JP6736731B2 - Hydrological model watershed scale determination method based on energy process similarity - Google Patents
Hydrological model watershed scale determination method based on energy process similarity Download PDFInfo
- Publication number
- JP6736731B2 JP6736731B2 JP2019115057A JP2019115057A JP6736731B2 JP 6736731 B2 JP6736731 B2 JP 6736731B2 JP 2019115057 A JP2019115057 A JP 2019115057A JP 2019115057 A JP2019115057 A JP 2019115057A JP 6736731 B2 JP6736731 B2 JP 6736731B2
- Authority
- JP
- Japan
- Prior art keywords
- basin
- model
- energy
- watershed
- study
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 52
- 238000011160 research Methods 0.000 claims description 33
- 238000005452 bending Methods 0.000 claims description 12
- 238000004364 calculation method Methods 0.000 claims description 7
- 238000013461 design Methods 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 claims description 3
- 238000012360 testing method Methods 0.000 description 9
- 239000013049 sediment Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000003631 expected effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Data Mining & Analysis (AREA)
- Computational Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Pure & Applied Mathematics (AREA)
- Computing Systems (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Algebra (AREA)
- Geometry (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
Description
本発明は水工学の技術分野に関し、具体的にはエネルギー過程の類似性に基づく水文モデル流域スケール決定方法に関する。 The present invention relates to the technical field of water engineering, and more particularly, to a hydrological model watershed scale determination method based on the similarity of energy processes.
地域水文過程試験は現在の水文試験研究の主要な発展方向の1つである。実際の自然流域は時空間過程のスパンが大きく、降雨時間、過程、強度のランダム性が高く、水文過程への影響要素が多く且つ複雑である等の問題があるため、屋内モデル流域を用いて研究を展開することは地域水文過程試験の重要な技術手段となっている。このような試験を行う際に、水文過程試験中のモデル流域のスケールを設定することが重要な問題の1つである。該スケールは試験の研究目標に応じて科学的に設定される屋内区域のモデル流域のスケールであり、実際の自然流域とモデル流域とのスケールを示すためのものである。例えば、ある自然流域(例えば、西柳溝流域)を研究する時、屋内モデル流域を構築し、該自然流域と屋内モデル流域とのスケールを決定する必要がある。スケールは水平スケールと垂直スケールを含む。 The regional hydrological process test is one of the main development directions of the current hydrological test research. In the actual natural watershed, the span of the spatiotemporal process is large, the rainfall time, the process, and the intensity are highly random, and there are problems that there are many factors affecting the hydrological process and they are complicated. Developing research has become an important technical tool for regional hydrological process testing. When conducting such a test, setting the scale of the model watershed during the hydrological process test is one of the important problems. The scale is a scale of the model watershed of the indoor area, which is scientifically set according to the research purpose of the test, and is for indicating the scale of the actual natural watershed and the model watershed. For example, when studying a natural basin (for example, the Nishiyanagi basin), it is necessary to construct an indoor model basin and determine the scale of the natural basin and the indoor model basin. The scale includes a horizontal scale and a vertical scale.
自然流域とモデル流域とのスケールを決定することは重要な意義があり、例えば、試験中、該スケールは、屋内試験研究を展開し、モデル流域を構築する重要な根拠である。試験完了後、該スケールは屋内試験の観測過程、得られた法則と結論を自然流域水文過程研究に応用する重要な変換パラメータである。しかしながら、現在、業界では良いスケール決定方法が提案されていない。 Determining the scale of natural and model watersheds has important significance, for example, during testing, the scale is an important basis for developing indoor pilot studies and building model watersheds. After the test is completed, the scale is an important conversion parameter for applying the observation process of the indoor test, the obtained law and the conclusion to the study of hydrological process in the natural basin. However, at present, no good scaling method is proposed in the industry.
従来技術の上記欠陥に鑑みて、本発明は、流域エネルギー及び水文パラメータによってモデル流域の垂直スケールを正確に算出することができるエネルギー過程の類似に基づく水文モデル流域スケール決定方法を提供する。 In view of the above deficiencies of the prior art, the present invention provides a hydrological model watershed scale determination method based on the similarity of energy processes that can accurately calculate the vertical scale of a model watershed according to watershed energy and hydrological parameters.
上記発明目的を達成するために、本発明の技術案は以下の通りである。 In order to achieve the above-mentioned object of the invention, the technical solution of the present invention is as follows.
エネルギー過程の類似(性)に基づく水文モデル流域スケール決定方法を提供し、
被研究流域のベクトル情報を取得し、屋内カスタム座標のベクトルファイルと被研究流域の境界ベクトルファイルをマッチングし、モデル流域の水平スケールを得るステップと、
被研究流域のベクトル情報に基づき、被研究流域の長さと幅及び水平スケールを用いてそれぞれ被研究流域とモデル流域の水文パラメータを算出するステップと、
それぞれ被研究流域とモデル流域に対応する水文パラメータを用いて、被研究流域エネルギーとモデル流域エネルギーを算出するステップと、
エネルギー過程の類似に基づき、被研究流域エネルギーとモデル流域エネルギーとの間のエネルギー関係関数を構築するステップと、
エネルギー関係関数及び被研究流域とモデル流域の水文パラメータに基づき、モデル流域の垂直スケールを算出するステップと、を含む。
Providing a hydrological model watershed scale determination method based on the similarity of energy processes,
Obtaining vector information of the research basin, matching the vector file of indoor custom coordinates with the boundary vector file of the research basin, and obtaining the horizontal scale of the model basin,
Calculating the hydrological parameters of the research basin and the model basin using the length and width of the research basin and the horizontal scale, respectively, based on the vector information of the research basin;
Calculating the study basin energy and the model basin energy using hydrological parameters corresponding to the study basin and the model basin, respectively.
Constructing an energy relation function between the studied watershed energy and the model watershed energy based on the similarity of the energy processes,
Calculating a vertical scale of the model basin based on the energy relation function and the hydrological parameters of the studied basin and the model basin.
さらに、前記水文パラメータは出口断面面積、潤辺、水力平均深さ、分水界から出口断面の主河道までの平均勾配、断面出口流速、単位時間あたりに出口断面を通る流量及び単位時間あたりに出口断面を通る流量の質量を含む。 Further, the hydrological parameters are: outlet cross-sectional area, wet edge, hydraulic mean depth, average gradient from watershed to main river channel of outlet cross-section, outlet flow velocity, per unit time flow rate through outlet cross section and per unit time. Includes mass of flow through outlet cross section.
さらに、前記被研究流域の水文パラメータの計算式は、
ここで、Lは被研究流域の長さ、Hは被研究流域の幅、Wpは屋外被研究流域の潤辺、Rは屋外被研究流域の水力平均深さ、Jは被研究流域の分水界から出口断面の主河道までの平均勾配、nはマニング粗度係数、Δtは単位時間であり、
h1、h2、h3・・・・・・hnは被研究流域の河道縦断面の各折曲がり点における河床標高と設計断面における河床標高との差、L1、L2、L3・・・・・・Lnは被研究流域の各折曲がり点間のセグメント化河道長さ、L'は主河道長さ、vは屋外被研究流域の断面出口流速、Qは屋外被研究流域の、単位時間あたりに出口断面を通る流量、mは屋外被研究流域の、単位時間あたりに出口断面を通る流量の質量であり、
Furthermore, the formula for calculating the hydrological parameters of the study basin is
Where L is the length of the study basin, H is the width of the study basin, Wp is the wet side of the outdoor study basin, R is the average hydraulic depth of the outdoor study basin, and J is the diversion of the study basin. Gradient from the boundary to the main channel of the exit cross section, n is the Manning roughness coefficient, Δt is the unit time,
h 1 , h 2 , h 3, ... h n are the difference between the riverbed elevation at each bending point of the river channel longitudinal section of the study basin and the riverbed elevation at the design section, L 1 , L 2 , L 3・・・・・・L n is the segmented channel length between each bending point of the study basin, L'is the main channel length, v is the cross section exit velocity of the outdoor study basin, Q is the outdoor study basin Of the flow rate through the exit cross section per unit time, m is the mass of the flow rate through the exit cross section per unit time in the outdoor study basin,
さらに、前記モデル流域の水文パラメータの計算式は、
ここで、A'は屋内モデル流域の出口断面面積、WP'は屋内モデル流域の潤辺、R'は屋内モデル流域の水力平均深さ、J'はモデル流域の分水界から出口断面の主河道までの平均勾配、K1は水平スケール、K2は垂直スケールであり、
h'1、h'2、h'3・・・・・・h'nはモデル流域の河道縦断面の各折曲がり点における河床標高と設計断面における河床標高との差であり、且つh'n=K2hnであり、L'1、L'2、L'3・・・・・・L'nはモデル流域の各折曲がり点間のセグメント化河道長さであり、且つL'n=K1Lnであり、v'は屋内モデル流域の断面出口流速、Q'は屋外被研究流域の、単位時間あたりに出口断面を通る流量、m'は屋外被研究流域の、単位時間あたりに出口断面を通る流量の質量であり、
Further, the formula for calculating the hydrological parameters of the model basin is
Here, A 'the outlet cross-section area of the indoor model basin, W P' is the indoor model basin wetted perimeter, R 'is hydro average depth of indoor model basin, J' is the outlet section from the watershed model basin The average gradient to the main channel, K 1 is the horizontal scale, K 2 is the vertical scale,
h '1, h' 2, h '3 · · · · · · h' n is the difference between the riverbed elevation of riverbed elevation and design section of each fold bending point of river longitudinal section of the model basin, and h ' n = K 2 h n , L' 1 , L' 2 , L' 3 ...L' n is the segmented channel length between each bending point of the model watershed, and L' n = K 1 L n , v'is the cross section outlet flow velocity of the indoor model basin, Q'is the flow rate through the exit cross section per unit time in the outdoor study basin, m'is the unit time in the outdoor study basin Is the mass of the flow rate passing through the outlet cross section,
さらに、前記被研究流域のベクトル情報は被研究流域の形状のベクトル情報と降雨量観測ステーションの位置のベクトル情報を含み、
前記被研究流域のベクトル情報抽出方法は、被研究流域の地形データと降雨量観測ステーションの位置を取得するステップと、前記地形データと降雨量観測ステーションの位置をArcGisに導入して被研究流域の形状と降雨量観測ステーションの位置のベクトル情報を得るステップとを含む。
Further, the vector information of the research basin includes vector information of the shape of the research basin and vector information of the position of the rainfall observation station,
The method for extracting vector information of the research basin includes a step of acquiring topographical data and a position of a rainfall observation station of the research basin, and introducing the topographical data and the position of the rainfall observation station into ArcGis. Obtaining vector information of the shape and position of the rainfall observation station.
本発明の有益な効果について、本技術案は、エネルギー過程の類似に基づき、収集された被研究流域とモデル流域の水文パラメータによって流出エネルギー過程を算出し、流出エネルギー過程の類似を維持することで、垂直スケールを直接に得ることができ、垂直スケールを算出する計算式からわかるように、垂直スケールは水平スケール、エネルギー類似係数及び被研究流域の高さと幅にのみ関係し、本発明では、まず水量過程の類似に基づき水平スケールを設定し、次に、設定された水平スケールに基づき許容可能な流量範囲を調整し、流量範囲を決定した後、エネルギー過程の類似に基づき垂直スケールを算出し、水平スケールを得ると、該関数によって地理特性の異なる被研究流域の屋内研究地域での人工シミュレーション時における垂直スケールを迅速に得ることができる。 Regarding the beneficial effects of the present invention, the present technical solution calculates the outflow energy process by the hydrological parameters of the collected research basin and the model basin based on the similarity of the energy process, and maintains the similarity of the outflow energy process. , The vertical scale can be directly obtained, and as can be seen from the formula for calculating the vertical scale, the vertical scale is related only to the horizontal scale, the energy similarity coefficient, and the height and width of the studied watershed. After setting the horizontal scale based on the similarity of the water quantity process, then adjusting the allowable flow range based on the set horizontal scale, determining the flow range, and then calculating the vertical scale based on the similarity of the energy process, When the horizontal scale is obtained, it is possible to quickly obtain the vertical scale during the artificial simulation in the indoor study area of the study basin having different geographical characteristics by the function.
垂直スケールと水平スケールによって被研究流域をズームして得られたモデル流域から算出された降雨制御パラメータは被研究流域の降雨の実際状況をよりよく反映することができ、それによりシミュレーションされる人工降雨の期待される効果を確保することができる。 Rainfall control parameters calculated from the model basin obtained by zooming the study basin by vertical scale and horizontal scale can better reflect the actual situation of rainfall in the study basin, and thereby simulated artificial rainfall The expected effect of can be secured.
以下、当業者が本発明を理解することを可能にするために、本発明の具体的な実施形態を説明するが、本発明は具体的な実施形態の範囲に限定されず、様々な変換は、添付する特許請求の範囲に限定及び決定される本発明の精神及び範囲内である限り、当業者にとって自明であり、本発明の構想を用いたすべての発明はいずれも保護されている。 Hereinafter, specific embodiments of the present invention will be described to enable those skilled in the art to understand the present invention. However, the present invention is not limited to the scope of the specific embodiments, and various conversions may be made. As long as it is within the spirit and scope of the present invention which is limited and determined by the appended claims, it will be obvious to those skilled in the art that all inventions using the concept of the present invention are protected.
流域水文過程は流域のエネルギー、物質過程とは複雑な結合関係を有する。流域エネルギー過程及びその流域水過程への影響は水文過程研究の重要な手段及び研究内容の1つである。例えば、従来の研究からわかるように、斜面の薄層流出土砂浸食量は地表勾配、降雨エネルギー及び流出エネルギーの増加に伴い増加し、薄層水流土砂濃度は勾配と降雨エネルギーの増加に伴い増加し、勾配と降雨エネルギーが一定である場合、土砂濃度は流出エネルギーの増加に伴い減小し、降雨外乱係数と降雨及び流出エネルギーとの比は対数関係に応じて増加し、同一勾配の場合、降雨エネルギーが一定であると、降雨外乱係数は流出エネルギーの増加に伴い減小する。降雨エネルギーは土砂剥離を起こす本質であり、流出エネルギーは土砂を運ぶ動力である。従って、エネルギーの類似に基づき実験モデルスケールを決定することは、水流エネルギーの流域水文過程への影響を究明することに非常に科学的意義および実際的意義がある。従って、本発明はエネルギー過程の類似に基づく水文実験モデルスケール決定方法を提供する。 The hydrological process in the basin has a complicated connection with the energy and material processes in the basin. The basin energy process and its impact on the basin water process are one of the important tools and contents of hydrological process research. For example, as can be seen from previous studies, the amount of thin-layer runoff sediment erosion on the slope increases with the increase of surface gradient, rainfall energy and runoff energy, and the thin-layer runoff sediment concentration increases with the increase of gradient and rainfall energy. , If the slope and rainfall energy are constant, the sediment concentration decreases with the increase of runoff energy, the ratio of rainfall disturbance coefficient to rainfall and runoff energy increases according to the logarithmic relationship, and if the slope is the same, rainfall increases. If the energy is constant, the rainfall disturbance coefficient decreases with increasing runoff energy. Rainfall energy is the essence of sediment separation, and runoff energy is the power to carry sediment. Therefore, determining the experimental model scale based on the energy similarity has very scientific and practical significance in investigating the influence of water flow energy on the hydrological process in the basin. Therefore, the present invention provides a method for determining hydrological experimental model scale based on the similarity of energy processes.
図1を参照し、図1はエネルギー過程の類似に基づく水文モデル流域スケール決定方法のフローチャートであり、図1に示すように、該方法はステップ101〜ステップ105を含む。 Referring to FIG. 1, FIG. 1 is a flowchart of a hydrological model basin scale determination method based on similarity of energy processes, and as shown in FIG. 1, the method includes steps 101 to 105.
ステップ101では、被研究流域のベクトル情報を取得し、屋内カスタム座標のベクトルファイルと被研究流域の境界ベクトルファイルをマッチングし、モデル流域の水平スケールを得て、
実施時、本技術案では、好ましくは、前記被研究流域のベクトル情報は被研究流域の形状のベクトル情報と降雨量観測ステーションの位置のベクトル情報を含み、
前記被研究流域のベクトル情報抽出方法は、被研究流域の地形データと降雨量観測ステーションの位置を取得するステップと、前記地形データと降雨量観測ステーションの位置をArcGisに導入して被研究流域の形状と降雨量観測ステーションの位置のベクトル情報を得るステップとを含む。
In step 101, the vector information of the research basin is acquired, the vector file of indoor custom coordinates and the boundary vector file of the research basin are matched to obtain the horizontal scale of the model basin,
At the time of implementation, in the present technical solution, preferably, the vector information of the research basin includes vector information of the shape of the research basin and vector information of the position of the rainfall observation station,
The method for extracting vector information of the research basin includes a step of acquiring topographical data and a position of a rainfall observation station of the research basin, and introducing the topographical data and the position of the rainfall observation station into ArcGis. Obtaining vector information of the shape and position of the rainfall observation station.
図2に示される被研究流域を水平スケールと垂直スケールに応じて屋内降雨エリアに導入すると、図3に示される模式図を得る。取得した流域形状ベクトル情報を用いて、モデル流域の構築場所の制限及び実際の自然流域のサイズを組み合わせて、スケール最大化のルールに応じて、初期の水平スケールと垂直スケールを決定する。一実施例では、屋内降雨エリア(地域降雨人工シミュレーションシステム)は、有効降雨面積26m×40mであり、合計110個の独立制御ユニット(合計10個の大きなエリアに分けられ、各大きなエリアはさらに11個の小さなエリアに分けられる)に分けられ、各降雨ユニットの降雨強度変化範囲は10-200mm/hであり、ユニット内の均一度は0.8超であり、降雨強度変化頻度は5分間あたり1回調整することが可能であり、降雨制御ファイルを入力することで、人工降雨を実現することができる。 When the study basin shown in Fig. 2 is introduced into the indoor rainfall area according to the horizontal scale and the vertical scale, the schematic diagram shown in Fig. 3 is obtained. Using the acquired basin shape vector information, the limits of the construction site of the model basin and the size of the actual natural basin are combined, and the initial horizontal scale and vertical scale are determined according to the rule of scale maximization. In one embodiment, the indoor rainfall area (regional rainfall artificial simulation system) has an effective rainfall area of 26 m×40 m, totaling 110 independent control units (totaling 10 large areas, each large area having an additional 11 areas). The rainfall intensity change range of each rainfall unit is 10-200mm/h, the uniformity within the unit is more than 0.8, and the rainfall intensity change frequency is once every 5 minutes. It is possible to adjust, and artificial rainfall can be realized by inputting the rainfall control file.
ステップ102では、被研究流域のベクトル情報に基づき、被研究流域の長さと幅及び水平スケールを用いてそれぞれ被研究流域とモデル流域の水文パラメータを算出する。 In step 102, the hydrological parameters of the research basin and the model basin are calculated using the length and width of the research basin and the horizontal scale based on the vector information of the research basin.
水文パラメータは、出口断面面積、潤辺、水力平均深さ、分水界から出口断面の主河道までの平均勾配、断面出口流速、単位時間あたりに出口断面を通る流量及び単位時間あたりに出口断面を通る流量の質量を含む。 Hydrological parameters are: outlet cross-sectional area, wet side, average hydraulic depth, average gradient from watershed to main river channel of outlet cross-section, outlet flow velocity, flow rate through the outlet cross-section per unit time, and outlet cross-section per unit time. Includes the mass of the flow through.
本発明の一実施例では、前記被研究流域の水文パラメータの計算式は、
ここで、Lは被研究流域の長さ、Hは被研究流域の幅、WPは屋外被研究流域の潤辺、Rは屋外被研究流域の水力平均深さ、Jは被研究流域の分水界から出口断面の主河道までの平均勾配、nはマニング粗度係数、Δtは単位時間であり、
h1、h2、h3・・・・・・hnは被研究流域の河道縦断面の各折曲がり点における河床標高と設計断面における河床標高との差、L1、L2、L3・・・・・・Lnは被研究流域の各折曲がり点間のセグメント化河道長さ、L'は主河道長さ、vは屋外被研究流域の断面出口流速、Qは屋外被研究流域の、単位時間あたりに出口断面を通る流量、mは屋外被研究流域の、単位時間あたりに出口断面を通る流量の質量である。
In one embodiment of the present invention, the calculation formula of the hydrological parameters of the study basin is:
Where L is the length of the study basin, H is the width of the study basin, W P is the outer edge of the study basin, R is the average hydraulic depth of the study basin outside, and J is the part of the study basin. The average gradient from the water to the main channel of the exit cross section, n is the Manning roughness coefficient, Δt is the unit time,
h 1 , h 2 , h 3, ... h n are the difference between the riverbed elevation at each bending point of the river channel longitudinal section of the study basin and the riverbed elevation at the design section, L 1 , L 2 , L 3・・・・・・L n is the segmented channel length between each bending point of the study basin, L'is the main channel length, v is the cross section exit velocity of the outdoor study basin, Q is the outdoor study basin Of the flow rate through the outlet cross section per unit time, and m is the mass of the flow rate through the outlet cross section per unit time in the outdoor study basin.
前記モデル流域の水文パラメータの計算式は、
ここで、A'は屋内モデル流域の出口断面面積、WP'は屋内モデル流域の潤辺、R'は屋内モデル流域の水力平均深さ、J'はモデル流域の分水界から出口断面の主河道までの平均勾配、K1は水平スケール、K2は垂直スケールであり、
h'1、h'2、h'3・・・・・・h'nはモデル流域の河道縦断面の各折曲がり点における河床標高と設計断面における河床標高との差であり、且つh'n=K2hnであり、L'1、L'2、L'3・・・・・・L'nはモデル流域の各折曲がり点間のセグメント化河道長さであり、且つL'n=K1Lnであり、v'は屋内モデル流域の断面出口流速、Q'は屋外被研究流域の、単位時間あたりに出口断面を通る流量、m'は屋外被研究流域の、単位時間あたりに出口断面を通る流量の質量である。
The formula for the hydrological parameters of the model basin is
Here, A 'the outlet cross-section area of the indoor model basin, W P' is the indoor model basin wetted perimeter, R 'is hydro average depth of indoor model basin, J' is the outlet section from the watershed model basin The average gradient to the main channel, K 1 is the horizontal scale, K 2 is the vertical scale,
h '1, h' 2, h '3 · · · · · · h' n is the difference between the riverbed elevation of riverbed elevation and design section of each fold bending point of river longitudinal section of the model basin, and h ' n = K 2 h n , L' 1 , L' 2 , L' 3 ...L' n is the segmented channel length between each bending point in the model watershed, and L' n = K 1 L n , v'is the cross section outlet flow velocity of the indoor model basin, Q'is the flow rate through the exit cross section per unit time in the outdoor study basin, m'is the unit time in the outdoor study basin Is the mass of the flow rate passing through the outlet cross section.
ステップ103では、それぞれ被研究流域とモデル流域に対応する水文パラメータを用いて、被研究流域エネルギーとモデル流域エネルギーを算出する。 In step 103, the study basin energy and the model basin energy are calculated using the hydrological parameters corresponding to the study basin and the model basin, respectively.
前記被研究流域エネルギーの計算式は、
ここで、Eは被研究流域エネルギーである。
The calculation formula of the researched watershed energy is
Here, E is the energy of the basin under study.
前記モデル流域エネルギーの計算式は、
ここで、E'はモデル流域エネルギーである。
The model basin energy calculation formula is
Here, E'is the model watershed energy.
ステップ104では、エネルギー過程の類似に基づき、被研究流域エネルギーとモデル流域エネルギーとの間のエネルギー関係関数を構築し、
一実施例では、前記エネルギー関係関数はE'=K4Eであり、ここでK4はエネルギー類似係数である。
In step 104, an energy relation function between the studied watershed energy and the model watershed energy is constructed based on the similarity of the energy process,
In one embodiment, the energy relationship function is E′=K 4 E, where K 4 is the energy similarity coefficient.
ステップ105では、エネルギー関係関数及び被研究流域とモデル流域の水文パラメータに基づき、モデル流域の垂直スケールを算出し、
In step 105, the vertical scale of the model watershed is calculated based on the energy relation function and the hydrological parameters of the studied watershed and the model watershed,
以上のように、本技術案は被研究流域のベクトル情報によってモデル流域のX、Y軸での水平スケールK1を迅速に得て、その後、被研究流域の幅と長さによって、モデル流域の垂直スケールK2を迅速に求めることができ、それにより垂直スケールK2と水平スケールK1によって被研究流域をズームして得られたモデル流域から求められる屋内降雨強度を用いて人工降雨を行う際に、被研究地域の実際の降雨状況をよりリアルに反映することができる。
As described above, this technical solution quickly obtains the horizontal scale K 1 on the X and Y axes of the model basin based on the vector information of the basin under study, and then the width and length of the basin under study The vertical scale K 2 can be quickly obtained, which allows the artificial rainfall to be performed using the indoor rainfall intensity obtained from the model basin obtained by zooming the study basin with the vertical scale K 2 and the horizontal scale K 1 . In addition, it is possible to reflect the actual rainfall situation in the study area more realistically.
Claims (6)
被研究流域のベクトル情報に基づき、被研究流域の長さと幅及び水平スケールを用いてそれぞれ被研究流域とモデル流域の水文パラメータを算出するステップと、
それぞれ被研究流域とモデル流域に対応する水文パラメータを用いて、被研究流域エネルギーとモデル流域エネルギーを算出するステップと、
エネルギー過程の類似に基づき、被研究流域エネルギーとモデル流域エネルギーとの間のエネルギー関係関数を構築するステップと、
エネルギー関係関数及び被研究流域とモデル流域の水文パラメータに基づき、モデル流域の垂直スケールを算出するステップと、を含むことを特徴とするエネルギー過程の類似性に基づく水文モデル流域スケール決定方法。 Obtaining vector information of the research basin, matching the vector file of indoor custom coordinates with the boundary vector file of the research basin, and obtaining the horizontal scale of the model basin,
Calculating the hydrological parameters of the research basin and the model basin using the length and width of the research basin and the horizontal scale, respectively, based on the vector information of the research basin;
Calculating the study basin energy and the model basin energy using hydrological parameters corresponding to the study basin and the model basin, respectively.
Constructing an energy relation function between the studied watershed energy and the model watershed energy based on the similarity of the energy processes,
A hydrological model watershed scale determination method based on the similarity of energy processes, which comprises a step of calculating a vertical scale of the model watershed based on the energy relation function and hydrological parameters of the studied watershed and the model watershed.
ここで、Lは被研究流域の長さ、Hは被研究流域の幅、WPは屋外被研究流域の潤辺、Rは屋外被研究流域の水力平均深さ、Jは被研究流域の分水界から出口断面の主河道までの平均勾配、nはマニング粗度係数、Δtは単位時間であり、
h1、h2、h3・・・・・・hnは被研究流域の河道縦断面の各折曲がり点における河床標高と設計断面における河床標高との差、L1、L2、L3・・・・・・Lnは被研究流域の各折曲がり点間のセグメント化河道長さ、L'は主河道長さ、vは屋外被研究流域の断面出口流速、Qは屋外被研究流域の、単位時間あたりに出口断面を通る流量、mは屋外被研究流域の、単位時間あたりに出口断面を通る流量の質量であり、
前記被研究流域エネルギーの計算式は、
ここで、Eは被研究流域エネルギーであることを特徴とする請求項2に記載のエネルギー過程の類似性に基づく水文モデル流域スケール決定方法。 The formula for the hydrological parameters of the study basin is
Where L is the length of the study basin, H is the width of the study basin, W P is the outer edge of the study basin, R is the average hydraulic depth of the study basin outside, and J is the part of the study basin. The average gradient from the water to the main channel of the exit cross section, n is the Manning roughness coefficient, Δt is the unit time,
h 1 , h 2 , h 3, ... h n are the difference between the riverbed elevation at each bending point of the river channel longitudinal section of the study basin and the riverbed elevation at the design section, L 1 , L 2 , L 3・・・・・・L n is the segmented channel length between each bending point of the study basin, L'is the main channel length, v is the cross section exit velocity of the outdoor study basin, Q is the outdoor study basin Of the flow rate through the exit cross section per unit time, m is the mass of the flow rate through the exit cross section per unit time in the outdoor study basin,
The calculation formula of the researched watershed energy is
The hydrological model watershed scale determination method based on the similarity of energy processes according to claim 2, wherein E is the energy of the watershed under study.
ここで、A'は屋内モデル流域の出口断面面積、WP'は屋内モデル流域の潤辺、R'は屋内モデル流域の水力平均深さ、J'はモデル流域の分水界から出口断面の主河道までの平均勾配、K1は水平スケール、K2は垂直スケールであり、
h'1、h'2、h'3・・・・・・h'nはモデル流域の河道縦断面の各折曲がり点における河床標高と設計断面における河床標高との差であり、且つh'n=K2 hnであり、L'1、L'2、L'3・・・・・・L'nはモデル流域の各折曲がり点間のセグメント化河道長さであり、且つL'n=K1Lnであり、v'は屋内モデル流域の断面出口流速、Q'は屋外被研究流域の、単位時間あたりに出口断面を通る流量、m'は屋外被研究流域の、単位時間あたりに出口断面を通る流量の質量であり、
前記モデル流域エネルギーの計算式は、
ここで、E'はモデル流域エネルギーであることを特徴とする請求項3に記載のエネルギー過程の類似性に基づく水文モデル流域スケール決定方法。 The formula for the hydrological parameters of the model basin is
Here, A 'the outlet cross-section area of the indoor model basin, W P' is the indoor model basin wetted perimeter, R 'is hydro average depth of indoor model basin, J' is the outlet section from the watershed model basin The average gradient to the main channel, K 1 is the horizontal scale, K 2 is the vertical scale,
h '1, h' 2, h '3 · · · · · · h' n is the difference between the riverbed elevation of riverbed elevation and design section of each fold bending point of river longitudinal section of the model basin, and h ' n = K 2 h n , L' 1 , L' 2 , L' 3 ...L' n is the segmented channel length between each bending point of the model watershed, and L' n = K 1 L n , v'is the cross section outlet flow velocity of the indoor model basin, Q'is the flow rate through the exit cross section per unit time in the outdoor study basin, m'is the unit time in the outdoor study basin Is the mass of the flow rate passing through the outlet cross section,
The model basin energy calculation formula is
The hydrological model watershed scale determination method according to claim 3, wherein E′ is a model watershed energy.
モデル流域と被研究流域の水文パラメータの計算式及びエネルギー関係関数に基づき、垂直スケールの計算式
を得ることを特徴とする請求項4に記載のエネルギー過程の類似性に基づく水文モデル流域スケール決定方法。 The energy relation function is E'=K 4 E, where K 4 is the energy similarity coefficient,
Vertical scale calculation formula based on the hydrological parameter calculation formula and energy relation function of the model basin and the research basin
The hydrological model watershed scale determination method based on the similarity of energy processes according to claim 4, wherein
前記被研究流域のベクトル情報抽出方法は、被研究流域の地形データと降雨量観測ステーションの位置を取得するステップと、前記地形データと降雨量観測ステーションの位置をArcGisに導入して被研究流域の形状と降雨量観測ステーションの位置のベクトル情報を得るステップとを含むことを特徴とする請求項1-5のいずれか一項に記載のエネルギー過程の類似性に基づく水文モデル流域スケール決定方法。
The vector information of the research basin includes vector information of the shape of the research basin and vector information of the position of the rainfall observation station,
The method for extracting vector information of the research basin includes a step of acquiring topographical data and a position of a rainfall observation station of the research basin, and introducing the topographical data and the position of the rainfall observation station into ArcGis. 6. A hydrological model watershed scale determination method based on the similarity of energy processes according to any one of claims 1-5, further comprising the step of obtaining vector information of the shape and the position of the rainfall observation station.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810650829.4 | 2018-06-22 | ||
CN201810650829.4A CN108829986B (en) | 2018-06-22 | 2018-06-22 | Hydrological experiment model scale determination method based on energy process similarity |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020003490A JP2020003490A (en) | 2020-01-09 |
JP6736731B2 true JP6736731B2 (en) | 2020-08-05 |
Family
ID=64137376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019115057A Active JP6736731B2 (en) | 2018-06-22 | 2019-06-21 | Hydrological model watershed scale determination method based on energy process similarity |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6736731B2 (en) |
CN (1) | CN108829986B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111350161B (en) * | 2020-03-19 | 2021-09-17 | 水利部交通运输部国家能源局南京水利科学研究院 | Method for controlling boundary through estuary and coast model test |
CN111814356A (en) * | 2020-07-28 | 2020-10-23 | 安徽沃特水务科技有限公司 | Double-reference model checking method based on flow online monitoring |
CN113221312B (en) * | 2021-02-05 | 2022-09-02 | 中国人民解放军国防科技大学 | Sea surface roughness parameterization method based on sea waves and sea foam |
CN112948936B (en) * | 2021-03-10 | 2023-08-11 | 长安大学 | Three-dimensional simulation method for water accumulation condition of high-speed pavement in rainy weather |
CN113158468B (en) * | 2021-04-25 | 2024-01-30 | 黄河勘测规划设计研究院有限公司 | Sand prevention flat bottom ship parameter determination method and device suitable for sediment-laden river |
CN113742820B (en) * | 2021-08-23 | 2024-01-26 | 福建省水利水电勘测设计研究院有限公司 | Numerical simulation method for analyzing energy dissipation effect of flood diversion tunnel outlet stilling pool |
CN114357737B (en) * | 2021-12-21 | 2024-04-05 | 武汉大学 | Agent optimization calibration method for time-varying parameters of large-scale hydrologic model |
CN115326026B (en) * | 2022-07-05 | 2024-09-20 | 武汉大学 | Method and device for acquiring hydraulic characteristics based on non-contact measurement-hydrodynamic fusion assimilation |
CN116522446B (en) * | 2023-04-28 | 2023-12-05 | 珠江水利委员会珠江水利科学研究院 | Method for defining main channel of estuary bay tidal current sediment |
CN116932990B (en) * | 2023-09-14 | 2024-01-09 | 南方科技大学 | Hydrogeologic parameter estimation method and system based on transfer function method |
CN117951540B (en) * | 2023-10-19 | 2024-10-18 | 中国水利水电科学研究院 | Basin similarity analysis method based on feature cubes |
CN117852290B (en) * | 2024-01-11 | 2024-10-11 | 长江水利委员会水文局 | Partition optimization adjustment method for distributed water storage capacity parameters |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5451164A (en) * | 1991-06-12 | 1995-09-19 | Atlantic Richfield Company | Method and system for geophysical and geologic modeling |
CN102034001A (en) * | 2010-12-16 | 2011-04-27 | 南京大学 | Design method for distributed hydrological model by using grid as analog unit |
-
2018
- 2018-06-22 CN CN201810650829.4A patent/CN108829986B/en active Active
-
2019
- 2019-06-21 JP JP2019115057A patent/JP6736731B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN108829986B (en) | 2022-12-27 |
CN108829986A (en) | 2018-11-16 |
JP2020003490A (en) | 2020-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6736731B2 (en) | Hydrological model watershed scale determination method based on energy process similarity | |
CN111369059B (en) | Urban waterlogging rapid prediction method and system based on rain and flood simulation coupling model | |
Luo et al. | Urban flood numerical simulation: Research, methods and future perspectives | |
Rodriguez et al. | High-resolution numerical simulation of flow through a highly sinuous river reach | |
Majidi et al. | Simulation of rainfall-runoff process using Green-Ampt method and HEC-HMS model (Case study: Abnama Watershed, Iran) | |
CN109657418A (en) | A kind of Water Environment In Lakes capacity calculation methods based on MIKE21 | |
CN109815305A (en) | A kind of method of Cross Some Region Without Data play flood runoff process inverting | |
JP2008050903A (en) | Flood prediction method and flood prediction system | |
CN108334660A (en) | A kind of the water sand prediction technique and system of the strong alluvial stream based on data assimilation | |
CN111898303A (en) | River basin water level and waterlogging forecasting method based on weather forecasting and hydrodynamic simulation | |
CN114647881B (en) | Urban waterlogging modeling method considering microscopic hydrologic process of building | |
Lee et al. | Study on inlet discharge coefficient through the different shapes of storm drains for urban inundation analysis | |
CN109308375A (en) | A kind of measuring method of the basin optimal flow rate based on landforms parameter | |
CN115510771A (en) | Community rainfall logging numerical simulation method based on hydrodynamics hydrodynamic coupling model | |
Feldmann et al. | Near surface roughness estimation: A parameterization derived from artificial rainfall experiments and two-dimensional hydrodynamic modelling for multiple vegetation coverages | |
Gyori et al. | Unit hydrograph generation for ungauged subwatersheds. Case study: the Monoroştia river, Arad County, Romania | |
Zhu | GIS based urban flood inundation modeling | |
CN115511291A (en) | Karst depression water passing capacity analysis method based on inland inundation water depth monitoring | |
CN108875222B (en) | Hydrographic model basin scale determination method based on hydrodynamic process similarity | |
Gautam | Flow routing with Semi-distributed hydrological model HEC-HMS in case of Narayani River Basin. | |
Malekani et al. | Application of GIS in modeling Zilberchai Basin runoff | |
Kang et al. | Two-dimensional hydrodynamic robust numerical model of soil erosion based on slopes and river basins | |
Echeverribar et al. | Numerical simulation of 2D real large scale floods on GPU: the Ebro River | |
Hiroi et al. | Investigation into Feasibility of Data Assimilation Approach for Flood Level Estimation Using Temporal-Spatial State Space Model | |
Rojali et al. | A preliminary comparison of hydrodynamic approaches for flood inundation modeling of urban areas in Jakarta Ciliwung river basin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190730 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190730 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190808 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191120 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200630 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200715 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6736731 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |