40 parts by mass is particularly preferable. By setting the amount of the organic solvent to be 8 parts by mass or more, the fluidity of the resin varnish can be easily ensured, and by setting it to be 50 parts by mass or less, the amount of the solvent that must be volatilized in forming a film can be reduced.

このようにして製造した樹脂ワニスを、支持体の片面又は両面に塗布した後、加熱乾燥させ、封止フィルムを得ることができる。 The resin varnish thus produced is applied to one side or both sides of the support and then dried by heating to obtain a sealing film.

用いる支持体としては、特に限定されるものではないが、例えば、ポリエチレンフィルム、ポリプロピレンフィルム等のポリオレフィンフィルム、ポリ塩化ビニルフィルム等のビニルフィルム、ポリエチレンテレフタレートフィルム等のポリエステルフィルム、ポリカーボネートフィルム、アセチルセルロースフィルム、テトラフルオロエチレンフィルム、並びに、銅箔及びアルミニウム箔等の金属箔が挙げられる。これらの中でも、価格及び耐熱性の点で、ポリエステルフィルムを用いることが好ましい。 The support used is not particularly limited, for example, polyethylene film, polyolefin film such as polypropylene film, vinyl film such as polyvinyl chloride film, polyester film such as polyethylene terephthalate film, polycarbonate film, acetyl cellulose film. , Tetrafluoroethylene film, and metal foils such as copper foil and aluminum foil. Among these, it is preferable to use a polyester film in terms of price and heat resistance.

支持体の厚みも、特に限定されるものではないが、例えば、10〜200μmであることが好ましく、20〜150μmであることがより好ましい。 The thickness of the support is also not particularly limited, but is preferably 10 to 200 μm, and more preferably 20 to 150 μm, for example.

支持体の片面又は両面に樹脂ワニスを塗布する方法としては、特に限定されるわけではないが、例えば、コンマコーター、バーコーター、キスコーター、ロールコーター、グラビアコーター、ダイコーター等の塗工装置を用いることができる。 The method for applying the resin varnish on one side or both sides of the support is not particularly limited, but for example, a coating device such as a comma coater, a bar coater, a kiss coater, a roll coater, a gravure coater, or a die coater is used. be able to.

支持体に塗布した樹脂ワニスを加熱乾燥させる方法としては、特に限定されるわけではないが、例えば、熱風吹きつけ等の方法が挙げられる。例えば、100〜140℃で、5〜20分間乾燥させることで、封止フィルムを得ることができる。 The method of heating and drying the resin varnish applied to the support is not particularly limited, and examples thereof include a method of blowing hot air. For example, a sealing film can be obtained by drying at 100 to 140° C. for 5 to 20 minutes.

本実施形態の封止フィルムの厚みは30〜250μmであることが好ましい。また、本実施形態の封止フィルムを複数枚積層して、250μmを超える封止用フィルムを製造することもできる。 The thickness of the sealing film of this embodiment is preferably 30 to 250 μm. In addition, a plurality of sealing films of this embodiment can be laminated to produce a sealing film having a thickness of more than 250 μm.

封止フィルムにおける揮発成分(主に有機溶媒)の含有量は、封止フィルムの全質量基準で、0.2〜1.6質量%であることが好ましく、0.3〜1質量%であることがより好ましい。このような範囲とすることにより、フィルム割れ等の不具合を防止でき、良好な取扱い性が得られる。また、熱硬化時に揮発成分の揮発に伴うボイド等の不具合を防止することができる。 The content of volatile components (mainly organic solvents) in the sealing film is preferably 0.2 to 1.6% by mass, and 0.3 to 1% by mass, based on the total mass of the sealing film. Is more preferable. Within such a range, problems such as film cracking can be prevented and good handleability can be obtained. Further, it is possible to prevent defects such as voids caused by volatilization of volatile components during heat curing.

本実施形態の支持体付き封止フィルムは、本実施形態の封止フィルムの少なくとも1つの面に支持体が設けられたものである。支持体としては、前述の封止フィルムを製造する際に用いられる支持体を用いることができる。 The encapsulating film with a support of the present embodiment has a support provided on at least one surface of the encapsulating film of the present embodiment. As the support, the support used when manufacturing the above-mentioned sealing film can be used.

本実施形態の半導体装置は、本実施形態の封止フィルムによって封止された半導体素子を備えるものである。封止フィルムによる半導体素子の封止には本実施形態の支持体付き封止フィルムを用いることもできる。 The semiconductor device of this embodiment includes a semiconductor element sealed with the sealing film of this embodiment. The sealing film with a support of the present embodiment can also be used for sealing the semiconductor element with the sealing film.

