JP6739104B2 - Ultrasonic vibration welding method for flexible tube and resin molded product, and ultrasonic vibration welding apparatus - Google Patents

Ultrasonic vibration welding method for flexible tube and resin molded product, and ultrasonic vibration welding apparatus Download PDF

Info

Publication number
JP6739104B2
JP6739104B2 JP2017080484A JP2017080484A JP6739104B2 JP 6739104 B2 JP6739104 B2 JP 6739104B2 JP 2017080484 A JP2017080484 A JP 2017080484A JP 2017080484 A JP2017080484 A JP 2017080484A JP 6739104 B2 JP6739104 B2 JP 6739104B2
Authority
JP
Japan
Prior art keywords
tube
resin molded
molded product
flexible tube
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017080484A
Other languages
Japanese (ja)
Other versions
JP2018175482A (en
Inventor
善文 小野塚
善文 小野塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seidensha Electronics Co Ltd
Original Assignee
Seidensha Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seidensha Electronics Co Ltd filed Critical Seidensha Electronics Co Ltd
Priority to JP2017080484A priority Critical patent/JP6739104B2/en
Publication of JP2018175482A publication Critical patent/JP2018175482A/en
Application granted granted Critical
Publication of JP6739104B2 publication Critical patent/JP6739104B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Description

本発明は、可撓性チューブと樹脂成形品の超音波振動溶着方法、および超音波振動溶着装置に関し、特に点滴用のチューブやカテーテル用チューブ等の可撓性チューブを樹脂成形品に溶着する超音波振動溶着方法、および超音波振動溶着装置に関する。 The present invention relates to an ultrasonic vibration welding method for a flexible tube and a resin molded product, and an ultrasonic vibration welding device, and particularly to a method for welding a flexible tube such as a drip tube or a catheter tube to a resin molded product. The present invention relates to a sonic vibration welding method and an ultrasonic vibration welding device.

従来から、医療器具として、点滴筒などの樹脂成形品に可撓性チューブが直接一体に接続されたものが用いられている。図17は、点滴筒10Aに可撓性チューブ20を接続した医療器具の全体図であり、図18は、点滴筒10Aと可撓性チューブ(以下、略して「チューブ」と記載する)20の接続部分の拡大図である(例えば、特許文献1参照)。 2. Description of the Related Art Conventionally, as a medical device, a flexible tube directly connected to a resin molded product such as a drip tube has been used. FIG. 17 is an overall view of a medical device in which a flexible tube 20 is connected to the drip tube 10A, and FIG. 18 shows a drip tube 10A and a flexible tube (hereinafter, abbreviated as “tube”) 20. It is an enlarged view of a connection part (for example, refer to patent document 1).

点滴筒10Aとチューブ20の接続部分は、図18に示したように、点滴筒10Aの下端には、外管11と内管12が突出していて、外管11と内管12の間には、チューブ20を挿入するための挿入用空間13が形成されている。チューブ20は挿入用空間13に挿入され固定されるが、チューブ20に外力がかかっても抜けないように離脱防止策がとられている。 As shown in FIG. 18, the connecting portion between the drip barrel 10A and the tube 20 has an outer pipe 11 and an inner pipe 12 projecting from the lower end of the drip barrel 10A, and between the outer pipe 11 and the inner pipe 12. An insertion space 13 for inserting the tube 20 is formed. The tube 20 is inserted and fixed in the insertion space 13, but a detachment prevention measure is taken so that the tube 20 does not come off even if an external force is applied to the tube 20.

従来技術として、チューブを点滴筒などの樹脂成形品に一体に接続するのに超音波振動溶着装置を利用したものとして、図19、20に示したものが知られている(例えば、特許文献2参照)。
図19は、チューブ20と点滴筒10Aを接続する直前の要部断面図を示している。図20は、チューブ20と点滴筒10Aを接続したときの部分拡大図を示している。なお図19、20に示したように、接続作業は、作業の便宜上、点滴筒10Aの上下関係を前記の図17、18と逆にして行われる。図19、20では、内管12がチューブ20の端部内に挿入されると共に、チューブ20の端部が挿入用空間13に挿入されている。
As a conventional technique, a device shown in FIGS. 19 and 20 is known as a device that uses an ultrasonic vibration welding device to integrally connect a tube to a resin molded product such as a drip tube (for example, Patent Document 2). reference).
FIG. 19 shows a cross-sectional view of a main part immediately before connecting the tube 20 and the drip tube 10A. FIG. 20 shows a partially enlarged view of the tube 20 and the drip tube 10A connected to each other. Note that, as shown in FIGS. 19 and 20, the connection work is performed by reversing the vertical relationship of the drip tube 10A from that in FIGS. 19 and 20, the inner tube 12 is inserted into the end portion of the tube 20, and the end portion of the tube 20 is inserted into the insertion space 13.

上記従来の装置では、外管11に、径方向外方への変形を抑制するリング状ガイド体4を外嵌すると共に、外管11とチューブ20の間に、工具ホーン3先端の当接部3aを当て、工具ホーン3を軸方向(内管12の軸方向)に数十μmの振幅で、15〜40kHzの超音波振動をさせる。そして、工具ホーン3先端の当接部3aが当たっている外管11の内周部のみを溶融させ、チューブ20に対し径方向に圧接状に固化させることで、外管11の内周部に、チューブ20を内管12に押圧する離脱防止部15aを形成する。そして、チューブ20と点滴筒10Aが離れないように接続している。 In the above-mentioned conventional device, the ring-shaped guide body 4 that suppresses the outward deformation in the radial direction is externally fitted to the outer tube 11, and the contact portion at the tip of the tool horn 3 is provided between the outer tube 11 and the tube 20. 3a is applied, and the tool horn 3 is subjected to ultrasonic vibration of 15 to 40 kHz with an amplitude of several tens of μm in the axial direction (axial direction of the inner tube 12). Then, only the inner peripheral portion of the outer pipe 11 against which the contact portion 3a at the tip of the tool horn 3 abuts is melted and solidified in a pressure contact shape in the radial direction with respect to the tube 20, so that the inner peripheral portion of the outer pipe 11 is The separation preventing portion 15a for pressing the tube 20 against the inner tube 12 is formed. The tube 20 and the drip tube 10A are connected so as not to separate from each other.

繰り返しの説明になるが、図19、20に示されるように、外管11にリング状ガイド体4を外嵌して、外管11の内壁に形成した段差部14に超音波振動している工具ホーン3が押し当てられると、外管11の径方向外方への変形が抑制された状態で段差部14の一部が溶融してチューブ20に圧接状に固化する。そして、チューブ20を内管12に押圧する離脱防止部15aが形成され、チューブ20は点滴筒10Aに接続される。外管11にリング状ガイド体4を嵌めたことで、離脱防止部15aは、チューブ20を圧接して固まる。図17、18の状態で、チューブ20に外力がかかってもチューブ20は点滴筒10Aから抜けない、とされている。 As will be described repeatedly, as shown in FIGS. 19 and 20, the ring-shaped guide body 4 is externally fitted to the outer tube 11 and ultrasonically vibrates in the step portion 14 formed on the inner wall of the outer tube 11. When the tool horn 3 is pressed, a part of the step portion 14 is melted and solidified in pressure contact with the tube 20 in a state where the outer tube 11 is restrained from being deformed radially outward. Then, a separation preventing portion 15a for pressing the tube 20 against the inner tube 12 is formed, and the tube 20 is connected to the drip tube 10A. By fitting the ring-shaped guide body 4 in the outer tube 11, the detachment preventing portion 15a is pressed against the tube 20 to be solidified. In the state of FIGS. 17 and 18, even if an external force is applied to the tube 20, the tube 20 is said not to come off from the drip tube 10A.

しかし、この方法にも課題がある。上記従来の溶着方法および装置では、外管11の内周部のみを溶融させるために図21A、図21Bのように、工具ホーン3の中心から外部へチューブを通す孔38(又は嵌脱用開口部39)を設けておき、この孔38(又は嵌脱用開口部39)にチューブ20を矢印で示したように通す(嵌める)作業と外す(脱す)作業が必要である。接続作業の都度、一つの作業ごとに、工具ホーン3の孔38(又は嵌脱用開口部39)にチューブ20を通す(嵌める)作業と外す(脱す)作業に時間がかかるのが一つ目の課題である。 However, this method also has problems. In the conventional welding method and apparatus described above, in order to melt only the inner peripheral portion of the outer tube 11, as shown in FIGS. 21A and 21B, the hole 38 (or the fitting/removal opening) for passing the tube from the center of the tool horn 3 to the outside is performed. It is necessary to provide (portion 39) and pass (fit) and remove (remove) the tube 20 through the hole 38 (or the fitting opening 39) as shown by the arrow. Each time the connecting work is performed, it takes time to pass (fit) and remove (remove) the tube 20 from the hole 38 (or the fitting opening 39) of the tool horn 3 for each work. Is the subject of.

上記従来の接続方法の作業手順を図22にフローチャートで示した。図22の作業手順を順に説明すると、まず、外管11の外周をリング状ガイド体4で囲む(ステップS11)。次に、チューブ20を、挿入用空間13に入れる(ステップS12)。チューブ20を工具ホーン3の孔に通す(ステップS13)。工具ホーン3を超音波振動し、工具ホーンの先端3aで外管11の内周部を溶かす(ステップS14)。外管11の径方向外方への変形を抑制した状態で、離脱防止部15aを形成する(ステップS15)。工具ホーン3を元の位置に戻し(ステップS16)、チューブ20を工具ホーン3の孔から外す(ステップS17)。リング状ガイド体4を離す(ステップS18)。そして、点滴筒10Aとチューブ20の接続作業が完了する(ステップS19)。 The work procedure of the conventional connection method is shown in the flow chart of FIG. The work procedure of FIG. 22 will be described in order. First, the outer circumference of the outer tube 11 is surrounded by the ring-shaped guide body 4 (step S11). Next, the tube 20 is put into the insertion space 13 (step S12). The tube 20 is passed through the hole of the tool horn 3 (step S13). The tool horn 3 is ultrasonically vibrated to melt the inner peripheral portion of the outer tube 11 at the tip 3a of the tool horn (step S14). The detachment prevention portion 15a is formed in a state where the outer pipe 11 is restrained from being deformed radially outward (step S15). The tool horn 3 is returned to the original position (step S16), and the tube 20 is removed from the hole of the tool horn 3 (step S17). The ring-shaped guide body 4 is released (step S18). Then, the work of connecting the drip cylinder 10A and the tube 20 is completed (step S19).

図22の接続作業のフローチャートから、工具ホーンの中心の孔にチューブ20を通す作業(ステップS13)と外す作業(ステップS17)が無くなれば、生産性は飛躍的に向上する。
二つ目の課題は、上記従来の方法は、外管11の離脱防止部15aでチューブ20を押圧する離脱防止策であり、超音波振動溶着装置を利用しているのに外管11の内周部とチューブ(可撓性チューブ)20を溶着していないことである。外管11の内周部とチューブ20を溶着すれば離脱防止力は飛躍的に向上する。
From the flowchart of the connection work of FIG. 22, if the work of passing the tube 20 through the hole at the center of the tool horn (step S13) and the work of removing it (step S17) are eliminated, the productivity is dramatically improved.
The second problem is that the above-described conventional method is a detachment prevention measure in which the detachment prevention portion 15a of the outer pipe 11 presses the tube 20, and the ultrasonic vibration welding device is used, but That is, the peripheral portion and the tube (flexible tube) 20 are not welded. If the inner peripheral portion of the outer tube 11 and the tube 20 are welded together, the separation prevention force is dramatically improved.

なお、医療器具のチューブの中には、図23A、図23Bに断面図を示したように、外周面に段差のあるチューブとして、チューブの外形を軸方向に沿って波を打たせた形のチューブ、例えば、カテーテル用のチューブがある。
なお、図23A、図23Bでは、図23Aの外周面に段差のあるチューブ22に軸方向の圧縮力Fを加えると、図23Bのように軸方向の長さ(L)が縮んで長さ(L)となり、段差のピッチ(P)も縮んでピッチ(P)となるが、外径(D)は拡大して外径(D)となることを示している。(詳しくは、特許文献3参照)。
As shown in the cross-sectional views of FIGS. 23A and 23B, the tube of the medical device is a tube having a step on the outer peripheral surface, and the outer shape of the tube is undulated along the axial direction. There are tubes, for example tubes for catheters.
23A and 23B, when a compressive force F 1 in the axial direction is applied to the tube 22 having a step on the outer peripheral surface of FIG. 23A, the axial length (L 0 ) is shortened as shown in FIG. 23B. (L 1 ), the pitch of the step (P 0 ) is also reduced to the pitch (P 1 ), but the outer diameter (D 0 ) is expanded to the outer diameter (D 1 ). (For details, refer to Patent Document 3).

三つ目の課題は、これら外周面に段差のあるチューブで、段差の山がつるまき状につながっているものは、図19、20で説明した従来の方法では、チューブ22と樹脂成形品10Aの当接部が全周にわたって完全密着するように接続できないことである。
また、チューブを接続する従来の樹脂成形品として、軸継手10Cを用いることもあるが、上記課題があることは同じである。参考のため、軸継手10Cの例を図24に示した。
The third problem is that the tubes having steps on the outer peripheral surface thereof, in which the peaks of the steps are connected in a spiral shape, are different from the tube 22 and the resin molded product 10A in the conventional method described with reference to FIGS. That is, the contact part cannot be connected so as to be in complete contact over the entire circumference.
Further, the shaft coupling 10C may be used as a conventional resin molded product for connecting a tube, but the same problem exists. For reference, an example of the shaft coupling 10C is shown in FIG.

図24の軸継手10Cでは、上下に内管12A、12Bを突出させ、上の内管12Aの外に外管底壁11cでつないだ外管11を設け、外管11と内管12Aの間にチューブの挿入用空間13を形成している。なお、図24の外管11の外管内壁11aには、図19にあった段差部14を形成していない場合を示した。下方に突出している内管12Bの表面には、抜け止め溝12cを形成している。 In the shaft coupling 10C of FIG. 24, the inner pipes 12A and 12B are projected vertically, and the outer pipe 11 connected to the outer pipe bottom wall 11c is provided outside the upper inner pipe 12A, and between the outer pipe 11 and the inner pipe 12A. A space 13 for inserting the tube is formed therein. In addition, the case where the step portion 14 shown in FIG. 19 is not formed on the outer pipe inner wall 11a of the outer pipe 11 of FIG. 24 is shown. A retaining groove 12c is formed on the surface of the inner tube 12B protruding downward.

軸継手10Cの例では、図25のように、チューブ20Aを内管12Aに被せ、図示しないリング状ガイド体を外嵌して、外管11の径方向外方への変形を抑制した状態で、同じく図示しない工具ホーンで外管11の内周部のみを溶融させ、離脱防止部15bを形成して接続している。そして、て、チューブ20Bを下方から内管12Bに押し込んで接続している。 In the example of the shaft coupling 10C, as shown in FIG. 25, the tube 20A is covered on the inner tube 12A, and a ring-shaped guide body (not shown) is externally fitted to the outer tube 11 in a state in which the outward deformation of the outer tube 11 is suppressed. Similarly, only the inner peripheral portion of the outer tube 11 is melted by a tool horn (not shown) to form the disconnection prevention portion 15b for connection. Then, the tube 20B is pushed into the inner tube 12B from below to be connected.

特公平1−16186号公報Japanese Patent Publication No. 1-16186 特開2006−181222号公報JP, 2006-181222, A 特開2013−192632号公報JP, 2013-192632, A

本発明は、(1)外管と内管の間に挿入用空間を形成した点滴筒などの樹脂成形品に、前記挿入用空間内にチューブを圧接した状態で直接一体に接続することを課題としている。特に(2)工具ホーンの中心の孔にチューブを通す作業と外す作業が不要である。(3)外管内壁とチューブ(可撓性チューブ)の外周面を溶着する。(4)外周面に段差のないチューブのときも、外周面に段差のあるチューブのときも、段差の山がつるまき状につながっているチューブのときも、チューブと樹脂成形品の当接部が全周にわたって完全密着するように接続する、という従来技術で解決されていなかった課題を解決する、新たな溶着方法および装置を提供することを目的とし、生産性が高く、離脱防止効果が高く、チューブと樹脂成形品の当接部が全周にわたって完全密着して接続する新しい超音波振動溶着方法および装置を実用化することを課題としている。 SUMMARY OF THE INVENTION (1) It is an object of the present invention to (1) directly and integrally connect a resin molded article such as a drip tube in which an insertion space is formed between an outer tube and an inner tube in a state where the tube is pressed into the insertion space. I am trying. In particular, (2) the work of inserting and removing the tube through the hole at the center of the tool horn is unnecessary. (3) Weld the inner wall of the outer tube and the outer peripheral surface of the tube (flexible tube). (4) Whether the tube has no step on the outer peripheral surface, the tube has a step on the outer peripheral surface, or the tube in which the peaks of the step are connected in a spiral shape, the contact portion between the tube and the resin molded product The purpose of the invention is to provide a new welding method and device, which solves the problem that has not been solved by the prior art, that is, to make a complete contact over the entire circumference, with high productivity and high separation prevention effect. It is an object of the present invention to put into practical use a new ultrasonic vibration welding method and apparatus in which the abutting portion of the tube and the resin molded product are completely adhered and connected over the entire circumference.

本発明の可撓性チューブと樹脂成形品の超音波振動溶着装置は、外管と内管の間に挿入用空間を形成した樹脂成形品を支持するベース台と、可撓性チューブを把持して、前記ベース台に支持した前記樹脂成形品の挿入用空間に当該可撓性チューブの先端を押し込み、当該可撓性チューブの先端と前記外管を半径方向に膨張させる押し込み手段と、前記樹脂成形品の外管外壁の一面側に当接する工具ホーンと、前記樹脂成形品の外管外壁の工具ホーンと反対の他面側に当接するアンビルと、前記樹脂成形品の外管外壁を前記工具ホーンと前記アンビルで押圧して、前記半径方向に膨張した前記外管と前記可撓性チューブを押し戻す押し戻し手段と、前記工具ホーンを超音波振動させる超音波振動手段と、前記工具ホーンと前記アンビルに対して、前記樹脂成形品を前記可撓性チューブ先端の軸芯の周りに所定角度、相対的に回転させる回転手段と、前記押し込み手段と、前記押し戻し手段と、前記超音波振動手段と、前記回転手段と、を制御する制御手段と、を有し、前記制御手段に、
(1)前記押し込み手段により、前記ベース台に支持した前記樹脂成形品の挿入用空間に可撓性チューブの先端を押し込み、当該可撓性チューブの先端と前記外管を半径方向に膨張させ、
(2)前記可撓性チューブの先端と外管を膨張させた状態から、前記押し戻し手段により、前記樹脂成形品の外管外壁を前記工具ホーンと前記アンビルで押圧して、半径方向に膨張した前記外管と前記可撓性チューブを押し戻し、
(3)前記超音波振動手段により、前記工具ホーンを超音波振動させ、前記樹脂成形品の外管内壁と可撓性チューブの外周面を加圧した状態で溶着し、
(4)前記押し戻し手段により、前記工具ホーンと前記アンビルを前記樹脂成形品から離し、
(5)前記回転手段により、前記工具ホーンと前記アンビルに対して前記樹脂成形品を前記可撓性チューブ先端の軸芯の周りに所定角度、相対的に回転させ、
(6)上記(2)から(5)を所定回数繰り返し、
(7)前記押し戻し手段により、前記工具ホーンと前記アンビルを前記樹脂成形品から離すとともに、前記押し込み手段を前記樹脂成形品から離し、前記ベース台から前記樹脂成形品を取り出せるようにする、
工程を実行することにより、可撓性チューブを、樹脂成形品に設けた外管との間の挿入用空間に一体接続するようにしている。
The ultrasonic vibration welding apparatus for a flexible tube and a resin molded product of the present invention holds a flexible tube and a base for supporting a resin molded product having an insertion space formed between an outer tube and an inner tube. And a pushing means for pushing the tip of the flexible tube into the insertion space of the resin molded article supported by the base to expand the tip of the flexible tube and the outer tube in the radial direction, and the resin. A tool horn that abuts on one surface side of the outer pipe outer wall of the molded product, an anvil that abuts on the other surface side of the outer pipe outer wall of the resin molded product opposite to the tool horn, and an outer pipe outer wall of the resin molded product A pushing back means for pushing back the outer tube expanded in the radial direction and the flexible tube by pressing with a horn and the anvil, an ultrasonic vibration means for ultrasonically vibrating the tool horn, the tool horn and the anvil. On the other hand, a rotation means for relatively rotating the resin molded product around the axis of the flexible tube tip by a predetermined angle, the pushing means, the pushing back means, and the ultrasonic vibrating means, The rotating means, and a control means for controlling the, the control means,
(1) By the pushing means, the tip of the flexible tube is pushed into the space for inserting the resin molded product supported on the base table, and the tip of the flexible tube and the outer tube are radially expanded,
(2) From the state in which the tip of the flexible tube and the outer tube are expanded, the outer wall of the outer tube of the resin molded product is pressed by the tool horn and the anvil by the pushing-back means to expand in the radial direction. Pushing back the outer tube and the flexible tube,
(3) The tool horn is ultrasonically vibrated by the ultrasonic vibrating means, and the inner wall of the outer tube of the resin molded product and the outer peripheral surface of the flexible tube are welded under pressure.
(4) The push-back means separates the tool horn and the anvil from the resin molded product,
(5) The rotating means relatively rotates the resin molded product with respect to the tool horn and the anvil about a shaft center of the flexible tube by a predetermined angle.
(6) The above (2) to (5) are repeated a predetermined number of times,
(7) The push-back means separates the tool horn and the anvil from the resin molded product, and the push-in means separates from the resin molded product so that the resin molded product can be taken out from the base base.
By executing the process, the flexible tube is integrally connected to the insertion space between the flexible tube and the outer tube provided in the resin molded product.

本発明の可撓性チューブと樹脂成形品の超音波振動溶着方法は、上記の可撓性チューブと樹脂成形品の超音波振動溶着装置に用いている発明を方法の発明として具現化したものである。 The ultrasonic vibration welding method for a flexible tube and a resin molded product of the present invention is a method embodying the invention used in the ultrasonic vibration welding device for a flexible tube and a resin molded product described above. is there.

本発明によると、チューブと樹脂成形品の溶着を生産性良く、離脱防止効果が高く、チューブと樹脂成形品の当接部が全周にわたって完全密着して接続することが可能となる。
より具体的には、(1)外管と内管の間に挿入用空間を形成した点滴筒などの樹脂成形品に、前記挿入用空間内にチューブを圧接した状態で直接一体に接続することができる。
特に(2)従来のように、工具ホーンの中心に開けた孔にチューブを通したり外したりすることが無い。(3)外管内壁とチューブの外周面が溶けて互いに入り込んだ形で溶着し、チューブと樹脂成形品の接続強度が大きい。(4)外周面に段差がないチューブ、あるいは外周面に段差のあるチューブのそれぞれについてチューブと樹脂成形品の当接部が全周にわたって完全密着して接続する、という効果がある。
According to the present invention, the tube and the resin molded product can be welded together with good productivity and a high effect of preventing separation, and the contact portion between the tube and the resin molded product can be completely adhered and connected over the entire circumference.
More specifically, (1) to directly and integrally connect a resin molded product such as a drip tube having an insertion space formed between an outer tube and an inner tube in a state where the tube is pressed into the insertion space. You can
In particular, (2) the tube is not inserted into or removed from the hole formed in the center of the tool horn as in the conventional case. (3) The inner wall of the outer tube and the outer peripheral surface of the tube are melted and welded together so that the tube and the resin molded product have a high connection strength. (4) With respect to each of the tube having no step on the outer peripheral surface or the tube having the step on the outer peripheral surface, there is an effect that the contact portion of the tube and the resin-molded product is completely adhered and connected over the entire circumference.

更に詳しく説明すれば、(5)本発明の「チューブを挿入用空間内で軸方向に加圧し、チューブの先端部分を軸方向に圧縮し、チューブと外管を半径方向に膨張させた状態で保持し、この状態で外管外壁を工具ホーンとアンビルで押圧し、外管の膨張部分を押し戻した状態」とすることによって、「チューブの外周面に軸方向に波を打つ段差(シワ)ができるようにシワ寄せ用の加圧をした状態」とする作用、効果を有している。 More specifically, (5) in the state of "the tube is axially pressurized in the insertion space, the tip portion of the tube is axially compressed, and the tube and the outer tube are expanded in the radial direction. By holding it and pressing the outer wall of the outer tube with the tool horn and anvil in this state to push back the expanded part of the outer tube, "the step (wrinkle) that undulates the outer peripheral surface of the tube in the axial direction is formed. It has the action and effect of "pressurizing for wrinkling as much as possible".

そのため本発明では、外周面に段差のないチューブについて、シワ寄せ用の加圧をすることにより、チューブの外周面に微細なシワができた状態、或いは微細なシワができていなくても外周面に微細なシワができる寸前の状態にしている。このことにより、チューブの外周面に微細なシワができた状態、或いはチューブの外周面に微細なシワができる寸前の状態で外管外壁から超音波振動を加え、外管内壁とチューブの外周面が溶けて互いに入り込んだ形で溶着させ、チューブと樹脂成形品の接続強度を大きくしている。 Therefore, in the present invention, for a tube having no step on the outer peripheral surface, by applying pressure for wrinkling, a state where fine wrinkles are formed on the outer peripheral surface of the tube, or even if fine wrinkles are not formed on the outer peripheral surface It is on the verge of having fine wrinkles. As a result, ultrasonic vibration is applied from the outer wall of the outer tube to the outer wall of the outer tube while the outer wall of the tube is finely wrinkled, or just before the outer surface of the tube is finely wrinkled. Are melted and welded together so that the connection strength between the tube and the resin molded product is increased.

また、本発明のチューブとして、外周面に段差があるチューブを用いれば、チューブの外周面の段差に、外管内壁とチューブの外周面が互いに溶けて入り込んだ形で溶着する。このことにより、チューブと樹脂成形品の接続強度を大きくしている。
本願発明の超音波振動溶着方法と超音波振動溶着装置を用いると、外周面に段差のないチューブと樹脂成形品との接続も、外周面に段差のあるチューブと樹脂成形品との接続も、外管内壁とチューブの外周面が互いに溶けて入り込んだ形で溶着して大きい接続強度が得られるという効果がある。
If a tube having a step on the outer peripheral surface is used as the tube of the present invention, the inner wall of the outer tube and the outer peripheral surface of the tube are fused and welded to the step on the outer peripheral surface of the tube. This increases the connection strength between the tube and the resin molded product.
Using the ultrasonic vibration welding method and the ultrasonic vibration welding device of the present invention, the connection between the tube having no step on the outer peripheral surface and the resin molded product, the connection between the tube having the step on the outer peripheral surface and the resin molded product, There is an effect that the inner wall of the outer tube and the outer peripheral surface of the tube are melted into each other and welded together to obtain a high connection strength.

本発明の実施形態1に係る超音波振動溶着装置の要部側面図。1 is a side view of a main part of an ultrasonic vibration welding device according to a first embodiment of the present invention. 本発明の実施形態1に係る超音波振動溶着装置の溶着準備作業時の要部側面図。FIG. 3 is a side view of a main part of the ultrasonic vibration welding device according to the first embodiment of the present invention during welding preparation work. 本発明の実施形態1に係る超音波振動溶着装置の溶着作業時の要部側面図。FIG. 3 is a side view of a main part of the ultrasonic vibration welding device according to the first embodiment of the present invention during welding work. 本発明の実施形態1に係る超音波振動溶着装置で、樹脂成形品と外周面に段差のないチューブを溶着する工程(A)〜(F)を示した図。The figure which showed the process (A)-(F) which welds the resin molding and the tube without a level|step difference in the outer peripheral surface with the ultrasonic vibration welding apparatus which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る超音波振動溶着装置を用いた溶着作業手順を示したフローチャート。The flowchart which showed the welding work procedure using the ultrasonic vibration welding apparatus which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る超音波振動溶着装置の第1の変形例で、樹脂成形品と外周面に段差のないチューブを溶着する工程(A)〜(F)を示した図。The figure which showed the process (A)-(F) which welds the resin-molded product and the tube without a level|step difference in the 1st modification of the ultrasonic vibration welding apparatus which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る超音波振動溶着装置の第2の変形例で、樹脂成形品と外周面に段差のないチューブを溶着する工程(A)および(B)を示した図。The figure which showed the process (A) and (B) which welds the resin-molded article and the tube without a level|step difference in the 2nd modification of the ultrasonic vibration welding apparatus which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る超音波振動溶着装置の第3の変形例で、樹脂成形品と外周面に段差のないチューブを溶着する工程(A)および(B)を示した図。The figure which showed the process (A) and (B) which welds the resin-molded product and the tube without a level|step difference in the 3rd modification of the ultrasonic vibration welding apparatus which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る超音波振動溶着装置の第4の変形例で、樹脂成形品と外周面に段差のない2層構造チューブを溶着する工程(A)〜(D)を示した図。In the 4th modification of the ultrasonic vibration welding device concerning Embodiment 1 of the present invention, the figure which showed process (A)-(D) which welds a resin molding and a two-layer structure tube without a level difference to an outer peripheral surface. .. 本発明の実施形態2に係る超音波振動溶着装置で、樹脂成形品と外周面に段差があるチューブを溶着する工程(A)〜(F)を示した図。The figure which showed the process (A)-(F) which welds the resin molding and the tube which has a level|step difference in an outer peripheral surface with the ultrasonic vibration welding apparatus which concerns on Embodiment 2 of this invention. 本発明の実施形態2に係る超音波振動溶着装置の第1の変形例で、樹脂成形品に外周面に段差があるチューブを溶着する工程(A)〜(C)を示した図。In the 1st modification of the ultrasonic vibration welding device concerning Embodiment 2 of the present invention, the figure showing process (A)-(C) of welding a tube which has a level difference in a peripheral face to a resin molding. 本発明の実施形態2に係る超音波振動溶着装置の第1の変形例で、樹脂成形品に外周面に段差があるチューブを溶着する工程(D)および(E)を示した図。The figure which showed the process (D) and (E) which welds the tube which has a level|step difference in an outer peripheral surface to the resin molded product in the 1st modification of the ultrasonic vibration welding apparatus which concerns on Embodiment 2 of this invention. 図12の工程(E)における、矢視AL13で示す断面図。Sectional drawing in line AL13 in process (E) of FIG. 本発明の実施形態2に係る超音波振動溶着装置の第1の変形例で、樹脂成形品に外周面に段差があるチューブを溶着した状態を示した図。The figure which showed the state which welded the tube which has a level|step difference in the outer peripheral surface to the resin molded product in the 1st modification of the ultrasonic vibration welding apparatus which concerns on Embodiment 2 of this invention. 本発明の実施形態2に係る超音波振動溶着装置の第2の変形例で、樹脂成形品に外周面に段差があるチューブを溶着する工程(A)〜(D)を示した図。In the 2nd modification of the ultrasonic vibration welding device which concerns on Embodiment 2 of this invention, the figure which showed the process (A)-(D) which welds the tube which has a level|step difference in an outer peripheral surface to a resin molded product. 本発明の実施形態3に係る超音波振動溶着装置で、外管内壁に予め半径方向に段差(溝)を設け、外周面に段差のないチューブを溶着する工程(A)〜(D)を示した図。In the ultrasonic vibration welding device according to the third embodiment of the present invention, steps (A) to (D) are shown in which a step (groove) is provided in advance on the inner wall of the outer tube in the radial direction and a tube having no step is welded on the outer peripheral surface. The figure. 従来の点滴筒にチューブを接続したときの一部を断面とした外観図。The external view which made a part a cross section when connecting a tube to the conventional drip tube. 従来の点滴筒にチューブを接続したときの接続部分の拡大断面図。The expanded sectional view of the connection part when a tube is connected to the conventional drip tube. 従来の超音波振動溶着装置を用いてチューブと樹脂成形品を接続する要部断面図。Sectional drawing of the principal part which connects a tube and a resin molded product using the conventional ultrasonic vibration welding apparatus. 従来の超音波振動溶着装置を用いてチューブと樹脂成形品を接続した要部の拡大断面図。The expanded sectional view of the principal part which connected the tube and the resin molded product using the conventional ultrasonic vibration welding apparatus. 従来の超音波振動溶着装置の工具ホーンの外観斜視図。The external perspective view of the tool horn of the conventional ultrasonic vibration welding device. 従来の超音波振動溶着装置の他の工具ホーンの外観斜視図。The external perspective view of the other tool horn of the conventional ultrasonic vibration welding apparatus. 従来の超音波振動溶着装置を用いた接続作業手順を示したフローチャート。The flowchart which showed the connection work procedure using the conventional ultrasonic vibration welding apparatus. 従来の医療器具の一つであるカテーテル用の外周面に段差があるチューブの断面図。Sectional drawing of the tube which has a level|step difference in the outer peripheral surface for catheters which is one of the conventional medical devices. 図23Aに示すカテーテル用チューブの、主要寸法の変化を説明するための断面図。Sectional drawing for demonstrating the change of the main dimensions of the catheter tube shown in FIG. 23A. 従来の一対のチューブと軸継手を分離して示した断面図。Sectional drawing which separated and showed a pair of conventional tubes and a shaft coupling. 従来の一対のチューブと軸継手を接続したときの断面図。Sectional drawing at the time of connecting a pair of conventional tubes and a shaft coupling.

本発明は、以下にそれぞれのチューブに対する実施形態を例示することにより、(1)外管と内管の間に挿入用空間を形成した点滴筒などの樹脂成形品に、前記挿入用空間内にチューブを圧接した状態で直接一体に接続できることを説明することとし、特に(2)従来のように、工具ホーンの中心に開けた孔にチューブを通したり外したりすることなく、(3)外管内壁とチューブの外周面が溶けて互いに入り込んだ形で溶着し、その結果、チューブと樹脂成形品の接続強度が大きくなること、(4)外周面に段差がないチューブ、あるいは外周面に段差のあるチューブのそれぞれについて適用可能であること、を説明する。 The present invention illustrates (1) a resin molded article such as a drip tube in which an insertion space is formed between an outer tube and an inner tube in the insertion space by exemplifying embodiments for respective tubes below. It will be explained that the tubes can be directly and integrally connected in a state of being pressed against each other. In particular, (2) without inserting or removing the tube through the hole formed in the center of the tool horn as in the conventional case, (3) inside the outer tube The wall and the outer peripheral surface of the tube are melted and welded together so that the connection strength between the tube and the resin molded product is increased. (4) A tube with no step on the outer peripheral surface or a step on the outer peripheral surface It is described that each tube is applicable.

なお、後述する実施形態1から3では、図示を簡単にするため、樹脂成形品に「チューブの軸継手」を用いた例を示す。「チューブの軸継手」は、内管の両端が軸方向に外管底壁(挿入用空間底壁)からそれぞれ反対方向に突き出ている形をしているが、外管と、外管内に同軸方向に配置され、軸方向に突出している内管が備えられ、外管と内管の間に挿入用空間が形成されていることは「点滴筒」と同じである。 In addition, in Embodiments 1 to 3 to be described later, an example in which a "tube shaft joint" is used for a resin molded product is shown in order to simplify the illustration. The “tube shaft joint” has a shape in which both ends of the inner pipe project in the opposite axial directions from the outer pipe bottom wall (insertion space bottom wall), but the outer pipe and the outer pipe are coaxial. It is the same as the “drip tube” in that it is provided with an inner tube that is arranged in the direction and that projects in the axial direction, and that an insertion space is formed between the outer tube and the inner tube.

また、図1から図3に示した、本発明の実施形態1に係る超音波振動溶着装置の要部側面図では、チューブと樹脂成形品(軸継手)の軸芯を水平方向として図示し、図4、図6から図16の工程を示した図では、チューブと樹脂成形品(軸継手)の軸芯を水平方向と垂直方向の両方を混在して図示したが、図面上のスペースの都合によるものであることを理解されたい。
(実施形態1)
Further, in the side view of the main part of the ultrasonic vibration welding device according to the first embodiment of the present invention shown in FIGS. 1 to 3, the tube and the resin molded product (shaft coupling) are illustrated with their axes being horizontal. In the drawings showing the steps of FIG. 4 and FIGS. 6 to 16, the tube and the shaft center of the resin molded product (shaft coupling) are illustrated in a mixed manner in both the horizontal direction and the vertical direction. Please understand that it is due to.
(Embodiment 1)

実施形態1では、樹脂成形品(軸継手)10Bに外周面に段差のない可撓性チューブ20を溶着する超音波振動溶着方法および装置を説明する。
実施形態1の樹脂成形品10Bは、外管11と、外管11内に同軸方向に配置された内管12を備えており、外管11は、外管11および内管12を連結する円環状の外管底壁11cを有しており、当該外管11の内側表面(外管内壁)11a、外管底壁11cおよび内管12によって、これらの間に環状の挿入用空間13が形成されている。この挿入用空間13には、樹脂成形品10Bと接続させる樹脂チューブ20の端部20aが挿入される。
In the first embodiment, an ultrasonic vibration welding method and apparatus for welding a flexible tube 20 having no step on the outer peripheral surface to a resin molded product (shaft coupling) 10B will be described.
The resin molded product 10B of the first embodiment includes an outer pipe 11 and an inner pipe 12 arranged coaxially in the outer pipe 11, and the outer pipe 11 is a circle connecting the outer pipe 11 and the inner pipe 12. It has an annular outer tube bottom wall 11c, and the inner surface (outer tube inner wall) 11a of the outer tube 11, the outer tube bottom wall 11c, and the inner tube 12 form an annular insertion space 13 therebetween. Has been done. The end portion 20a of the resin tube 20 connected to the resin molded product 10B is inserted into the insertion space 13.

樹脂成形品10Bおよびチューブ20は、用途に応じて、超音波振動溶着による接続に好適な樹脂素材が用いられ、特に限定しないが、例えば、樹脂成形品10Bの構成材料としては、ポリエチレン、ポリプロピレン等のポリオレフィン、即ち非塩素系材料を例示することができる。
また、チューブ20の構成材料としては、ポリエチレン、ポリプロピレン等のポリオレフィン、軟質ポリ塩化ビニル、エチレン−酢酸ビニル共重合体、ポリアミド等の樹脂材料や、天然ゴム、シリコーンゴム、スチレン−ブタジエンゴム等の各種ゴム材料、各種熱可塑性エラストマー等の弾性材料を例示することができる。
A resin material suitable for connection by ultrasonic vibration welding is used for the resin molded product 10B and the tube 20, depending on the application, and is not particularly limited. For example, as a constituent material of the resin molded product 10B, polyethylene, polypropylene, or the like is used. The polyolefin, that is, a non-chlorine-based material can be exemplified.
As the constituent material of the tube 20, resin materials such as polyolefins such as polyethylene and polypropylene, soft polyvinyl chloride, ethylene-vinyl acetate copolymer, polyamides, and various kinds of natural rubber, silicone rubber, styrene-butadiene rubber, etc. Examples of elastic materials include rubber materials and various thermoplastic elastomers.

また、樹脂成形品10Bおよびチューブ20の形状や外形寸法は、特に限定するものではないが、チューブ20および外管11の肉厚は、軸方向および径方向の加圧や圧縮により、径方向に容易に膨出、収縮することができる可撓性やシワ寄せ加工性を備えることが望ましく、接続工程における素材の加熱温度にも依るが、実際に使用する上で一定強度が必要であることから、チューブ20および外管11の肉厚は、例えば1〜2mm程度に好適に設定される。 Further, the shapes and outer dimensions of the resin molded product 10B and the tube 20 are not particularly limited, but the wall thicknesses of the tube 20 and the outer tube 11 are radial in the radial direction due to axial and radial pressure and compression. It is desirable to have flexibility and wrinkle workability that can easily swell and shrink, and since it depends on the heating temperature of the material in the connection process, it requires a certain strength for actual use. The wall thicknesses of the tube 20 and the outer tube 11 are preferably set to, for example, about 1 to 2 mm.

図1から図3に、本発明の実施形態1に係る超音波振動溶着装置の要部側面図を示した。樹脂成形品10Bとチューブ20を接続する超音波振動溶着装置について、図1では本発明の実施形態1に係る超音波振動溶着装置の要部側面図を示し、図2では、溶着準備作業時の状態を示し、図3では、溶着作業時の状態を示している。なお、図1の本発明の実施形態1に係る超音波振動溶着装置は、装置の要部のみを示し、樹脂成型品10Bとチューブ20は示していない。図2、3には、樹脂成型品10Bとチューブ20も示したので、これらの図を総合すれば、それらの構造を容易に理解できるであろう。 1 to 3 show side views of essential parts of an ultrasonic vibration welding apparatus according to Embodiment 1 of the present invention. Regarding the ultrasonic vibration welding apparatus for connecting the resin molded product 10B and the tube 20, FIG. 1 shows a side view of the main part of the ultrasonic vibration welding apparatus according to the first embodiment of the present invention, and FIG. FIG. 3 shows the state, and FIG. 3 shows the state during the welding work. The ultrasonic vibration welding apparatus according to the first embodiment of the present invention in FIG. 1 shows only the main parts of the apparatus, and does not show the resin molded product 10B and the tube 20. 2 and 3, the resin molded product 10B and the tube 20 are also shown. Therefore, if these drawings are put together, their structures will be easily understood.

図1の本発明の実施形態1に係る超音波振動溶着装置では、装置のフレーム100に垂直方向に支柱81を設け、支柱81の中央に樹脂成形品10Bを取り付ける孔(「支柱孔」という)80aを開けたベース台80を形成し、支柱孔80aの位置を基準に支柱81の上下には水平方向に延びる枝(ブランチ)84、85が設けてある。
上方のブランチ84にはエアシリンダー34が取り付けてあり、エアシリンダー34の先端にはバネ33と移動枠31が取り付けてある。そして、移動枠31には、圧電素子を用いた超音波振動手段32と、この超音波振動手段32と一体に組み立てられた工具ホーン30が取り付けてある。工具ホーン30は、バネ33により支柱孔80aの位置方向に向けて付勢されていて、エアシリンダー34が吸引動作すると、工具ホーン30が支柱孔80aの位置から遠ざかるようにしてある。
In the ultrasonic vibration welding apparatus according to the first embodiment of the present invention shown in FIG. 1, a column 81 is provided in the frame 100 of the apparatus in a vertical direction, and a hole for attaching the resin molded product 10B to the center of the column 81 (referred to as a "column hole"). A base pedestal 80 having an opening 80a is formed, and branches 84 and 85 extending horizontally are provided above and below the stanchion 81 based on the position of the stanchion hole 80a.
The air cylinder 34 is attached to the upper branch 84, and the spring 33 and the moving frame 31 are attached to the tip of the air cylinder 34. Then, an ultrasonic vibrating means 32 using a piezoelectric element and a tool horn 30 assembled integrally with the ultrasonic vibrating means 32 are attached to the moving frame 31. The tool horn 30 is biased toward the position of the support hole 80a by a spring 33, and when the air cylinder 34 performs a suction operation, the tool horn 30 moves away from the position of the support hole 80a.

下方のブランチ85にはエアシリンダー44が取り付けてあり、エアシリンダー44の先端にはバネ43とアンビル40が取り付けてある。アンビル40はバネ43により支柱孔80aの位置方向に向けて付勢されていて、エアシリンダー44が吸引動作すると、アンビル40が支柱孔80aの位置から遠ざかるようにしてある。
フレーム100の右側には、チューブ押し込み部材50、51のガイドテーブル86を設けていて、チューブ押し込み部材50は、部材51の蓋として、部材51に対して上下方向にコイルバネ等の手段で弾性的に支えられているとともに、上下方向に着脱自在に支えられている。ガイドテーブル86の上面にはカム状スライド面86aがあり、チューブ押し込み部材50、51を(例えば、ボールねじとモータの組み合わせ等による、図示しない駆動手段により)、図において右から左方向に移動すると、チューブ押し込み部材50、51が、チューブ20を把持した状態で、チューブ20の先端を樹脂成形品10Bの挿入用空間13(図2および後述の図4参照)に押し込むようにしている。
An air cylinder 44 is attached to the lower branch 85, and a spring 43 and an anvil 40 are attached to the tip of the air cylinder 44. The anvil 40 is biased by the spring 43 toward the position of the support hole 80a, and when the air cylinder 44 sucks, the anvil 40 moves away from the position of the support hole 80a.
A guide table 86 for the tube pushing members 50 and 51 is provided on the right side of the frame 100, and the tube pushing member 50 serves as a lid for the member 51 and elastically moves vertically with respect to the member 51 by means such as a coil spring. Not only is it supported, but it is also supported vertically in a removable manner. There is a cam-shaped slide surface 86a on the upper surface of the guide table 86, and when the tube pushing members 50 and 51 are moved from the right to the left in the figure (by a driving means (not shown) such as a combination of a ball screw and a motor). The tube pushing members 50 and 51 push the tip of the tube 20 into the insertion space 13 (see FIG. 2 and FIG. 4 described later) of the resin molded product 10B while holding the tube 20.

ベース台80の図において左側には、支柱孔80aと同軸の中空円柱部分82を設けている。中空円柱部分82に外嵌して、樹脂成形品10Bを支持する支持キャップ71が回転可能に被せられている。
支持キャップ71には支柱孔80aと同軸の支持孔71aが開けてある。また、中空円柱部分82の紙面左端面と支持キャップ71には、複数の位置決め用穴83a、83bと位置決めピン72を挿入する貫通孔71bがそれぞれ同心円周上に適宜のピッチで設けられている。これらの支柱孔80a、支持孔71a、貫通孔71b、位置決め用穴83a、83bは、樹脂成形品10Bを支柱孔80aと同軸の支持孔71aで支持した状態で、中空円柱部分82に対して支持キャップ71を回転させて、位置決めピン72を所望の位置決め用穴83a、83bのいずれかに入れて位置決めするために設けてある。
On the left side of the base 80 in the figure, a hollow cylindrical portion 82 coaxial with the support hole 80a is provided. A support cap 71 that fits over the hollow cylindrical portion 82 and supports the resin molded product 10B is rotatably covered.
The support cap 71 has a support hole 71a coaxial with the support hole 80a. Further, the left end surface of the hollow cylindrical portion 82 on the paper surface and the support cap 71 are provided with through holes 71b into which a plurality of positioning holes 83a and 83b and a positioning pin 72 are inserted, respectively, on a concentric circumference at an appropriate pitch. The support hole 80a, the support hole 71a, the through hole 71b, and the positioning holes 83a, 83b are supported by the hollow cylindrical portion 82 in a state where the resin molded product 10B is supported by the support hole 71a coaxial with the support hole 80a. It is provided to rotate the cap 71 and insert the positioning pin 72 into any of the desired positioning holes 83a and 83b for positioning.

図2では、上記構造をした本発明の装置を用いて、樹脂成形品10Bをベース台80に取り付け、樹脂成形品10Bの挿入用空間13にチューブ20の先端20aを入れて、チューブ押し込み部材50、51でチューブ20を把持する寸前の状態、つまり溶着準備作業時の状態を示している。
そして、図2の状態から、挿入用空間13にチューブ20の先端20aを押し込んで樹脂成形品10Bの外管11を半径方向に膨張させた後、図示していない制御部によって、図3のように、エアシリンダー34と44の吸引動作を止めて、バネ33、34の付勢力により、工具ホーン30とアンビル40で外管外壁11bを押圧する。そして、外管11が半径方向に膨張した分を元の円筒状の姿に押し戻し、超音波振動手段32により工具ホーン30を振動させ、外管内壁11aとチューブ20の外周面20bを溶融させて一体接続する溶着作業を行う。
In FIG. 2, using the apparatus of the present invention having the above structure, the resin molded product 10B is attached to the base 80, the tip 20a of the tube 20 is inserted into the insertion space 13 of the resin molded product 10B, and the tube pushing member 50 is inserted. , 51 indicates a state just before gripping the tube 20, that is, a state at the time of welding preparation work.
Then, from the state of FIG. 2, the tip 20a of the tube 20 is pushed into the insertion space 13 to expand the outer tube 11 of the resin molded product 10B in the radial direction, and then as shown in FIG. Then, the suction operation of the air cylinders 34 and 44 is stopped, and the outer horn outer wall 11b is pressed by the tool horn 30 and the anvil 40 by the urging force of the springs 33 and 34. Then, the radially expanded portion of the outer tube 11 is pushed back to its original cylindrical shape, the tool horn 30 is vibrated by the ultrasonic vibrating means 32, and the outer tube inner wall 11a and the outer peripheral surface 20b of the tube 20 are melted. Perform welding work to connect them together.

図3に示す状態で、外管内壁11aとチューブ20の外周面20bが溶着し、超音波振動手段32の超音波振動を止めて、溶着部分が固化したら、エアシリンダー34と44を吸引動作させ、外管外壁11bから工具ホーン30とアンビル40を離す。そして作業者が、位置決めピン72を中空円筒部分82の位置決め孔83aから抜いて、支持キャップ71を中空円筒部分82の周りに回転させ、他の位置決め用穴83bに入れて位置決めする。支持キャップ71の回転とともに、樹脂成形品10Bとチューブ20の溶着部分と未溶着部分が入れ替わり、溶着部分がアンビル40に対向し、未溶着部分が工具ホーン30に対向する。 In the state shown in FIG. 3, when the inner wall 11a of the outer tube and the outer peripheral surface 20b of the tube 20 are welded and the ultrasonic vibration of the ultrasonic vibration means 32 is stopped and the welded portion is solidified, the air cylinders 34 and 44 are suctioned. The tool horn 30 and the anvil 40 are separated from the outer tube outer wall 11b. Then, the operator pulls out the positioning pin 72 from the positioning hole 83a of the hollow cylindrical portion 82, rotates the support cap 71 around the hollow cylindrical portion 82, and inserts it into the other positioning hole 83b for positioning. With the rotation of the support cap 71, the welded portion and the unwelded portion of the resin molded product 10B and the tube 20 are replaced with each other, the welded portion faces the anvil 40, and the unwelded portion faces the tool horn 30.

そして、再び、エアシリンダー34と44の吸引動作を止めて、バネ33、34の力で、外管11の半径方向に膨張した分の残っている未溶着部分を元の円筒状の姿に押し戻し、超音波振動手段32により工具ホーン30を振動させ、外管内壁11aとチューブ20の外周面を溶融させ、一体に接続する。
なお、図1から図3の説明では、位置決めピン72による位置決めを、中空円柱部分82の2つの位置決め用穴83a、83bで説明したが、この超音波振動溶着作業時の樹脂成型品とチューブの反転作業における回動角度については、位置決め用穴などの数を必要により適宜増やして、所望の回動角度を定め、溶着重ね代を考慮して行なうことができる。
Then, the suction operation of the air cylinders 34 and 44 is stopped again, and the remaining unwelded portion of the outer tube 11 expanded in the radial direction is pushed back to the original cylindrical shape by the force of the springs 33 and 34. The tool horn 30 is vibrated by the ultrasonic vibrating means 32 to melt the outer tube inner wall 11a and the outer peripheral surface of the tube 20 and integrally connect them.
In addition, in the description of FIGS. 1 to 3, the positioning by the positioning pin 72 has been described using the two positioning holes 83a and 83b of the hollow cylindrical portion 82, but the resin molded product and the tube during the ultrasonic vibration welding work are described. Regarding the turning angle in the reversing work, the number of positioning holes or the like can be appropriately increased as necessary to determine a desired turning angle and the welding overlap margin can be taken into consideration.

外管内壁11aとチューブ20の全ての外周面の溶着作業が終了したら、エアシリンダー34と44を吸引動作させ、外管外壁11bから工具ホーン30とアンビル40を離し、チューブ押し込み部材50、51をフレーム100の右側に移動させて、チューブ押し込み部材50、51をチューブ20から離し、一体となったチューブ20と樹脂成形品10Bを装置から取り出す。 When the welding work of all the outer peripheral surfaces of the outer tube inner wall 11a and the tube 20 is completed, the air cylinders 34 and 44 are suctioned to separate the tool horn 30 and the anvil 40 from the outer tube outer wall 11b, and the tube pushing members 50 and 51 are attached. It is moved to the right side of the frame 100, the tube pushing members 50 and 51 are separated from the tube 20, and the integrated tube 20 and resin molded product 10B are taken out from the apparatus.

本発明の装置の構成要素は以下のものが含まれる。
(a)樹脂成形品を支持するベース台(80)、
(b)樹脂成形品の内管をチューブの端部内に挿入した状態で当該チューブを把持し、樹脂成形品の挿入用空間に前記チューブの先端部分を嵌め込み、前記外筒底壁に押し付けて加圧するチューブの押し込み手段(50、51)、
(c)挿入用空間に嵌め込まれた前記チューブの先端部分に対応する外管を超音波振動させる工具ホーン(30)
(d)前記工具ホーンに対向する位置に配置され、前記外管外壁を前記工具ホーンに向かって加圧するアンビル(40)
(e)工具ホーン(30)とアンビル(40)で押し戻し動作をさせる押し戻し動作手段(バネ(33)、(43)とエアシリンダー(32)、(44))、
(f)超音波振動手段(32)、および
(g)チューブの押し込み手段と、工具ホーンおよびアンビルの押し戻し手段と、並びに超音波振動手段とを制御する制御手段(図示せず)。
The components of the device of the present invention include:
(A) Base stand (80) for supporting the resin molded product,
(B) The inner tube of the resin molded product is inserted into the end portion of the tube, and the tube is gripped, the tip portion of the tube is fitted into the insertion space of the resin molded product, and the tube is pressed against the outer cylinder bottom wall. A pressing means (50, 51) for pressing the tube,
(C) A tool horn (30) for ultrasonically vibrating an outer tube corresponding to the tip portion of the tube fitted in the insertion space.
(D) An anvil (40) arranged at a position facing the tool horn and pressing the outer wall of the outer tube toward the tool horn.
(E) Push-back operation means (springs (33), (43) and air cylinders (32), (44)) for performing a push-back operation with the tool horn (30) and the anvil (40),
(F) Ultrasonic vibrating means (32), and (g) Control means (not shown) for controlling the tube pushing means, the tool horn and anvil pushing back means, and the ultrasonic vibrating means.

上記に含めていない「ベース台80の紙面左側に中空円柱部分82を設け、中空円柱部分82に、樹脂成形品10Bを支持する支持キャップ71を回転可能に被せている回転手段」については、電動で支持キャップ71を所定角度回転する回転手段として、上記制御手段で制御しても良い。また、これを設けずに、ベース台80で樹脂成形品10Bを支持した状態で、作業者が樹脂成形品10Bをつまんで回転させるという手作業に置き換えても良い。その他、図1から3の実施形態は一例を示したものにすぎず、当業者により任意の構造を採用することができる。 Regarding the "rotating means which is not included in the above and which is provided with a hollow columnar portion 82 on the left side of the surface of the base 80, and a support cap 71 for rotatably covering the resin molded product 10B is rotatably covered over the hollow columnar portion 82", The control means may control as a rotation means for rotating the support cap 71 by a predetermined angle. Alternatively, without providing this, a worker may pinch the resin molded product 10B and rotate it while the resin molded product 10B is supported by the base 80. In addition, the embodiments of FIGS. 1 to 3 are merely examples, and those skilled in the art can adopt any structure.

実施形態1では、チューブ20を樹脂成形品10Bの内管12に被せ、チューブ20の先端20aを挿入用空間13に入れて、チューブ20を軸方向に加圧して圧縮していくと、チューブ20が軸方向に圧縮されると同時に半径方向に膨張し、チューブ20が外管11を半径方向に膨張させることを利用している。
図4は、本発明の実施形態1に係る超音波振動溶着装置で、樹脂成形品と外周面に段差のないチューブを溶着する工程(A)〜(F)を示す。即ち、図4の工程(A)に示すように、ベース台80で支持した樹脂成形品10Bの内管12にチューブ20を被せ、図4の工程(B)のように、チューブ押し込み部材50、51で白矢印のように掴んで、チューブ20を軸方向の下方に、挿入用空間13に押し込んでいくと、チューブ20の先端は外管底壁11cに当たる。その後、図4の工程(C)のように、チューブ20をチューブ押し込み部材50、51で掴んだまま軸方向に加圧すると、チューブ20は半径方向に膨張し、外管11も半径方向に膨張する。チューブ20の半径方向の膨張は、チューブの先端部分が外管底壁11cに当たって行き場がなくなり、挿入用空間13に充満して生じる。そのため、チューブ20を押し込んでいくと外管底壁11cより上方に向けて徐々に半径寸法が拡大する。図4の工程(C)では、外管11がお椀状に膨張している様子を示している。
In the first embodiment, the tube 20 is covered with the inner tube 12 of the resin molded product 10B, the tip 20a of the tube 20 is put into the insertion space 13, and the tube 20 is axially pressed and compressed. Is compressed in the axial direction and simultaneously expanded in the radial direction, so that the tube 20 expands the outer tube 11 in the radial direction.
FIG. 4 shows steps (A) to (F) of welding a resin-molded product and a tube having no step on the outer peripheral surface thereof in the ultrasonic vibration welding device according to the first embodiment of the present invention. That is, as shown in step (A) of FIG. 4, the tube 20 is put on the inner tube 12 of the resin molded product 10B supported by the base 80, and the tube pushing member 50, as shown in step (B) of FIG. When the tube 20 is gripped at 51 and pushed into the insertion space 13 axially downward, the tip of the tube 20 hits the outer tube bottom wall 11c. Thereafter, as in the step (C) of FIG. 4, when the tube 20 is axially pressurized while being held by the tube pushing members 50 and 51, the tube 20 expands in the radial direction and the outer tube 11 also expands in the radial direction. To do. The expansion of the tube 20 in the radial direction occurs when the distal end portion of the tube hits the outer tube bottom wall 11c and there is no place to go, and the insertion space 13 is filled. Therefore, as the tube 20 is pushed in, the radial dimension gradually increases upward from the outer tube bottom wall 11c. In the step (C) of FIG. 4, the outer tube 11 is shown as expanding in a bowl shape.

外管11が半径方向に膨張した状態で、図4の工程(D)のように、外管11の外側表面(外管外壁)11bを工具ホーン30とアンビル40で挟んで押圧する。そして、工具ホーン30とアンビル40で外管11の半径方向の膨張を押さえ込む。このことにより、外管外壁11bは膨らんだ曲面から、膨張していた部分が押さえ込まれた元の円筒面に押し戻される。このとき、チューブ20も外管11によって半径方向に押し込まれ、圧縮される。 With the outer tube 11 expanded in the radial direction, the outer surface (outer tube outer wall) 11b of the outer tube 11 is sandwiched between the tool horn 30 and the anvil 40 and pressed as in step (D) of FIG. Then, the tool horn 30 and the anvil 40 suppress the expansion of the outer tube 11 in the radial direction. As a result, the outer tube outer wall 11b is pushed back from the bulging curved surface to the original cylindrical surface where the expanded portion is pressed. At this time, the tube 20 is also pushed by the outer tube 11 in the radial direction and compressed.

なお上記のように、チューブ20を挿入用空間13に押し込むことでチューブ20が半径方向に膨らみ、外管11も半径方向に膨らむので、外管外壁11bに工具ホーン30とアンビル40を当てて、外管11が膨らんだ分を押し戻している。押し戻すことで、挿入用空間13での外管内壁11aとチューブ20の外周面20bの圧力が高まる。そのため、工具ホーン30を押し戻した位置で止めて、超音波振動を与えると、チューブ20と外管内壁11aは溶融して接続する。 As described above, the tube 20 swells in the radial direction by pushing the tube 20 into the insertion space 13, and the outer tube 11 also swells in the radial direction. Therefore, the tool horn 30 and the anvil 40 are applied to the outer tube outer wall 11b, The bulging outer tube 11 is pushed back. By pushing back, the pressure of the outer tube inner wall 11a and the outer peripheral surface 20b of the tube 20 in the insertion space 13 increases. Therefore, when the tool horn 30 is stopped at the pushed back position and ultrasonic vibration is applied, the tube 20 and the outer tube inner wall 11a are melted and connected.

なお、図示していないが、図4の工程(E)の次に、工具ホーン30とアンビル40を図4の工程(C)のように離し、チューブ20と外管内壁11aの全周が溶着するまで、工具ホーン30とアンビル40に対して相対的に、樹脂成形品10Bを所定角度回転させ、再び図4の工程(D)の押し戻し動作と、図4の工程(E)の超音波振動溶着動作をする。このことにより、図4の工程(F)のようにチューブ20と外管内壁11aの全周が溶着して接続される。 Although not shown, after the step (E) of FIG. 4, the tool horn 30 and the anvil 40 are separated as in the step (C) of FIG. 4, and the entire circumferences of the tube 20 and the inner wall 11a of the outer tube are welded. Until the resin horn 30 and the anvil 40 are rotated relative to the tool horn 30 and the anvil 40 by a predetermined angle, the pushing back operation of the step (D) of FIG. 4 and the ultrasonic vibration of the step (E) of FIG. 4 are performed again. Performs welding operation. As a result, the entire circumference of the tube 20 and the outer tube inner wall 11a are welded and connected as in step (F) of FIG.

図4の工程(C)から図4の工程(D)の、お椀状に膨張した表面を円筒状の表面にすることは、外管11の外管外壁11bと外管内壁11aの表面積を小さくすることであり、表面の各微小部分が均等に縮まない所にはシワが発生する。この外管11の膨らんだ表面を元の円筒面に戻す動作は、外管内壁11aとチューブ20の外周面20bにシワを寄せる、シワ寄せ動作をさせていることになる。図4の工程(A)では、チューブ20の外周面20bに外力がかかっていない自由状態であるため、シワがよっていないが、図4の工程(D)では、チューブ20の外周面20bを一度膨らませた後、強制的に圧縮するシワ寄せ動作をしたので、挿入用空間13の中にあるチューブ20の外周面20bは、微細なシワがよった、あるいはシワがよっていなくても表面に微細なシワが寄ろうとしている不安定な加圧状態になっている。このチューブ20の外周面20bを加圧してシワ寄せ動作をした不安定な加圧状態としたまま、図4の工程(E)のように、工具ホーン30に超音波振動させると、チューブ20の外周面20bと外管内壁11aが溶けて互いに入り込んだ形で溶着する。そして、チューブ20と樹脂成形品10Bの所定の接続強度が得られる。 Making the bowl-shaped expanded surface of the step (C) of FIG. 4 to the step (D) of FIG. 4 into a cylindrical surface reduces the surface area of the outer tube outer wall 11b and the outer tube inner wall 11a of the outer tube 11. That is, wrinkles occur where the minute portions of the surface do not shrink uniformly. The operation of returning the bulged surface of the outer tube 11 to the original cylindrical surface is a wrinkling operation of wrinkling the inner wall 11a of the outer tube and the outer peripheral surface 20b of the tube 20. In the step (A) of FIG. 4, no external force is applied to the outer peripheral surface 20b of the tube 20, so no wrinkles are generated, but in the step (D) of FIG. Since the wrinkling action of forcibly compressing after inflating was performed, the outer peripheral surface 20b of the tube 20 in the insertion space 13 had fine wrinkles, or even if there were no wrinkles, the surface was fine. It is in an unstable pressure state where wrinkles are about to come. When the tool horn 30 is ultrasonically vibrated as in the step (E) of FIG. 4 while the outer peripheral surface 20 b of the tube 20 is pressed and the wrinkling operation is performed in an unstable pressed state, The outer peripheral surface 20b and the inner wall 11a of the outer tube are melted and welded to each other. Then, a predetermined connection strength between the tube 20 and the resin molded product 10B can be obtained.

このことは、高い圧力で押し固めた可撓性チューブは、既に固いチューブと同等になっていると考えれば、工具ホーン30を超音波振動させると、外管内壁11aとチューブ20の外周面20bが溶けて互いに入り込んだ形で溶着することが理解できる。
図19、20の従来例では、超音波振動で溶融、固化させた離脱防止部15aをチューブ20の外周面に食い込ませた形で絞め付け、抜けないようにしていたが、実施形態1では、チューブ20を挿入用空間13に入れ、挿入用空間13内にチューブを加圧した状態で超音波振動を加え、外管内壁11aとチューブ外周面20bが溶けて入り込んだ形で溶着している。このことにより、本発明は、段差のないチューブと樹脂成形品との接続について、外管内壁11aとチューブ外周面20bが互いに溶けて入り込んだ形で溶着して大きい接続強度を得ている。
This means that if the flexible tube pressed with a high pressure is already equivalent to a rigid tube, when the tool horn 30 is ultrasonically vibrated, the outer tube inner wall 11a and the outer peripheral surface 20b of the tube 20 are oscillated. It can be understood that the two are melted and welded together.
In the conventional example shown in FIGS. 19 and 20, the separation prevention portion 15a melted and solidified by ultrasonic vibration is squeezed in a form that bites into the outer peripheral surface of the tube 20 to prevent the separation, but in the first embodiment, The tube 20 is placed in the insertion space 13, ultrasonic vibration is applied to the insertion space 13 while the tube is pressurized, and the outer tube inner wall 11a and the tube outer peripheral surface 20b are melted and welded together. As a result, according to the present invention, the outer tube inner wall 11a and the tube outer peripheral surface 20b are fused and welded to each other in connection with the stepless tube and the resin molded product to obtain a large connection strength.

図5に、実施形態1の溶着する作業手順をフローチャートで示した。まず、ベース台80に軸継手10Bを取り付ける(ステップS1)。次に、チューブ20を、挿入用空間13に入れる(ステップS2)。チューブ20を軸方向に押し込み、チューブ20の圧力で外管11を膨らませる(ステップS3)。可撓性チューブの先端と外管を膨張させた状態から、工具ホーン30とアンビル40で膨張した外管外壁11bを元の形に押し戻す(ステップS4)。工具ホーン30を超音波振動させ、外管内壁11aとチューブ20の外周面を溶着する(ステップS5)。工具ホーン30とアンビル40、を外管外壁11bから離す(ステップS6)。 FIG. 5 is a flowchart showing the welding procedure of the first embodiment. First, the shaft coupling 10B is attached to the base 80 (step S1). Next, the tube 20 is put into the insertion space 13 (step S2). The tube 20 is pushed in the axial direction, and the outer tube 11 is inflated by the pressure of the tube 20 (step S3). From the expanded state of the tip of the flexible tube and the outer tube, the outer wall 11b of the outer tube expanded by the tool horn 30 and the anvil 40 is pushed back to its original shape (step S4). The tool horn 30 is ultrasonically vibrated to weld the outer tube inner wall 11a and the outer peripheral surface of the tube 20 (step S5). The tool horn 30 and the anvil 40 are separated from the outer tube outer wall 11b (step S6).

そして、全周が溶着するまで軸継手10Bを、工具ホーン30とアンビル40に対して相対的に、所定角度回転させ(ステップS7)、ステップS4からステップS7の手順を繰り返す。全周が溶着したら、ステップS6の後にチューブ押し込み部材50、51を元の位置に戻す(ステップS8)。軸継手10Bをベース台80から抜く(ステップS9)。このことにより、軸継手10Bとチューブ20の接続作業が完了する(ステップS10)。 Then, the shaft coupling 10B is rotated by a predetermined angle relative to the tool horn 30 and the anvil 40 until the entire circumference is welded (step S7), and the procedure from step S4 to step S7 is repeated. When the entire circumference is welded, the tube pushing members 50 and 51 are returned to their original positions after step S6 (step S8). The shaft coupling 10B is pulled out from the base 80 (step S9). This completes the work of connecting the shaft coupling 10B and the tube 20 (step S10).

以上、本発明が(1)外管11と内管12の間に挿入用空間13を形成した軸継手10Bなどの樹脂成形品に、挿入用空間13内にチューブ20を圧接した状態で直接一体に接続することを説明した。
特に(2)工具ホーンの中心の孔にチューブを通す作業と外す作業を不要としている。(3)外管内壁11aとチューブ20の外周面を溶着して離脱防止効果を高める。という従来技術では未解決であった課題を解決する新たな溶着方法および装置を実現していることを説明した。
As described above, the present invention is (1) directly integrated with a resin molded article such as a shaft coupling 10B in which the insertion space 13 is formed between the outer pipe 11 and the inner pipe 12 in a state in which the tube 20 is pressed into the insertion space 13. Connected to.
In particular, (2) the work of inserting and removing the tube in the center hole of the tool horn is unnecessary. (3) The outer tube inner wall 11a and the outer peripheral surface of the tube 20 are welded together to enhance the effect of preventing separation. It has been described that a new welding method and apparatus for solving the problems that have not been solved by the conventional technology are realized.

なお、本発明は、「工具ホーンにチューブを通さないで、点滴筒の外管内壁と可撓性チューブを、シワができるほど加圧した状態で溶着する発明」ということができる。
以上、実施形態1では、外管11と内管12の間に挿入用空間13を形成した樹脂成形品10を支持するベース台80と、可撓性チューブ20を把持して、ベース台80に支持した樹脂成形品10の挿入用空間13に当該可撓性チューブ20の先端を押し込み、当該可撓性チューブ20の先端と外管11を半径方向に膨張させる押し込み手段50、51と、樹脂成形品10の外管外壁11bの一面側に当接する工具ホーン30と、樹脂成形品10の外管外壁11bの工具ホーン30と反対の他面側に当接するアンビル40と、樹脂成形品10の外管外壁11bを工具ホーン30とアンビル40で押圧して、半径方向に膨張した外管11と可撓性チューブ20を押し戻す押し戻し手段(バネ33、43とエアシリンダー32、44)、工具ホーン30を超音波振動させる超音波振動手段32と、樹脂成形品10を可撓性チューブ20先端の軸芯の周りに所定角度回転させる回転手段(支持キャップ)71と、押し込み手段50、51と、押し戻し手段(バネ33、43とエアシリンダー32、44)と、超音波振動手段32と、回転手段71と、を制御する図示しない制御手段と、を用いて当該制御手段に、
(1)押し込み手段50、51により、ベース台80に支持した樹脂成形品10の挿入用空間13に可撓性チューブ20の先端を押し込み、当該可撓性チューブ20の先端と外管11を半径方向に膨張させ、
(2)可撓性チューブの先端と外管を膨張させた状態から、押し戻し手段により、樹脂成形品10の外管外壁11bを工具ホーン30とアンビル40で押圧して、半径方向に膨張した外管11と可撓性チューブ20を押し戻し、
(3)超音波振動手段32により、工具ホーン30を超音波振動させ、樹脂成形品10の外管内壁11aと可撓性チューブ20の外周面を加圧した状態で溶着し、
(4)前記押し戻し手段により、工具ホーン30とアンビル4を樹脂成形品10から離し、
(5)回転手段71により、前記工具ホーンと前記アンビルに対して樹脂成形品10を可撓性チューブ20先端の軸芯の周りに所定角度、相対的に回転させ、
(6)上記(2)から(5)を所定回数繰り返し、
(7)押し戻し手段により、工具ホーン30とアンビル4を樹脂成形品10から離すとともに、押し込み手段50、51を樹脂成形品10から離し、ベース台80から樹脂成形品10を取り出せるようにする、
工程を実行することにより、可撓性チューブ20を、樹脂成形品10に設けた外管11と内管12の間の挿入用空間13に一体接続するようにした、可撓性チューブ20と樹脂成形品10の超音波振動溶着方法と装置について説明した。
The present invention can be said to be an "invention in which the outer tube inner wall of the drip tube and the flexible tube are welded to each other in a state of being pressed so as to cause wrinkles without passing the tube through the tool horn."
As described above, in the first embodiment, the base table 80 that supports the resin molded product 10 in which the insertion space 13 is formed between the outer tube 11 and the inner tube 12 and the flexible tube 20 are gripped to form the base table 80. Pushing means 50, 51 for pushing the tip of the flexible tube 20 into the space 13 for insertion of the supported resin molded article 10 to radially expand the tip of the flexible tube 20 and the outer tube 11, and resin molding. Of the outer pipe outer wall 11b of the product 10, the tool horn 30 abutting on one side of the outer pipe outer wall 11b, the anvil 40 contacting the other side of the outer pipe outer wall 11b of the resin molded product 10 opposite to the tool horn 30, The outer wall 11b is pressed by the tool horn 30 and the anvil 40 to push back the radially expanded outer tube 11 and the flexible tube 20 (springs 33 and 43 and air cylinders 32 and 44), and the tool horn 30. Ultrasonic vibrating means 32 for ultrasonically vibrating, rotating means (supporting cap) 71 for rotating the resin molded product 10 around the axis of the tip of the flexible tube 20 by a predetermined angle, pushing means 50, 51, and pushing back means. (Springs 33 and 43 and air cylinders 32 and 44), ultrasonic vibrating means 32, and rotating means 71 are not shown.
(1) By pushing means 50 and 51, the tip of the flexible tube 20 is pushed into the insertion space 13 of the resin molded product 10 supported by the base 80, and the tip of the flexible tube 20 and the outer tube 11 are radiused. Inflates in the direction
(2) From the expanded state of the tip of the flexible tube and the outer tube, the outer tube outer wall 11b of the resin molded product 10 is pressed by the tool horn 30 and the anvil 40 by the push-back means to expand in the radial direction. Push back the tube 11 and flexible tube 20,
(3) The tool horn 30 is ultrasonically vibrated by the ultrasonic vibrating means 32, and the outer tube inner wall 11a of the resin molded product 10 and the outer peripheral surface of the flexible tube 20 are welded under pressure.
(4) The push-back means separates the tool horn 30 and the anvil 4 from the resin molded product 10,
(5) The rotating means 71 causes the resin molded product 10 to rotate relative to the tool horn and the anvil about the axial center of the distal end of the flexible tube 20 by a predetermined angle.
(6) The above (2) to (5) are repeated a predetermined number of times,
(7) By the pushing back means, the tool horn 30 and the anvil 4 are separated from the resin molded product 10, and the pushing means 50, 51 are separated from the resin molded product 10 so that the resin molded product 10 can be taken out from the base 80.
By performing the process, the flexible tube 20 is integrally connected to the insertion space 13 between the outer tube 11 and the inner tube 12 provided in the resin molded product 10, and the flexible tube 20 and the resin are formed. The ultrasonic vibration welding method and apparatus for the molded product 10 have been described.

(実施形態1の第1変形例)
実施形態1を説明した上記図4の工程(C)では、外管11が「お椀状」に膨張、変形している様子を示したが、外管11の肉厚と軸方向の長さによっては、外管11が挿入用空間底部から「逆円錐状」に広がるように膨張、変形する場合もある。
そのような場合を、実施形態1の第1変形例として、図6に工程(A)から(F)として図示した。図6の工程(A)の状態から、図6の工程(B)のようにチューブ20を挿入用空間13に入れ、図6の工程(C)のようにチューブ20を挿入用空間底部(外管底壁11c)に向けて押し込むと、外管11が挿入用空間底部から逆円錐状に広がるように変形する。しかし、図6の工程(D)のように、外管外壁11bから工具ホーン30とアンビル40が外管外壁11bに当たり、外管11の挿入用空間底部から逆円錐状に広がった変形を押し戻す。図6の工程(D)の状態は、ほぼ図4の工程(D)の状態と同じといえる。その後、図6の工程(E)のように、工具ホーン30を超音波振動させれば、挿入用空間13にチューブ20を圧接した状態で、外管内壁11aとチューブ20の外周面は溶着する。
(First Modification of First Embodiment)
In the step (C) of FIG. 4 for explaining the first embodiment, the outer tube 11 is shown to be expanded and deformed into a “bowl shape”. However, depending on the thickness of the outer tube 11 and the axial length thereof, May expand and deform so that the outer tube 11 spreads from the bottom of the insertion space in an "inverted conical shape".
Such a case is illustrated as steps (A) to (F) in FIG. 6 as a first modification of the first embodiment. From the state of the step (A) of FIG. 6, the tube 20 is put into the insertion space 13 as in the step (B) of FIG. 6, and the tube 20 is inserted into the insertion space bottom (outside) as in the step (C) of FIG. When pushed toward the tube bottom wall 11c), the outer tube 11 is deformed so as to spread from the insertion space bottom to an inverted conical shape. However, as in step (D) of FIG. 6, the tool horn 30 and the anvil 40 hit the outer pipe outer wall 11b against the outer pipe outer wall 11b, and push back the deformation that spreads in an inverted conical shape from the insertion space bottom of the outer pipe 11. It can be said that the state of the step (D) of FIG. 6 is almost the same as the state of the step (D) of FIG. Then, as in step (E) of FIG. 6, when the tool horn 30 is ultrasonically vibrated, the outer tube inner wall 11a and the outer peripheral surface of the tube 20 are welded while the tube 20 is pressed against the insertion space 13. ..

なお、図示していないが、図6の工程(E)の次に、工具ホーン30とアンビル40を図6の工程(C)のように外管外壁11bから離し、チューブ20と外管内壁11aの全周が溶着するまで、工具ホーン30とアンビル40に対して相対的に、所定角度回転させ、再び図6の工程(D)の押し戻し動作と、図6の工程(E)の超音波振動溶着動作をする。そして、外管11とチューブ20は直接一体に接続する。このことは、実施形態1と同じである。
(実施形態1の第2変形例)
実施形態1の第2変形例では、図7の工程(A)、(B)のように、工具ホーン30とアンビル40の押圧面を円錐面として、外管11Bの外径寸法が、外管底壁11cから軸方向に離れるにつれてテーパー状に細くなるようにしている。
Although not shown, after the step (E) of FIG. 6, the tool horn 30 and the anvil 40 are separated from the outer tube outer wall 11b as in the step (C) of FIG. 6, and the tube 20 and the outer tube inner wall 11a are separated. Until the entire circumference is welded, the tool horn 30 and the anvil 40 are rotated by a predetermined angle relative to each other, and the pushing-back operation of the step (D) of FIG. 6 and the ultrasonic vibration of the step (E) of FIG. 6 are performed again. Performs welding operation. Then, the outer tube 11 and the tube 20 are directly connected integrally. This is the same as the first embodiment.
(Second Modification of First Embodiment)
In the second modified example of the first embodiment, as in steps (A) and (B) of FIG. 7, the pressing surface of the tool horn 30 and the anvil 40 is a conical surface, and the outer diameter dimension of the outer tube 11B is the outer tube. The distance from the bottom wall 11c in the axial direction is tapered.

そのため、実施形態1の第2変形例で外管11Bに超音波振動を加えると、挿入用空間13にチューブ20を圧接した状態で、外管内壁11aとチューブ20が溶着するとともに、外管底壁11cから軸方向に離れるにつれて外径寸法とともに内径寸法が小さくなるように外管11Bがチューブ20の外周面20bを絞っている。そして、チューブ20を外管内壁11aで強固に把持されて、樹脂成形品の挿入用空間13から抜けないようにしている。
(実施形態1の第3変形例)
実施形態1の第3変形例では、図8の工程(A)、(B)のように、工具ホーン30の押圧面を、断面で見て内側に凸の曲面として、樹脂成形品のチューブ収納用の外管11Cの中央部の内径を小さく絞っている。
Therefore, when ultrasonic vibration is applied to the outer tube 11B in the second modified example of the first embodiment, the outer tube inner wall 11a and the tube 20 are welded while the tube 20 is pressed against the insertion space 13, and the outer tube bottom is also welded. The outer tube 11B squeezes the outer peripheral surface 20b of the tube 20 so that the inner diameter as well as the outer diameter becomes smaller with increasing distance from the wall 11c in the axial direction. The tube 20 is firmly gripped by the inner wall 11a of the outer tube so as not to come off from the space 13 for inserting the resin molded product.
(Third Modification of First Embodiment)
In the third modified example of the first embodiment, as in steps (A) and (B) of FIG. 8, the pressing surface of the tool horn 30 is a curved surface that is convex inward when viewed in cross section, and a resin-molded product is housed in a tube. The inner diameter of the central portion of the outer tube 11C for use is narrowed down.

そのため、実施形態1の第3変形例で外管11Cに超音波振動を加えると、挿入用空間13にチューブ20を圧接した状態で、外管内壁11aとチューブ20が溶着するとともに、チューブ20は絞られた外管11Cの中央部で強固に把持されて、抜けないようにしている。
(実施形態1の第4の変形例)
実施形態1の第4の変形例では、軟質のチューブ本体21bの外周にチューブ本体21bより硬い外皮21cを被せた形の、硬度的に二重構造をしたチューブ21を用いた場合を説明する。
Therefore, when ultrasonic vibration is applied to the outer tube 11C in the third modified example of the first embodiment, the outer tube inner wall 11a and the tube 20 are welded while the tube 20 is pressed against the insertion space 13, and the tube 20 is The squeezed outer tube 11C is firmly gripped by the central part of the outer tube 11C so as not to come off.
(Fourth Modification of First Embodiment)
In the fourth modified example of the first embodiment, a case will be described in which a tube 21 having a double structure in terms of hardness is used in which the outer circumference of a soft tube body 21b is covered with a skin 21c that is harder than the tube body 21b.

実施形態1の第4の変形例では、チューブ21を樹脂成形品のチューブ収納用の挿入用空間13に入れ、挿入用空間13にチューブ21を軸方向に加圧して、チューブ21の外周面、特に外皮21cにシワを発生させた状態で、外管11に工具ホーン30を押圧して超音波振動溶着する。
図9の工程(A)では、チューブ21の構造を、軟質のチューブ本体21bの外周にチューブ本体より硬い外皮21cを被せた形にしている。図9の工程(B)のように、チューブ21をチューブ収納用の挿入用空間13にいれて、チューブ21を圧縮していくと、軟質のチューブ本体21bは圧縮され、硬い外皮21cにはシワが発生する。図9の工程(C)のように、チューブ21も外管11も軸方向に圧縮され、同時に半径方向に膨張する。ここで、図9の工程(D)のように、工具ホーン30とアンビル40でチューブ21と外管11の膨張した部分を圧縮する。このチューブ21と外管11の膨張した分を再圧縮するシワ寄せ動作をした不安定な加圧状態のまま、外管11に工具ホーン30の超音波振動を与えると、外管内壁11aとチューブ20の外周面が溶けて入り込んだ形で溶着することができる。
In the fourth modified example of the first embodiment, the tube 21 is put into the insertion space 13 for storing the resin molded product, and the tube 21 is axially pressed into the insertion space 13 so that the outer peripheral surface of the tube 21. In particular, with the outer skin 21c having wrinkles, the tool horn 30 is pressed against the outer tube 11 to perform ultrasonic vibration welding.
In step (A) of FIG. 9, the structure of the tube 21 is such that the outer circumference of a soft tube body 21b is covered with an outer skin 21c that is harder than the tube body. As shown in step (B) of FIG. 9, when the tube 21 is put into the insertion space 13 for storing the tube and the tube 21 is compressed, the soft tube body 21b is compressed and the hard outer skin 21c is wrinkled. Occurs. As in the step (C) of FIG. 9, both the tube 21 and the outer tube 11 are compressed in the axial direction and simultaneously expanded in the radial direction. Here, as in step (D) of FIG. 9, the expanded portion of the tube 21 and the outer tube 11 is compressed by the tool horn 30 and the anvil 40. When ultrasonic vibration of the tool horn 30 is applied to the outer tube 11 in the unstable pressurizing state in which a wrinkling operation is performed to re-compress the expanded amount of the tube 21 and the outer tube 11, the outer tube inner wall 11a and the tube are The outer peripheral surface of 20 can be melted and welded.

実施形態1の第4の変形例では、軟質のチューブ本体21bの外周にチューブ本体より硬い外皮21cを被せたチューブ21を用いて超音波振動溶着することで、微細なシワや段差をつくり、チューブと樹脂成形品が溶けて互いに入り込んだ形でチューブ21と樹脂成形品が溶着し、所定の接続強度が得られる。このように、実施形態1では、外管内壁11aと段差のないチューブ21の外周面を溶着している。 In the fourth modification of the first embodiment, ultrasonic vibration welding is performed using the tube 21 in which the outer circumference of the soft tube body 21b is covered with the outer cover 21c that is harder than the tube body, thereby forming fine wrinkles and steps, and The resin molded product is melted and the resin molded product melts into each other, and the tube 21 and the resin molded product are welded to each other, so that a predetermined connection strength is obtained. As described above, in the first embodiment, the outer peripheral surface of the tube 21 having no step is welded to the inner wall 11a of the outer tube.

なお、実施形態1の第2変形例から第4変形例の説明では、ベース台80の図示を省略して説明した。また、押し込み部材50、51は、内面にギザギザのある円筒部材として図示したが、チューブを把持して軸方向に押し込むことができればよく、場合によっては人間が手でチューブを把持して軸方向に押し込むようにしても良い。
以上、実施形態1で説明したように、チューブ20、21を挿入用空間13の軸方向に加圧しチューブ20、21の先端部分を軸方向に圧縮し半径方向に膨張させる。そして、可撓性チューブの先端と外管を膨張させた状態から、外管外壁11bを工具ホーン30とアンビル40で押圧し、半径方向に膨張した部分に所定の大きさの加圧力を加えて圧縮すると、チューブ20、21の外周に環状のシワが生じる。この環状のシワが生じた状態で、工具ホーン30を超音波振動させ、外管内壁11aとチューブ20、21の表面を超音波振動溶着すると、チューブ20、21のシワに外管内壁11aが溶け込み、樹脂成形品の軸方向にチューブが抜けなくなる。
In the description of the second modification to the fourth modification of the first embodiment, the illustration of the base 80 is omitted. Further, the pushing members 50 and 51 are illustrated as a cylindrical member having a knurled inner surface, but it is sufficient that the pushing members 50 and 51 can hold the tube and push it in the axial direction. You may push it in.
As described above, as described in the first embodiment, the tubes 20 and 21 are pressed in the axial direction of the insertion space 13 to compress the tip portions of the tubes 20 and 21 in the axial direction and expand in the radial direction. Then, the outer tube outer wall 11b is pressed by the tool horn 30 and the anvil 40 from the expanded state of the tip of the flexible tube and the outer tube, and a predetermined amount of pressure is applied to the radially expanded portion. When compressed, annular wrinkles are formed on the outer circumference of the tubes 20 and 21. When the tool horn 30 is ultrasonically vibrated and the surfaces of the outer tube inner wall 11a and the tubes 20 and 21 are ultrasonically vibrated and welded in the state where the annular wrinkles are generated, the outer tube inner wall 11a is melted into the wrinkles of the tubes 20 and 21. , The tube does not come off in the axial direction of the resin molded product.

あるいはシワがよっていなくても表面に微細なシワが寄ろうとしている不安定な状態になっている。このチューブの外周面を加圧してシワ寄せ動作をした不安定な加圧状態としたまま、工具ホーン30に超音波振動させると、外管内壁11aとチューブ20、21の外周面が溶けて互いに入り込んだ形で溶着する。そして、チューブと樹脂成形品に所定の接続強度が得られる。 Or even if there are no wrinkles, the surface is in an unstable state where fine wrinkles are about to come. When the tool horn 30 is ultrasonically vibrated while pressurizing the outer peripheral surface of the tube and performing the wrinkling operation, the inner wall 11a of the outer tube and the outer peripheral surfaces of the tubes 20 and 21 are melted to each other. Welds in a clogged form. Then, a predetermined connection strength can be obtained between the tube and the resin molded product.

また、図7、8で説明したように、工具ホーン30とアンビル40の押圧面の形状を円錐状の断面形状にしたり、内側に凸の断面形状にしたりして、外管の外壁11B、11Cをより圧縮した形に成形すると、圧縮した分だけ樹脂成形品の軸方向にチューブ20、21の離脱防止力が増大する。
(実施形態2)
Further, as described with reference to FIGS. 7 and 8, the pressing surfaces of the tool horn 30 and the anvil 40 have a conical sectional shape or an inwardly convex sectional shape so that the outer walls 11B and 11C of the outer pipe are formed. When is molded into a more compressed form, the force for preventing the tubes 20 and 21 from separating in the axial direction of the resin molded product increases by the amount of compression.
(Embodiment 2)

実施形態2では、外周面に段差のあるチューブ、すなわち外周の軸方向に波を打つ段差があるチューブ22と、外管11と、外管11内に同軸方向に配置された内管12が備えられ、外管11と内管12間に挿入用空間13が形成された樹脂成形品(軸継手10B)を溶着するときの実施形態を説明する。
実施形態2では、図23で示したような、あらかじめ外周面に段差のあるチューブ、すなわち外周の軸方向に波を打つ段差のあるチューブ22を作っておいて、図10の工程(A)に示すように、ベース台80に支持した軸継手10Bの内管12にチューブ22を被せ、図10の工程(B)に示すようにチューブ押し込み部材50、51を用いて、チューブ22の外周を掴んで、チューブ22の先端を挿入用空間13に入れ、軸方向の下方に押し込んでいくと、チューブ22の先端は挿入用空間底壁(外管底壁11c)に当たる。その後は、実施形態1と同じ方法、手順で超音波振動溶着をする。
In the second embodiment, a tube having a step on the outer peripheral surface, that is, a tube 22 having a step that corrugates in the axial direction of the outer circumference, an outer tube 11, and an inner tube 12 arranged coaxially in the outer tube 11 are provided. An embodiment will be described in which a resin molded product (shaft coupling 10B) having an insertion space 13 formed between the outer pipe 11 and the inner pipe 12 is welded.
In the second embodiment, as shown in FIG. 23, a tube having a step on the outer peripheral surface, that is, a tube 22 having a step undulating in the axial direction of the outer circumference is made in advance, and the step (A) of FIG. 10 is performed. As shown, the tube 22 is covered on the inner tube 12 of the shaft coupling 10B supported by the base 80, and the outer circumference of the tube 22 is grasped by using the tube pushing members 50 and 51 as shown in the step (B) of FIG. Then, when the tip of the tube 22 is put into the insertion space 13 and pushed downward in the axial direction, the tip of the tube 22 hits the insertion space bottom wall (outer tube bottom wall 11c). After that, ultrasonic vibration welding is performed by the same method and procedure as in the first embodiment.

すなわち、図10の工程(C)に示すように、チューブ22をチューブ押し込み部材50、51で掴んだまま、チューブ22の先端を挿入用空間13に入れ、軸方向に加圧すると、チューブ22は半径方向に膨張し、外管11も半径方向に膨張する。チューブ22の半径方向の膨張は、チューブの先端部分22aが外管底壁11cに当たって、挿入用空間13に充満して生じる。そして、外管底壁11cより上方に向けて徐々に半径寸法が拡大する。図10の工程(C)では、外管11がお椀状に膨張している様子を示している。 That is, as shown in step (C) of FIG. 10, when the tip of the tube 22 is put into the insertion space 13 while the tube 22 is held by the tube pushing members 50 and 51, and the tube 22 is axially pressurized, It expands in the radial direction, and the outer tube 11 also expands in the radial direction. The expansion of the tube 22 in the radial direction occurs when the distal end portion 22a of the tube hits the outer tube bottom wall 11c and fills the insertion space 13. Then, the radial dimension gradually increases upward from the outer tube bottom wall 11c. In the step (C) of FIG. 10, the outer tube 11 is inflated like a bowl.

外管11が半径方向に膨張した状態で、図10の工程(D)に示すように、外管外壁11bを工具ホーン30とアンビル40で挟んで押圧する。そして、工具ホーン30とアンビル40で外管11の半径方向の膨張を押さえ込む。このことにより、外管外壁11bは膨らんだ曲面から、膨張していた部分が押さえ込まれた元の円筒面に戻る。このとき、チューブ22も外管11によって半径方向に圧縮される。 With the outer tube 11 expanded in the radial direction, the outer tube outer wall 11b is sandwiched between the tool horn 30 and the anvil 40 and pressed as shown in step (D) of FIG. Then, the tool horn 30 and the anvil 40 suppress the expansion of the outer tube 11 in the radial direction. As a result, the outer tube outer wall 11b returns from the bulging curved surface to the original cylindrical surface where the expanded portion is pressed. At this time, the tube 22 is also radially compressed by the outer tube 11.

お椀状に膨張した表面を円筒状の表面にすることは、外管外壁11bの表面積を小さくすることであり、表面の各微小部分が均等に縮まない所にはシワが発生する。この外管外壁11bの膨らんだ表面を元の円筒面に戻す動作は、外管内壁11aとチューブ22の外周面22bにシワを寄せる、シワ寄せ動作をさせていることになる。
外管11の肉厚と軸方向の長さにより、外管11は「お椀状」、「逆円錐状」の他に、例えば「太鼓状」に膨張することも考えられるが、その場合でも、図10の工程(D)に示すように、外管外壁11bを工具ホーン30とアンビル40で挟んで押圧する。そして、工具ホーン30とアンビル40で外管11の半径方向の膨張を押さえ込む。このことにより、外管外壁11bは膨らんだ曲面から、膨張していた部分が押さえ込まれた元の円筒面に戻る。このとき、チューブ22も外管11によって半径方向に圧縮されることは同じである。
Making the bowl-shaped expanded surface a cylindrical surface reduces the surface area of the outer tube outer wall 11b, and wrinkles occur where the minute portions of the surface do not shrink uniformly. The operation of returning the bulged surface of the outer pipe outer wall 11b to the original cylindrical surface is a wrinkling operation of wrinkling the outer pipe inner wall 11a and the outer peripheral surface 22b of the tube 22.
Depending on the wall thickness and the axial length of the outer tube 11, the outer tube 11 may expand into, for example, a “taiko” shape in addition to the “bowl shape” and the “reverse cone shape”, but even in that case, As shown in step (D) of FIG. 10, the outer tube outer wall 11b is sandwiched between the tool horn 30 and the anvil 40 and pressed. Then, the tool horn 30 and the anvil 40 suppress the expansion of the outer tube 11 in the radial direction. As a result, the outer tube outer wall 11b returns from the bulging curved surface to the original cylindrical surface where the expanded portion is pressed. At this time, the tube 22 is also compressed by the outer tube 11 in the radial direction.

図10の工程(A)では、チューブ22の外周面に外力がかかっていない自由状態であるが、図10の工程(D)では、チューブ22の外周面22bを一度膨らませた後、強制的に圧縮するシワ寄せ動作をしたので、挿入用空間13の中にあるチューブ22の外周面22bは、図10の工程(A)に示す状態より外周の軸方向に波を打つ段差が大きくなり、表面に微細なシワがよった、あるいはシワがよっていなくても表面に微細なシワが寄ろうとしている不安定な状態になっている。 In the step (A) of FIG. 10, the outer peripheral surface of the tube 22 is in a free state in which an external force is not applied, but in the step (D) of FIG. 10, the outer peripheral surface 22b of the tube 22 is once inflated and then forced. Since the wrinkling action of compressing is performed, the outer peripheral surface 22b of the tube 22 in the insertion space 13 has a larger step difference in the axial direction of the outer periphery than the state shown in the step (A) of FIG. It is in an unstable state where there are fine wrinkles on the surface, or even if there are no wrinkles, fine wrinkles tend to come to the surface.

このチューブ22の外周面を加圧してシワ寄せ動作をした不安定な加圧状態としたまま、図10の工程(E)に示すように、工具ホーン30を超音波振動させると、外管内壁11aとチューブ22の外周面が溶けて互いに入り込んだ形で溶着する。そして、チューブ22と軸継手10Bの所定の接続強度が得られる。
なお、図示していないが、図10の工程(E)の次に、工具ホーン30とアンビル40を図10の工程(C)のように外管外壁11bから離し、チューブ22と外管内壁11aの全周が溶着するまで、工具ホーン30とアンビル40に対して相対的に、所定角度回転させ、再び図10の工程(D)の押し戻し動作と、図10の工程(E)の超音波振動溶着動作をする。そして、外管11とチューブ22は直接一体に接続する。このことは、実施形態1と同じである。
When the tool horn 30 is ultrasonically vibrated as shown in step (E) of FIG. 10 while the outer peripheral surface of the tube 22 is pressed to perform the wrinkling operation, the inner wall of the outer tube is The outer peripheral surfaces of the tube 11a and the tube 22 are melted and welded to each other. Then, a predetermined connection strength between the tube 22 and the shaft coupling 10B is obtained.
Although not shown, after the step (E) of FIG. 10, the tool horn 30 and the anvil 40 are separated from the outer tube outer wall 11b as in the step (C) of FIG. 10, and the tube 22 and the outer tube inner wall 11a are separated. Until the entire circumference is welded, the tool horn 30 and the anvil 40 are rotated by a predetermined angle relative to each other, and the pushing back operation of the step (D) of FIG. 10 is performed again and the ultrasonic vibration of the step (E) of FIG. Performs welding operation. Then, the outer tube 11 and the tube 22 are directly connected integrally. This is the same as the first embodiment.

このように、実施形態2では、あらかじめ外周面に段差のあるチューブ22を挿入用空間13に入れて加圧した状態で、実施形態1と同じく、シワ寄せ動作をすることにより、加圧も、シワ寄せ動作もしない場合に比べて接合強度を著しく高めることができる。
本発明の実施形態2では、上記説明したとおり、従来例と違った方法で、外周面に段差のあるチューブと樹脂成形品との接続について、外管内壁11aとチューブ22の外周面22bが互いに溶けて入り込んだ形で溶着して大きい接続強度を得ている。
(実施形態2の第1変形例)
実施形態2の第1変形例では、あらかじめチューブ22Aの先端部分の一定長さ部分に外溝Wと内溝Wを作っておいて、既にできた溝Wo、のあるチューブ22Aの先端部分を挿入用空間13に入れ、チューブ22Aの先端部分が圧縮され、溝Wの山頂部分が外管内壁11aを押圧するまで入れた加圧状態で、外管外壁11bに工具ホーン30を押圧して超音波振動溶着するようにしている。
As described above, in the second embodiment, the tube 22 having a step on the outer peripheral surface is put in the insertion space 13 in advance and pressurized, and the wrinkling operation is performed as in the first embodiment. The joining strength can be remarkably increased as compared with the case where no wrinkling operation is performed.
In the second embodiment of the present invention, as described above, the outer tube inner wall 11a and the outer peripheral surface 22b of the tube 22 are connected to each other in connection with the tube having a step on the outer peripheral surface and the resin molded product by a method different from the conventional example. Welded in a melted and intruded form to obtain high connection strength.
(First Modification of Second Embodiment)
In the first modified example of the second embodiment, the outer groove W o and the inner groove W i are previously formed in a fixed length portion of the tip end portion of the tube 22A, and the tube 22A having already formed grooves W o, W i is formed. put the tip portion of the inserting space 13, the distal end portion of the tube 22A is compressed, in a pressurized state to put to the summit portion of the groove W o presses the outer tube wall 11a, the tool horn 30 to the outer tube outer wall 11b Is pressed for ultrasonic vibration welding.

あらかじめチューブ22Aの先端部分に溝を作っておく方法としては、チューブ22Aの外周面、内周面に機械加工で溝を掘る方法、チューブ22Aの外周面、内周面に高温に熱した溝付き棒をいれて、高温にしたチューブ22Aに溝を転造する方法など任意の方法を採用することができる。
図11の工程(A)に示すように、あらかじめの先端部分に溝Wo、を作っておいたチューブ22Aを挿入用空間13に入れ、図11の工程(B)、工程(C)のように軸方向に加圧すると、チューブ22Aを軸方向に圧縮し、半径方向に膨張させる。溝Wの山頂部分が外管内壁11aを押圧し、溝Wの山頂部分が内管外壁12bを押圧した状態で、図12の工程(D)に示すように工具ホーン30とアンビル40で押圧して半径方向の膨張した部分を再び圧縮する。そして、図12の工程(E)のように、工具ホーン30を超音波振動させると、溝Wとその他のチューブ22Aの表面にできる微細なシワに樹脂成形品の外管内壁11aが溶け込んだ形にチューブ22Aを溶着する。そして、溝Wとその近傍の表面にできる微細なシワに樹脂成形品10Bの内管外壁12bが溶け込んだ形にチューブ22Aを溶着することができる。
As a method of forming a groove on the tip portion of the tube 22A in advance, a method of digging a groove on the outer peripheral surface and the inner peripheral surface of the tube 22A by machining, an outer peripheral surface and an inner peripheral surface of the tube 22A with a groove heated to high temperature An arbitrary method such as a method of inserting a rod and rolling a groove in the tube 22A heated to a high temperature can be adopted.
As shown in the step (A) of FIG. 11, the tube 22A having grooves W o and W i formed in advance at the tip portion is put into the insertion space 13, and the steps (B) and (C) of FIG. When the axial pressure is applied as described above, the tube 22A is compressed in the axial direction and expanded in the radial direction. With the crest portion of the groove W o pressing the outer pipe inner wall 11a and the crest portion of the groove W i pressing the inner pipe outer wall 12b, the tool horn 30 and the anvil 40 are used as shown in step (D) of FIG. Press to re-compress the radially expanded portion. Then, when the tool horn 30 is ultrasonically vibrated as in the step (E) of FIG. 12, the outer pipe inner wall 11a of the resin molded product is melted into the fine wrinkles formed on the surface of the groove W o and other tubes 22A. The tube 22A is welded to the shape. Then, the tube 22A can be welded in such a manner that the inner pipe outer wall 12b of the resin molded product 10B is melted into the fine wrinkles formed on the groove Wi and the surface in the vicinity thereof.

このように、実施形態2の第1変形例では、あらかじめ先端部分に溝Wo、を作っておいたチューブ22Aを樹脂成形品の外管内壁11aと内管外壁に高い強度で溶着することができる。
図13は、図12の工程(E)における、矢視AL13で示す断面図であり、上側の工具ホーン30と下側のアンビル40で樹脂成型品10Bの外管11とチューブ22Aを挟んで、工具ホーン30を超音波振動させている状態(図中符号Cで示す)を示している。図13を見ればわかる様に、樹脂成型品10Bとチューブ22Aは、工具ホーン30のある上側で互いに超音波振動して溶着する。
As described above, in the first modified example of the second embodiment, the tube 22A having the grooves W o and W i formed in the tip portion in advance is welded to the outer pipe inner wall 11a and the inner pipe outer wall of the resin molded product with high strength. be able to.
FIG. 13 is a cross-sectional view taken along line AL13 in the step (E) of FIG. 12, in which the upper tool horn 30 and the lower anvil 40 sandwich the outer tube 11 and the tube 22A of the resin molded product 10B, The state in which the tool horn 30 is ultrasonically vibrated (indicated by reference numeral C in the figure) is shown. As can be seen from FIG. 13, the resin molded product 10B and the tube 22A are ultrasonically vibrated and welded to each other on the upper side of the tool horn 30.

実際の溶着作業としては、一度、図13に示した状態で超音波振動溶着した後、工具ホーン30とアンビル40を離し、樹脂成型品10Bとチューブ22Aを上下反転して、(軸回りに回動させて)工具ホーン30に対して下側にあった溶着すべき部分を上側にして、工具ホーン30とアンビル40で外管外壁11bを押して、新たに超音波振動溶着作業を行う。必要により、超音波振動溶着した都度、樹脂成型品10Bとチューブ22Aを所望の角度を回転させて、超音波振動溶着作業を行うのは、既に図1から図3を参照して、本発明の超音波振動溶着装置の構造として説明した通りである。図14は、治具80から取り出した樹脂成形品とチューブ22Aを示している。
(実施形態2の第2の変形例)
実施形態2の第2の変形例では、図15のように、チューブ22Bの外周にコイル状のばね材90を巻きつけている。巻き付け円の内径を、チューブ22Bの外径より小さく設定して内径のコイル状のばね材90をチューブ22Bに巻きつけると、チューブ22Bの外周でコイル状のばね材90を巻きつけられた部分が凹む。この様な方法で、あらかじめチューブ22Bの先端部分に溝Wを作っておくことができる。チューブの外径より小さい内径の溝Wに巻回されるコイル状のばね材90は、別部品となるが簡単にチューブの先端部分に溝を付けることができる。コイル状のばね材90をプラスチックのコイルで作れば、外管内壁とチューブを溶着した部分が、外管内壁とプラスチックのコイル90とチューブ22Bの3部材を溶着した部分に置き換えることが出来るので、より一層接合強度の高い溶着方法が得られる。
As the actual welding work, once ultrasonic vibration welding is performed in the state shown in FIG. 13, the tool horn 30 and the anvil 40 are separated, the resin molded product 10B and the tube 22A are turned upside down, and the The outer part of the outer wall 11b of the tool horn 30 and the anvil 40 is pushed by the tool horn 30 and the anvil 40, and the ultrasonic vibration welding work is newly performed. If necessary, the ultrasonic vibration welding work is performed by rotating the resin molded product 10B and the tube 22A by a desired angle each time the ultrasonic vibration welding is performed, referring to FIGS. This is as described as the structure of the ultrasonic vibration welding device. FIG. 14 shows the resin molded product taken out from the jig 80 and the tube 22A.
(Second Modification of Second Embodiment)
In the second modification of the second embodiment, as shown in FIG. 15, a coiled spring material 90 is wound around the outer circumference of the tube 22B. When the inner diameter of the winding circle is set smaller than the outer diameter of the tube 22B and the coiled spring material 90 having the inner diameter is wound around the tube 22B, the portion around the tube 22B around which the coiled spring material 90 is wound is Dent. By such a method, the groove W o can be formed in the tip portion of the tube 22B in advance. The coil-shaped spring material 90 wound around the groove Wo having an inner diameter smaller than the outer diameter of the tube is a separate component, but the groove can be easily formed in the tip portion of the tube. If the coil-shaped spring material 90 is made of a plastic coil, the portion where the outer pipe inner wall and the tube are welded can be replaced with the portion where the outer pipe inner wall, the plastic coil 90, and the three members of the tube 22B are welded. A welding method with even higher bonding strength can be obtained.

なお、実施形態2の第1変形例と第2変形例の説明では、ベース台80の図示を省略して説明した。
(実施形態3)
In the description of the first modified example and the second modified example of the second embodiment, the illustration of the base 80 is omitted.
(Embodiment 3)

実施形態3では、外管11の外管内壁11aに予め半径方向に段差(螺旋溝)17を設けることによって、外周面が平滑なチューブ20と樹脂成形品10Bの接合強度を確保する実施形態を説明する。
実施形態3では、図16の工程(A)に示したように、あらかじめ外管内壁11aに溝17を刻設しておいて、図16の工程(B)に示すように、溝17のついた挿入用空間13にチューブ20を押し込んで、チューブ20の外周面を外管内壁に設けた溝17に入り込ませるようにしている。
In the third embodiment, a step (spiral groove) 17 is provided in the outer tube inner wall 11a of the outer tube 11 in the radial direction in advance to secure the bonding strength between the tube 20 having a smooth outer peripheral surface and the resin molded product 10B. explain.
In the third embodiment, as shown in step (A) of FIG. 16, the groove 17 is preliminarily formed on the inner wall 11a of the outer tube, and as shown in step (B) of FIG. The tube 20 is pushed into the insertion space 13 so that the outer peripheral surface of the tube 20 is inserted into the groove 17 provided on the inner wall of the outer tube.

そして図16の工程(C)に示すように、チューブ20を軸方向に加圧して、外管11の内側表面の溝17にチューブ20の外周面を押圧する。そしてこの状態から工具ホーン30とアンビル40で圧縮し、工具ホーンで超音波振動を加えると、図16の工程(D)のように、溝17にチューブ20と外管内壁が溶けて、互いに入り込んだ形に溶着する。
繰り返しになるが、実施形態3では、あらかじめ外管内壁に溝17を作っておいて、チューブ20を挿入用空間13に入れて加圧し、軸方向に圧縮し、半径方向に膨張させた状態で、工具ホーンとアンビルで押圧して半径方向の膨張を再圧縮し、このような状態で、工具ホーンで超音波振動を加えることにより、溝17に外管内壁を溶け込ませた形でチューブ20と樹脂成形品を溶着する。そして、所要のチューブと樹脂成形品の接続強度を得ている。
Then, as shown in step (C) of FIG. 16, the tube 20 is axially pressed to press the outer peripheral surface of the tube 20 into the groove 17 on the inner surface of the outer tube 11. When the tool horn 30 and the anvil 40 are compressed from this state and ultrasonic vibration is applied by the tool horn, the tube 20 and the inner wall of the outer tube melt into the groove 17 and enter each other as shown in step (D) of FIG. It is welded in the shape of an ellipse.
Again, in the third embodiment, the groove 17 is previously formed in the inner wall of the outer tube, and the tube 20 is put into the insertion space 13 to be pressurized, axially compressed, and radially expanded. , The radial expansion is recompressed by pressing with the tool horn and the anvil, and ultrasonic vibration is applied by the tool horn in such a state to form the tube 20 with the inner wall of the outer tube melted in the groove 17. Weld resin molded products. Then, the required connection strength between the tube and the resin molded product is obtained.

上記実施形態3では、では、樹脂成形品の外管内壁に予め半径方向に溝17を設けた場合を説明したが、溝17の他に、樹脂成形品の外管内壁に予め半径方向に段差、凹凸、その他の形をした溝のいずれかを設けても良い。
なお、以上の各実施形態の説明では、発明を理解しやすくするために、工具ホーンで超音波振動を加えるタイミングは、工具ホーンとアンビルで押圧して半径方向の膨張を再圧縮した状態とした後であるとして説明したが、工具ホーンで超音波振動を加えるタイミングを、工具ホーンとアンビルで押圧して半径方向の膨張を再圧縮する工程を開始するときまたは、その直前、或いは直後としても、同等の接続強度が得られる。
In the third embodiment described above, the case where the groove 17 is provided in advance in the radial direction on the inner wall of the outer pipe of the resin molded product has been described. It is also possible to provide any of grooves having irregularities or other shapes.
In the above description of each embodiment, in order to facilitate understanding of the invention, the timing of applying ultrasonic vibration with the tool horn is a state in which radial expansion is recompressed by pressing with the tool horn and anvil. Although described as later, the timing of applying ultrasonic vibration with the tool horn, when starting the step of recompressing the radial expansion by pressing with the tool horn and anvil, or immediately before or immediately after, Equivalent connection strength is obtained.

実施形態で示したように、本発明は、外管と内管の間に挿入用空間を形成した点滴筒などの樹脂成形品に、前記挿入用空間内にチューブを圧接した状態で直接一体に接続する際に適用することができ、点滴用チューブと継手である点滴用筒の樹脂成形品など医療機器分野のチューブと樹脂成形品の溶着に用いられる他、化学プラント、化学実験用機械器具等の広い技術分野のチューブと樹脂成形品の溶着に適用することができる。 As shown in the embodiment, the present invention directly integrates a resin molded article such as a drip tube having an insertion space formed between an outer tube and an inner tube in a state where the tube is pressed into the insertion space. It can be applied when connecting and is used for welding tubes and resin molded products in the field of medical equipment such as resin molded products for drip tubes and joints for drip tubes that are joints, as well as chemical plants, machinery for chemical experiments, etc. It can be applied to welding of tubes and resin molded products in a wide range of technical fields.

10、10A:樹脂成形品(点滴筒)
10B:樹脂成形品(軸継手)
11:外管
11a:外管内壁
11b:外管外壁
11c:外管底壁(挿入用空間底壁)
12:内管
13:挿入用空間
20、21:外周面に段差のないチューブ(可撓性チューブ)
22、22A:外周面に段差のあるチューブ(可撓性チューブ)
30:工具ホーン
31:移動枠(押し戻し手段)
32:超音波振動手段
33:バネ(押し戻し手段)
34:エアシリンダー(押し戻し手段)
40:アンビル
43:バネ(押し戻し手段)
44:エアシリンダー(押し戻し手段)
50、51:チューブ押し込み部材(手段)
71:支持キャップ(回転手段)
72:位置決めピン(回転手段)
80:ベース台
82:中空円柱部(回転手段)
83a、83b:位置決め穴(回転手段)
10, 10A: Resin molded product (drip tube)
10B: Resin molded product (shaft coupling)
11: Outer tube 11a: Outer tube inner wall 11b: Outer tube outer wall 11c: Outer tube bottom wall (insertion space bottom wall)
12: Inner tube 13: Inserting spaces 20, 21: Tube without steps on the outer peripheral surface (flexible tube)
22, 22A: Tubes with a step on the outer peripheral surface (flexible tubes)
30: Tool horn 31: Moving frame (push back means)
32: Ultrasonic vibration means 33: Spring (push back means)
34: Air cylinder (push back means)
40: anvil 43: spring (push back means)
44: Air cylinder (push back means)
50, 51: Tube pushing member (means)
71: Support cap (rotating means)
72: Positioning pin (rotating means)
80: Base 82: Hollow column (rotating means)
83a, 83b: Positioning holes (rotating means)

Claims (9)

可撓性チューブを、樹脂成形品に設けた外管と内管の間の挿入用空間に一体接続するようにした、下記工程を備える可撓性チューブと樹脂成形品の超音波振動溶着方法、
(1)前記樹脂成形品の挿入用空間に可撓性チューブの先端を押し込み、当該可撓性チューブの先端と前記外管を半径方向に膨張させ、
(2)前記可撓性チューブの先端と外管を膨張させた状態から、前記樹脂成形品の外管外壁を、当該外管外壁の一面側に当接する工具ホーンと、外管外壁の工具ホーンと反対の他面側に当接するアンビルで押圧して、半径方向に膨張した前記外管と前記可撓性チューブを押し戻し、
(3)前記工具ホーンを超音波振動させ、前記樹脂成形品の外管内壁と可撓性チューブの外周面を加圧した状態で溶着し、
(4)前記工具ホーンと前記アンビルを前記樹脂成形品から離し、前記樹脂成形品を取り出す。
The flexible tube is integrally connected to the insertion space between the outer tube and the inner tube provided in the resin molded product, and the ultrasonic vibration welding method for the flexible tube and the resin molded product includes the following steps:
(1) The tip of the flexible tube is pushed into the space for inserting the resin molded product, and the tip of the flexible tube and the outer tube are expanded in the radial direction,
(2) A tool horn that abuts the outer pipe outer wall of the resin molded product on one surface side of the outer pipe outer wall from a state where the distal end of the flexible tube and the outer pipe are expanded, and a tool horn of the outer pipe outer wall. By pressing with the anvil that is in contact with the other surface side opposite to, the outer tube and the flexible tube expanded in the radial direction are pushed back.
(3) The tool horn is ultrasonically vibrated to weld the outer wall of the resin molded product and the outer peripheral surface of the flexible tube under pressure.
(4) Separate the tool horn and the anvil from the resin molded product, and take out the resin molded product.
可撓性チューブを、樹脂成形品に設けた外管と内管の間の挿入用空間に一体接続するようにした、下記工程を備える可撓性チューブと樹脂成形品の超音波振動溶着方法、
(1)前記樹脂成形品の挿入用空間に可撓性チューブの先端を押し込み、当該可撓性チューブの先端と前記外管を半径方向に膨張させ、
(2)前記可撓性チューブの先端と外管を膨張させた状態から、前記樹脂成形品の外管外壁を、当該外管外壁の一面側に当接する工具ホーンと、外管外壁の工具ホーンと反対の他面側に当接するアンビルで押圧して、半径方向に膨張した前記外管と前記可撓性チューブを押し戻し、
(3)前記工具ホーンを超音波振動させ、前記樹脂成形品の外管内壁と可撓性チューブの外周面を加圧した状態で溶着し、
(4)前記工具ホーンと前記アンビルを前記樹脂成形品から離し、
(5)前記工具ホーンと前記アンビルに対して、前記樹脂成形品を前記可撓性チューブ先端の軸芯の周りに所定角度、相対的に回転させ、
(6)前記(2)から(5)の工程を所定回数、繰り返し、
(7)前記工具ホーンと前記アンビルを前記樹脂成形品から離し、前記樹脂成形品を取り出す。
The flexible tube is integrally connected to the insertion space between the outer tube and the inner tube provided in the resin molded product, and the ultrasonic vibration welding method for the flexible tube and the resin molded product includes the following steps:
(1) The tip of the flexible tube is pushed into the space for inserting the resin molded product, and the tip of the flexible tube and the outer tube are expanded in the radial direction,
(2) A tool horn that abuts the outer pipe outer wall of the resin molded product on one surface side of the outer pipe outer wall from a state where the distal end of the flexible tube and the outer pipe are expanded, and a tool horn of the outer pipe outer wall. By pressing with the anvil that is in contact with the other surface side opposite to, the outer tube and the flexible tube expanded in the radial direction are pushed back.
(3) The tool horn is ultrasonically vibrated to weld the outer wall of the resin molded product and the outer peripheral surface of the flexible tube under pressure.
(4) Separate the tool horn and the anvil from the resin molded product,
(5) With respect to the tool horn and the anvil, the resin molded product is relatively rotated about the axis of the tip of the flexible tube by a predetermined angle.
(6) The steps (2) to (5) are repeated a predetermined number of times,
(7) The tool horn and the anvil are separated from the resin molded product, and the resin molded product is taken out.
前記可撓性チューブとして、予め外周面に段差を形成した可撓性チューブを用いることを特徴とする、
請求項1または2に記載の超音波振動溶着方法。
As the flexible tube, a flexible tube having a step formed on the outer peripheral surface in advance is used,
The ultrasonic vibration welding method according to claim 1 or 2.
前記樹脂成形品の外管内壁に予め半径方向に段差、溝、凹凸のいずれかを設けた請求項1から3の内の、いずれか一の請求項に記載された可撓性チューブと樹脂成形品の超音波振動溶着方法。 The flexible tube and resin molding according to any one of claims 1 to 3, wherein a step, a groove, or an unevenness is provided in advance on the inner wall of the outer tube of the resin molded product in the radial direction. Ultrasonic vibration welding method for products. 外管と内管の間に挿入用空間を形成した樹脂成形品を支持するベース台と、
可撓性チューブを把持して、前記ベース台に支持した前記樹脂成形品の挿入用空間に当該可撓性チューブの先端を押し込み、当該可撓性チューブの先端と前記外管を半径方向に膨張させる押し込み手段と、
前記樹脂成形品の外管外壁の一面側に当接する工具ホーンと、
前記樹脂成形品の外管外壁の工具ホーンと反対の他面側に当接するアンビルと、
前記樹脂成形品の外管外壁を前記工具ホーンと前記アンビルで押圧して、前記半径方向に膨張した前記外管と前記可撓性チューブを押し戻す押し戻し手段と、
前記工具ホーンを超音波振動させる超音波振動手段と、
前記押し込み手段と、前記押し戻し手段と、前記超音波振動手段を制御する制御手段と、を有し
前記制御手段は、
(1)前記押し込み手段により、前記ベース台に支持した前記樹脂成形品の挿入用空間に可撓性チューブの先端を押し込み、当該可撓性チューブの先端と前記外管を半径方向に膨張させ、
(2)前記可撓性チューブの先端と外管を膨張させた状態から、前記押し戻し手段により、前記樹脂成形品の外管外壁を前記工具ホーンと前記アンビルで押圧して、半径方向に膨張した前記外管と前記可撓性チューブを押し戻し、
(3)前記超音波振動手段により、前記工具ホーンを超音波振動させ、前記樹脂成形品の外管内壁と可撓性チューブの外周面を加圧した状態で溶着し、
(4)前記押し戻し手段により、前記工具ホーンと前記アンビルを前記樹脂成
形品から離すとともに、前記押し込み手段を前記樹脂成形品から離し、前記ベース台から前記樹脂成形品を取り出す、
工程を実行することにより、
可撓性チューブを、樹脂成形品に設けた外管と内管の間の挿入用空間に一体接続するようにした、可撓性チューブと樹脂成形品の超音波振動溶着装置。
A base that supports a resin molded product having an insertion space formed between the outer pipe and the inner pipe,
Hold the flexible tube and push the tip of the flexible tube into the space for inserting the resin molded product supported by the base to expand the tip of the flexible tube and the outer tube in the radial direction. Pushing means to
A tool horn abutting on one surface side of the outer pipe outer wall of the resin molded product,
An anvil that abuts on the other surface side of the outer wall of the resin molded product opposite to the tool horn of the outer wall,
An outer wall of the resin molded article is pressed by the tool horn and the anvil to push back the radially expanded outer tube and the flexible tube.
Ultrasonic vibrating means for ultrasonically vibrating the tool horn,
The pushing means, the pushing back means, and a control means for controlling the ultrasonic vibrating means, the control means,
(1) By the pushing means, the tip of the flexible tube is pushed into the space for inserting the resin molded product supported on the base table, and the tip of the flexible tube and the outer tube are radially expanded,
(2) From the state in which the tip of the flexible tube and the outer tube are expanded, the outer wall of the outer tube of the resin molded product is pressed by the tool horn and the anvil by the pushing-back means to expand in the radial direction. Pushing back the outer tube and the flexible tube,
(3) The tool horn is ultrasonically vibrated by the ultrasonic vibrating means, and the inner wall of the outer tube of the resin molded product and the outer peripheral surface of the flexible tube are welded under pressure.
(4) The push-back means separates the tool horn and the anvil from the resin molded product, the push-in means separates from the resin molded product, and the resin molded product is taken out from the base table.
By performing the process,
An ultrasonic vibration welding device for a flexible tube and a resin molded product, wherein the flexible tube is integrally connected to an insertion space between an outer pipe and an inner pipe provided in the resin molded product.
外管と内管の間に挿入用空間を形成した樹脂成形品を支持するベース台と、
可撓性チューブを把持して、前記ベース台に支持した前記樹脂成形品の挿入用空間に当該可撓性チューブの先端を押し込み、当該可撓性チューブの先端と前記外管を半径方向に膨張させる押し込み手段と、
前記樹脂成形品の外管外壁の一面側に当接する工具ホーンと、
前記樹脂成形品の外管外壁の工具ホーンと反対の他面側に当接するアンビルと、
前記樹脂成形品の外管外壁を前記工具ホーンと前記アンビルで押圧して、前記半径方向に膨張した前記外管と前記可撓性チューブを押し戻す押し戻し手段と、
前記工具ホーンを超音波振動させる超音波振動手段と、
更に、前記工具ホーンと前記アンビルに対して、前記樹脂成形品を前記可撓性チューブ先端の軸芯の周りに相対的に所定角度回転させる回転手段と、
前記押し込み手段と、前記押し戻し手段と、前記超音波振動手段と、前記回転手段を制御する制御手段と、
を有し、
前記制御手段は、
(1)前記押し込み手段により、前記ベース台に支持した前記樹脂成形品の挿入用空間に可撓性チューブの先端を押し込み、当該可撓性チューブの先端と前記外管を半径方向に膨張させ、
(2)前記可撓性チューブの先端と外管を膨張させた状態から、前記押し戻し手段により、前記樹脂成形品の外管外壁を前記工具ホーンと前記アンビルで押圧して、半径方向に膨張した前記外管と前記可撓性チューブを押し戻し、
(3)前記超音波振動手段により、前記工具ホーンを超音波振動させ、前記樹脂成形品の外管内壁と可撓性チューブの外周面を加圧した状態で溶着し、
(4)前記押し戻し手段により、前記工具ホーンと前記アンビルを前記樹脂成
形品から離し、
(5)前記回転手段により、前記工具ホーンと前記アンビルに対して、前記樹脂成形品を前記可撓性チューブ先端の軸芯の周りに所定角度、相対的に回転させ、
(6)上記(2)から(5)を所定回数、繰り返し、
(7)前記工具ホーンと前記アンビルを前記樹脂成形品から離すとともに、前記押し込み手段を前記樹脂成形品から離し、前記樹脂成形品を取り出す、
工程を実行することにより、
可撓性チューブを、樹脂成形品に設けた外管と内管の間の挿入用空間に一体接続するようにした、可撓性チューブと樹脂成形品の超音波振動溶着装置。
A base that supports a resin molded product having an insertion space formed between the outer pipe and the inner pipe,
Hold the flexible tube and push the tip of the flexible tube into the space for inserting the resin molded product supported by the base to expand the tip of the flexible tube and the outer tube in the radial direction. Pushing means to
A tool horn abutting on one surface side of the outer pipe outer wall of the resin molded product,
An anvil that abuts on the other surface side of the outer wall of the resin molded product opposite to the tool horn of the outer wall,
An outer wall of the resin molded article is pressed by the tool horn and the anvil to push back the radially expanded outer tube and the flexible tube.
Ultrasonic vibrating means for ultrasonically vibrating the tool horn,
Furthermore, with respect to the tool horn and the anvil, rotation means for relatively rotating the resin molded product around a shaft center of the flexible tube at a predetermined angle,
The pushing means, the pushing back means, the ultrasonic vibrating means, and a control means for controlling the rotating means,
Have
The control means is
(1) By the pushing means, the tip of the flexible tube is pushed into the space for inserting the resin molded product supported on the base table, and the tip of the flexible tube and the outer tube are radially expanded,
(2) From the state in which the tip of the flexible tube and the outer tube are expanded, the outer wall of the outer tube of the resin molded product is pressed by the tool horn and the anvil by the pushing-back means to expand in the radial direction. Pushing back the outer tube and the flexible tube,
(3) The tool horn is ultrasonically vibrated by the ultrasonic vibrating means, and the inner wall of the outer tube of the resin molded product and the outer peripheral surface of the flexible tube are welded under pressure.
(4) The push-back means separates the tool horn and the anvil from the resin molded product,
(5) The resin molding is relatively rotated about the axis of the tip of the flexible tube by a predetermined angle with respect to the tool horn and the anvil by the rotating means.
(6) The above (2) to (5) are repeated a predetermined number of times,
(7) The tool horn and the anvil are separated from the resin molded product, the pushing means is separated from the resin molded product, and the resin molded product is taken out.
By performing the process,
An ultrasonic vibration welding device for a flexible tube and a resin molded product, wherein the flexible tube is integrally connected to an insertion space between an outer pipe and an inner pipe provided in the resin molded product.
前記可撓性チューブとして、予め外周面に段差を形成した可撓性チューブを用いることを特徴とする、
請求項5または6に記載の超音波振動溶着装置。
As the flexible tube, a flexible tube having a step formed on the outer peripheral surface in advance is used,
The ultrasonic vibration welding device according to claim 5 or 6.
前記樹脂成形品の外管内壁に予め半径方向に段差、溝、凹凸のいずれかを設けた、請求項5から7のいずれか一の請求項に記載された可撓性チューブと樹脂成形品の超音波振動溶着装置。 The flexible tube and the resin molded product according to any one of claims 5 to 7, wherein a step, a groove, or an unevenness is provided in advance on the inner wall of the outer tube of the resin molded product in the radial direction. Ultrasonic vibration welding equipment. 前記樹脂成形品は、外管と、外管内に同軸方向に配置された内管とを備え、前記外管が、当該外管と前記内管との間に環状の挿入用空間を形成すべく、外管内壁と、外管および内管を連結する外管底壁とを有する、請求項5から8のいずれか一の請求項に記載された超音波振動溶着装置。 The resin molded product includes an outer pipe and an inner pipe coaxially arranged in the outer pipe, and the outer pipe forms an annular insertion space between the outer pipe and the inner pipe. The ultrasonic vibration welding device according to claim 5, further comprising an inner wall of the outer pipe and a bottom wall of the outer pipe connecting the outer pipe and the inner pipe.
JP2017080484A 2017-04-14 2017-04-14 Ultrasonic vibration welding method for flexible tube and resin molded product, and ultrasonic vibration welding apparatus Active JP6739104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017080484A JP6739104B2 (en) 2017-04-14 2017-04-14 Ultrasonic vibration welding method for flexible tube and resin molded product, and ultrasonic vibration welding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017080484A JP6739104B2 (en) 2017-04-14 2017-04-14 Ultrasonic vibration welding method for flexible tube and resin molded product, and ultrasonic vibration welding apparatus

Publications (2)

Publication Number Publication Date
JP2018175482A JP2018175482A (en) 2018-11-15
JP6739104B2 true JP6739104B2 (en) 2020-08-12

Family

ID=64279993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017080484A Active JP6739104B2 (en) 2017-04-14 2017-04-14 Ultrasonic vibration welding method for flexible tube and resin molded product, and ultrasonic vibration welding apparatus

Country Status (1)

Country Link
JP (1) JP6739104B2 (en)

Also Published As

Publication number Publication date
JP2018175482A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
US3874963A (en) Sonic bonding process
JP5429671B2 (en) Methods for generating friction welded joints and joint design by friction welding
EP2303381B1 (en) Ultrasound probe cover and method for its production
JPS6219291B2 (en)
WO2013122083A1 (en) Device for welding thermoplastic resin material, welding method, and pressing unit for welding device
JP2008155418A (en) Method and apparatus for press-bonding tire component member, tire molding apparatus
JPS6362408B2 (en)
JP6739104B2 (en) Ultrasonic vibration welding method for flexible tube and resin molded product, and ultrasonic vibration welding apparatus
GB2181507A (en) Grooved pipe or rod connector
JP3625154B2 (en) Pipe bending method
US6315849B1 (en) Method of joining flexible sheets to tubes
JP5144134B2 (en) Manufacturing method of adhesive-containing pouch
JP3348876B2 (en) Flexible container manufacturing method
JP2004524989A (en) How to join plastic sheet materials
JPH0956821A (en) Method for working front end of balloon catheter
KR100352788B1 (en) Method for hydroforming flange-shaped tube using plate
JP2699222B2 (en) Plastic tube fusion method
JP5234989B2 (en) Inner bag for cylindrical container and manufacturing method thereof
JP2021130210A (en) Welding method and manufacturing method of equipment
JPH0585343B2 (en)
JP2684482B2 (en) Plastic tube fusion method
JPS63260427A (en) Mold for ultrasonic welding and ultrasonic welding method by using said mold
JP4998777B2 (en) Device for attaching coating material to pipes
JP2004276096A (en) Hydroform forming method and method for mutually weld-joining end parts of sheet material used for hydroform forming
JPH0547635Y2 (en)

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20171017

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20171017

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200218

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200218

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200715

R150 Certificate of patent or registration of utility model

Ref document number: 6739104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250