JP6743629B2 - Method for separating both Dy and Tb from a processing object - Google Patents

Method for separating both Dy and Tb from a processing object Download PDF

Info

Publication number
JP6743629B2
JP6743629B2 JP2016192236A JP2016192236A JP6743629B2 JP 6743629 B2 JP6743629 B2 JP 6743629B2 JP 2016192236 A JP2016192236 A JP 2016192236A JP 2016192236 A JP2016192236 A JP 2016192236A JP 6743629 B2 JP6743629 B2 JP 6743629B2
Authority
JP
Japan
Prior art keywords
mixture
rare earth
ions
molten salt
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016192236A
Other languages
Japanese (ja)
Other versions
JP2018053326A (en
JP2018053326A5 (en
Inventor
雄 宮本
雄 宮本
星 裕之
裕之 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2016192236A priority Critical patent/JP6743629B2/en
Publication of JP2018053326A publication Critical patent/JP2018053326A/en
Publication of JP2018053326A5 publication Critical patent/JP2018053326A5/ja
Application granted granted Critical
Publication of JP6743629B2 publication Critical patent/JP6743629B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、重希土類元素であるDyとTbを含む処理対象物から両者を分離する方法に関する。 The present invention relates to a method of separating a heavy rare earth element Dy and a Tb from a processing target containing Tb.

R−Fe−B系永久磁石(Rは希土類元素)は、高い磁気特性を有していることから、今日様々な分野で使用されていることは周知の通りである。このような背景のもと、R−Fe−B系永久磁石の生産工場では、日々、大量の磁石が生産されているが、磁石の生産量の増大に伴い、製造工程中に加工不良物などとして排出される磁石スクラップや、切削屑や研削屑などとして排出される磁石加工屑などの量も増加している。とりわけ情報機器の軽量化や小型化によってそこで使用される磁石も小型化していることから、加工代比率が大きくなることで、製造歩留まりが年々低下する傾向にある。従って、製造工程中に排出される磁石スクラップや磁石加工屑などを廃棄せず、そこに含まれる金属元素、特に希土類元素をいかに回収して再利用するかが今後の重要な技術課題となっている。また、R−Fe−B系永久磁石を使用した電化製品などから循環資源として希土類元素をいかに回収して再利用するかについても同様である。そこで、R−Fe−B系永久磁石などの希土類元素と鉄族元素を含む処理対象物から希土類元素を回収する方法として、処理対象物に対して酸化処理を行った後、処理環境を炭素の存在下に移し、1150℃以上の温度で熱処理することで、希土類元素を酸化物として鉄族元素から分離して回収する方法が、特許文献1において提案されている。 It is well known that R-Fe-B permanent magnets (R is a rare earth element) are used in various fields today because of their high magnetic properties. Under such a background, a large amount of magnets are produced every day at the R-Fe-B system permanent magnet production plant. The amount of magnet scraps discharged as, and the amount of magnet processing scraps discharged as cutting scraps, grinding scraps, and the like is also increasing. In particular, since the magnets used therefor have been downsized due to the weight reduction and downsizing of information devices, the processing yield ratio has increased, and the manufacturing yield tends to decrease year by year. Therefore, how to recover and reuse metal elements, especially rare earth elements, contained in the magnet scraps and magnet processing wastes discharged during the manufacturing process will be an important technical issue in the future. There is. The same applies to how to recover and reuse the rare earth element as a circulating resource from an electric appliance or the like that uses an R-Fe-B based permanent magnet. Therefore, as a method for recovering a rare earth element from a processing object containing a rare earth element and an iron group element such as an R—Fe—B permanent magnet, after oxidizing the processing object, the processing environment is changed to carbon. Patent Document 1 proposes a method of separating a rare earth element as an oxide from an iron group element and recovering it by moving it to the presence and performing a heat treatment at a temperature of 1150° C. or higher.

特許文献1において提案されている上記の方法は、低コストと簡易さが要求されるリサイクルシステムとして優れたものであるが、処理対象物が例えば異なる組成のR−Fe−B系永久磁石に由来する磁石スクラップや磁石加工屑の混合物であって希土類元素として軽希土類元素と重希土類元素を含む場合、鉄族元素から分離して回収された希土類元素の酸化物は、通常、軽希土類元素と重希土類元素の複合酸化物ないし酸化物の混合物である。軽希土類元素と重希土類元素の複合酸化物ないし酸化物の混合物は、例えば特許文献2において提案されている溶媒抽出法に付することで、軽希土類元素イオンと重希土類元素イオンに分離することができるが、処理対象物に重希土類元素としてDyとTbが含まれている場合、軽希土類元素イオンから分離された重希土類元素イオンは、DyイオンとTbイオンの混合物である。両者を分離することもまた、溶媒抽出法を用いることで行うことができるが、原子番号が隣り合う両者を溶媒抽出法によって分離するためには、大掛かりな設備と、大量の抽出剤や有機溶媒を必要とする。 The above method proposed in Patent Document 1 is excellent as a recycling system that requires low cost and simplicity, but the object to be treated is derived from, for example, an R-Fe-B based permanent magnet having a different composition. When a mixture of magnet scraps and magnet processing scraps containing light rare earth elements and heavy rare earth elements as rare earth elements, the rare earth element oxides separated and recovered from the iron group element are usually mixed with light rare earth elements and heavy rare earth elements. It is a complex oxide or mixture of oxides of rare earth elements. A complex oxide or a mixture of light rare earth elements and heavy rare earth elements can be separated into light rare earth element ions and heavy rare earth element ions by subjecting to a solvent extraction method proposed in Patent Document 2, for example. However, when the object to be treated contains Dy and Tb as heavy rare earth elements, the heavy rare earth element ions separated from the light rare earth element ions are a mixture of Dy ions and Tb ions. Separation of both can also be performed by using a solvent extraction method, but in order to separate both adjacent atomic numbers by the solvent extraction method, large-scale equipment and a large amount of extractant or organic solvent are required. Need.

国際公開第2013/018710号International Publication No. 2013/018710 特開平2−80530号公報Japanese Unexamined Patent Publication No. 2-80530

そこで本発明は、溶媒抽出法を用いることなく、DyとTbを分離する方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for separating Dy and Tb without using a solvent extraction method.

本発明者らは上記の点に鑑みて鋭意検討を重ねた結果、酸化されたTbの、酸化の程度の違いに基づく溶融塩電解による還元のされ易さの違いを利用して、DyとTbを効果的に分離することができることを見出した。 The inventors of the present invention have conducted extensive studies in view of the above points, and as a result, by utilizing the difference in the ease of reduction of oxidized Tb by molten salt electrolysis based on the difference in the degree of oxidation, Dy and Tb It has been found that can be effectively separated.

上記の知見に基づいてなされた本発明の溶媒抽出法を用いずにDyとTbを含む処理対象物からDyとTbとを分離する方法は、請求項1記載の通り、DyとTbを含む処理対象物から調製されたDyイオンとTbイオンの混合物を、シュウ酸、酢酸、炭酸の金属塩から選択される少なくとも1種の沈殿剤と反応させてそれぞれの塩に変換した後、それぞれの塩の混合物を酸素の存在下で焼成し、得られたDyとTbの複合酸化物ないし酸化物の混合物(Tb を含む)を、溶融塩電解することで、酸化されたDyを還元する工程を少なくとも含んでなることを特徴とする。
また、請求項2記載の方法は、請求項1記載の方法において、DyとTbがそれぞれR−Fe−B系永久磁石に由来するものであることを特徴とする。
A method for separating Dy and Tb from a treatment target containing Dy and Tb without using the solvent extraction method of the present invention made based on the above findings is a treatment including Dy and Tb as described in claim 1. A mixture of Dy ion and Tb ion prepared from an object is reacted with at least one precipitating agent selected from metal salts of oxalic acid, acetic acid, and carbonic acid to convert into a respective salt, A step of calcining the mixture in the presence of oxygen, and subjecting the obtained mixed oxide of Dy and Tb or a mixture of oxides ( including Tb 4 O 7 ) to molten salt electrolysis to reduce oxidized Dy It is characterized by comprising at least.
The method according to claim 2 is characterized in that, in the method according to claim 1, Dy and Tb are respectively derived from an R—Fe—B based permanent magnet.

本発明によれば、溶媒抽出法を用いずに、溶融塩電解法を用いて、DyとTbを分離することができる。 According to the present invention, Dy and Tb can be separated by using the molten salt electrolysis method without using the solvent extraction method.

本発明のDyとTbを含む処理対象物から両者を分離する方法は、DyとTbを含む処理対象物から調製されたDyイオンとTbイオンの混合物を、シュウ酸、酢酸、炭酸の金属塩から選択される少なくとも1種の沈殿剤と反応させてそれぞれの塩に変換した後、それぞれの塩の混合物を酸素の存在下で焼成し、得られた両者の複合酸化物ないし酸化物の混合物を、溶融塩電解することで、酸化されたDyだけを還元する工程を少なくとも含んでなることを特徴とするものである。 The method of separating both of the Dy and Tb-containing processing objects of the present invention is a method of preparing a mixture of Dy ions and Tb ions prepared from Dy and Tb-containing processing objects from metal salts of oxalic acid, acetic acid, and carbonic acid. After reacting with at least one selected precipitating agent to convert to each salt, the mixture of each salt is calcined in the presence of oxygen, and the obtained composite oxide or mixture of both oxides is It is characterized by comprising at least a step of reducing only oxidized Dy by electrolyzing molten salt.

本発明の方法を適用することができるDyとTbを含む処理対象物は、重希土類元素としてDyとTbを含むものであれば特段の制限はなく、NdやPrなどの軽希土類元素、Fe,Co,Niなどの鉄族元素、ホウ素などを含んでいてもよい。具体的には、例えば、異なる組成のR−Fe−B系永久磁石に由来する磁石スクラップや磁石加工屑の混合物であって希土類元素としてNdやPrなどの軽希土類元素に加えてDyとTbを含むものなどが挙げられる。 The object to be treated containing Dy and Tb to which the method of the present invention can be applied is not particularly limited as long as it contains Dy and Tb as heavy rare earth elements, and light rare earth elements such as Nd and Pr, Fe, It may contain an iron group element such as Co or Ni, or boron. Specifically, for example, it is a mixture of magnet scraps and magnet processing scraps derived from R-Fe-B based permanent magnets having different compositions, and in addition to light rare earth elements such as Nd and Pr as rare earth elements, Dy and Tb are added. Examples include those that include.

本発明の方法においては、まず、DyとTbを含む処理対象物からDyイオンとTbイオンの混合物を調製し、得られたDyイオンとTbイオンの混合物を、シュウ酸、酢酸、炭酸の金属塩から選択される少なくとも1種の沈殿剤と反応させてそれぞれの塩に変換する。DyとTbを含む処理対象物からDyイオンとTbイオンの混合物を調製する方法としては、DyとTbを含む処理対象物が、異なる組成のR−Fe−B系永久磁石に由来する磁石スクラップや磁石加工屑の混合物であって希土類元素としてNdやPrなどの軽希土類元素に加えてDyとTbを含むものである場合、例えば特許文献1に記載の方法により、処理対象物である磁石スクラップや磁石加工屑の混合物に対して酸化処理を行った後、処理環境を炭素の存在下に移し、1150℃以上の温度で熱処理することで、鉄族元素から希土類元素の酸化物を分離し、鉄族元素から分離された希土類元素の酸化物を、例えば特許文献2に記載の方法により、溶媒抽出法に付することで、軽希土類元素イオンからDyイオンとTbイオンの混合物を分離する方法が挙げられる。こうして軽希土類元素イオンから分離されたDyイオンとTbイオンの混合物を、シュウ酸、酢酸、炭酸の金属塩から選択される少なくとも1種の沈殿剤と反応させてそれぞれの塩に変換する。シュウ酸や酢酸や炭酸の金属塩(例えばナトリウム塩)は、DyとTbのシュウ酸塩や酢酸塩や炭酸塩からなる沈殿物を得ることができる量で用いることができる。R−Fe−B系永久磁石に含まれるDyやTbの標準的な量に鑑みれば、シュウ酸や酢酸や炭酸の金属塩は、処理対象物である磁石スクラップや磁石加工屑の混合物1g(通常このうち1mass%〜5mass%程度がDyとTbの総量)に対して例えば6mg〜80mgの割合で用いればよい。沈殿温度は、例えば20℃〜85℃であってよい。沈殿時間は、例えば1時間〜6時間であってよい。 In the method of the present invention, first, a mixture of Dy ions and Tb ions is prepared from an object to be treated containing Dy and Tb, and the obtained mixture of Dy ions and Tb ions is treated with a metal salt of oxalic acid, acetic acid, or carbonic acid. It is converted into the respective salt by reacting with at least one precipitating agent selected from As a method for preparing a mixture of Dy ions and Tb ions from an object to be treated containing Dy and Tb, the object to be treated containing Dy and Tb may be magnet scraps derived from R-Fe-B based permanent magnets having different compositions or In the case of a mixture of magnet processing scraps, which contains Dy and Tb in addition to light rare earth elements such as Nd and Pr as rare earth elements, for example, by the method described in Patent Document 1, a magnet scrap or a magnet processing object to be processed After oxidizing the mixture of scraps, the treatment environment is moved to the presence of carbon, and heat treatment is performed at a temperature of 1150° C. or higher to separate oxides of rare earth elements from iron group elements, A method of separating the mixture of Dy ions and Tb ions from the light rare earth element ions by subjecting the oxide of the rare earth element separated from the above to the solvent extraction method, for example, by the method described in Patent Document 2. The mixture of Dy ions and Tb ions separated from the light rare earth element ions in this way is reacted with at least one precipitating agent selected from metal salts of oxalic acid, acetic acid, and carbonic acid to be converted into respective salts. The metal salt of oxalic acid, acetic acid or carbonic acid (for example, sodium salt) can be used in such an amount that a precipitate composed of oxalate salt of Dy and Tb, acetate salt or carbonate salt can be obtained. Considering the standard amount of Dy and Tb contained in the R-Fe-B system permanent magnet, the metal salt of oxalic acid, acetic acid, and carbonic acid is 1 g of a mixture of the magnet scrap and the magnet processing waste to be treated (usually Of these, about 1 mass% to 5 mass% may be used in a ratio of, for example, 6 mg to 80 mg with respect to the total amount of Dy and Tb. The precipitation temperature may be, for example, 20°C to 85°C. The precipitation time may be, for example, 1 hour to 6 hours.

次に、上記の方法で得たDyとTbの塩の混合物を、酸素の存在下で焼成し、DyとTbの複合酸化物ないし酸化物の混合物を得る。本発明の方法において肝要なのは、DyとTbの複合酸化物ないし酸化物の混合物は、DyとTbの塩の混合物を、酸素の存在下で焼成することによって得られる必要があるということである。酸化されたTbには、酸化の程度が低い酸化物(Tb)と、酸化の程度が高い酸化物(Tb)が存在することが知られているが、Tbの酸化の程度の違いが、酸化されたTbの溶融塩電解による還元のされ易さの違いを生み、酸化の程度が低い酸化物は溶融塩電解によって還元されるが、酸化の程度が高い酸化物は溶融塩電解によって還元されないことを本発明者らは確認している。本発明の方法は、酸化されたTbが有するこの性質を利用して、DyとTbの複合酸化物ないし酸化物の混合物を、酸素の存在下で焼成することによって得ることで、Tbを十分に酸化することにより、酸化されたTbが溶融塩電解によって還元されないようにして、酸化されたDyだけが溶融塩電解によって還元されるようにすることで、DyとTbを分離するものである。Tbが十分に酸化されたDyとTbの複合酸化物ないし酸化物の混合物を調製するための、DyとTbの塩の混合物の酸素の存在下での焼成は、例えば大気雰囲気などの酸素が存在する雰囲気で500℃〜1000℃で行うことが簡便である。焼成温度は、600℃〜950℃が望ましく、700℃〜900℃がより望ましい。焼成時間は、例えば1時間〜6時間であってよい。 Next, the mixture of Dy and Tb salts obtained by the above method is calcined in the presence of oxygen to obtain a complex oxide or a mixture of Dy and Tb. What is important in the method of the present invention is that the complex oxide or the mixture of oxides of Dy and Tb needs to be obtained by firing the mixture of the salt of Dy and Tb in the presence of oxygen. It is known that oxidized Tb includes an oxide (Tb 2 O 3 ) having a low degree of oxidation and an oxide (Tb 4 O 7 ) having a high degree of oxidation. The difference in the degree causes the difference in the easiness of reduction of the oxidized Tb by the molten salt electrolysis, and the oxide with a low degree of oxidation is reduced by the molten salt electrolysis, but the oxide with a high degree of oxidation is melted. The present inventors have confirmed that they are not reduced by salt electrolysis. The method of the present invention takes advantage of this property of oxidized Tb to obtain a composite oxide of Dy and Tb or a mixture of oxides by firing in the presence of oxygen, so that Tb is sufficiently contained. Oxidation prevents oxidized Tb from being reduced by molten salt electrolysis, and only oxidized Dy is reduced by molten salt electrolysis, thereby separating Dy and Tb. The calcination of a mixture of Dy and Tb salt in the presence of oxygen to prepare a complex oxide or mixture of Dy and Tb in which Tb is sufficiently oxidized is performed in the presence of oxygen, for example, in the atmosphere. It is convenient to carry out the treatment at 500° C. to 1000° C. in an atmosphere. The firing temperature is preferably 600°C to 950°C, more preferably 700°C to 900°C. The firing time may be, for example, 1 hour to 6 hours.

Tbが十分に酸化されたDyとTbの複合酸化物ないし酸化物の混合物の、Dyの含量とTbの含量の合計は、70mass%以上が望ましく、75mass%以上がより望ましく、80mass%以上がさらに望ましい。DyとTbの複合酸化物ないし酸化物の混合物は、酸素の他にその他の元素として軽希土類元素や鉄族元素やホウ素などを含んでいてもよいが、その他の元素の含量は、それぞれ5.0mass%以下が望ましく、3.0mass%以下がより望ましく、1.0mass%以下がさらに望ましい。 The total content of Dy and Tb in the mixture of Dy and Tb complex oxides or oxides in which Tb is sufficiently oxidized is preferably 70 mass% or more, more preferably 75 mass% or more, and further 80 mass% or more. desirable. The complex oxide or the mixture of oxides of Dy and Tb may contain light rare earth elements, iron group elements, boron and the like as other elements in addition to oxygen, but the content of each of the other elements is 5. It is preferably 0 mass% or less, more preferably 3.0 mass% or less, and further preferably 1.0 mass% or less.

こうして得られた、Tbが十分に酸化されたDyとTbの複合酸化物ないし酸化物の混合物に対する溶融塩電解は、自体公知の溶融塩電解装置、例えば、溶融塩を保持するための電解槽の内部に、タングステンやモリブデンや鉄などからなる円柱状の陰極と、黒鉛などからなる、陰極に対向して配置された複数本の円柱状や複数枚の弓状の陽極や、陰極を取り囲む円筒状の陽極を有する装置を用いて行うことができる(必要であれば例えば特開昭62−222095号公報を参照のこと)。溶融塩は、例えば、LiFとDyFとTbFからなるものなどを用いることができ、必要に応じてBaFなどを添加してもよい。溶融塩としてLiFとDyFとTbFからなるものを用いる場合、その組成としては、例えば、LiFが70mol%〜90mol%、DyFが5mol%〜15mol%、TbFが5mol%〜15mol%が挙げられる。電解処理は、例えば、800℃〜1200℃の温度で、3V〜10Vの電圧を印加して行えばよい。処理時間は、処理量や処理条件などにも依存するが、通常、1時間〜6時間程度である。こうして電解処理を行うことで、酸化されたDyだけが陰極において還元され、陰極の表面に金属DyやDyとFeの合金として析出する。一方、十分に酸化されたTbは、陰極において還元されず、溶融塩中に残存することで、DyとTbを分離することができる。陰極の表面に析出した金属DyやDyとFeの合金は、R−Fe−B系永久磁石の原料などとして再利用することができる。 Molten salt electrolysis of the thus obtained complex oxide or mixture of oxides of Dy and Tb in which Tb is sufficiently oxidized is carried out by a molten salt electrolysis apparatus known per se, for example, in an electrolytic cell for holding molten salt. Inside, a columnar cathode made of tungsten, molybdenum, iron, etc., and a plurality of columnar or arcuate anodes made of graphite, etc., arranged facing the cathode, and a cylindrical shape surrounding the cathode. Can be carried out using an apparatus having the above anode (see, for example, JP-A-62-222095 if necessary). As the molten salt, for example, one composed of LiF, DyF 3, and TbF 3 can be used, and BaF 2 or the like may be added if necessary. When using one made of LiF, DyF 3 and TbF 3 as a molten salt, as is the composition, for example, LiF is 70mol% ~90mol%, DyF 3 is 5mol% ~15mol%, TbF 3 there is 5 mol% 15 mol% Can be mentioned. The electrolytic treatment may be performed, for example, at a temperature of 800° C. to 1200° C. by applying a voltage of 3V to 10V. The processing time is usually about 1 to 6 hours, although it depends on the processing amount and processing conditions. By performing the electrolytic treatment in this manner, only oxidized Dy is reduced at the cathode and deposited on the surface of the cathode as metal Dy or an alloy of Dy and Fe. On the other hand, fully oxidized Tb is not reduced at the cathode and remains in the molten salt, so that Dy and Tb can be separated. The metal Dy or the alloy of Dy and Fe deposited on the surface of the cathode can be reused as a raw material for the R—Fe—B system permanent magnet.

以下、本発明を実施例によって詳細に説明するが、本発明は以下の記載に限定して解釈されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention should not be construed as being limited to the following description.

試験例1:
試薬として購入した茶色の粉末であるTbを、不活性ガス(アルゴンガス)雰囲気中で800℃で3時間焼成すると、乳白色の粉末が得られた。この乳白色の粉末は、X線回析分析(使用装置:ブルカー・エイエックスエス社製のD8 ADVANCE、以下同じ)により、Tbであることが確認できた。これらのTbとTbを用いて以下の実験を行った。
Test Example 1:
Brown powder Tb 4 O 7 purchased as a reagent was calcined in an inert gas (argon gas) atmosphere at 800° C. for 3 hours to obtain a milky white powder. This milky white powder was confirmed to be Tb 2 O 3 by X-ray diffraction analysis (apparatus used: D8 ADVANCE manufactured by Bruker AXS, the same applies hereinafter). The following experiment was conducted using these Tb 4 O 7 and Tb 2 O 3 .

LiFが80mol%とDyFが10mol%とTbFが10mol%からなる溶融塩(総量500g)に、Tbと、試薬として購入したDyを、それぞれ7.5g添加し、900℃の温度で、4Vの電圧を印加して、3時間溶融塩電解処理を行った。なお、陽極としては、黒鉛製の直径8mmの丸棒を用い、陰極としては、鉄製の直径8mmの丸棒を用いた。処理を終了した後、装置を室温まで冷却し、電解槽の内容物を取り出したところ、内容物中に直径が約5mmの金属球が含まれていた。この金属球AのSEM・EDX分析(使用装置:日立ハイテクノロジーズ社製のS800、以下同じ)を行った結果を表1に示す。 7.5 g of each of Tb 4 O 7 and Dy 2 O 3 purchased as a reagent was added to a molten salt (total amount: 500 g) composed of 80 mol% of LiF, 10 mol% of DyF 3 and 10 mol% of TbF 3 , and 900 At a temperature of °C, a voltage of 4 V was applied to carry out a molten salt electrolysis treatment for 3 hours. A graphite rod having a diameter of 8 mm was used as the anode, and an iron rod having a diameter of 8 mm was used as the cathode. After the completion of the treatment, the apparatus was cooled to room temperature and the contents of the electrolytic cell were taken out. As a result, the contents contained metal balls having a diameter of about 5 mm. Table 1 shows the results of SEM/EDX analysis of this metal ball A (apparatus used: S800 manufactured by Hitachi High-Technologies Corporation, the same applies hereinafter).

Figure 0006743629
Figure 0006743629

次に、7.5gのTbのかわりに7.5gのTbを用いること以外は、上記の方法と同じ方法で溶融塩電解処理を行い、処理を終了した後、装置を室温まで冷却し、電解槽の内容物を取り出したところ、やはり内容物中に直径が約5mmの金属球が含まれていた。この金属球BのSEM・EDX分析を行った結果を表2に示す。 Next, molten salt electrolysis was performed in the same manner as above except that 7.5 g of Tb 2 O 3 was used instead of 7.5 g of Tb 4 O 7 , and after the treatment was completed, the apparatus was put into operation. After cooling to room temperature and taking out the contents of the electrolytic cell, the contents also contained metal balls having a diameter of about 5 mm. The results of SEM/EDX analysis of this metal ball B are shown in Table 2.

Figure 0006743629
Figure 0006743629

表1から明らかなように、Tbの酸化の程度が高いTbを、Dyとともに溶融塩電解処理すると、得られた金属球AはDyとFeの合金を主体とするものであり、Tbは含まれていなかった。これに対し、表2から明らかなように、Tbの酸化の程度が低いTbを、Dyとともに溶融塩電解処理すると、得られた金属球BはDyとTbとFeの合金を主体とするものであった。以上の結果は、酸化されたTbには、酸化の程度の違いに基づく溶融塩電解による還元のされ易さの違いがあることを意味し、この性質を利用して、DyとTbの複合酸化物ないし酸化物の混合物に含まれるTbを十分に酸化しておくことにより、酸化されたDyだけが溶融塩電解によって還元されることで、DyとTbを分離することができることがわかった。 As is clear from Table 1, when Tb 4 O 7 having a high degree of Tb oxidation was subjected to electrolytic treatment with molten salt together with Dy 2 O 3 , the obtained metal spheres A were mainly composed of an alloy of Dy and Fe. Yes, Tb was not included. On the other hand, as is clear from Table 2, when Tb 2 O 3 having a low degree of Tb oxidation is subjected to molten salt electrolytic treatment together with Dy 2 O 3 , the obtained metal balls B are alloys of Dy, Tb and Fe. Was the main subject. The above results indicate that oxidized Tb has a difference in easiness of reduction by molten salt electrolysis based on a difference in the degree of oxidation, and by utilizing this property, the composite oxidation of Dy and Tb is performed. It has been found that by fully oxidizing Tb contained in the mixture of the substance or the oxide, only the oxidized Dy is reduced by the molten salt electrolysis, whereby Dy and Tb can be separated.

実施例1:
異なる組成のR−Fe−B系永久磁石に由来する磁石スクラップや磁石加工屑の混合物であって希土類元素としてNdやPrなどの軽希土類元素に加えてDyとTbを含むものから、特許文献1に記載の方法に従って、希土類元素の酸化物(NdとPrとDyとTbの複合酸化物ないし酸化物の混合物)を得た。次に、得られた希土類元素の酸化物を、特許文献2に記載の方法により、溶媒抽出法に付することで、NdイオンとPrイオンの混合物からDyイオンとTbイオンの混合物を分離した。NdイオンとPrイオンの混合物から分離されたDyイオンとTbイオンの混合物(塩酸溶液)に、沈殿剤としてシュウ酸二水和物を、処理対象物とした磁石スクラップや磁石加工屑の混合物1gに対して50mgの割合で添加し、室温で2時間撹拌することで、DyとTbのシュウ酸塩の混合物を得た。得られたDyとTbのシュウ酸塩の混合物を、市販の焼成装置(光洋サーモシステム社製のKBF−624N1)を用いて、大気雰囲気中で800℃で3時間焼成することで、DyとTbの複合酸化物ないし酸化物の混合物を得た(SEM・EDX分析によるDyの含量とTbの含量の合計は約85.8mass%)。試験例1における7.5gのTbと7.5gのDyのかわりに、このDyとTbの複合酸化物ないし酸化物の混合物15gを用いること以外は、試験例1に記載の方法と同じ方法で溶融塩電解処理を行い、処理を終了した後、装置を室温まで冷却し、電解槽の内容物を取り出したところ、内容物中に直径が約5mmの金属球が含まれていた。この金属球は、DyとFeの合金を主体とするものであり、Tbは含まれていなかったことから(SEM・EDX分析による)、DyとTbを分離することができたことがわかった。
Example 1:
From a mixture of magnet scraps and magnet processing wastes derived from R-Fe-B-based permanent magnets having different compositions, which contains Dy and Tb in addition to light rare earth elements such as Nd and Pr as rare earth elements, Patent Document 1 An oxide of a rare earth element (a complex oxide or a mixture of oxides of Nd, Pr, Dy and Tb) was obtained according to the method described in 1. Next, the obtained oxide of a rare earth element was subjected to a solvent extraction method by the method described in Patent Document 2 to separate a mixture of Dy ions and Tb ions from a mixture of Nd ions and Pr ions. Oxalic acid dihydrate as a precipitating agent was added to a mixture of Dy and Tb ions (hydrochloric acid solution) separated from a mixture of Nd and Pr ions, and 1 g of a mixture of magnet scraps and magnet processing scraps to be treated. A mixture of Dy and Tb oxalate was obtained by adding 50 mg to the mixture and stirring at room temperature for 2 hours. The obtained mixture of Dy and Tb oxalate is calcined in an air atmosphere at 800° C. for 3 hours by using a commercially available calciner (KBF-624N1 manufactured by Koyo Thermo Systems Co., Ltd.) to obtain Dy and Tb. A complex oxide or a mixture of oxides was obtained (total of Dy content and Tb content by SEM/EDX analysis is about 85.8 mass %). In Test Example 1, except that instead of 7.5 g of Tb 4 O 7 and 7.5 g of Dy 2 O 3 in Test Example 1, 15 g of a mixture of Dy and Tb complex oxides or oxides was used. Molten salt electrolysis was performed in the same manner as in step 1, and after the treatment was completed, the equipment was cooled to room temperature and the contents of the electrolytic cell were taken out. As a result, the contents contained metal balls with a diameter of about 5 mm. Was there. Since the metal spheres were mainly composed of an alloy of Dy and Fe and did not contain Tb (by SEM/EDX analysis), it was found that Dy and Tb could be separated.

比較例1:
DyとTbのシュウ酸塩の混合物を、不活性ガス(アルゴンガス)雰囲気中で800℃で3時間焼成すること以外は、実施例1と同様の実験を行ったところ、実施例1と同様に直径が約5mmの金属球が得られたが、この金属球はDyとTbとFeの合金を主体とするものであったことから(SEM・EDX分析による)、DyとTbのシュウ酸塩の混合物を不活性ガス(アルゴンガス)雰囲気中で焼成することで得られた焼成物を溶融塩電解処理しても、DyとTbを分離することができないことがわかった。
Comparative Example 1:
An experiment similar to that in Example 1 was performed, except that the mixture of Dy and Tb oxalate was calcined in an inert gas (argon gas) atmosphere at 800° C. for 3 hours. Although metal spheres having a diameter of about 5 mm were obtained, since these metal spheres were mainly composed of an alloy of Dy, Tb, and Fe (by SEM/EDX analysis), the oxalate of Dy and Tb was It was found that Dy and Tb could not be separated even if a molten salt electrolytic treatment was performed on the fired product obtained by firing the mixture in an inert gas (argon gas) atmosphere.

実施例2:
沈殿剤としてシュウ酸二水和物のかわりに炭酸ナトリウムを用いること以外は、実施例1と同様の実験を行うことで、実施例1と同様に直径が約5mmの金属球を得た。この金属球は、DyとFeの合金を主体とするものであり、Tbは含まれていなかったことから(SEM・EDX分析による)、DyとTbを分離することができたことがわかった。
Example 2:
A metal sphere having a diameter of about 5 mm was obtained in the same manner as in Example 1 except that sodium carbonate was used as the precipitant instead of oxalic acid dihydrate. Since the metal spheres were mainly composed of an alloy of Dy and Fe and did not contain Tb (by SEM/EDX analysis), it was found that Dy and Tb could be separated.

本発明は、溶媒抽出法を用いずに、溶融塩電解法を用いて、DyとTbを分離する方法を提供することができる点において産業上の利用可能性を有する。 INDUSTRIAL APPLICABILITY The present invention has industrial applicability in that a method for separating Dy and Tb can be provided by using a molten salt electrolysis method without using a solvent extraction method.

Claims (2)

溶媒抽出法を用いずにDyとTbを含む処理対象物からDyとTbとを分離する方法であって、DyとTbを含む処理対象物から調製されたDyイオンとTbイオンの混合物を、シュウ酸、酢酸、炭酸の金属塩から選択される少なくとも1種の沈殿剤と反応させてそれぞれの塩に変換した後、それぞれの塩の混合物を酸素の存在下で焼成し、得られたDyとTbの複合酸化物ないし酸化物の混合物(Tb を含む)を、溶融塩電解することで、酸化されたDyを還元する工程を少なくとも含んでなることを特徴とする方法。 A method for separating Dy and Tb from a processing target containing Dy and Tb without using a solvent extraction method, wherein a mixture of Dy ions and Tb ions prepared from the processing target containing Dy and Tb is After reacting with at least one precipitating agent selected from metal salts of acids, acetic acid and carbonic acid to convert into respective salts, the mixture of the respective salts is calcined in the presence of oxygen to obtain Dy and Tb. A mixed oxide or a mixture of oxides ( including Tb 4 O 7 ) is subjected to molten salt electrolysis to reduce oxidized Dy. DyとTbがそれぞれR−Fe−B系永久磁石に由来するものであることを特徴とする請求項1記載の方法。 The method according to claim 1, wherein Dy and Tb are derived from an R-Fe-B based permanent magnet, respectively.
JP2016192236A 2016-09-29 2016-09-29 Method for separating both Dy and Tb from a processing object Active JP6743629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016192236A JP6743629B2 (en) 2016-09-29 2016-09-29 Method for separating both Dy and Tb from a processing object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016192236A JP6743629B2 (en) 2016-09-29 2016-09-29 Method for separating both Dy and Tb from a processing object

Publications (3)

Publication Number Publication Date
JP2018053326A JP2018053326A (en) 2018-04-05
JP2018053326A5 JP2018053326A5 (en) 2019-06-06
JP6743629B2 true JP6743629B2 (en) 2020-08-19

Family

ID=61835419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016192236A Active JP6743629B2 (en) 2016-09-29 2016-09-29 Method for separating both Dy and Tb from a processing object

Country Status (1)

Country Link
JP (1) JP6743629B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111362294B (en) * 2020-04-14 2022-06-14 开化祥盛磁业有限公司 Method for treating terbium target material waste, terbium oxide and preparation method thereof

Also Published As

Publication number Publication date
JP2018053326A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
JP6622307B2 (en) Method for extraction and separation of rare earth elements
JP5647750B2 (en) Rare earth recovery method from rare earth element containing alloys
JP5741323B2 (en) Recovery method of rare earth elements
JP6743629B2 (en) Method for separating both Dy and Tb from a processing object
JP5740227B2 (en) Rare metal production method
JP2018098430A (en) Method for producing r-t-b-based sintered magnet
US12104225B2 (en) Method for recovering rare earth elements from NdFeB waste and use of ferric oxide as raw material of manganese-zinc ferrite
JP6769437B2 (en) A useful method for separating light rare earth elements and heavy rare earth elements
JP2019026871A (en) Manufacturing method of rare earth fluoride
CA3188559A1 (en) Recovery of rare earth metals from ferromagnetic alloys
JP2018141181A (en) Method for preparing rare earth element solution
JP2000144275A (en) Method for recovering rare earth element
CN116507748A (en) Method for recycling heavy rare earth element and method for recycling rare earth magnet
JP6597447B2 (en) Method for eluting heavy rare earth elements from a processing object containing light rare earth elements and heavy rare earth elements
JP6347225B2 (en) Recovery method of rare earth elements
JP2000144276A (en) Recovering method for rare earth element and cobalt
JP2014189848A (en) Method for recovering samarium and cobalt from samarium-cobalt based alloy
CN114990365B (en) Method for recovering rare earth and main element iron from neodymium iron boron waste, molten salt system and application of molten salt system as soft magnetic ferrite raw material
JP7067196B2 (en) Method for producing rare earth element oxalate
JP2018003090A (en) Method for separating aluminum from composite oxide of rear earth elements and aluminum
JP2024095613A (en) Recovery method for rare-earth metal
Hua et al. Highly Efficient and Precise Rare-Earth Elements Separation and Recycling Process in Molten Salt
JP2017043807A (en) Method for recovering rare earth element
JP6264195B2 (en) Recovery method of rare earth elements
CN115141942A (en) Method for recovering rare earth from neodymium iron boron waste and separating main element iron and application of method in preparation of soft magnetic ferrite as raw material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190423

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200713

R150 Certificate of patent or registration of utility model

Ref document number: 6743629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350