図1及び図2は、半導体装置の製造方法の一実施形態を説明するための模式断面図である。本実施形態に係る方法は、仮固定材40を有する基板30上に並べて配置された被埋め込み対象である半導体素子20に、支持体1と支持体1上に設けられた封止フィルム2とを備える支持体付き封止フィルム10を対向させ、半導体素子20に封止フィルム2を加熱下で押圧することにより、封止フィルム2に半導体素子20を埋め込む工程(図1(a)及び(b))と、半導体素子が埋め込まれた封止フィルムを硬化させる工程(図1(c))とを備える。本実施形態においては、ラミネート法によって、封止フィルムが熱硬化した硬化物2aに半導体素子20が埋め込まれた封止成形物が得られているが、コンプレッションモールドにより封止成形物を得てもよい。 1 and 2 are schematic cross-sectional views for explaining one embodiment of a method for manufacturing a semiconductor device. In the method according to the present embodiment, the semiconductor element 20 to be embedded, which is arranged side by side on the substrate 30 having the temporary fixing material 40, includes the support 1 and the sealing film 2 provided on the support 1. A step of embedding the semiconductor element 20 in the sealing film 2 by facing the sealing film 10 with a support provided and pressing the sealing film 2 against the semiconductor element 20 under heating (FIGS. 1A and 1B). ) And curing the sealing film in which the semiconductor element is embedded (FIG. 1C). In the present embodiment, the encapsulation molded product in which the semiconductor element 20 is embedded in the cured product 2a obtained by thermosetting the encapsulating film is obtained by the laminating method, but even if the encapsulation molded product is obtained by the compression mold. Good.

使用するラミネーターとしては、特に限定されるものではないが、ロール式、バルーン式等のラミネーターが挙げられる。これらの中でも、埋め込み性の観点からは、真空加圧が可能なバルーン式が好ましい。 The laminator to be used is not particularly limited, but examples thereof include roll type and balloon type laminators. Among these, from the viewpoint of embedding property, a balloon type that allows vacuum pressurization is preferable.

ラミネート温度は、通常、フィルム状の支持体の軟化点以下で行う。更に、ラミネート温度は、封止用フィルムの最低溶融粘度付近が好ましい。ラミネート時の圧力は、埋め込む半導体素子又は電子部品のサイズ、密集度によって変わるが、0.2〜1.5MPaの範囲で行うことが好ましく、0.3〜1.0MPaの範囲で行うことがより好ましい。ラミネート時間も、特に限定されるものではないが、20〜600秒が好ましく、30〜300秒がより好ましく、40〜120秒が更に好ましい。 The laminating temperature is usually below the softening point of the film-shaped support. Further, the laminating temperature is preferably around the minimum melt viscosity of the sealing film. The pressure during lamination varies depending on the size and density of the semiconductor element or electronic component to be embedded, but is preferably in the range of 0.2 to 1.5 MPa, more preferably 0.3 to 1.0 MPa. preferable. The laminating time is also not particularly limited, but is preferably 20 to 600 seconds, more preferably 30 to 300 seconds, and further preferably 40 to 120 seconds.

封止フィルムの硬化は、例えば、大気下又は不活性ガス下で行うことができる。硬化温度としては、特に限定されるものではないが、80〜280℃が好ましく、100〜240℃がより好ましく、120〜200℃が更に好ましい。硬化温度が80℃以上であれば、封止フィルムの硬化が十分に進み、不具合の発生を抑制することができる。硬化温度が280℃以下の場合は、他の材料への熱害の発生を抑制することができる。硬化時間も、特に限定されるものではないが、30〜600分が好ましく、45〜300分がより好ましく、60〜240分が更に好ましい。硬化時間がこれらの範囲であれば、封止フィルムの硬化が十分に進み、良好な生産効率が得られる。また、硬化条件は、複数を組み合わせてもよい。 Curing of the sealing film can be performed, for example, in the air or under an inert gas. The curing temperature is not particularly limited, but is preferably 80 to 280°C, more preferably 100 to 240°C, and further preferably 120 to 200°C. When the curing temperature is 80° C. or higher, the sealing film is sufficiently cured, and the occurrence of defects can be suppressed. When the curing temperature is 280° C. or lower, heat damage to other materials can be suppressed. The curing time is also not particularly limited, but is preferably 30 to 600 minutes, more preferably 45 to 300 minutes, and further preferably 60 to 240 minutes. When the curing time is within these ranges, the sealing film is sufficiently cured and good production efficiency can be obtained. Moreover, a plurality of curing conditions may be combined.

本実施形態においては、以下の絶縁層形成、配線パターン形成、ボールマウント、及びダイシングの各工程を経て、半導体装置を得ることができる。 In this embodiment, a semiconductor device can be obtained through the following steps of forming an insulating layer, forming a wiring pattern, ball mounting, and dicing.

まず、基板30から剥離した封止成形物100の半導体素子20が露出する側に、再配線材用の絶縁層50を設ける(図2(a)及び(b))。次に、絶縁層50に対し、配線パターン形成を行った後、ボールマウントを行い、絶縁層52、配線54、ボール56を形成する。 First, an insulating layer 50 for a rewiring material is provided on the side of the molded encapsulation 100 separated from the substrate 30 where the semiconductor element 20 is exposed (FIGS. 2A and 2B ). Next, after forming a wiring pattern on the insulating layer 50, ball mounting is performed to form the insulating layer 52, the wiring 54, and the ball 56.

次に、ダイシングカッター60により、封止成形物を個片化して、半導体装置200を得る。 Next, the dicing cutter 60 separates the sealing molded product into individual pieces to obtain the semiconductor device 200.

以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

<製造例1:熱硬化性樹脂組成物(A−1)の作製>
温度計、攪拌装置、還流冷却管の付いた加熱及び冷却可能な容積500ミリリットルの反応容器に、ビスフェノールF型エポキシ樹脂(三菱化学株式会社製、JER806):90.0gと、一般式(1)で示されるフェノール性水酸基を有するシロキサン樹脂(信越化学工業株式会社製、X−22−1876):90.0gと、メチルイソブチルケトン:120.0gと、トリフェニルホスフィン:1.45gを投入した。反応容器を90℃に昇温し、同温で4時間攪拌することでエーテル化反応を完結させた。次いで、反応容器を室温(25℃)まで冷却した後に、フェノールノボラック型シアネート樹脂(ロンザジャパン株式会社製、PT−30):120.0gを投入した。反応容器を110℃に昇温した後、ナフテン酸亜鉛の8質量%ミネラルスピリット溶液を0.06g投入した。そして、同温で反応液を4時間反応させた。その後、その反応液を室温に冷却し熱硬化性樹脂組成物の溶液を得た。
<Production Example 1: Preparation of thermosetting resin composition (A-1)>
Bisphenol F type epoxy resin (JER806 manufactured by Mitsubishi Chemical Co., Ltd.): 90.0 g and a general formula (1) were placed in a reaction vessel with a thermometer, a stirrer, and a reflux condenser that can heat and cool. A siloxane resin having a phenolic hydroxyl group represented by (X-22-1876, manufactured by Shin-Etsu Chemical Co., Ltd.): 90.0 g, methyl isobutyl ketone: 120.0 g, and triphenylphosphine: 1.45 g were added. The reaction vessel was heated to 90° C. and stirred at the same temperature for 4 hours to complete the etherification reaction. Next, after cooling the reaction container to room temperature (25° C.), 120.0 g of phenol novolac type cyanate resin (PT-30, manufactured by Lonza Japan Co., Ltd.) was added. After raising the temperature of the reaction vessel to 110° C., 0.06 g of an 8 mass% mineral spirit solution of zinc naphthenate was added. Then, the reaction solution was reacted at the same temperature for 4 hours. Then, the reaction liquid was cooled to room temperature to obtain a solution of a thermosetting resin composition.

この反応溶液を少量取り出し、GPC測定(ポリスチレン換算、溶離液:テトラヒドロフラン)を行った。溶出時間が約12.2分付近に出現する合成原料のフェノールノボラック型シアネート樹脂のピーク面積について、反応開始時のフェノールノボッラク型シアネート樹脂のピーク面積と比較したところ、ピーク面積の消失率が33%であった。これより、フェノールノボッラク型シアネート樹脂の反応率は33%であった。さらに、反応溶液を少量取り出し、薄膜形成法によりFT−IR測定を行ったところ、重合反応によって生成されるトリアジン環の波数1560cm−1付近に出現するピークを確認することができた。また、エポキシ基の挿入反応によって生成されるイソシアヌレート及びオキサゾリジノンの波数1670cm−1及び1740cm−1付近に出現するピークをそれぞれ確認することができた。その後、所定量のメチルイソブチルケトンを添加することで樹脂分を70質量%に調整し、熱硬化性樹脂組成物(A−1)を得た。A small amount of this reaction solution was taken out and subjected to GPC measurement (in terms of polystyrene, eluent: tetrahydrofuran). The peak area of the phenol novolac type cyanate resin as a synthetic raw material that appears at an elution time of about 12.2 minutes was compared with the peak area of the phenol novolak type cyanate resin at the start of the reaction. It was 33%. From this, the reaction rate of the phenol novolak type cyanate resin was 33%. Furthermore, when a small amount of the reaction solution was taken out and FT-IR measurement was performed by a thin film forming method, a peak appearing in the vicinity of a wave number of 1560 cm −1 of the triazine ring produced by the polymerization reaction could be confirmed. It was also possible to confirm a peak appeared in the vicinity of isocyanurate and wave number 1670 cm -1 and 1740 cm -1 of the oxazolidinone produced by the insertion reaction of the epoxy groups respectively. Then, the resin content was adjusted to 70 mass% by adding a predetermined amount of methyl isobutyl ketone to obtain a thermosetting resin composition (A-1).

<ゲル化性評価用樹脂組成物の作製>
表1に示した各成分の所定量をメチルイソブチルケトンに溶解し、固形分70質量%の樹脂ワニスを作製した。調整した樹脂ワニスを2mlのスクリュー管に加え、乾燥炉にて120℃で15分間加熱乾燥し、ゲル化評価用樹脂組成物を得た。
<Preparation of resin composition for gelation evaluation>
Predetermined amounts of the components shown in Table 1 were dissolved in methyl isobutyl ketone to prepare a resin varnish having a solid content of 70% by mass. The adjusted resin varnish was added to a 2 ml screw tube and heated and dried at 120° C. for 15 minutes in a drying oven to obtain a resin composition for gelation evaluation.

<支持体付き封止フィルムの作製>
表2に示した各成分の所定量をメチルイソブチルケトンに溶解、分散させ、固形分80質量%の樹脂ワニスを調製した。調製したフィルム形成用樹脂組成物からなる樹脂ワニスをポリエチレンテレフタレートフィルムの片面に塗布して、乾燥炉にて120℃で8分間加熱乾燥し、半硬化状態の支持体付き封止フィルム(封止フィルムの厚さ:100μm)を作製した。
<Production of sealing film with support>
Predetermined amounts of the components shown in Table 2 were dissolved and dispersed in methyl isobutyl ketone to prepare a resin varnish having a solid content of 80% by mass. A resin varnish made of the prepared resin composition for film formation is applied to one side of a polyethylene terephthalate film, and is heated and dried at 120° C. for 8 minutes in a drying oven to obtain a semi-cured sealing film with a support (sealing film). Thickness: 100 μm) was manufactured.

表中の配合成分としては以下のものを用いた。
(1)液状エポキシ樹脂
JER806:ビスフェノールF型エポキシ樹脂(三菱化学株式会社製、JER806、商品名)
(2)シアネート樹脂
PT−30:フェノールノボラック型シアネート樹脂(ロンザジャパン株式会社製、Primaset PT−30、商品名)
(3)オイルゲル化剤
ゲルオールD:1,3:2,4−ビス−O−ベンジリデン−D−グルシトール(新日本理化株式会社製、ゲルオールD、商品名)
HSA:12−ヒドロキシステアリン酸(和光純薬工業株式会社製、商品名)
NGB:n−ラウロイル−L−グルタミン酸−α,γ−ジブチルアミド(和光純薬工業株式会社製、商品名)
The following were used as the compounding ingredients in the table.
(1) Liquid epoxy resin JER806: Bisphenol F type epoxy resin (manufactured by Mitsubishi Chemical Corporation, JER806, trade name)
(2) Cyanate resin PT-30: Phenol novolac type cyanate resin (Lonza Japan Co., Ltd., Primaset PT-30, trade name)
(3) Oil gelling agent Gelol D:1,3:2,4-bis-O-benzylidene-D-glucitol (Shin Nippon Rika Co., Ltd., Gelol D, trade name)
HSA: 12-hydroxystearic acid (Wako Pure Chemical Industries, Ltd., trade name)
NGB: n-lauroyl-L-glutamic acid-α,γ-dibutyramide (manufactured by Wako Pure Chemical Industries, Ltd., trade name)

(4)有機金属塩
ナフテン酸亜鉛:ナフテン酸亜鉛8質量%ミネラルスピリット溶液(和光純薬工業株式会社製、商品名)
(5)フェノール化合物
p−(α−クミル)フェノール:p−(α−クミル)フェノール(東京化成工業株式会社製、商品名)
(6)表面調整剤
BYK−310:ポリエステル変性ポリジメチルシロキサン(BYK社製、商品名)
(7)無機充填材
球状シリカ:球状シリカ 平均粒子径0.5μm(株式会社アドマテックス製、SC−2500−SXJ、商品名)
(4) Organic metal salt zinc naphthenate: zinc naphthenate 8% by mass mineral spirit solution (manufactured by Wako Pure Chemical Industries, Ltd., trade name)
(5) Phenol compound p-(α-cumyl)phenol: p-(α-cumyl)phenol (trade name, manufactured by Tokyo Chemical Industry Co., Ltd.)
(6) Surface modifier BYK-310: Polyester-modified polydimethylsiloxane (manufactured by BYK, trade name)
(7) Inorganic filler spherical silica: Spherical silica Average particle diameter 0.5 μm (manufactured by Admatechs Co., Ltd., SC-2500-SXJ, trade name)

<評価方法>
(1)樹脂組成物のゲル化性
得られたゲル化性評価用樹脂組成物が入ったスクリュー管を約60°傾けて3分間放置し、樹脂の流動の有無からゲル化性を評価した。その結果を表1に示した。
「A」;樹脂の流動無し
「B」;樹脂の流動有り
<Evaluation method>
(1) Gelation property of resin composition The screw tube containing the obtained resin composition for gelation evaluation was tilted at about 60° and left for 3 minutes, and the gelation property was evaluated based on whether or not the resin flowed. The results are shown in Table 1.
"A": No resin flow "B": Resin flow

(2)支持体付き封止フィルムの揮発成分の含有量の測定
得られた支持体付き封止フィルムを5cm角にカットし、180℃で1時間乾燥させ、乾燥前と乾燥後の質量変化を求めることにより、下記式にしたがって、封止フィルムの全質量基準における揮発成分の含有量を求めた。その結果を表2に示した。
揮発成分の含有量(質量%)=[(乾燥前質量−乾燥後質量)/(乾燥前質量−支持体の質量)]×100
(2) Measurement of Content of Volatile Components in Supporting Encapsulating Film The obtained supporting encapsulating film was cut into 5 cm square pieces, dried at 180° C. for 1 hour, and the mass change before and after drying was measured. By obtaining the content, the content of the volatile component on the basis of the total weight of the sealing film was obtained according to the following formula. The results are shown in Table 2.
Content of volatile components (mass %)=[(mass before drying−mass after drying)/(mass before drying−mass of support)]×100

(3)封止フィルムの耐屈曲性
得られた支持体付き封止フィルムの耐屈曲性は、屈曲試験機(JIS型タイプ1、円筒型マンドレル法)を用い以下の手順で評価した。
(3) Flexing resistance of the sealing film The bending resistance of the obtained sealing film with a support was evaluated by the following procedure using a bending tester (JIS type 1, cylindrical mandrel method).

試験機として、株式会社ヨシミツ精機製の屈曲試験機(JIS型タイプ1、円筒型マンドレル法、直径2mm)を用意した。支持体付き封止フィルムを5cm角にカットしたものを試験片とし、屈曲試験機に支持体をあて、試験片を180°曲げたときのクラックの発生の有無を評価した。その結果を表2に示した。耐屈曲性の評価結果が「B」である場合、封止フィルムは取り扱い性に劣る。 As a tester, a bending tester (JIS type 1, cylindrical mandrel method, diameter 2 mm) made by Yoshimits Seiki Co., Ltd. was prepared. A test piece was obtained by cutting the support-attached sealing film into 5 cm square, and the support was placed on a bending tester to evaluate whether or not cracks were generated when the test piece was bent 180°. The results are shown in Table 2. When the bending resistance evaluation result is "B", the sealing film is inferior in handleability.

(4)封止フィルムのタック性
得られた支持体付き封止フィルムに指を押し当て、封止フィルムが指に張り付いた場合は「B」、張り付かない場合は「A」として評価した。その結果を表2に示した。タック性の評価結果が「B」である場合、封止フィルムは取り扱い性に劣る。
(4) Tackiness of sealing film A finger was pressed against the obtained sealing film with a support, and when the sealing film stuck to the finger, it was evaluated as "B", and when not sticking, it was evaluated as "A". .. The results are shown in Table 2. When the tackiness evaluation result is "B", the sealing film is inferior in handleability.

(5)樹脂硬化物のガラス転移温度(Tg)
得られた支持体付き封止フィルムの封止フィルム部分を削り取り、テフロン(登録商標)の型枠に所定量入れ、その両面に銅箔を、銅箔の光沢面が接するように配置し、240℃、2MPa、60分のプレス条件で加熱加圧成形した。成形後、銅箔をはがし、樹脂組成物の硬化物の板(厚さ:1mm)を作製した。
(5) Glass transition temperature (Tg) of cured resin
The encapsulating film part of the obtained encapsulating film with a support was scraped off, put in a predetermined amount in a Teflon (registered trademark) mold, and copper foil was placed on both sides of the encapsulating film so that the shiny side of the copper foil was in contact. The molding was carried out under heat and pressure at a pressure of 2 MPa for 60 minutes. After molding, the copper foil was peeled off to prepare a plate (thickness: 1 mm) of a cured product of the resin composition.

得られた硬化物の板のtanδを動的粘弾性測定装置(株式会社ユービーエム製、Rheogel−E4000)により、測定した(引張モード、周波数10Hz、昇温速度5℃/min)。そのtanδの極大値をガラス転移温度とした。その結果を表2に示した。 The tan δ of the obtained cured product plate was measured by a dynamic viscoelasticity measuring device (Rheogel-E4000 manufactured by UBM Co., Ltd.) (tensile mode, frequency 10 Hz, temperature rising rate 5° C./min). The maximum value of the tan δ was defined as the glass transition temperature. The results are shown in Table 2.

Figure 0006747440
Figure 0006747440

Figure 0006747440
Figure 0006747440

表1には成分(C)のオイルゲル化剤を配合した実施例1〜6と、オイルゲル化剤を配合していない比較例1〜2のゲル化性を示した。オイルゲル化剤を配合することで、組成物にチクソ性を付与することができ、ワニス入りスクリュー管を傾けて3分間経過しても流動性がなく、形状を維持することができる。表1から、オイルゲル化剤(C)の配合によって、ゲル化性を付与できることが示された。 Table 1 shows the gelling properties of Examples 1 to 6 in which the oil gelling agent as the component (C) was blended and Comparative Examples 1 to 2 in which the oil gelling agent was not blended. By adding an oil gelling agent, thixotropy can be imparted to the composition, and even if the screw tube containing the varnish is tilted for 3 minutes and there is no fluidity, the shape can be maintained. From Table 1, it was shown that the gelation property can be imparted by the addition of the oil gelling agent (C).

表2の実施例7〜8、比較例3〜4には、成分(A)の液状エポキシ樹脂を共通に用いているので、封止フィルムの厚みが厚い場合でも、揮発成分の含有率を低下させることができる。揮発成分の含有率を低下させると、封止フィルムには変形による割れ又はクラックが生じやすいが、表2の実施例7、8から、フィルム中の揮発成分の含有量が0.6質量%以下でも良好な耐屈曲性を示すことが確認された。さらに、液状の樹脂を用いた場合、封止フィルムには液状の樹脂に起因する過度なタックが生じやすいが、表2の実施例7、8から、タック性も良好(べたつきのない)な100μm厚のフィルムが作製可能であることが確認された。 Since the liquid epoxy resin of the component (A) is commonly used in Examples 7 to 8 and Comparative Examples 3 to 4 in Table 2, the content of volatile components is reduced even when the thickness of the sealing film is large. Can be made. When the content of the volatile component is reduced, the sealing film is likely to be cracked or cracked due to deformation, but from Examples 7 and 8 in Table 2, the content of the volatile component in the film is 0.6% by mass or less. However, it was confirmed that good flex resistance was exhibited. Furthermore, when a liquid resin is used, the sealing film is apt to have excessive tackiness due to the liquid resin, but from Examples 7 and 8 in Table 2, the tackiness is 100 μm which is good (no stickiness). It was confirmed that a thick film could be produced.

一方、オイルゲル化剤(C)を含まない比較例3、4の封止フィルムは、フィルムの耐屈曲性は良好であったが、過度なタックが生じ取り扱い性が悪化した。 On the other hand, the sealing films of Comparative Examples 3 and 4 which did not contain the oil gelling agent (C) were good in the flex resistance of the film, but excessive tack occurred and the handleability was deteriorated.

実施例7、8の封止フィルムは、硬化物のガラス転移温度(Tg)が200℃以上であった。一般的に有機材料は、Tgを超える温度領域において物性が大きく損なわれるため、高いTgを有する硬化物を形成することができる本発明に係るフィルム形成用樹脂組成物によれば、良好な耐熱性、信頼性を得ることができる。 The glass transition temperature (Tg) of the cured product of the sealing films of Examples 7 and 8 was 200° C. or higher. In general, the physical properties of an organic material are greatly impaired in a temperature range exceeding Tg. Therefore, the resin composition for forming a film according to the present invention, which can form a cured product having a high Tg, has good heat resistance. , Can get reliability.

以上より、本発明によれば、揮発成分を低減しても取り扱い性が良好であり、且つ十分に高いガラス転移温度を有する硬化物を形成できるフィルム形成用樹脂組成物、封止フィルム及び支持体付き封止フィルムを提供することができることが分かる。 As described above, according to the present invention, a film-forming resin composition, a sealing film, and a support which have good handleability even when the volatile component is reduced and can form a cured product having a sufficiently high glass transition temperature. It can be seen that an attached sealing film can be provided.

1…支持体、2…封止フィルム、2a…硬化物(封止部)、10…支持体付き封止フィルム、20…半導体素子、30…基板、40…仮固定材、50…絶縁層、52…絶縁層、54…配線、56…ボール、60…ダイシングカッター、100…封止成形物、200…半導体装置。 DESCRIPTION OF SYMBOLS 1... Support, 2... Sealing film, 2a... Cured material (sealing part), 10... Supporting sealing film, 20... Semiconductor element, 30... Substrate, 40... Temporary fixing material, 50... Insulating layer, 52... Insulating layer, 54... Wiring, 56... Ball, 60... Dicing cutter, 100... Sealing molded article, 200... Semiconductor device.

Claims (6)

液状エポキシ樹脂(A)、シアネート樹脂(B)、オイルゲル化剤(C)、及び下記一般式(1)で示されるフェノール性水酸基を有するシロキサン樹脂(D)を含むフィルム形成用樹脂組成物。
Figure 0006747440

[一般式(1)中、Rは各々独立に炭素数1〜5のアルキレン基であり、mは5〜100の整数である。]
Liquid epoxy resin (A), the cyanate resin (B), o Irugeru agent (C), and film-forming resin composition comprising a siloxane resin (D) having a phenolic hydroxyl group represented by the following general formula (1).
Figure 0006747440

[In the general formula (1), each R is independently an alkylene group having 1 to 5 carbon atoms, and m is an integer of 5 to 100. ]
無機充填材(E)を更に含む、請求項1に記載のフィルム形成用樹脂組成物。 The film-forming resin composition according to claim 1, further comprising an inorganic filler (E). 請求項1又は2に記載のフィルム形成用樹脂組成物を用いてなる封止フィルム。 A sealing film comprising the resin composition for film formation according to claim 1 or 2 . 厚さが30〜250μmである、請求項に記載の封止フィルム。 The sealing film according to claim 3 , which has a thickness of 30 to 250 µm. 請求項又はに記載の封止フィルムの少なくとも1つの面に支持体が設けられた支持体付き封止フィルム。 At least one sealing film support with the support is provided on the surface of the sealing film according to claim 3 or 4. 請求項又はに記載の封止フィルム、又は請求項に記載の支持体付き封止フィルムの前記封止フィルムによって封止された半導体素子を備える、半導体装置。
A semiconductor device comprising the sealing film according to claim 3 or 4 , or a semiconductor element sealed by the sealing film of the sealing film with a support according to claim 5 .
JP2017525264A 2015-06-16 2016-06-15 Resin composition for film formation, sealing film using the same, sealing film with support, and semiconductor device Expired - Fee Related JP6747440B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015121091 2015-06-16
JP2015121091 2015-06-16
PCT/JP2016/067817 WO2016204183A1 (en) 2015-06-16 2016-06-15 Resin composition for film formation, sealing film using same, sealing film provided with support and semiconductor device

Publications (2)

Publication Number Publication Date
JPWO2016204183A1 JPWO2016204183A1 (en) 2018-04-05
JP6747440B2 true JP6747440B2 (en) 2020-08-26

Family

ID=57545991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017525264A Expired - Fee Related JP6747440B2 (en) 2015-06-16 2016-06-15 Resin composition for film formation, sealing film using the same, sealing film with support, and semiconductor device

Country Status (3)

