JP6740094B2 - Lighting equipment - Google Patents

Lighting equipment Download PDF

Info

Publication number
JP6740094B2
JP6740094B2 JP2016221257A JP2016221257A JP6740094B2 JP 6740094 B2 JP6740094 B2 JP 6740094B2 JP 2016221257 A JP2016221257 A JP 2016221257A JP 2016221257 A JP2016221257 A JP 2016221257A JP 6740094 B2 JP6740094 B2 JP 6740094B2
Authority
JP
Japan
Prior art keywords
light
illumination
lens
light source
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016221257A
Other languages
Japanese (ja)
Other versions
JP2018081748A (en
Inventor
小泉 文明
文明 小泉
一成 山科
一成 山科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2016221257A priority Critical patent/JP6740094B2/en
Publication of JP2018081748A publication Critical patent/JP2018081748A/en
Application granted granted Critical
Publication of JP6740094B2 publication Critical patent/JP6740094B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、照明装置に関する。 The present invention relates to a lighting device.

光源とレンズとを光軸に沿って相対的に移動させ、両者の距離を変化させることで、照明のスポット径を変えることができる照明装置が、たとえば、特許文献1に開示されている。 For example, Patent Document 1 discloses an illuminating device capable of changing a spot diameter of illumination by moving a light source and a lens relatively along an optical axis and changing a distance between them.

特開平10−69801号公報Japanese Patent Laid-Open No. 10-69801

このような照明装置は、ベッドの横の読書灯等に用いられることが多いため、ベッドに横たわりながら片手で操作される機会が多い。そこで本発明は、片手で操作する際の操作性に優れる照明装置を提供することを目的とする。 Such an illuminating device is often used for a reading light or the like beside the bed, and thus is often operated with one hand while lying on the bed. Therefore, an object of the present invention is to provide a lighting device that is excellent in operability when operated with one hand.

上記目的を達成するため、本発明の照明装置は、光源と照明用レンズとの間の距離を光軸に沿って所定の範囲内で変えることができ、距離を変えることで照明用レンズから出射される照明光の照明範囲を変えることができる照明装置であって、光源を保持する固定筒と、照明用レンズを保持するレンズ保持筒と、レンズ保持筒を光軸中心に回転させることにより、光源と照明用レンズとの光軸方向に沿う方向の距離を可変することができるカム機構と、を有し、カム機構は、レンズ保持筒の回転角を60°以上120°以下の範囲で、光源と照明用レンズとの相対移動量を2mm以上4mm以下とする、ことを特徴とする。 In order to achieve the above object, the illuminating device of the present invention can change the distance between the light source and the illuminating lens within a predetermined range along the optical axis, and the light is emitted from the illuminating lens by changing the distance. A lighting device capable of changing the illumination range of illumination light, wherein a fixed barrel for holding a light source, a lens holding barrel for holding a lens for illumination, and a lens holding barrel rotated about an optical axis, A cam mechanism capable of varying the distance between the light source and the illuminating lens in the optical axis direction, wherein the cam mechanism has a rotation angle of the lens holding cylinder in the range of 60° to 120°, The relative movement amount between the light source and the illumination lens is set to 2 mm or more and 4 mm or less.

ここで、カム機構は、レンズ保持筒の回転角を60°以上120°以下の範囲で、光源と照明用レンズとの相対移動量を2.5mm以上3.5mm以下とすることとしても良い。 Here, the cam mechanism may set the relative movement amount of the light source and the illumination lens to 2.5 mm or more and 3.5 mm or less within the range of the rotation angle of the lens holding cylinder of 60° or more and 120° or less.

上記目的を達成するため、本発明の照明装置は、光源と照明用レンズとの間の距離を光軸に沿って所定の範囲内で変えることができ、距離を変えることで照明用レンズから出射される照明光の照明範囲を変えることができる照明装置であって、光源を保持する固定筒と、照明用レンズを保持するレンズ保持筒と、レンズ保持筒を光軸中心に回転させることにより、光源と照明用レンズとの光軸方向に沿う方向の距離を可変することができるカム機構と、を有し、カム機構は、レンズ保持筒の回転角を60°以上120°以下の範囲で、光源と照明用レンズとの相対移動量を2mm以上4mm以下とし、照明用レンズは、光源から発せられた光が照明用レンズ内に入射する入射面と、入射面から照明用レンズ内に入射した光の一部を照明方向に向けて反射する凹面形状の反射面と、入射面から入射した光を照明方向に向けて出射する出射面と、を有し、入射面は、光源が配置される側に光源からの光が進入可能に形成される開口部を有すると共に光源が配置される方向に対して反対の方向に凹む凹部の内面に形成される第1入射面と第2入射面とを有し、第1入射面は、凹部の底面に配置され、光源からの光を集光させるように光源側に凸面を有する集光レンズ面であり、第2入射面は、光源からの光を反射面に向けて透過することができるように、照明用レンズの光軸の周囲に形成される凹部の内側面であり、第1入射面は、光源と照明用レンズとが相対的に近づく方向に移動するにしたがって、主照明光のうち、第1入射面を透過し出射面から出射する光である非反射照明光の配光角を大きくする形状であり、反射面および第2入射面は、主照明光のうち、第2入射面を透過し反射面で反射され出射面から出射する光である反射照明光に対して下記(1)(2)(3)である、こととしても良い。
(1)光源と照明用レンズとが相対的に近づく方向に移動するにしたがって、出射面から出射する反射照明光の出射方向が、反射照明光の出射面における出射位置に対して、光軸を挟んだ反対側に向けて傾斜させていく。
(2)光源と照明用レンズとが相対的に近づく方向に移動するにしたがって、反射照明光の配光角を大きくする。
(3)反射面で反射する反射照明光のうち、光源から第2入射面に到達するまでの光の光軸に対する照射角が最小のものを第1反射光とし、光源から第2入射面に到達するまでの光の光軸に対する照射角が最大のものを第2反射光とし、光源から第2入射面に到達するまでの光の光軸に対する照射角が、第1反射光と第2反射光との中間のものを第3反射光としたとき、光源と照明用レンズとが所定の範囲内で最も離れている状態で、第1から第3反射光のうち、第1反射光が、被照明面において最も光軸の近くを照明する。
In order to achieve the above object, the illuminating device of the present invention can change the distance between the light source and the illuminating lens within a predetermined range along the optical axis, and the light is emitted from the illuminating lens by changing the distance. A lighting device capable of changing the illumination range of illumination light, wherein a fixed barrel for holding a light source, a lens holding barrel for holding a lens for illumination, and a lens holding barrel rotated about an optical axis, A cam mechanism capable of varying the distance between the light source and the illuminating lens in the optical axis direction, wherein the cam mechanism has a rotation angle of the lens holding cylinder in the range of 60° to 120°, The relative movement amount between the light source and the illuminating lens is set to 2 mm or more and 4 mm or less, and the illuminating lens has an incident surface on which the light emitted from the light source enters the illuminating lens and an incident surface from which the light enters the illuminating lens. It has a concave reflecting surface that reflects a part of the light toward the illumination direction, and an emission surface that emits the light incident from the incident surface toward the illumination direction, and the light source is arranged on the incident surface. Has a first entrance surface and a second entrance surface formed on the inner surface of a recess having an opening through which light from the light source can enter and recessed in a direction opposite to the direction in which the light source is arranged. The first incident surface is a condenser lens surface that is disposed on the bottom surface of the concave portion and has a convex surface on the light source side so as to condense the light from the light source. The second incident surface has the light from the light source. The first entrance surface is a direction in which the light source and the illuminating lens are relatively close to each other, which is an inner side surface of a recess formed around the optical axis of the illuminating lens so that the light can be transmitted toward the reflecting surface. Of the main illumination light, the light distribution angle of the non-reflecting illumination light, which is the light that passes through the first incident surface and exits from the exit surface, increases as the main illumination light moves. Of the main illumination light, the following (1), (2), and (3) may be applied to the reflected illumination light that is the light that passes through the second incident surface, is reflected by the reflecting surface, and is emitted from the emitting surface. ..
(1) As the light source and the illuminating lens move relatively closer to each other, the emission direction of the reflected illumination light emitted from the emission surface is aligned with the optical axis with respect to the emission position of the reflected illumination light on the emission surface. Incline toward the opposite side of the sandwich.
(2) The light distribution angle of the reflected illumination light is increased as the light source and the illuminating lens relatively move.
(3) Of the reflected illumination light reflected by the reflecting surface, the one having the smallest irradiation angle with respect to the optical axis of the light from the light source to the second incident surface is defined as the first reflected light, and the light from the light source to the second incident surface is reflected. The second reflected light has the maximum irradiation angle with respect to the optical axis of the light until reaching the second reflected light, and the irradiation angles with respect to the optical axis of the light from the light source to the second incident surface are the first reflected light and the second reflected light. When an intermediate light is used as the third reflected light, the first reflected light among the first to the third reflected light is in the state where the light source and the illumination lens are farthest from each other within a predetermined range. Illuminates the illuminated surface closest to the optical axis.

また、反射面および第2入射面は、光源と照明用レンズとが所定の範囲内で最も離れている状態で、第1反射光と第3反射光とが、出射面から出射した後に交差させない形状である、こととしても良い。 Further, the reflecting surface and the second incident surface do not intersect with each other after the first reflected light and the third reflected light are emitted from the emission surface in a state where the light source and the illumination lens are farthest apart within a predetermined range. It may be a shape.

第1入射面は、この第1入射面を通過する光線の出射角が所定の角度までの範囲で、出射角が大きくなるほど像高を高くし、所定の出射角を越えると、逆に出射角が大きくなるほど像高を低くする形状である、こととしても良い。 The first incident surface increases the image height as the exit angle of the light beam passing through the first entrance surface increases up to a predetermined angle, and when the exit angle exceeds the predetermined angle, the exit angle is reversed. The shape may be such that the image height becomes lower as becomes larger.

また、照明レンズの出射面にはフライアイレンズが配置されることとしてもよい。
また、カム機構は、レンズ保持筒の回転角を60°以上120°以下の範囲で、光源と照明用レンズとの相対移動量を2.5mm以上3.5mm以下とすることとしても良い。
A fly-eye lens may be arranged on the exit surface of the illumination lens.
Further, the cam mechanism may set the relative movement amount of the light source and the illumination lens to 2.5 mm or more and 3.5 mm or less within the range of the rotation angle of the lens holding cylinder of 60° or more and 120° or less.

本発明では、片手で操作する際の操作性に優れる照明装置を提供することができる。 According to the present invention, it is possible to provide a lighting device having excellent operability when operated with one hand.

本発明の実施の形態に係る照明装置を出射面側から見た平面図である。It is the top view which looked at the illuminating device which concerns on embodiment of this invention from the output surface side. 図1のA−A断面図である。It is an AA sectional view of FIG. 本発明の実施の形態に係る照明装置から外装筒を取り外した状態を示す斜視図である。It is a perspective view which shows the state which removed the exterior cylinder from the illuminating device which concerns on embodiment of this invention. 本発明の実施の形態に係る照明装置が有するレンズ保持筒の展開図であり、レンズ保持筒に形成されるカム溝の全体を示す図である。FIG. 6 is a development view of a lens holding barrel included in the lighting device according to the embodiment of the present invention, and is a diagram showing an entire cam groove formed in the lens holding barrel. 本発明の実施の形態に係る照明装置の照明用レンズを前端位置に配置させた状態で光源を発光させたときの反射照明光のうち、第1反射光、第2反射光および第3反射光の光路を示す照明装置の断面図である。The first reflected light, the second reflected light, and the third reflected light of the reflected illumination light when the light source emits light with the illumination lens of the illumination device according to the embodiment of the present invention arranged at the front end position 3 is a cross-sectional view of the lighting device showing the optical path of FIG. 図5に示す第1反射光、第2反射光および第3反射光の光路を出射面から1メートル先の被照明面まで伸ばして示した図である。It is the figure which extended the optical path of the 1st reflected light shown in FIG. 5, the 2nd reflected light, and the 3rd reflected light to the to-be-illuminated surface 1 meter ahead from an emission surface. 本発明の実施の形態に係る照明装置の照明用レンズを中間位置に配置させた状態で光源を発光させたときの反射照明光のうち、第1反射光、第2反射光および第3反射光の光路を示す照明装置の断面図である。The first reflected light, the second reflected light, and the third reflected light of the reflected illumination light when the light source is caused to emit light with the illumination lens of the illumination device according to the embodiment of the present invention arranged in the intermediate position 3 is a cross-sectional view of the lighting device showing the optical path of FIG. 図7に示す第1反射光、第2反射光および第3反射光の光路を出射面から1メートル先の被照明面まで伸ばして示した図である。It is the figure which extended the optical path of the 1st reflected light shown in FIG. 7, the 2nd reflected light, and the 3rd reflected light to the illuminated surface 1 meter ahead from an emission surface. 本発明の実施の形態に係る照明装置の照明用レンズを後端位置に配置させた状態で光源を発光させたときの反射照明光のうち、第1反射光、第2反射光および第3反射光の光路を示す照明装置の断面図である。The first reflected light, the second reflected light, and the third reflected light of the reflected illumination light when the light source is caused to emit light with the illumination lens of the illumination device according to the embodiment of the present invention arranged at the rear end position It is sectional drawing of the illuminating device which shows the optical path of light. 図9に示す第1反射光、第2反射光および第3反射光の光路を出射面から1メートル先の被照明面まで伸ばして示した図である。It is the figure which extended the optical path of the 1st reflected light shown in FIG. 9, the 2nd reflected light, and the 3rd reflected light to the illuminated surface 1 meter ahead from an emission surface. 本発明の実施の形態に係る照明装置の照明用レンズの反射面の非球面形状の延長線を示す図である。It is a figure which shows the aspherical extension line of the reflective surface of the illuminating lens of the illuminating device which concerns on embodiment of this invention. 本発明の実施の形態に係る照明装置の照明用レンズを前端位置に配置させた状態で光源を発光させたときに第1入射面から入射し、反射面を経由せずに出射面を出射する非反射照明光の光路を示す照明装置の断面図である。When the light source emits light with the illumination lens of the illumination device according to the embodiment of the present invention arranged at the front end position, the light enters from the first incident surface and exits the emission surface without passing through the reflection surface. It is sectional drawing of an illuminating device which shows the optical path of non-reflection illumination light. 本発明の実施の形態に係る照明装置の照明用レンズを中間位置に配置させた状態で光源を発光させたときの非反射照明光の光路を示す照明装置の断面図である。It is sectional drawing of the illuminating device which shows the optical path of non-reflection illumination light when a light source is made to emit light in the state which has arrange|positioned the lens for illumination of the illuminating device which concerns on embodiment of this invention. 本発明の実施の形態に係る照明装置の照明用レンズを後端位置に配置させた状態で光源を発光させたときの非反射照明光の光路を示す照明装置の断面図である。It is sectional drawing of the illuminating device which shows the optical path of non-reflection illumination light when a light source is made to emit light in the state which has arrange|positioned the illuminating lens of the illuminating device which concerns on embodiment of this invention. 本発明の実施の形態に係る非反射照明光が第1入射面を透過する際の光路を詳細に示す図である。It is a figure which shows in detail the optical path when the non-reflection illumination light which concerns on embodiment of this invention penetrates a 1st incident surface. 本発明の実施の形態に係る照明用レンズの図2に示した断面図と、比較例に係る照明用レンズの断面図とを重ね合わせた図である。FIG. 3 is a diagram in which the cross-sectional view of the illumination lens according to the embodiment of the present invention shown in FIG. 2 and the cross-sectional view of the illumination lens according to the comparative example are overlapped. 比較例に係る照明装置の照明用レンズを前端位置に配置させた状態で光源を発光させたときの反射照明光のうち、第1反射光、第2反射光および第3反射光の光路を示す照明装置の断面図である。The optical paths of the first reflected light, the second reflected light, and the third reflected light of the reflected illumination light when the light source is caused to emit light with the illumination lens of the illumination device according to the comparative example arranged at the front end position are shown. It is sectional drawing of an illuminating device. 図17に示す第1反射光、第2反射光および第3反射光の光路を出射面から1メートル先の被照明面まで伸ばして示した図である。It is the figure which extended the optical path of the 1st reflected light shown in FIG. 17, the 2nd reflected light, and the 3rd reflected light to the illuminated surface 1 meter ahead from an emission surface. 比較例に係る照明装置の照明用レンズを中間位置に配置させた状態で光源を発光させたときの反射照明光のうち、第1反射光、第2反射光および第3反射光の光路を示す照明装置の断面図である。The optical paths of the first reflected light, the second reflected light, and the third reflected light of the reflected illumination light when the light source is caused to emit light with the illumination lens of the illumination device according to the comparative example arranged at the intermediate position are shown. It is sectional drawing of an illuminating device. 図19に示す第1反射光、第2反射光および第3反射光の光路を出射面から1メートル先の被照明面まで伸ばして示した図である。It is the figure which extended the optical path of the 1st reflected light shown in FIG. 19, the 2nd reflected light, and the 3rd reflected light to the illuminated surface 1 meter ahead from an emission surface. 比較例に係る照明装置の照明用レンズを後端位置に配置させた状態で光源を発光させたときの反射照明光のうち、第1反射光、第2反射光および第3反射光の光路を示す照明装置の断面図である。The optical paths of the first reflected light, the second reflected light, and the third reflected light of the reflected illumination light when the light source is caused to emit light with the illumination lens of the illumination device according to the comparative example arranged at the rear end position are It is sectional drawing of the illuminating device shown. 図21に示す第1反射光、第2反射光および第3反射光の光路を出射面から1メートル先の被照明面まで伸ばして示した図である。FIG. 22 is a diagram in which the optical paths of the first reflected light, the second reflected light, and the third reflected light shown in FIG. 21 are extended to the illuminated surface 1 meter ahead from the emission surface. 本発明の実施の形態に係る照明装置と比較例に係る照明装置の照明用レンズを前端位置に配置したときの被照明面における照度分布を示す図である。It is a figure which shows the illuminance distribution in the to-be-illuminated surface when the lens for illumination of the illuminating device which concerns on embodiment of this invention and the illuminating device which concerns on a comparative example is arrange|positioned in the front end position. 本発明の実施の形態に係る照明装置と比較例に係る照明装置の照明用レンズを中間位置に配置したときの被照明面における照度分布を示す図である。It is a figure which shows the illuminance distribution in the to-be-illuminated surface when the illumination lens of the illuminating device which concerns on embodiment of this invention and the illuminating device which concerns on a comparative example is arrange|positioned in an intermediate position. 本発明の実施の形態に係る照明装置と比較例に係る照明装置の照明用レンズを後端位置に配置したときの被照明面における照度分布を示す図である。It is a figure which shows the illumination intensity distribution in the to-be-illuminated surface when the lens for illumination of the illuminating device which concerns on embodiment of this invention and the illuminating device which concerns on a comparative example is arrange|positioned at a rear end position. 本発明の実施の形態に係る照明装置の、光源と照明用レンズとの相対移動量と照明装置の配光角の関係を示す図である。It is a figure which shows the relationship of the relative movement amount of a light source and the lens for illumination, and the light distribution angle of an illuminating device of the illuminating device which concerns on embodiment of this invention. 本発明の実施の形態に係る照明装置の、光源と照明用レンズとの相対移動量と出射光の出射効率の関係を示す図である。It is a figure which shows the relationship of the relative movement amount of a light source and the lens for illumination, and the emission efficiency of emitted light of the illuminating device which concerns on embodiment of this invention. 本発明の実施の形態に係る照明装置の出射面にフライアイレンズを配置した変形例に係る照明装置の照明用レンズを前端位置に配置したときの被照明面における照度分布を示す図である。It is a figure which shows the illuminance distribution in the to-be-illuminated surface when the lens for illumination of the illuminating device which concerns on the modification which has arrange|positioned the fly-eye lens on the output surface of the illuminating device which concerns on embodiment of this invention is arrange|positioned at the front end position. 本発明の実施の形態に係る変形例の照明装置の照明用レンズを中間位置に配置したときの被照明面における照度分布を示す図である。It is a figure which shows the illuminance distribution in the to-be-illuminated surface when the illumination lens of the illuminating device of the modification which concerns on embodiment of this invention is arrange|positioned in an intermediate position. 本発明の実施の形態に係る変形例の照明装置の照明用レンズを後端位置に配置したときの被照明面における照度分布を示す図である。It is a figure which shows the illuminance distribution in the to-be-illuminated surface when the lens for illumination of the illuminating device of the modification which concerns on embodiment of this invention is arrange|positioned in a rear end position.

以下、本発明の実施の形態に係る照明装置について、図面を参照しながら説明する。 Hereinafter, a lighting device according to an embodiment of the present invention will be described with reference to the drawings.

(本発明の実施の形態に係る照明装置の構成)
図1は、本発明の実施の形態に係る照明装置1を出射面側から見た平面図である。図2は、図1のA−A断面図である。なお、図2に示すべきハッチングは省略している。以降の同様の断面図についてもハッチングを省略する。図3は、本発明の実施の形態に係る照明装置1から外装筒を取り外した状態を示す斜視図である。図4は、本発明の実施の形態に係る照明装置1が有するレンズ保持筒22の展開図であり、レンズ保持筒22に形成されるカム溝33の全体を示す図である。なお、以下の説明において、照明装置1の照明方向(矢示B)を前方(前側)として説明することがある。また、照明方向Bの反対方向を後方(後側)として説明する。
(Structure of the illumination device according to the embodiment of the present invention)
FIG. 1 is a plan view of an illuminating device 1 according to an embodiment of the present invention as viewed from the exit surface side. FIG. 2 is a sectional view taken along line AA of FIG. The hatching that should be shown in FIG. 2 is omitted. The hatching is omitted also in the subsequent similar sectional views. FIG. 3 is a perspective view showing a state in which the outer casing is removed from lighting device 1 according to the embodiment of the present invention. FIG. 4 is a development view of the lens holding barrel 22 included in the lighting device 1 according to the embodiment of the present invention, and is a view showing the entire cam groove 33 formed in the lens holding barrel 22. In the following description, the illumination direction (arrow B) of the illumination device 1 may be referred to as the front (front side). Further, a direction opposite to the illumination direction B will be described as a rear side (rear side).

照明装置1は、光源2と照明用レンズ3との間の距離を光軸Lに沿って所定の範囲内で変えることができる。そして照明装置1は、その距離を変えることで照明用レンズ3から出射される照明光の照明範囲を変えることができる。そして照明装置1は、光源2を保持する固定筒23と、照明用レンズ3を保持するレンズ保持筒22とを有する。また照明装置1は、レンズ保持筒22を光軸L中心に回転させることにより、光源2と照明用レンズ3との光軸L方向に沿う方向の距離を可変することができるカム機構31とを有する。 The illumination device 1 can change the distance between the light source 2 and the illumination lens 3 along the optical axis L within a predetermined range. Then, the illumination device 1 can change the illumination range of the illumination light emitted from the illumination lens 3 by changing the distance. The illumination device 1 has a fixed barrel 23 that holds the light source 2 and a lens holding barrel 22 that holds the illumination lens 3. Further, the illuminating device 1 includes a cam mechanism 31 capable of changing the distance between the light source 2 and the illuminating lens 3 in the direction along the optical axis L by rotating the lens holding cylinder 22 about the optical axis L. Have.

レンズ保持筒22は、図示を省略する外装筒内に挿入され、レンズ保持筒22の外周は該外装筒に覆われている。外装筒には、筒の外側と内側とに貫通するねじ孔が形成されている。このねじ孔にネジを螺合することで、レンズ保持筒22と該外装筒とが一体化される。したがって、レンズ保持筒22の回転に際しては、該外装筒を手でつかみ操作することになる。 The lens holding cylinder 22 is inserted into an exterior cylinder (not shown), and the outer circumference of the lens holding cylinder 22 is covered by the exterior cylinder. The exterior cylinder is formed with a screw hole that penetrates the outside and the inside of the cylinder. The lens holding cylinder 22 and the exterior cylinder are integrated by screwing a screw into the screw hole. Therefore, when the lens holding cylinder 22 is rotated, the outer cylinder is grasped and operated by hand.

ここで、カム機構31は、レンズ保持筒22の回転角を90°の範囲で、光源2と照明用レンズ3との相対移動量を3mm以内とする。この相対移動量3mmは、光源2と照明用レンズ3との相対移動量の最大値である。 Here, in the cam mechanism 31, the rotation angle of the lens holding cylinder 22 is within a range of 90°, and the relative movement amount between the light source 2 and the illumination lens 3 is within 3 mm. The relative movement amount of 3 mm is the maximum value of the relative movement amount of the light source 2 and the illumination lens 3.

カム機構31は、カム溝33と、このカム溝33に係合するカムフォロア34とを有する。図4に示すように、カム溝33は、レンズ保持筒22に形成される。カム溝33は、光軸Lの周囲に等角度で3本形成され、レンズ保持筒22の最大の回転角が90度となるように溝の長さが設定されている。カムフォロア34は、固定筒23に設けられている。カムフォロア34は、3つのカム溝33にそれぞれ係合するように、光軸Lの周りに120°間隔で3つ設けられている。 The cam mechanism 31 has a cam groove 33 and a cam follower 34 that engages with the cam groove 33. As shown in FIG. 4, the cam groove 33 is formed in the lens holding cylinder 22. Three cam grooves 33 are formed at an equal angle around the optical axis L, and the lengths of the grooves are set so that the maximum rotation angle of the lens holding cylinder 22 is 90 degrees. The cam follower 34 is provided on the fixed barrel 23. Three cam followers 34 are provided around the optical axis L at 120° intervals so as to engage with the three cam grooves 33, respectively.

したがって、光軸Lを中心にしてレンズ保持筒22を回転させると、カム溝33とカムフォロア34との作用により、レンズ保持筒22は、回転方向に応じて固定筒23に対して光軸Lに沿って前後に移動する。すなわち、レンズ保持筒22を光軸Lを中心にして回転させると、照明用レンズ3が、レンズ保持筒22の回転方向に応じて光源2に対して光軸Lに沿って前後に移動する。 Therefore, when the lens holding barrel 22 is rotated around the optical axis L, the lens holding barrel 22 is moved to the optical axis L relative to the fixed barrel 23 according to the rotation direction by the action of the cam groove 33 and the cam follower 34. Move back and forth along. That is, when the lens holding barrel 22 is rotated about the optical axis L, the illumination lens 3 moves back and forth along the optical axis L with respect to the light source 2 according to the rotation direction of the lens holding barrel 22.

また、図3に示すように照明装置1には、支持部材35と、台座36とが備えられている。台座36は、図示を省略するネジ等で、壁や机上等に対して固定される。つまり、台座36は、照明装置1を、壁や机上等に対して設置するための固定部である。照明装置1と支持部材35とは、図示を省略する自在継手で連結される。したがって、支持部材35に自在継手で連結されている照明装置1は、台座36を介して壁や机上等に対して設置された状態で、照明方向を変えることができる。 Further, as shown in FIG. 3, the lighting device 1 includes a support member 35 and a pedestal 36. The pedestal 36 is fixed to a wall, a desk, or the like with screws or the like (not shown). That is, the pedestal 36 is a fixed portion for installing the lighting device 1 on a wall, a desk, or the like. The lighting device 1 and the support member 35 are connected by a universal joint (not shown). Therefore, the illumination device 1 connected to the support member 35 by the universal joint can change the illumination direction in a state where the illumination device 1 is installed on the wall, the desk, or the like via the pedestal 36.

また、本発明の実施の形態に係る照明装置1は、光源2と、光源2から発せられた光が入射し、この入射した光の配光を制御して出射する照明用レンズ3と、照明用レンズ3を光軸Lに沿って移動させるカム機構31とを有する。光源2は、LED(Light Emitting Diode)のチップ部品を用いている。また照明用レンズ3は、アクリル樹脂、ポリカーボネイト樹脂あるいはガラスなどの透明な材料(レンズ素材)の一体成型物である。 Further, the illumination device 1 according to the embodiment of the present invention includes a light source 2, an illumination lens 3 that receives the light emitted from the light source 2, controls the light distribution of the incident light, and emits the light. And a cam mechanism 31 for moving the objective lens 3 along the optical axis L. The light source 2 uses an LED (Light Emitting Diode) chip component. The illumination lens 3 is an integrally molded product of a transparent material (lens material) such as acrylic resin, polycarbonate resin or glass.

上述したように、カム機構31は、カム溝33と、このカム溝33に係合するカムフォロア34とを有する。カム溝33が形成されるレンズ保持筒22を光軸Lの周り回転させることで、カム溝33と固定筒23に形成されるカムフォロア34との作用により、レンズ保持筒22が光軸Lに沿って移動する。レンズ保持筒22が光軸Lに沿って移動することで、光源2と照明用レンズ3との間の距離(間隔)が変わる。 As described above, the cam mechanism 31 has the cam groove 33 and the cam follower 34 that engages with the cam groove 33. By rotating the lens holding cylinder 22 in which the cam groove 33 is formed around the optical axis L, the lens holding cylinder 22 is moved along the optical axis L by the action of the cam groove 33 and the cam follower 34 formed in the fixed cylinder 23. To move. As the lens holding cylinder 22 moves along the optical axis L, the distance (spacing) between the light source 2 and the illumination lens 3 changes.

なお、図5以降においては、図面を解り易くするため、カム機構31の図示を省略する。光源2と照明用レンズ3との間の距離を光軸Lに沿って変える機構(移動機構)は、上述のカム機構3の他に、レンズ保持筒22と、固定筒23との螺合により行ってもよい。また、光源2を直接光軸Lに沿って移動させる機構としてもよい。また、照明用レンズ3と光源2との双方を移動させる構成としてもよい。 In addition, in FIG. 5 and subsequent figures, the cam mechanism 31 is not shown in order to make the drawings easy to understand. A mechanism (moving mechanism) that changes the distance between the light source 2 and the illumination lens 3 along the optical axis L is formed by screwing the lens holding cylinder 22 and the fixed cylinder 23 in addition to the cam mechanism 3 described above. You can go. Alternatively, the light source 2 may be directly moved along the optical axis L. Further, both the illumination lens 3 and the light source 2 may be moved.

照明用レンズ3は、光源2から発せられた光が照明用レンズ3内に入射する入射面4と、入射面4から照明用レンズ3内に入射した光の一部を照明方向Bに向けて反射する凹面形状の反射面としての反射面5と、入射面4から照明用レンズ3内に入射した光を照明方向Bに向けて出射する出射面6と、を有する。反射面5は、光軸L側に曲率中心を有る非球面形状の凹面鏡である。照明方向Bは、照明装置1から、この照明装置1が照明する被照明面9に向かう方向である。 The illumination lens 3 has an incident surface 4 on which the light emitted from the light source 2 enters the illumination lens 3 and a part of the light incident on the illumination lens 3 from the incident surface 4 in the illumination direction B. It has a reflecting surface 5 as a concave reflecting surface for reflecting light, and an emitting surface 6 for emitting the light that has entered the illumination lens 3 from the incident surface 4 toward the illumination direction B. The reflecting surface 5 is an aspherical concave mirror having a center of curvature on the optical axis L side. The illumination direction B is a direction from the illumination device 1 toward the illuminated surface 9 illuminated by the illumination device 1.

照明用レンズ3は、後方の端部に開口部7が形成され前方に向けて凹む凹部8を有している。凹部8は、光源2が配置される側に光源2から発せられた光が進入可能に形成される。凹部8の内面は、入射面4となる。入射面4は、第1入射面4Aと第2入射面4Bとを有する。ここで第1入射面4Aは、凹部8の底面に配置され、光源2からの光を集光させるように光源2側に(後方に向けて)凸面を有する集光レンズ面である。そして第2入射面4Bは、光源2からの光を反射面5に向けて透過することができるように、凹部8に照明用レンズ3の光軸Lの周囲に形成される内側面である。 The illumination lens 3 has a recessed portion 8 which is formed with an opening 7 at a rear end portion thereof and which is recessed forward. The recess 8 is formed so that the light emitted from the light source 2 can enter the side where the light source 2 is arranged. The inner surface of the concave portion 8 becomes the incident surface 4. The entrance surface 4 has a first entrance surface 4A and a second entrance surface 4B. Here, the first incident surface 4A is a condenser lens surface which is arranged on the bottom surface of the concave portion 8 and has a convex surface on the light source 2 side (toward the rear) so as to condense light from the light source 2. The second incident surface 4B is an inner side surface formed around the optical axis L of the illumination lens 3 in the recess 8 so that the light from the light source 2 can be transmitted toward the reflecting surface 5.

光源2は、LEDチップ部を封入する蛍光樹脂を介して光を出射させる。つまり、光源2の光の出射部は面積を有する。そのため、照明光の光路追跡を行うことで所望の照度分布を得ることができる照明レンズ3を設計することは難しい。そこで、照明用レンズ3は、面積を有する出射部から出射する光が被照明面9において所望の照度分布になるように、シミュレーションソフトや実測の結果に基づいて設計される。 The light source 2 emits light through the fluorescent resin that encapsulates the LED chip portion. That is, the light emitting portion of the light source 2 has an area. Therefore, it is difficult to design the illumination lens 3 that can obtain a desired illuminance distribution by tracing the optical path of the illumination light. Therefore, the illumination lens 3 is designed on the basis of simulation software and the result of actual measurement so that the light emitted from the emitting portion having an area has a desired illuminance distribution on the illuminated surface 9.

また、光源2の出射部から出射される全ての光を照明したい範囲(被照明面)に導き、この照明範囲を所望の照度分布とするように照明用レンズ3を構成することは困難である。そのため、照明用レンズ3は、光源2から発せられる光が全体として被照明面9において所望の照度分布になるように設計される。 Moreover, it is difficult to guide all the light emitted from the emission part of the light source 2 to a range to be illuminated (illuminated surface), and to configure the illumination lens 3 so that this illumination range has a desired illuminance distribution. .. Therefore, the illumination lens 3 is designed so that the light emitted from the light source 2 has a desired illuminance distribution on the illuminated surface 9 as a whole.

また、光源2の出射部の全面から出射する光と照明用レンズ3の構成との関係を説明することは困難である。そこで、ここでは、光源2の出射部のうち照度分布に大きな影響を与える光として、点光源2Aから所定の照射角で照射される光を主照明光とし、この主照明光の被照明面9における照度分布が所望の照度分布となる照明用レンズ3の構成について説明する。 Further, it is difficult to explain the relationship between the light emitted from the entire emission portion of the light source 2 and the configuration of the illumination lens 3. Therefore, here, as the light having a great influence on the illuminance distribution in the emission part of the light source 2, the light emitted from the point light source 2A at a predetermined irradiation angle is used as the main illumination light, and the illuminated surface 9 of this main illumination light is used. The configuration of the illumination lens 3 in which the illuminance distribution in FIG.

点光源2Aは、LEDチップの光軸L上の点であり、照明装置1においては、照明用レンズ3が後述する前端位置Fに配置されているときに、入射面4に入射することができる光を主照明光としている。照明装置1においては、主照明光の所定の照射角を148°としている。この所定の照射角は、光源2と照明用レンズ3の間隔を光軸Lに沿って変えたとしても変化しない固定値となる。また、主照明光のうち、第2入射面4Bから入射し反射面5で反射した後に出射面6から出射する光を「反射照明光」と言い、第1入射面4Aから入射し反射面5で反射しないで出射面6から出射する光を「非反射照明光」と言う。 The point light source 2A is a point on the optical axis L of the LED chip, and can be incident on the incident surface 4 when the illumination lens 3 is arranged at the front end position F described later in the illumination device 1. Light is the main illumination light. In the illuminating device 1, the predetermined irradiation angle of the main illumination light is 148°. This predetermined irradiation angle is a fixed value that does not change even if the distance between the light source 2 and the illumination lens 3 is changed along the optical axis L. Of the main illumination light, the light that enters from the second incident surface 4B, is reflected by the reflecting surface 5, and then exits from the exit surface 6 is referred to as "reflected illumination light", which is incident from the first incident surface 4A and enters the reflecting surface 5. The light emitted from the emission surface 6 without being reflected by is referred to as "non-reflection illumination light".

光源2と照明用レンズ3の出射面6との間隔は、移動機構21により光軸Lに沿って所定の範囲内で変えることができる。光源2と出射面6との間隔が長くなるほど被照明面9における照明範囲が狭くなり、逆に、光源2と出射面6との間隔が短くなるほど被照明面9における照明範囲が広くなる。また、照明範囲は、光源2と出射面6との間隔に加えて、入射面4および出射面6の面積の大小を含めた形状等にも依存する。 The distance between the light source 2 and the emission surface 6 of the illumination lens 3 can be changed by the moving mechanism 21 along the optical axis L within a predetermined range. The longer the distance between the light source 2 and the emission surface 6, the narrower the illumination range on the illuminated surface 9, and conversely, the shorter the distance between the light source 2 and the emission surface 6, the wider the illumination area on the illuminated surface 9. Further, the illumination range depends not only on the distance between the light source 2 and the emission surface 6 but also on the shape including the area of the incident surface 4 and the emission surface 6 and the like.

したがって、光源2と出射面6との間隔の所定の範囲は、入射面4および出射面6の面積の大小を含めた形状等に応じて、被照明面9における照明範囲が所望の広さになるように設定される。所望の広さの照明範囲において、最も狭い照明範囲となるときの光源2と出射面6との間隔が、光源2と出射面6とが最も離れた状態であり、照明範囲が最も広くなるときの光源2と出射面6との間隔が、光源2と出射面6とが最も近づいた状態である。 Therefore, the predetermined range of the distance between the light source 2 and the emitting surface 6 is such that the illuminated area on the illuminated surface 9 has a desired width according to the shape including the area of the incident surface 4 and the emitting surface 6. Is set. When the light source 2 and the emitting surface 6 are spaced apart from each other when the light source 2 and the emitting surface 6 have the narrowest illumination range in the desired illumination range and the illumination range is the widest. The distance between the light source 2 and the emission surface 6 is such that the light source 2 and the emission surface 6 are closest to each other.

反射面5は、第2入射面4Bから照明用レンズ3内に入射した主照明光の一部を照明方向Bに向けて全反射させる全反射面である。そして照明用レンズ3は、光軸Lに沿って、第1入射面4Aが光源2から最も離れた前端位置Fから、第1入射面4Aが光源2に最も近づき、光源2が凹部8内に配置される後端位置Rまで移動が可能である。 The reflection surface 5 is a total reflection surface that totally reflects a part of the main illumination light that has entered the illumination lens 3 from the second incident surface 4B toward the illumination direction B. Then, in the illumination lens 3, along the optical axis L, the first incident surface 4A comes closest to the light source 2 from the front end position F where the first incident surface 4A is farthest from the light source 2, and the light source 2 enters the concave portion 8. It is possible to move to the rear end position R where it is arranged.

(本発明の実施の形態に係る照明装置における照明光の光路)
図5は、照明装置1の照明用レンズ3を前端位置Fに配置したときに、反射照明光の光路を説明するための照明装置1の断面図である。図5は図2に示した照明装置1の断面図に反射照明光の一部の光線を追加した図である。
(Optical Path of Illumination Light in Illumination Device According to Embodiment of the Present Invention)
FIG. 5 is a cross-sectional view of the illumination device 1 for explaining the optical path of the reflected illumination light when the illumination lens 3 of the illumination device 1 is arranged at the front end position F. FIG. 5 is a cross-sectional view of the illuminating device 1 shown in FIG. 2 with some light rays of reflected illumination light added.

照明装置1から出射する主照明光は、光軸Lを中心とする回転対象の配光で出射する。図面および説明を判り易くするため、図5,6(図6は後述する)における反射照明光の光路は光軸Lに対して片側(一方側)のみ図示し、該片側に対して光軸Lの反対側(他方側)を図示していない。図5,6には、第1反射光P1、第2反射光P2および第3反射光P3の3光線が例示されている。以上の図5,6に関する図示の方法は、後述する図7,図8,図9,図10,図11,図17,図18,図19,図20,図21および図22についても同様とする。 The main illumination light emitted from the illuminating device 1 is emitted with a light distribution of a rotation target around the optical axis L. For easy understanding of the drawings and the description, the optical path of the reflected illumination light in FIGS. 5 and 6 (FIG. 6 will be described later) is shown only on one side (one side) with respect to the optical axis L, and the optical axis L is shown with respect to the one side. The other side (the other side) is not shown. 5 and 6 exemplify three light rays of the first reflected light P1, the second reflected light P2, and the third reflected light P3. The above-described method of FIGS. 5 and 6 is the same for FIGS. 7, 8, 9, 10, 11, 17, 17, 19, 20, 21, and 22 described later. To do.

ここで、第1反射光P1、第2反射光P2および第3反射光P3は、反射面5で反射する反射照明光のうち、光源2から発せられ第2入射面4Bに入射する光の光軸Lに対する出射角が、
(1)最小のものを第1反射光P1とし、
(2)最大のものを第2反射光P2とし、
(3)第1反射光P1と第2反射光P2の中間のものを第3反射光P3とする。
Here, the first reflected light P1, the second reflected light P2, and the third reflected light P3 are the lights of the reflected illumination light reflected by the reflecting surface 5 that are emitted from the light source 2 and enter the second incident surface 4B. The output angle with respect to the axis L is
(1) The smallest one is the first reflected light P1,
(2) The largest one is the second reflected light P2,
(3) An intermediate value between the first reflected light P1 and the second reflected light P2 is defined as the third reflected light P3.

照明用レンズ3が前端位置Fに配置されているとき、第1反射光P1の光軸Lに対する出射角は約26°、第2反射光P2の光軸Lに対する出射角は約74°、そして、第3反射光P3の光軸Lに対する出射角は約50°である。 When the illumination lens 3 is arranged at the front end position F, the emission angle of the first reflected light P1 with respect to the optical axis L is approximately 26°, the emission angle of the second reflected light P2 with respect to the optical axis L is approximately 74°, and The emission angle of the third reflected light P3 with respect to the optical axis L is about 50°.

第1反射光P1、第2反射光P2、および第3反射光P3の光軸Lに対する角度出射角は、照明用レンズ3と光源2との間隔により異なる。つまり、照明装置1において、照明用レンズ3が後端位置Rに配置されているとき、第1反射光P1の光軸Lに対する出射角は約38°、第2反射光P2の光軸Lに対する出射角は約74°、そして、第3反射光P3の光軸Lに対する出射角は約56°である。 The angle emission angles of the first reflected light P1, the second reflected light P2, and the third reflected light P3 with respect to the optical axis L differ depending on the distance between the illumination lens 3 and the light source 2. That is, in the illuminating device 1, when the illuminating lens 3 is arranged at the rear end position R, the emission angle of the first reflected light P1 with respect to the optical axis L is approximately 38°, and the emission angle with respect to the optical axis L of the second reflected light P2. The emission angle is about 74°, and the emission angle of the third reflected light P3 with respect to the optical axis L is about 56°.

また、照明用レンズ3が中間位置Mに配置されているとき、第1反射光P1の光軸Lに対する出射角は約30°、第2反射光P2の光軸Lに対する出射角は約74°、そして、第3反射光P3の光軸Lに対する出射角は約52°である。なお、中間位置Mは、前端位置Fと後端位置Rとの間の位置である。この中間位置Mは、前端位置Fと後端位置Rとの間の厳密な中央(真ん中)の位置である必要はない。たとえば、前端位置Fと後端位置Rとの間の中央位置から、前端位置Fと後端位置Rとの間の距離の3割程度前後していてもよい。 Further, when the illumination lens 3 is arranged at the intermediate position M, the emission angle of the first reflected light P1 with respect to the optical axis L is approximately 30°, and the emission angle of the second reflected light P2 with respect to the optical axis L is approximately 74°. The emission angle of the third reflected light P3 with respect to the optical axis L is about 52°. The intermediate position M is a position between the front end position F and the rear end position R. The intermediate position M does not have to be the exact center (middle) position between the front end position F and the rear end position R. For example, it may be about 30% of the distance between the front end position F and the rear end position R from the center position between the front end position F and the rear end position R.

照明装置1は、たとえば、被照明面を出射面6から約1メートル離れた位置に設定され、この位置で所望の照明範囲で所望の照度分布となるように構成されるものである。図6は、図5に示す第1反射光P1、第2反射光P2および第3反射光P3の光路を出射面6から約1メートル先の被照明面9まで伸ばして示した図である。なお、被照明面9は、該1メートルに限らず、所望の距離とすることができ、この距離に応じて、照明用レンズ3の大きさを含む形状、光源2の形状等を設定する。「所定の距離」は、照明装置1の用途等に応じて決定できる距離である。たとえば、照明装置1をベッドサイドの読書灯として用いる場合には、1メートル前後を所定の距離とすることができ、また、照明装置1を天井から床面を照明する室内照明として用いる場合には、2.5メール前後を所定の距離とすることができる。さらに、壁面に飾られた絵画を天井側から照明するために照明装置1を用いる場合には、2メート前後を所定の距離とすることができる。 The illuminating device 1 is configured, for example, such that the surface to be illuminated is set at a position separated from the emitting surface 6 by about 1 meter, and a desired illuminance distribution is obtained in a desired illumination range at this position. FIG. 6 is a diagram showing the optical paths of the first reflected light P1, the second reflected light P2, and the third reflected light P3 shown in FIG. 5 extended from the emission surface 6 to the illuminated surface 9 approximately 1 meter away. It should be noted that the illuminated surface 9 is not limited to the 1 meter, but may be a desired distance, and the shape including the size of the illumination lens 3 and the shape of the light source 2 are set according to this distance. The “predetermined distance” is a distance that can be determined according to the application of the lighting device 1. For example, when the lighting device 1 is used as a bedside reading lamp, a predetermined distance of about 1 meter can be set, and when the lighting device 1 is used as indoor lighting for illuminating the floor from the ceiling. A predetermined distance can be around 2.5 emails. Further, when the lighting device 1 is used to illuminate a painting displayed on the wall surface from the ceiling side, a predetermined distance can be set to about 2 meters.

また図7は、照明装置1の照明用レンズ3を後端位置Rと前端位置Fとの間の位置である中間位置Mに配置したときの反射照明光の光路を示す照明装置1の断面図である。そして図8は、図7に示す第1反射光P1、第2反射光P2および第3反射光P3の光路を出射面6から1メートル先の被照明面9まで伸ばして示した図である。 7 is a cross-sectional view of the illumination device 1 showing the optical path of the reflected illumination light when the illumination lens 3 of the illumination device 1 is arranged at the intermediate position M which is a position between the rear end position R and the front end position F. Is. FIG. 8 is a diagram showing the optical paths of the first reflected light P1, the second reflected light P2, and the third reflected light P3 shown in FIG. 7 extended from the emission surface 6 to the illuminated surface 9 1 meter away.

また図9は、照明装置1の照明用レンズ3を後端位置Rに配置したときの反射照明光の光路を示す照明装置1の断面図である。そして図10は、図9に示す第1反射光P1、第2反射光P2および第3反射光P3の光路を出射面6から1メートル先の被照明面9まで伸ばして示した図である。 FIG. 9 is a cross-sectional view of the illumination device 1 showing the optical path of the reflected illumination light when the illumination lens 3 of the illumination device 1 is arranged at the rear end position R. FIG. 10 is a diagram showing the optical paths of the first reflected light P1, the second reflected light P2, and the third reflected light P3 shown in FIG. 9 extended from the emission surface 6 to the illuminated surface 9 1 meter away.

反射面5および第2入射面4Bは、以下の条件(1)(2)(3)を満たす形状とされている。 The reflecting surface 5 and the second incident surface 4B are shaped so as to satisfy the following conditions (1), (2) and (3).

条件(1)
反射面5および第2入射面4Bは、図5,図6,図7,図8,図9および図10からわかるように、光源2から発せられ、入射面4、反射面5および出射面6を経由して出射する反射照明光の出射方向を、照明用レンズ3の前端位置Fから後端位置Rへの移動(光源2と照明用レンズ3とが相対的に近づく移動)にしたがって、光軸Lの一方側から他方側に向けて傾斜させられていく形状とされている。
Condition (1)
The reflecting surface 5 and the second incident surface 4B are emitted from the light source 2 and are seen from FIGS. 5, 6, 7, 8, 9, and 10, and the incident surface 4, the reflecting surface 5, and the emitting surface 6 The direction of emission of the reflected illumination light emitted via the light is changed as the light is moved from the front end position F of the illumination lens 3 to the rear end position R (movement of the light source 2 and the illumination lens 3 relatively approaching each other). The shaft L is shaped to be inclined from one side to the other side.

条件(2)
また、図6,図8および図10からわかるように、反射面5および第2入射面4Bは、照明用レンズ3の前端位置Fから後端位置Rへの移動(光源2と照明用レンズ3とが相対的に近づく移動)にしたがって、出射面6から出射する反射照明光の配光角(照射範囲)を広くする形状とされている。
Condition (2)
Further, as can be seen from FIGS. 6, 8 and 10, the reflecting surface 5 and the second incident surface 4B move from the front end position F of the illumination lens 3 to the rear end position R (the light source 2 and the illumination lens 3). And (relatively moving closer to each other), the light distribution angle (irradiation range) of the reflected illumination light emitted from the emission surface 6 is widened.

条件(3)
照明用レンズ3が前端位置Fに配置されている状態で、反射面5で反射する第1反射光P1、第2反射光P2および第3反射光P3のうち、第1反射光P1が、被照明面9において光軸Lの最も近くを照明する。つまり、第1反射光P1が被照明面9において光軸Lの近くを照明する。
Condition (3)
Of the first reflected light P1, the second reflected light P2, and the third reflected light P3 that are reflected by the reflecting surface 5 in the state where the illumination lens 3 is arranged at the front end position F, the first reflected light P1 is The illumination surface 9 illuminates the closest point to the optical axis L. That is, the first reflected light P1 illuminates the surface 9 to be illuminated near the optical axis L.

なお、照明装置1に使用される照明用レンズ3は以下の条件を満たす構成とされている。つまり、図11に示すように、光軸L上に配置される反射面5の非球面形状の延長線5A(図11には一点鎖線で円弧状に描写した)上における頂点5Bに光源2が配置されたとしたときに、第1反射光P1の光軸Lに対する角度(出射角)a1が20°以上25°以下となるように、かつ、第2反射光P2の光軸Lに対する出射角a2が55°以上65°以下となるように、反射面5の非球面形状および第2入射面4Bの光軸Lに対する角度等が設定される。 The illumination lens 3 used in the illumination device 1 is configured to satisfy the following conditions. That is, as shown in FIG. 11, the light source 2 is located at the apex 5B on the aspherical extension line 5A of the reflecting surface 5 arranged on the optical axis L (depicted by an alternate long and short dash line in an arc shape in FIG. 11). When arranged, the angle (emission angle) a1 of the first reflected light P1 with respect to the optical axis L is 20° or more and 25° or less, and the emission angle a2 of the second reflected light P2 with respect to the optical axis L. Is set to 55° or more and 65° or less, the aspherical shape of the reflecting surface 5 and the angle of the second incident surface 4B with respect to the optical axis L are set.

また図5,6からわかるように、反射面5および第2入射面4Bは、照明用レンズ3が前端位置Fに配置された状態では、第1反射光P1と第3反射光P3とを、出射面6から出射した後に交差させない形状とされている。 Further, as can be seen from FIGS. 5 and 6, the reflecting surface 5 and the second incident surface 4B generate the first reflected light P1 and the third reflected light P3 when the illumination lens 3 is arranged at the front end position F. It is shaped so as not to intersect after being emitted from the emission surface 6.

また、第1入射面4Aは、光源2と照明用レンズ3とが相対的に近づく方向に移動するにしたがって、非反射照明光の配光角を大きくする形状とされている。 Further, the first incident surface 4A is shaped so that the light distribution angle of the non-reflected illumination light increases as the light source 2 and the illumination lens 3 move in a direction relatively approaching each other.

図12は、照明装置1の照明用レンズ3が前端位置Fに配置させたときの、第1入射面4Aから入射し、反射面5を経由せずに出射面6を出射する非反射照明光の光路を示す照明装置1の断面図である。図12は図2に示した照明装置1の断面図に非反射照明光の光路を追加したものである。以上の図12に関する図示の方法は、後述する図13および図14についても同様とする。 FIG. 12 is a non-reflecting illumination light that is incident from the first incident surface 4</b>A and is emitted from the emission surface 6 without passing through the reflection surface 5 when the illumination lens 3 of the illumination device 1 is arranged at the front end position F. 3 is a cross-sectional view of the illumination device 1 showing the optical path of FIG. FIG. 12 is a sectional view of the illuminating device 1 shown in FIG. 2 with an optical path of non-reflecting illumination light added. The method illustrated in FIG. 12 is the same for FIGS. 13 and 14 described later.

図13は、照明装置1の照明用レンズ3を後端位置Rと前端位置Fとの間の位置である中間位置Mに配置させたときの非反射照明光の光路を示す照明装置1の断面図である。図14は、照明装置1の照明用レンズ3を後端位置Rに配置させたときの非反射照明光の光路を示す照明装置1の断面図である。 FIG. 13 is a cross section of the illumination device 1 showing the optical path of the non-reflecting illumination light when the illumination lens 3 of the illumination device 1 is arranged at the intermediate position M which is a position between the rear end position R and the front end position F. It is a figure. FIG. 14 is a cross-sectional view of the illumination device 1 showing the optical path of the non-reflecting illumination light when the illumination lens 3 of the illumination device 1 is arranged at the rear end position R.

第1入射面4Aから入射した光源2からの光(非反射照明光)は集光させられる。また、図12,図13および図14からわかるように、照明用レンズ3が前方から後方に移動するに従って非反射照明光の照明範囲は広くなっていく。光路P4および光路P5は、非反射照明光の光軸Lを挟んだ周端の光線を示している。 Light (non-reflecting illumination light) from the light source 2 incident from the first incident surface 4A is condensed. Further, as can be seen from FIGS. 12, 13 and 14, the illumination range of the non-reflected illumination light becomes wider as the illumination lens 3 moves from the front to the rear. The optical paths P4 and P5 indicate the light rays at the peripheral ends sandwiching the optical axis L of the non-reflecting illumination light.

第1入射面4Aの形状は、点光源2Aから出射し第1入射面4Aを透過する各光線(非反射照明光の光線)の被照明面9における像高を、該各光線の光軸Lに対する角度(出射角)に応じて、次のように変える形状となっている。つまり、第1入射面4Aの形状は、該各光線の出射角が0°(光軸Lと一致)から所定の角度までの範囲で、出射角が大きくなるほど像高が高くなり、所定の出射角を越えると、逆に出射角が大きくなるほど像高が低くなる形状となっている。このように第1入射面4Aの形状を形成することで、被照明面9における非反射照明光による照明範囲の周縁側の照度を高めることができ、反射照明光と相まって被照明面9の照明範の照度の均一化を図ることができる。 The shape of the first incident surface 4A is such that the image height of each light ray (light ray of non-reflecting illumination light) emitted from the point light source 2A and transmitted through the first incident surface 4A on the illuminated surface 9 is the optical axis L of each light ray. The shape is changed as follows according to the angle (emission angle) with respect to. That is, the shape of the first incident surface 4A is such that the image height becomes higher as the emission angle becomes larger within a range in which the emission angle of each light ray is from 0° (corresponding to the optical axis L) to the predetermined angle, and the predetermined emission is performed. On the contrary, when the angle is exceeded, the image height becomes lower as the output angle becomes larger. By thus forming the shape of the first incident surface 4A, it is possible to increase the illuminance on the peripheral side of the illumination range by the non-reflected illumination light on the illuminated surface 9, and the illumination of the illuminated surface 9 in combination with the reflected illumination light. Uniform illuminance can be achieved.

本実施の形態においては、該所定の出射角は、第1入射面4Aに入射する非反射照明の最大出射角の5/10程度としている。つまり、出射角が0°から最大出射角の5/10程度までは各光線の出射角が大きくなるほど各光線の像高は高くなり、最大出射角の5/10程度以上の各光線については、逆に出射角が大きくなるほど像高が低くなるように、第1入射面4Aの形状を形成する。 In the present embodiment, the predetermined emission angle is about 5/10 of the maximum emission angle of the non-reflecting illumination incident on the first incident surface 4A. In other words, the image height of each light ray increases as the emission angle of each light ray increases from the emission angle of 0° to about 5/10 of the maximum emission angle, and for each light ray of about 5/10 or more of the maximum emission angle, On the contrary, the shape of the first incident surface 4A is formed so that the image height decreases as the emission angle increases.

なお、該所定の角度(最大出射角の5/10)の前後で照度分布が急激に変わることはなく、該所定の出射角は、最大出射角の4/10以上7/10以下の範囲であれば照度の均一化を好適に図ることができ、好ましくは5/10以上6/10以下の範囲であることが好ましい。上述したように、該所定の出射角を越える光線について出射角が大きくなるほど被照明面9における像高が低くなるように第1入射面4の形状を形成することにより、図15に示すように、図中Xで囲われた領域(非反射照明光のうち該所定の出射角を越える領域)内の光は、この領域内の内側の光線と外側の光線とが出射面6と被照明面9との間で互いに交差する。 It should be noted that the illuminance distribution does not suddenly change before and after the predetermined angle (5/10 of the maximum emission angle), and the predetermined emission angle is within the range of 4/10 or more and 7/10 or less of the maximum emission angle. If so, uniform illuminance can be suitably achieved, and it is preferably in the range of 5/10 or more and 6/10 or less. As described above, by forming the shape of the first incident surface 4 so that the image height on the illuminated surface 9 becomes lower as the output angle of the light ray exceeding the predetermined output angle becomes larger, as shown in FIG. In the area surrounded by X in the figure (the area of the non-reflected illumination light that exceeds the predetermined emission angle), the inner and outer rays within this area are the emission surface 6 and the illuminated surface. 9 and 9 cross each other.

(比較例に係る照明装置の構成)
図16は、本発明の実施の形態に係る照明用レンズ3の図2に示した断面図と、比較例に係る照明用レンズ3’の断面図とを重ね合わせた図である。実線で示しているのが本発明の実施の形態に係る照明用レンズ3であり、破線でで示しているのが比較例に係る照明用レンズ3’である。本発明に係る照明用レンズ3の反射面5の方が、比較例に係る照明用レンズ3’の反射面5’よりも若干凹部8側(前方から後方)に向かうに従い曲率が小さくなっている。
(Structure of lighting device according to comparative example)
FIG. 16 is a diagram in which the cross-sectional view of the illumination lens 3 according to the embodiment of the present invention shown in FIG. 2 and the cross-sectional view of the illumination lens 3′ according to the comparative example are overlapped. The solid line shows the illuminating lens 3 according to the embodiment of the invention, and the broken line shows the illuminating lens 3 ′ according to the comparative example. The reflecting surface 5 of the illuminating lens 3 according to the present invention has a curvature slightly smaller toward the concave portion 8 side (from the front to the rear) than the reflecting surface 5 ′ of the illuminating lens 3 ′ according to the comparative example. ..

この反射面5’の形状以外の比較例に係る照明用レンズ3’の形状は、本発明の実施の形態に係る照明用レンズ3の形状と同一である。また、比較例に係る照明装置11(図17参照)は、本発明の実施の形態に係る照明装置1と同様に光源2を使用し、光源2の移動範囲も照明装置1と同一である。そのため、比較例に係る照明装置11の説明に際しては、各部材に付する符号のうち、比較例に係る照明装置11そのものを示す「照明装置11」およびその構成要素の「照明用レンズ3’」「反射面5’」を除き、本発明の実施の形態に係る照明装置1の各要素に相当する符号を付して説明し、また各要素の説明を省略する。 The shape of the illuminating lens 3 ′ according to the comparative example other than the shape of the reflecting surface 5 ′ is the same as the shape of the illuminating lens 3 according to the embodiment of the present invention. Further, the illumination device 11 according to the comparative example (see FIG. 17) uses the light source 2 similarly to the illumination device 1 according to the embodiment of the present invention, and the movement range of the light source 2 is the same as that of the illumination device 1. Therefore, in the description of the illumination device 11 according to the comparative example, among the reference numerals assigned to the respective members, the “illumination device 11” indicating the illumination device 11 itself according to the comparative example and the “illumination lens 3′” of the component thereof. Except for the "reflecting surface 5'", description will be given with the reference numerals corresponding to the respective elements of the illumination device 1 according to the embodiment of the present invention, and description of the respective elements will be omitted.

(比較例に係る照明装置の光路)
ここで、比較例に係る反射光のうち、上述の第1反射光P1に相当するものを第1反射光P1’とし、上述の第2反射光P2に相当するものを第2反射光P2 ’とし、上述の第3反射光P3に相当するものを第3反射光P3’とする。なお、光源2から第2入射面4Bに到達するまでの第1反射光P1’、第2反射光P2’および第3反射光P3’の光軸Lに対する照射角は、それぞれ上述の第1反射光P1、上述の第2反射光P2および上述の第3反射光P3と同一である。
(Optical path of lighting device according to comparative example)
Here, among the reflected lights according to the comparative example, one corresponding to the above-mentioned first reflected light P1 is referred to as first reflected light P1′, and one corresponding to the above-mentioned second reflected light P2 is referred to as second reflected light P2′. Then, what corresponds to the above-mentioned third reflected light P3 is referred to as a third reflected light P3′. The irradiation angles of the first reflected light P1′, the second reflected light P2′, and the third reflected light P3′ from the light source 2 to the second incident surface 4B with respect to the optical axis L are respectively the above-mentioned first reflection light. It is the same as the light P1, the above-mentioned second reflected light P2, and the above-mentioned third reflected light P3.

図17は、照明装置11の照明用レンズ3を前端位置Fに配置させたときの反射照明光の光路を説明するための照明装置11の断面図である。図18は、図17に示す第1反射光P1’、第2反射光P2’および第3反射光P3’の光路を出射面6から1メートル先の被照明面9まで伸ばして示した図である。 FIG. 17 is a sectional view of the illumination device 11 for explaining the optical path of the reflected illumination light when the illumination lens 3 of the illumination device 11 is arranged at the front end position F. FIG. 18 is a diagram showing the optical paths of the first reflected light P1′, the second reflected light P2′, and the third reflected light P3′ shown in FIG. 17 extending from the exit surface 6 to the illuminated surface 9 1 meter away. is there.

図19は、照明装置11の照明用レンズ3を後端位置Rと前端位置Fとの中間の中間位置Mに配置したときの反射照明光の光路を説明するための照明装置1の断面図である。そして図20は、図19に示す第1反射光P1’、第2反射光P2’および第3反射光P3’の光路を出射面6から1メートル先の被照明面9まで伸ばして示した図である。 FIG. 19 is a cross-sectional view of the illuminating device 1 for explaining the optical path of the reflected illumination light when the illuminating lens 3 of the illuminating device 11 is arranged at an intermediate position M intermediate between the rear end position R and the front end position F. is there. 20 is a diagram showing the optical paths of the first reflected light P1′, the second reflected light P2′, and the third reflected light P3′ shown in FIG. 19 extended from the emission surface 6 to the illuminated surface 9 1 meter ahead. Is.

また図21は、照明装置11の照明用レンズ3を後端位置Rに配置させたときの反射照明光の光路を説明するための照明装置11の断面図である。そして図22は、図21に示す第1反射光P1’、第2反射光P2’および第3反射光P3’の光路を出射面6から1メートル先の被照明面9まで伸ばして示した図である。 21 is a cross-sectional view of the illumination device 11 for explaining the optical path of the reflected illumination light when the illumination lens 3 of the illumination device 11 is arranged at the rear end position R. 22 is a diagram showing the optical paths of the first reflected light P1′, the second reflected light P2′, and the third reflected light P3′ shown in FIG. 21 extended from the exit surface 6 to the illuminated surface 9 1 meter away. Is.

反射面5および第2入射面4Bは、図17,図19および図21からわかるように、光源2から発せられ、入射面4、反射面5’および出射面6を経由して出射する反射照明光の出射方向を、照明用レンズ3の前端位置Fから後端位置Rへの移動(光源2と照明用レンズ3とが相対的に近づく移動)に従って、光軸Lの一方側から他方側に向かわせる(振る)形状とされるとともに、照射範囲(配光角)を広くする形状とされ、また、第1反射光P1’が被照明面9において光軸Lの近傍を照明している。これらの点については、照明装置1と照明装置11とは同様である。 As can be seen from FIGS. 17, 19 and 21, the reflecting surface 5 and the second incident surface 4B are reflected lights emitted from the light source 2 and emitted via the incident surface 4, the reflecting surface 5′ and the emitting surface 6. The emission direction of light changes from one side of the optical axis L to the other side as the illumination lens 3 moves from the front end position F to the rear end position R (movement of the light source 2 and the illumination lens 3 relatively approaching each other). In addition to being directed (shaken), the irradiation range (light distribution angle) is widened, and the first reflected light P1′ illuminates the vicinity of the optical axis L on the illuminated surface 9. In these respects, the illumination device 1 and the illumination device 11 are the same.

しかしながら、照明装置11においては、図17からわかるように、反射面5および第2入射面4Bは、照明用レンズ3が前端位置Fに配置された状態では、第1反射光P1’と第3反射光P3’とを、出射面6から出射した後に交差させる形状とされている。この点が比較例に係る照明装置11と本発明の実施の形態に係る照明装置1との違いである。 However, in the illuminating device 11, as can be seen from FIG. 17, the reflecting surface 5 and the second incident surface 4B have the first reflected light P1′ and the third reflected light P1′ in the state where the illuminating lens 3 is arranged at the front end position F. The reflected light P3′ is shaped so as to intersect with each other after being emitted from the emission surface 6. This is the difference between the lighting device 11 according to the comparative example and the lighting device 1 according to the embodiment of the present invention.

なお比較例に係る照明装置11の非反射照明光の光路は、図12,図13および図14に示す本発明の実施の形態に係る照明装置1の非反射照明光の光路と同一である。 The optical path of the non-reflective illumination light of the illumination device 11 according to the comparative example is the same as the optical path of the non-reflective illumination light of the illumination device 1 according to the embodiment of the present invention shown in FIGS. 12, 13 and 14.

(本発明の実施の形態および比較例に係る照明装置の照度分布)
図23は、本発明の実施の形態に係る照明装置1と比較例に係る照明装置11とにおいて、照明用レンズ3を前端位置Fに配置したときの照度分布を示す図である。図24は、本発明の実施の形態に係る照明装置1と比較例に係る照明装置11とにおいて、照明用レンズ3を後端位置Rと前端位置Fとの中間の中間位置Mに配置したときの照度分布を示す図である。図25は、本発明の実施の形態に係る照明装置1と比較例に係る照明装置11とにおいて、光源2を照明用レンズ3を後端位置Rに配置したときの照度分布を示す図である。これらの照度分布は、出射面6から1メートル先の被照明面9における照度分布である。
(Illuminance distribution of illumination devices according to embodiments and comparative examples of the present invention)
FIG. 23 is a diagram showing an illuminance distribution when the illumination lens 3 is arranged at the front end position F in the illumination device 1 according to the embodiment of the present invention and the illumination device 11 according to the comparative example. FIG. 24 shows a case where the illumination lens 3 is arranged at an intermediate position M between the rear end position R and the front end position F in the lighting device 1 according to the embodiment of the present invention and the lighting device 11 according to the comparative example. It is a figure which shows the illuminance distribution of. FIG. 25 is a diagram showing an illuminance distribution when the light source 2 has the illumination lens 3 arranged at the rear end position R in the illumination device 1 according to the embodiment of the present invention and the illumination device 11 according to the comparative example. .. These illuminance distributions are illuminance distributions on the illuminated surface 9 1 meter away from the exit surface 6.

なお、図23,図24と図25のうち、照度分布の下に文字「本発明」が付されたもの(たとえば(本発明−R反射光)など)は、本発明の実施の形態に係る照明装置1の照度分布である。また、図21,図24と図25のうち、照度分布の下に文字「比較例」が付されたもの(たとえば(比較例−R反射光)など)は、比較例に係る照明装置11の照度分布である。 23, FIG. 24, and FIG. 25 that have the letters “present invention” attached below the illuminance distribution (for example, (present invention-R reflected light), etc., relate to the embodiment of the present invention. It is an illuminance distribution of the illuminating device 1. In addition, in FIG. 21, FIG. 24, and FIG. 25, the one in which the letters “comparative example” are attached below the illuminance distribution (for example, (comparative example-R reflected light), etc., is the same as that of the illumination device 11 according to the comparative example. The illuminance distribution.

また、図23,図24と図25のうち、照度分布の下に数字「反射照明光」が付されたもの(たとえば(本発明−R反射照明光)など)は、本発明の実施の形態に係る照明装置1と比較例に係る照明装置11の「反射照明光」の照度分布である。また、図23,図24と図25のうち、照度分布の下に文字「非反射照明光」が付されたもの(たとえば(本発明−R非反射照明光)など)は、本発明の実施の形態に係る照明装置1と比較例に係る照明装置11の「非反射照明光」の照度分布である。さらに、図23,図24と図25のうち、照度分布の下に文字「合成照明光」が付されたもの(たとえば(本発明−R合成照明光)など)は、本発明の実施の形態に係る照明装置1と比較例に係る照明装置11の実際の使用時に出射される光である、「反射照明光」と「非反射照明光」を合成した「合成照明光」の照度分布である。 In addition, in FIGS. 23, 24, and 25, the one in which the number “reflected illumination light” is attached below the illuminance distribution (for example, (the present invention-R reflected illumination light), etc. is an embodiment of the present invention. 3 is an illuminance distribution of “reflected illumination light” of the illumination device 1 according to Example 1 and the illumination device 11 according to the comparative example. In addition, in FIGS. 23, 24, and 25, those in which the characters “non-reflective illumination light” are added below the illuminance distribution (for example, (the present invention-R non-reflective illumination light), etc. are the embodiments of the present invention. 3 is an illuminance distribution of "non-reflective illumination light" of the illumination device 1 according to the embodiment and the illumination device 11 according to the comparative example. Further, in FIG. 23, FIG. 24, and FIG. 25, the one in which the letters “composite illumination light” is added below the illuminance distribution (for example, (the present invention-R composite illumination light), etc. is an embodiment of the present invention. 2 is an illuminance distribution of “combined illumination light” that is light that is emitted when the illumination device 1 according to Example 1 and the illumination device 11 according to the comparative example are actually used, that is, “reflective illumination light” and “non-reflective illumination light”. ..

本発明の実施の形態に係る照明装置1の照度分布は、特に照明用レンズ3を中間位置Mまたは後端位置Rに配置したときに、比較例に係る照明装置11に比べて合成光の照度分布が均一になり、また照度分布の変化が滑らかになっていることがわかる。ここで図24に示すように、照明用レンズ3を中間位置Mに配置したときは、照明装置1の合成照明光の照明範囲がほぼ均一に明るいのに対して、照明装置11の合成照明光の照明範囲は、明るい箇所が照明範囲全体の僅か中央部に限られていることがわかる。この傾向は図25に示すように、照明用レンズ3を後端位置Rに配置したときの照度分布でも表れている。 The illuminance distribution of the illuminating device 1 according to the embodiment of the present invention is such that when the illuminating lens 3 is arranged at the intermediate position M or the rear end position R, the illuminance of the combined light is higher than that of the illuminating device 11 according to the comparative example. It can be seen that the distribution is uniform and the illuminance distribution changes smoothly. Here, as shown in FIG. 24, when the illumination lens 3 is arranged at the intermediate position M, the illumination range of the combined illumination light of the illumination device 1 is almost uniformly bright, whereas the combined illumination light of the illumination device 11 is substantially uniform. It can be seen that the bright area is limited to the bright area only in the central part of the whole illuminated area. This tendency also appears in the illuminance distribution when the illumination lens 3 is arranged at the rear end position R, as shown in FIG.

この理由は、光源2を中間位置Mに配置したときの反射照明光の光路を示す図8と図20を比較すればわかりやすい。照明装置1の第3反射光P3は、照明装置11の第3反射光P3’に比べて、光軸Lから離れた照明範囲の外縁の光路をとっている(図8,20参照)。光の強さは、第1反射光P1,P1’が最も強く、次いで第3反射光P3,P3’、最も弱い光が第2反射光P2,P2’である。照明装置1は、第3反射光P3の光路を、照明装置11の第3反射光P3’よりも外側(第2反射光P2側)に配光している。つまり照明装置1は、照度の弱い光である第2反射光P2の照度を補うように第3反射光P3を配光している。これに対し、照明装置11の第2反射光P2’は、照明装置1の第2反射光P2に比べて照明範囲の中央側に配光されている。そのため図24に示す照度分布の違いとなる。 The reason for this is easy to understand by comparing FIG. 8 and FIG. 20, which show the optical path of the reflected illumination light when the light source 2 is arranged at the intermediate position M. The third reflected light P3 of the illuminating device 1 takes an optical path at the outer edge of the illumination range farther from the optical axis L than the third reflected light P3' of the illuminating device 11 (see FIGS. 8 and 20). Regarding the light intensity, the first reflected lights P1 and P1' are the strongest, the third reflected lights P3 and P3' are next, and the weakest lights are the second reflected lights P2 and P2'. The lighting device 1 distributes the optical path of the third reflected light P3 to the outside (the second reflected light P2 side) of the third reflected light P3' of the lighting device 11. That is, the illuminating device 1 distributes the third reflected light P3 so as to supplement the illuminance of the second reflected light P2, which is light with low illuminance. On the other hand, the second reflected light P2' of the illuminating device 11 is distributed more toward the center side of the illumination range than the second reflected light P2 of the illuminating device 1. Therefore, the illuminance distribution shown in FIG. 24 is different.

このような照明装置1の光路の特徴は、照明用レンズ3を後端位置Rに配置したときにも同様にみられる(図10,図22,図25参照)。この点が照明装置1の照度分布が比較例に係る照明装置11に比べて、合成光の照度分布が均一になることの一因である。そしてこのような照明装置1の光路の特徴は、照明用レンズ3を前端位置Fに配置した状態で、第1反射光P1と第3反射光P3とが、出射面6から出射した後に交差しないように第2入射面4Bおよび反射面5の形状を設定することで得られることが、本発明者の鋭意検討により判明した。 Such characteristics of the optical path of the illumination device 1 are also seen when the illumination lens 3 is arranged at the rear end position R (see FIGS. 10, 22, and 25). This is one of the reasons why the illuminance distribution of the illumination device 1 becomes more uniform than that of the illumination device 11 according to the comparative example. The characteristic of the optical path of the illuminating device 1 is that the first reflected light P1 and the third reflected light P3 do not intersect after being emitted from the emission surface 6 in a state where the illumination lens 3 is arranged at the front end position F. It was revealed by the inventor's earnest studies that it can be obtained by setting the shapes of the second incident surface 4B and the reflecting surface 5 as described above.

図26は、本発明の実施の形態に係る照明装置1の、光源2と照明用レンズ3との相対移動量と照明装置1の配光角の関係を示す図である。配光角が約10°で、相対移動量が0mmの座標aの場合には、図23に示す本発明の実施の形態に係る照度分布となる。また、配光角が約25°で、相対移動量が約1.5mmの座標bの場合には、図24に示す本発明の実施の形態に係る照度分布となる。また、配光角が約40°で、相対移動量が約3mmの座標cの場合には、図25に示す本発明の実施の形態に係る照度分布となる。配光角は、10°以上40°以下が好ましい。配光角が10°未満または40°を超えると、照度の均一性が悪くなりやすい。なお、図26中で移動量が3mmを超える分を破線で示しているが、これは照明装置1では移動が不可能だが、仮に3mmを超える移動が可能な場合を想定したデータである。 FIG. 26 is a diagram showing the relationship between the relative movement amount of the light source 2 and the illumination lens 3 and the light distribution angle of the illumination device 1 of the illumination device 1 according to the embodiment of the present invention. When the light distribution angle is about 10° and the relative movement amount is the coordinate a of 0 mm, the illuminance distribution according to the embodiment of the present invention shown in FIG. 23 is obtained. Further, when the light distribution angle is about 25° and the relative movement amount is the coordinate b of about 1.5 mm, the illuminance distribution according to the embodiment of the present invention shown in FIG. 24 is obtained. Further, when the light distribution angle is about 40° and the relative movement amount is the coordinate c of about 3 mm, the illuminance distribution according to the embodiment of the present invention shown in FIG. 25 is obtained. The light distribution angle is preferably 10° or more and 40° or less. When the light distribution angle is less than 10° or exceeds 40°, the uniformity of illuminance tends to deteriorate. Note that in FIG. 26, the amount of movement that exceeds 3 mm is indicated by a broken line, but this is data that is assumed to be a case in which movement is impossible with the lighting device 1, but movement that exceeds 3 mm is possible.

(本発明の実施の形態によって得られる主な効果)
照明装置1が有するカム機構31は、レンズ保持筒22の回転角を90°の範囲で、光源2と照明用レンズ3との相対移動量を3mmとする。この相対移動量3mmは、光源2と照明用レンズ3との相対移動量の最大値である。この回転角90°の範囲は、人間が片手でつかんだ物を手首や腕に大きな負荷をかけることなく楽に一ひねりで回転できる範囲(90°前後)と略一致する。照明装置1を、たとえば、ベットサイドに設置した場合、不自然な姿勢でレンズ保持筒22を回転させることが多い。したがって、90°前後の回転角の範囲で、照明装置1の全ての照明範囲内を片手で可変できるようにすることで、操作性を向上させることができる。
(Main effects obtained by the embodiment of the present invention)
The cam mechanism 31 included in the lighting device 1 sets the rotation angle of the lens holding cylinder 22 in the range of 90° and the relative movement amount of the light source 2 and the lighting lens 3 to 3 mm. The relative movement amount of 3 mm is the maximum value of the relative movement amount of the light source 2 and the illumination lens 3. The range of the rotation angle of 90° is substantially the same as the range (around 90°) in which an object grasped by one hand can be easily rotated with one twist without imposing a heavy load on the wrist or the arm. When the lighting device 1 is installed, for example, on the bedside, the lens holding cylinder 22 is often rotated in an unnatural posture. Therefore, the operability can be improved by making it possible to change the entire illumination range of the illumination device 1 with one hand in the range of the rotation angle of about 90°.

図27は、光源2から出射した光が照明用レンズ3からの出射する出射効率と、光源2と照明用レンズ3との相対移動量との関係を示す図である。この図27では、光源2と照明用レンズ3との相対移動量が1.5mm(配光角25°)のときの出射効率を基準(=1)にしたときの、相対移動量に対する出射効率が示されている。 FIG. 27 is a diagram showing the relationship between the emission efficiency of the light emitted from the light source 2 emitted from the illumination lens 3 and the relative movement amount of the light source 2 and the illumination lens 3. In FIG. 27, the emission efficiency with respect to the relative movement amount when the emission efficiency when the relative movement amount of the light source 2 and the illumination lens 3 is 1.5 mm (light distribution angle 25°) is set to the reference (=1). It is shown.

照明装置1は、配光角が狭角(相対移動量=0mm)から広角(相対移動量=3.0mm)までの全範囲で出射効率の低下を10%以内に収めることができることがわかる。なお、狭角側の出射効率の低下は、光源2と照明用レンズ3の間隔が開いて光が漏れ、広角側の出射効率の低下は、光源2が照明用レンズ3に近づくことでリフレクタ面での全反射が破れて光が漏れるために起こる。なお、図27中で移動量が3mmを超える分を破線で示しているが、これは照明装置1では移動が不可能だが、仮に3mmを超える移動が可能な場合を想定したデータである。 It can be seen that the illumination device 1 can reduce the reduction of the emission efficiency within 10% in the entire range of the light distribution angle from the narrow angle (relative movement amount=0 mm) to the wide angle (relative movement amount=3.0 mm). The decrease in emission efficiency on the narrow-angle side causes the light source 2 and the illuminating lens 3 to be spaced apart from each other so that light leaks, and the decrease in emission efficiency on the wide-angle side causes the light source 2 to approach the illuminating lens 3 to cause reflection on the reflector surface. It happens because the total reflection at the point is broken and light leaks. Note that, in FIG. 27, the amount of movement that exceeds 3 mm is indicated by a broken line, but this is data that is assumed to be a case in which movement is impossible with the lighting device 1, but movement that exceeds 3 mm is possible.

本発明の実施の形態に係る照明装置1は、光源1と照明用レンズ3との間の距離を光軸Lに沿って所定の範囲内で変えることができ、この距離を変えることで照明用レンズ3から出射する照明光の照明範囲を変えることができる照明装置である。照明用レンズ3は、光源2から発せらた光が照明用レンズ3内に入射する入射面4と、入射面4から照明用レンズ3内に入射した光の一部を照明方向に向けて反射する凹面形状の反射面としての反射面5と、入射面4から入射した光を照明方向に向けて出射する出射面6とを有する。 The illumination device 1 according to the embodiment of the present invention can change the distance between the light source 1 and the illumination lens 3 along the optical axis L within a predetermined range, and by changing this distance, The illumination device is capable of changing the illumination range of the illumination light emitted from the lens 3. The illumination lens 3 reflects an incident surface 4 on which the light emitted from the light source 2 enters the illumination lens 3 and a part of the light incident on the illumination lens 3 from the incident surface 4 toward the illumination direction. The reflecting surface 5 is a concave reflecting surface, and the emitting surface 6 emits the light incident from the incident surface 4 toward the illumination direction.

入射面4は、光源2が配置される側に光源2からの光が進入可能に形成される開口部7を有すると共に光源2が配置される方向に対して反対の方向に凹む凹部8の内面に形成される第1入射面4Aと第2入射面4Bとを有する。第1入射面4Aは、凹部8の底面に配置され、光源2からの光を集光させるように光源2側に凸面を有する集光レンズ面である。第2入射面4Bは、光源2からの光を反射面5に向けて透過することができるように、照明用レンズ3の光軸の周囲に形成される凹部8の内側面である。 The incident surface 4 has an opening 7 formed on the side where the light source 2 is arranged so that light from the light source 2 can enter, and an inner surface of a concave portion 8 that is recessed in a direction opposite to the direction in which the light source 2 is arranged. It has a first incident surface 4A and a second incident surface 4B which are formed on the. The first incident surface 4A is a condenser lens surface which is disposed on the bottom surface of the concave portion 8 and has a convex surface on the light source 2 side so as to condense light from the light source 2. The second incident surface 4B is an inner side surface of the concave portion 8 formed around the optical axis of the illumination lens 3 so that the light from the light source 2 can be transmitted toward the reflecting surface 5.

第1入射面4Aは、光源2と照明用レンズ3とが相対的に近づく方向に移動するにしたがって、主照明光のうち、第1入射面4Aを透過し出射面6から出射する光である非反射照明光の配光角を大きくする形状である。反射面5および第2入射面4Bは、主照明光のうち、第2入射面4Bを透過し反射面5で反射され出射面6から出射する光である反射照明光に対して下記(1)(2)(3)の条件を満たす形状である。 The first incident surface 4A is the light of the main illumination light that passes through the first incident surface 4A and is emitted from the emission surface 6 as the light source 2 and the illumination lens 3 move in a direction relatively approaching each other. This is a shape that increases the light distribution angle of the non-reflecting illumination light. The reflection surface 5 and the second incidence surface 4B are the following (1) with respect to the reflection illumination light which is the light of the main illumination light that is transmitted through the second incidence surface 4B, reflected by the reflection surface 5, and emitted from the emission surface 6. It is a shape that satisfies the conditions (2) and (3).

(1)光源2と照明用レンズ3とが相対的に近づく方向に移動するにしたがって、出射面6から出射する反射照明光の出射方向が、反射照明光の出射面6における出射位置に対して、光軸2を挟んだ反対側に向けて傾斜させていく。
(2)光源2と照明用レンズ3とが相対的に近づく方向に移動するにしたがって、反射照明光の配光角を大きくする。
(3)光源2と照明用レンズ3とが所定の範囲内で最も離れている状態(照明用レンズ3が前端位置Fに配置されている状態)で、反射面5で反射する第1反射光P1、第2反射光P2および第3反射光P3のうち、第1反射光P1が、被照明面9において光軸Lの最も近くを照明する。つまり、第1反射光P1が被照明面9において光軸Lの近くを照明する。
(1) As the light source 2 and the illuminating lens 3 move relatively closer to each other, the emission direction of the reflected illumination light emitted from the emission surface 6 is relative to the emission position of the reflected illumination light on the emission surface 6. , Tilt toward the opposite side of the optical axis 2.
(2) The light distribution angle of the reflected illumination light is increased as the light source 2 and the illuminating lens 3 move in a direction relatively approaching each other.
(3) First reflected light reflected by the reflecting surface 5 in a state where the light source 2 and the illuminating lens 3 are most distant from each other within a predetermined range (the illuminating lens 3 is arranged at the front end position F). Of the P1, the second reflected light P2, and the third reflected light P3, the first reflected light P1 illuminates the illuminated surface 9 closest to the optical axis L. That is, the first reflected light P1 illuminates the surface 9 to be illuminated near the optical axis L.

照明装置1は、上述の構成を有しているため、光源2と照明用レンズ3との間の距離を変えて照明のスポット径を変える場合においても、スポット径に関わらず照度の斑と照度分布の変化の少ない照明とすることができる。 Since the illumination device 1 has the above-described configuration, even when the distance between the light source 2 and the illumination lens 3 is changed to change the spot diameter of the illumination, the unevenness of the illuminance and the illuminance are irrespective of the spot diameter. It is possible to provide illumination with little change in distribution.

また、本発明の実施の形態に係る照明装置1において、反射面5で反射する反射照明光のうち、光源2から第2入射面4Bに到達するまでの光の光軸Lに対する出射角が最小のものを第1反射光P1とし、光源2から第2入射面4Bに到達するまでの光の光軸Lに対する出射角が最大のものを第2反射光P2とし、光源2から第2入射面4Bに到達するまでの光の光軸Lに対する出射角が、第1反射光P1と第2反射光P2との中間のものを第3反射光P3としたとき、反射面5および第2入射面4Bは、光源2と照明用レンズ3とが所定の範囲内で最も離れている状態で、第1反射光P1と第3反射光P3とが、出射面6から出射した後に交差させない形状としている。 Further, in the illumination device 1 according to the embodiment of the present invention, among the reflected illumination light reflected by the reflection surface 5, the emission angle of the light from the light source 2 to the second incident surface 4B with respect to the optical axis L is the minimum. The first reflected light P1 is defined as the first reflected light P1, and the light having the maximum emission angle with respect to the optical axis L from the light source 2 to the second incident surface 4B is defined as the second reflected light P2. When the emission angle of the light with respect to the optical axis L before reaching 4B is an intermediate value between the first reflected light P1 and the second reflected light P2 as the third reflected light P3, the reflecting surface 5 and the second incident surface 4B has a shape in which the first reflected light P1 and the third reflected light P3 do not intersect after exiting from the exit surface 6 in a state where the light source 2 and the illuminating lens 3 are farthest apart within a predetermined range. ..

照明装置1は、上述の構成を有することで、光源2と照明用レンズ3との間の距離を変えて照明範囲を変化させる場合、図23から図25に示すように、照明範囲の照度分布の斑の発生を抑えながら照明範囲を変化させることができる。 When the illumination device 1 has the above-mentioned configuration and changes the illumination range by changing the distance between the light source 2 and the illumination lens 3, as shown in FIGS. 23 to 25, the illuminance distribution of the illumination range. It is possible to change the illumination range while suppressing the occurrence of spots.

また、図24および図25に示されるように、反射照明光の中心部分に生じる暗部の照度を、非反射照明光で効果的に補完することにより、被照明面9における主照明光の照度分布をより均一化できることを、本発明者は、鋭意検討により見出した。 Further, as shown in FIGS. 24 and 25, the illuminance distribution of the main illumination light on the illuminated surface 9 is effectively supplemented by the non-reflecting illumination light to effectively supplement the illuminance of the dark portion occurring in the central portion of the reflected illumination light. The present inventor has found through diligent studies that the above can be made more uniform.

図24,25に示すように、照明用レンズ3が中間位置Mあるいは後端位置Rに配置された状態のとき、被照明面9における反射照明光の照度分布は、中央部の照度が低いものとなる。一方、第1入射面4Aを透過する非反射照明光の被照明面9における照度分布は、中央側ほど照度の高いものとなる。したがって、照明装置1は、被照明面9において、反射照明光の中央部の照度分布の低い部分を非反射照明光により補うことで、主照明光の照度分布の均一化を図ることができる。しかしながら、非反射照明光の中央部の照度が高すぎると、主照明光の照度分布の均一化を好適に図ることができない。 As shown in FIGS. 24 and 25, when the illumination lens 3 is arranged at the intermediate position M or the rear end position R, the illuminance distribution of the reflected illumination light on the illuminated surface 9 is such that the illuminance at the central portion is low. Becomes On the other hand, the illuminance distribution of the non-reflected illumination light transmitted through the first incident surface 4A on the illuminated surface 9 becomes higher toward the center. Therefore, the illuminating device 1 can make the illuminance distribution of the main illuminating light uniform by supplementing the low illuminance distribution at the center of the reflected illuminating light with the non-reflecting illuminating light on the illuminated surface 9. However, if the illuminance of the central portion of the non-reflecting illumination light is too high, it is not possible to preferably make the illuminance distribution of the main illumination light uniform.

そこで、本発明の実施の形態に係る照明装置1の第1入射面4Aは、この第1入射面4Aを通過する光線の出射角が所定の角度までの範囲で、出射角が大きくなるほど像高を高くし、所定の出射角を越えると、逆に出射角が大きくなるほど像高を低くする形状とされている。これにより、非反射照明光は、被照明面9における照明範囲の中央側の照度の高まりが抑えられながら周縁側の照度が高められている。このため、反射照明光の中央部の照度分布の低い部分を非反射照明により補う際に、適度に中央部の照度を高めつつ、周縁側の照度も高めることができる。したがって、主照明光全体の被照明面9における照度分布の均一化を好適に図ることができる。 Therefore, in the first incident surface 4A of the illumination device 1 according to the embodiment of the present invention, the image height increases as the emission angle increases, as long as the emission angle of the light beam passing through the first incident surface 4A is within a predetermined angle. When the output angle is increased and the output angle exceeds a predetermined output angle, the image height is decreased as the output angle is increased. As a result, the non-reflecting illumination light has an increased illuminance on the peripheral side while suppressing an increase in illuminance on the center side of the illumination range on the illuminated surface 9. For this reason, when supplementing the low illuminance distribution in the central portion of the reflected illumination light with the non-reflective illumination, the illuminance on the peripheral side can be increased while appropriately increasing the illuminance on the central portion. Therefore, the illuminance distribution on the illuminated surface 9 of the entire main illumination light can be made uniform.

(他の形態)
上述した本発明の実施の形態に係る照明装置1は、本発明の好適な形態の一例ではあるが、これに限定されるものではなく本発明の要旨を変更しない範囲において種々の変形実施が可能である。
(Other forms)
The lighting device 1 according to the embodiment of the present invention described above is an example of a preferred embodiment of the present invention, but the present invention is not limited to this and various modifications can be made without departing from the scope of the present invention. Is.

たとえば、照明装置1が有するカム機構31は、レンズ保持筒22の回転角を90°の範囲で、光源2と照明用レンズ3との相対移動量を3mmとする。この相対移動量3mmは、光源2と照明用レンズ3との相対移動量の最大値である。 For example, the cam mechanism 31 included in the lighting device 1 sets the relative movement amount of the light source 2 and the illumination lens 3 to 3 mm in the range of the rotation angle of the lens holding cylinder 22 of 90°. The relative movement amount of 3 mm is the maximum value of the relative movement amount of the light source 2 and the illumination lens 3.

しかしながら、この相対移動量3mmは、光源2と照明用レンズ3との相対移動量の最大値でなくても良い。またこの相対移動量は、レンズ保持筒22の回転角を60°以上120°以下の範囲で、2mm以上4mm以下とすることができる。所望の照明範囲と照度分布を得る場合において、光源2と照明用レンズ3との距離を2mm未満にしてしまうと、照明用レンズ3の効き量を大きくする必要があり(僅かな移動量で照明範囲を可変させなくてはいけない)、照明用レンズ3の径を小さくかつ厚さを厚く形成する必要がある。すると、照明用レンズ3の成形時のヒケなどを生じ易く成形が難しくなる。逆に光源2と照明用レンズ3との相対移動量が4mmを越えてしまうと、照明用レンズ3の径が大きくなり、加えて、所望の照明範囲と照度分布を得難くなる。 However, this relative movement amount of 3 mm may not be the maximum value of the relative movement amount of the light source 2 and the illumination lens 3. Further, this relative movement amount can be set to 2 mm or more and 4 mm or less within the range of the rotation angle of the lens holding cylinder 22 of 60° or more and 120° or less. If the distance between the light source 2 and the illumination lens 3 is set to less than 2 mm in the case of obtaining a desired illumination range and illuminance distribution, it is necessary to increase the effectiveness of the illumination lens 3 (illumination with a slight movement amount). It is necessary to change the range), and it is necessary to form the illumination lens 3 to have a small diameter and a large thickness. Then, sink marks and the like are likely to occur at the time of molding the illumination lens 3, and the molding becomes difficult. On the contrary, when the relative movement amount between the light source 2 and the illumination lens 3 exceeds 4 mm, the diameter of the illumination lens 3 becomes large, and it becomes difficult to obtain a desired illumination range and illuminance distribution.

また、レンズ保持筒22の回転角を60°未満とすると、レンズ保持筒22の回転量に対して光源2と照明用レンズ3との相対移動量の割合が60°以上の場合に比べて大きくなりすぎ、光源2と照明用レンズ3との相対移動量の調整がシビアになり操作し難い。逆に、レンズ保持筒22の回転角が120°を越えると、レンズ保持筒22を片手で一ひねりで回転する操作を行い難くなる。 When the rotation angle of the lens holding cylinder 22 is less than 60°, the ratio of the relative movement amount of the light source 2 and the illumination lens 3 to the rotation amount of the lens holding cylinder 22 is larger than that of 60° or more. It becomes too difficult to adjust the relative movement amount of the light source 2 and the illumination lens 3, and it is difficult to operate. On the contrary, when the rotation angle of the lens holding barrel 22 exceeds 120°, it becomes difficult to rotate the lens holding barrel 22 with one hand with one twist.

さらに、カム機構31は、レンズ保持筒22の回転角を60°以上120°以下の範囲で、光源と照明用レンズとの相対移動量を2.5mm以上3.5mm以下とすることとしても良い。このようにすることで、上記効果(照明用レンズ3の成形時のヒケ抑制効果、および照明用レンズ3が所望の照明範囲と照度分布を得易くなる効果)がより好ましくなる。 Further, the cam mechanism 31 may set the relative movement amount of the light source and the illumination lens to 2.5 mm or more and 3.5 mm or less within the range of the rotation angle of the lens holding cylinder 22 of 60° or more and 120° or less. .. By doing so, the above effects (the effect of suppressing sink marks during molding of the illumination lens 3 and the effect of making it easier for the illumination lens 3 to obtain a desired illumination range and illuminance distribution) become more preferable.

さらに、カム機構31は、レンズ保持筒22の回転角を90°±10°以内の範囲で、光源と照明用レンズとの相対移動量を2mm以上4mm以下あるいは2.5mm以上3.5mm以下とすることとしても良い。このようにすることで、人間が片手でレンズ保持筒22を回転する際に、光源2と照明用レンズ3との相対移動量の調整がシビアにならないようにしながら、また、手首や腕に大きな負荷をかけることなく一ひねりで回転操作し易い。 Further, the cam mechanism 31 sets the relative movement amount of the light source and the illumination lens to 2 mm or more and 4 mm or less or 2.5 mm or more and 3.5 mm or less within the range of the rotation angle of the lens holding cylinder 22 within 90°±10°. It may be done. By doing so, when a person rotates the lens holding cylinder 22 with one hand, the relative movement amount between the light source 2 and the illumination lens 3 is prevented from being severely adjusted, and a large amount is required on the wrist or arm. Easy to rotate with one twist without load.

また、本発明の実施の形態に係る照明装置1の出射面6にフライアイレンズを配置する構成としてもよい。図28は、本発明の実施の形態に係る照明装置1の出射面6にフライアイレンズを配置した変形例に係る照明装置の照明用レンズを前端位置Fに配置したときの照度分布を示す図である。図29は、変形例の照明装置の照明用レンズを後端位置Rと前端位置Fとの中間の中間位置Mに配置したときの照度分布を示す図である。図30は、変形例の照明装置の照明用レンズを後端位置Rに配置したときの照度分布を示す図である。これらの照度分布は、出射面6から1メートル先の被照明面9における照度分布である。 Further, a configuration may be adopted in which a fly-eye lens is arranged on the emission surface 6 of the illumination device 1 according to the embodiment of the present invention. FIG. 28 is a diagram showing an illuminance distribution when the illumination lens of the illumination device according to the modified example in which the fly-eye lens is disposed on the emission surface 6 of the illumination device 1 according to the embodiment of the present invention is disposed at the front end position F. Is. FIG. 29 is a diagram showing an illuminance distribution when the illumination lens of the illumination device of the modified example is arranged at an intermediate position M intermediate between the rear end position R and the front end position F. FIG. 30 is a diagram showing an illuminance distribution when the illumination lens of the illumination device of the modified example is arranged at the rear end position R. These illuminance distributions are illuminance distributions on the illuminated surface 9 1 meter away from the exit surface 6.

ここで、図28,図29と図30のうち、照度分布の下に文字「変形例」が付されたもの(たとえば(変形例−R反射照明光)など)は、本発明の実施の形態に係る変形例の照明装置の照度分布である。 Here, in FIG. 28, FIG. 29, and FIG. 30, the one in which the character “variant” is added below the illuminance distribution (for example, (variant-R reflected illumination light) or the like is the embodiment of the present invention. It is an illuminance distribution of the illuminating device of the modification which concerns on.

また、図28,図29と図30のうち、照度分布の下に文字「反射光」が付されたもの(たとえば(変形例−R反射照明光)など)は、本発明の実施の形態に係る変形例の照明装置の「反射照明光」の照度分布である。また、図28,図29と図30のうち、照度分布の下に文字「非反射照明光」が付されたもの(たとえば(変形例−R非反射照明光)など)は、変形例の照明装置の「非反射照明光」の照度分布である。さらに、図28,図29と図30のうち、照度分布の下に文字「合成照明光」が付されたもの(たとえば(変形例−R合成照明光)など)は、変形例の照明装置の実際の使用時に出射される光である、「反射照明光」と「非反射照明光」を合成した「合成照明光」の照度分布である。 In addition, in FIGS. 28, 29, and 30, the one in which the character “reflected light” is added below the illuminance distribution (for example, (Modification-R reflected illumination light), etc. is an embodiment of the present invention. It is an illuminance distribution of "reflection illumination light" of the illuminating device of such a modification. In addition, in FIGS. 28, 29, and 30, those in which the characters “non-reflective illumination light” are added below the illuminance distribution (for example, (Modification-R non-reflective illumination light)) are illuminations of the modification. It is an illuminance distribution of "non-reflective illumination light" of the apparatus. Further, in FIG. 28, FIG. 29, and FIG. 30, the one in which the characters “composite illumination light” is added below the illuminance distribution (for example, (Modification-R composite illumination light), etc. It is the illuminance distribution of the "combined illumination light" that is a combination of the "reflected illumination light" and the "non-reflected illumination light" that is the light emitted during actual use.

また、図28,図29と図30には、フライアイレンズの効果を確認しやすいように、本発明の実施の形態に係る照明装置1の照度分布も併せて示した。この照明装置1の照度分布は、それぞれ図23,図24および図25からの転載である。 Further, FIGS. 28, 29 and 30 also show the illuminance distribution of the illumination device 1 according to the embodiment of the present invention so that the effect of the fly-eye lens can be easily confirmed. The illuminance distribution of this lighting device 1 is reproduced from FIGS. 23, 24, and 25, respectively.

フライアイレンズを出射面6に配置し、出射光がフライアイレンズを透過するようにすることで、照度分布の変化がより滑らかになっていることがわかる。 By arranging the fly-eye lens on the exit surface 6 and allowing the exit light to pass through the fly-eye lens, it can be seen that the change in the illuminance distribution is smoother.

また照明用レンズ3は、光軸Lに沿って、光源2から最も離れた前端位置Fから、光源2が第1入射面4Aに近づき凹部8内に入り込む位置の後端位置Rまで移動が可能としている。すなわち照明用レンズ3が移動する範囲は光源2が凹部8の外に配置される位置から光源2が凹部8内に入り込む位置までである。しかしながら、照明用レンズ3が移動する範囲は、光源2が凹部8の外に配置される範囲に限定しても良いし、光源2が凹部8内に配置される範囲に限定しても良い。 Further, the illumination lens 3 can move along the optical axis L from a front end position F farthest from the light source 2 to a rear end position R where the light source 2 approaches the first incident surface 4A and enters the recess 8. I am trying. That is, the range in which the illumination lens 3 moves is from the position where the light source 2 is arranged outside the recess 8 to the position where the light source 2 enters the recess 8. However, the range in which the illumination lens 3 moves may be limited to the range in which the light source 2 is arranged outside the recess 8 or the range in which the light source 2 is arranged in the recess 8.

また光源2には、LEDのチップ部品を用いているが、有機EL等の他の発光素子を用いても良く、発光素子の形状もチップ部品でなくリード付き部品等であっても良い。 Although the LED chip component is used for the light source 2, other light emitting elements such as organic EL may be used, and the shape of the light emitting element may be a leaded component or the like instead of the chip component.

1 照明装置
2 光源
3 照明用レンズ
4 入射面
5 反射面
6 出射面
7 開口部
8 凹部
22 レンズ保持筒
23 固定筒
31 カム機構
33 カム溝
34 カムフォロア
DESCRIPTION OF SYMBOLS 1 Lighting device 2 Light source 3 Illumination lens 4 Incident surface 5 Reflection surface 6 Emission surface 7 Opening 8 Recess 22 Lens holding cylinder 23 Fixed cylinder 31 Cam mechanism 33 Cam groove 34 Cam follower

Claims (5)

光源と照明用レンズとの間の距離を光軸に沿って所定の範囲内で変えることができ、上記距離を変えることで上記照明用レンズから出射される照明光の照明範囲を変えることができる照明装置であって、
上記光源を保持する固定筒と、
上記照明用レンズを保持するレンズ保持筒と、
上記レンズ保持筒を光軸中心に回転させることにより、上記光源と上記照明用レンズとの光軸方向に沿う方向の距離を可変することができるカム機構と、
を有し、
上記カム機構は、上記レンズ保持筒の回転角を60°以上120°以下の範囲で、上記光源と上記照明用レンズとの相対移動量を2mm以上4mm以下とし、
上記照明用レンズは、
上記光源から発せられた光が上記照明用レンズ内に入射する入射面と、
上記入射面から上記照明用レンズ内に入射した光の一部を照明方向に向けて反射する凹面形状の反射面と、
上記入射面から入射した光を照明方向に向けて出射する出射面と、を有し、
上記入射面は、上記光源が配置される側に上記光源からの光が進入可能に形成される開口部を有すると共に上記光源が配置される方向に対して反対の方向に凹む凹部の内面に形成される第1入射面と第2入射面とを有し、
上記第1入射面は、上記凹部の底面に配置され、上記光源からの光を集光させるように上記光源側に凸面を有する集光レンズ面であり、
上記第2入射面は、上記光源からの光を上記反射面に向けて透過することができるように、上記照明用レンズの光軸の周囲に形成される上記凹部の内側面であり、
上記第1入射面は、上記光源と上記照明用レンズとが相対的に近づく方向に移動するにしたがって、主照明光のうち、上記第1入射面を透過し上記出射面から出射する光である非反射照明光の配光角を大きくする形状であり、
上記反射面および上記第2入射面は、上記主照明光のうち、上記第2入射面を透過し上記反射面で反射され上記出射面から出射する光である反射照明光に対して下記(1)(2)(3)の条件を満たす形状である、
ことを特徴とする照明用レンズ。
(1)上記光源と上記照明用レンズとが相対的に近づく方向に移動するにしたがって、上記出射面から出射する上記反射照明光の出射方向が、上記反射照明光の上記出射面における出射位置に対して、上記光軸を挟んだ反対側に向けて傾斜させていく。
(2)上記光源と上記照明用レンズとが相対的に近づく方向に移動するにしたがって、上記反射照明光の配光角を大きくする。
(3)上記反射面で反射する反射照明光のうち、上記光源から上記第2入射面に到達するまでの光の上記光軸に対する照射角が最小のものを第1反射光とし、上記光源から上記第2入射面に到達するまでの光の上記光軸に対する照射角が最大のものを第2反射光とし、 上記光源から上記第2入射面に到達するまでの光の上記光軸に対する照射角が、上記第1反射光と上記第2反射光との中間のものを第3反射光としたとき、上記光源と上記照明用レンズとが上記所定の範囲内で最も離れている状態で、上記第1から第3反射光のうち、上記第1反射光が、被照明面において最も上記光軸の近くを照明する。
The distance between the light source and the illumination lens can be changed within a predetermined range along the optical axis, and the illumination range of the illumination light emitted from the illumination lens can be changed by changing the distance. A lighting device,
A fixed tube for holding the light source,
A lens holding cylinder for holding the illumination lens,
By rotating the lens holding cylinder about the optical axis, a cam mechanism that can change the distance between the light source and the illumination lens in the direction along the optical axis,
Have
In the cam mechanism, the rotation angle of the lens holding cylinder is in the range of 60° or more and 120° or less, and the relative movement amount of the light source and the illumination lens is 2 mm or more and 4 mm or less,
The illumination lens is
An incident surface on which the light emitted from the light source enters the illumination lens,
A concave reflecting surface that reflects a part of the light entering the illumination lens from the incident surface toward the illumination direction,
An emission surface that emits light incident from the incident surface toward the illumination direction,
The incident surface has an opening formed on the side where the light source is arranged so that light from the light source can enter, and is formed on the inner surface of a concave portion that is recessed in a direction opposite to the direction in which the light source is arranged. A first incident surface and a second incident surface,
The first incident surface is a condenser lens surface that is disposed on the bottom surface of the recess and has a convex surface on the light source side so as to collect light from the light source.
The second incident surface is an inner surface of the concave portion formed around the optical axis of the illumination lens so that light from the light source can be transmitted toward the reflecting surface,
The first incident surface is the main illumination light that is transmitted through the first incident surface and is emitted from the emission surface as the light source and the illuminating lens relatively move toward each other. It is a shape that increases the distribution angle of non-reflecting illumination light.
Among the main illumination light, the reflection surface and the second incidence surface are defined by the following (1) with respect to the reflection illumination light that is the light that passes through the second incidence surface, is reflected by the reflection surface, and is emitted from the emission surface. ) It is a shape that satisfies the conditions of (2) and (3),
A lighting lens characterized by the above.
(1) As the light source and the illuminating lens move relatively closer to each other, the emission direction of the reflected illumination light emitted from the emission surface becomes the emission position of the reflected illumination light on the emission surface. On the other hand, it is tilted toward the opposite side of the optical axis.
(2) The light distribution angle of the reflected illumination light is increased as the light source and the illuminating lens move relatively toward each other.
(3) Of the reflected illumination light reflected by the reflecting surface, the one having the smallest irradiation angle with respect to the optical axis from the light source to the second incident surface is defined as the first reflected light. The irradiation angle of light with respect to the optical axis until reaching the second incident surface is the second reflected light, and the irradiation angle of light with respect to the optical axis from the light source to the second incident surface is When the intermediate between the first reflected light and the second reflected light is the third reflected light, the light source and the illuminating lens are most distant from each other within the predetermined range. Of the first to third reflected light, the first reflected light illuminates the illuminated surface closest to the optical axis.
請求項記載の照明装置において、
上記反射面および上記第2入射面は、上記光源と上記照明用レンズとが上記所定の範囲内で最も離れている状態で、上記第1反射光と上記第3反射光とが、上記出射面から出射した後に交差させない形状である、
ことを特徴とする照明装置。
The lighting device according to claim 1 ,
The reflection surface and the second incidence surface are such that the first reflected light and the third reflected light are the emission surfaces when the light source and the illuminating lens are farthest apart within the predetermined range. It is a shape that does not intersect after emitting from
A lighting device characterized by the above.
請求項またはに記載の照明装置において、
第1入射面は、この第1入射面を通過する光線の出射角が所定の角度までの範囲で、出射角が大きくなるほど像高を高くし、前記所定の出射角を越えると、逆に出射角が大きくなるほど像高を低くする形状である、
ことを特徴とする照明装置。
The illumination device according to claim 1 or 2 ,
The first incident surface increases the image height as the emission angle increases within a range in which the emission angle of the light beam passing through the first incident surface is up to a predetermined angle, and conversely, when the emission angle exceeds the predetermined emission angle. The shape is such that the image height decreases as the angle increases,
A lighting device characterized by the above.
請求項1からのいずれか1項に記載の照明装置において、
上記照明レンズの前記出射面にはフライアイレンズが配置されることを特徴とする照明装置。
The illumination device according to any one of claims 1 to 3 ,
An illumination device, wherein a fly-eye lens is disposed on the emission surface of the illumination lens.
請求項1から4のいずれか1項に記載の照明装置において、The illumination device according to any one of claims 1 to 4,
上記カム機構は、上記レンズ保持筒の回転角を60°以上120°以下の範囲で、上記光源と上記照明用レンズとの相対移動量を2.5mm以上3.5mm以下とする、 The cam mechanism sets a relative movement amount of the light source and the illumination lens to 2.5 mm or more and 3.5 mm or less within a range of a rotation angle of the lens holding cylinder of 60° or more and 120° or less.
ことを特徴とする照明装置。A lighting device characterized by the above.
JP2016221257A 2016-11-14 2016-11-14 Lighting equipment Active JP6740094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016221257A JP6740094B2 (en) 2016-11-14 2016-11-14 Lighting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016221257A JP6740094B2 (en) 2016-11-14 2016-11-14 Lighting equipment

Publications (2)

Publication Number Publication Date
JP2018081748A JP2018081748A (en) 2018-05-24
JP6740094B2 true JP6740094B2 (en) 2020-08-12

Family

ID=62198945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016221257A Active JP6740094B2 (en) 2016-11-14 2016-11-14 Lighting equipment

Country Status (1)

Country Link
JP (1) JP6740094B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7236695B2 (en) * 2018-11-09 2023-03-10 パナソニックIpマネジメント株式会社 lighting equipment
KR102197383B1 (en) * 2020-07-27 2020-12-31 써니파이브 주식회사 Lighting device for providing light similar to natural light
JP2022163817A (en) 2021-04-15 2022-10-27 日亜化学工業株式会社 light emitting module

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM408651U (en) * 2010-12-09 2011-08-01 cun-hong Huang LED lamp holder to adjust the beam angle
JP2014123479A (en) * 2012-12-21 2014-07-03 Hitachi Appliances Inc Lighting device, and light condensation unit used for the same

Also Published As

Publication number Publication date
JP2018081748A (en) 2018-05-24

Similar Documents

Publication Publication Date Title
US7658513B2 (en) LED illumination device with a highly uniform illumination pattern
US8911118B2 (en) Lens, LED module and illumination system having same
EP2525139A2 (en) Vehicle decorative lighting device and vehicle lamp
CN101280906A (en) Operating lamp with adjustable light sources capable of generating a light field of a gaussian distribution
JP6740094B2 (en) Lighting equipment
US20150070900A1 (en) Catadioptric spotlight
EP2708804B1 (en) Lens, LED module and illumination system having same
US9453622B2 (en) Lens and LED module having the same
USRE48873E1 (en) Asymmetric linear LED luminaire design for uniform illuminance and color
US20090122546A1 (en) Movable Lighting System Providing Adjustable Illumination Zone
US20180066823A1 (en) Vehicle lamp
JP6816886B2 (en) Lighting device
JP6695418B2 (en) Lighting equipment
US10738969B2 (en) Light-emitting structure and light-emitting system with the same
JP2010262187A (en) Lens member and optical unit
TWI507640B (en) Light guide element for controling light beam angle and lamp
JP6003178B2 (en) Vehicle lighting
CN113251384A (en) Light collimating assembly and light emitting device
JP2015141786A (en) Vehicular light guide member and vehicular lamp fitting
JP6142661B2 (en) Lighting system
US11333805B1 (en) Low glare luminaires
JP2005276678A (en) Lamp device
JP6551772B2 (en) Luminous flux control member and light emitting device
JP6386808B2 (en) Lighting device
JP2015532518A (en) Illumination device for indirect illumination with prism elements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200722

R150 Certificate of patent or registration of utility model

Ref document number: 6740094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250