Country Link
JP (1) JP6747440B2 (en)
TW (1) TW201710367A (en)
WO (1) WO2016204183A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3712191B1 (en) 2017-11-14 2023-01-04 Koki Company Limited Resin composition for reinforcement and electronic component device
KR102691391B1 (en) * 2021-12-29 2024-08-05 주식회사 케이씨씨 Granule type epoxy resin compositions
KR102696698B1 (en) * 2021-12-30 2024-08-21 주식회사 케이씨씨 Granule type epoxy resin compositions
KR102696699B1 (en) * 2021-12-30 2024-08-21 주식회사 케이씨씨 Granule type epoxy resin compositions

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06231918A (en) * 1993-02-03 1994-08-19 Sumitomo Metal Mining Co Ltd Composition for bond magnet and its manufacture
US6312621B1 (en) * 1998-11-17 2001-11-06 Johnson Matthey Electronics, Inc. Via fill formulations which are electrically and/or thermally conductive, or non-conductive
US6462108B1 (en) * 2000-07-20 2002-10-08 National Starch And Chemical Investment Holding Corporation High Tg potting compound
JP4655501B2 (en) * 2004-04-12 2011-03-23 日立化成工業株式会社 Liquid encapsulating resin composition, electronic component device, and manufacturing method thereof
CN104053721B (en) * 2012-01-23 2016-12-21 味之素株式会社 Resin composition
JP2013216884A (en) * 2012-03-14 2013-10-24 Hitachi Chemical Co Ltd Thermosetting resin composition, prepreg and laminated plate
JP6225611B2 (en) * 2013-09-24 2017-11-08 日立化成株式会社 Photo-curable resin composition, image display device and manufacturing method thereof
JP6428153B2 (en) * 2014-10-27 2018-11-28 味の素株式会社 Resin composition

Also Published As

Publication number Publication date
JPWO2016204183A1 (en) 2018-04-05
TW201710367A (en) 2017-03-16
WO2016204183A1 (en) 2016-12-22

Similar Documents

Publication Publication Date Title
KR102295921B1 (en) Resin composition, resin film, and semiconductor device and method for manufacturing same
TWI585147B (en) Resin composition, resin sheet, resin sheet with metal foil, cured resin sheet, structure, and semiconductor device for power or luminous source
KR102590185B1 (en) Resin composition, resin film, semiconductor laminate, method for manufacturing semiconductor laminate, and method for manufacturing semiconductor device
WO2016104772A1 (en) Epoxy resin, epoxy resin composition, inorganic-filler-containing epoxy resin composition, resin sheet, cured product, and epoxy compound
JP6361566B2 (en) Resin composition, resin film, semiconductor device and manufacturing method thereof
JP6265105B2 (en) Silicone resin, resin composition, resin film, semiconductor device and manufacturing method thereof
JP5584538B2 (en) Epoxy resin composition, molded product, varnish, film adhesive and copper foil with film adhesive
JP6747440B2 (en) Resin composition for film formation, sealing film using the same, sealing film with support, and semiconductor device
JP2013189625A (en) High thermal conductive resin cured product, high thermal conductive semicured resin film, and high thermal conductive resin composition
JP6222209B2 (en) Resin composition, resin sheet, resin sheet with metal foil, cured resin sheet, structure, and semiconductor device for power or light source
KR102400059B1 (en) Resin composition, resin film, method for producing resin film, method for producing semiconductor device, and semiconductor device
WO2013161606A1 (en) Epoxy resin composition, resin sheet, cured article, and phenoxy resin
JP2013095915A (en) Resin composition, resin film, semiconductor device and method of manufacturing the same
JP2016138194A (en) Resin composition, resin sheet, and resin sheet cured product
JP2019048905A (en) Resin composition, resin film, semiconductor laminate, method for producing semiconductor laminate and method for producing semiconductor device
JP7099453B2 (en) Encapsulating film, encapsulation structure and method for manufacturing encapsulation structure
JP2008277768A (en) Insulative heat conductive sheet
JP7222955B2 (en) Resin composition and resin film
TWI824032B (en) Resin compositions, composite molded articles, semiconductor elements and resin cured products
JP6857895B2 (en) Resin composition, thermosetting film, cured product, printed wiring board, semiconductor device
JP2017186497A (en) Resin composition, resin film, method of producing the resin film, method of producing semiconductor device, and semiconductor device
TWI766846B (en) Flame retardant resin composition, flame retardant resin film, semiconductor device and method for producing the same
JP5981384B2 (en) Resin composition, resin film, semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200720

R151 Written notification of patent or utility model registration

Ref document number: 6747440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees