JP6736630B2 - Titanium copper, method for producing titanium copper, and electronic component - Google Patents

Titanium copper, method for producing titanium copper, and electronic component Download PDF

Info

Publication number
JP6736630B2
JP6736630B2 JP2018198622A JP2018198622A JP6736630B2 JP 6736630 B2 JP6736630 B2 JP 6736630B2 JP 2018198622 A JP2018198622 A JP 2018198622A JP 2018198622 A JP2018198622 A JP 2018198622A JP 6736630 B2 JP6736630 B2 JP 6736630B2
Authority
JP
Japan
Prior art keywords
copper
titanium
mass
rolling
titanium copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018198622A
Other languages
Japanese (ja)
Other versions
JP2020066756A (en
Inventor
弘泰 堀江
弘泰 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2018198622A priority Critical patent/JP6736630B2/en
Priority to EP19202704.3A priority patent/EP3643799B1/en
Priority to RU2019133232A priority patent/RU2795791C2/en
Publication of JP2020066756A publication Critical patent/JP2020066756A/en
Application granted granted Critical
Publication of JP6736630B2 publication Critical patent/JP6736630B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Metal Rolling (AREA)

Description

本発明は、チタン銅、チタン銅の製造方法及び電子部品に関し、例えば、コネクタ、バッテリー端子、ジャック、リレー、スイッチ、オートフォーカスカメラモジュール、リードフレーム等の電子部品への利用に好適なチタン銅、チタン銅の製造方法及びチタン銅を用いた電子部品に関する。 The present invention relates to titanium copper, a method for producing titanium copper, and electronic parts, for example, titanium copper suitable for use in electronic parts such as connectors, battery terminals, jacks, relays, switches, autofocus camera modules, and lead frames, The present invention relates to a method for producing titanium copper and an electronic component using titanium copper.

近年、電気・電子機器や車載部品に使用されるリードフレーム、コネクタなどの電子部品の小型化が進み、電子部品を構成する銅合金部材の狭ピッチ化及び低背化の傾向が著しい。小型のコネクタほどピン幅が狭く、小さく折り畳んだ加工形状となるため、使用する銅合金部材には、必要なバネ性を得るための高い強度が求められる。この点、チタンを含有する銅合金(以下、「チタン銅」と称する。)は、比較的強度が高く、耐応力緩和特性にあっては銅合金中最も優れているため、特に強度が要求される信号系端子用部材として古くから使用されてきた。 2. Description of the Related Art In recent years, electronic components such as lead frames and connectors used in electric/electronic devices and in-vehicle components have been miniaturized, and there has been a remarkable tendency toward narrower pitch and lower profile of copper alloy members constituting the electronic components. The smaller the connector, the narrower the pin width, and the smaller the folded shape becomes. Therefore, the copper alloy member to be used is required to have high strength for obtaining the required spring property. In this respect, a copper alloy containing titanium (hereinafter referred to as “titanium copper”) has relatively high strength and is the most excellent in stress relaxation resistance among the copper alloys, so that strength is particularly required. It has been used for a long time as a member for signal system terminals.

チタン銅は、時効硬化型の銅合金であり、強度と曲げ加工性のバランスに優れ、加えて耐応力緩和特性が種々の銅合金の中でも特に優れた特性を発揮する。そのため、チタン銅の耐応力緩和特性を維持させたまま、強度や曲げ加工性などの特性を向上させるための開発が行われてきた。 Titanium copper is an age-hardening type copper alloy, and has excellent balance between strength and bending workability, and in addition, exhibits excellent stress relaxation resistance among various copper alloys. Therefore, development has been performed to improve the properties such as strength and bending workability while maintaining the stress relaxation property of titanium copper.

特開2014−185370号公報(特許文献1)には、高強度を維持しながら曲げ加工性に優れ、耐応力緩和性を良好に維持しながら耐疲労特性を改善したCu−Ti系銅合金として、質量%で、Ti:2.0〜5.0%、Ni:0〜1.5%、Co:0〜1.0%、Fe:0〜0.5%、Sn:0〜1.2%、Zn:0〜2.0%、Mg:0〜1.0%、Zr:0〜1.0%、Al:0〜1.0%、Si:0〜1.0%、P:0〜0.1%、B:0〜0.05%、Cr:0〜1.0%、Mn:0〜1.0%、V:0〜1.0%であり、前記元素のうちSn、Zn、Mg、Zr、Al、Si、P、B、Cr、MnおよびVの合計含有量が3.0%以下であり、残部Cuおよび不可避的不純物からなる組成を有する銅合金板材であって、板厚方向に垂直な断面において、粒界反応型析出物の最大幅が500nm以下であり、直径100nm以上の粒状析出物の密度が105個/mm2以下である金属組織を有する銅合金板材の例が記載されている。 Japanese Unexamined Patent Application Publication No. 2014-185370 (Patent Document 1) discloses a Cu-Ti-based copper alloy having excellent bending workability while maintaining high strength and improved fatigue resistance while maintaining good stress relaxation resistance. % By mass, Ti: 2.0 to 5.0%, Ni: 0 to 1.5%, Co: 0 to 1.0%, Fe: 0 to 0.5%, Sn: 0 to 1.2. %, Zn:0 to 2.0%, Mg:0 to 1.0%, Zr:0 to 1.0%, Al:0 to 1.0%, Si:0 to 1.0%, P:0. .About.0.1%, B:0 to 0.05%, Cr:0 to 1.0%, Mn:0 to 1.0%, V:0 to 1.0%, and Sn of the above elements, A copper alloy sheet material having a total content of Zn, Mg, Zr, Al, Si, P, B, Cr, Mn, and V of 3.0% or less, and a composition of the balance Cu and inevitable impurities. A copper alloy sheet material having a metallographic structure in which the maximum width of grain boundary reactive precipitates is 500 nm or less and the density of granular precipitates having a diameter of 100 nm or more is 10 5 pieces/mm 2 or less in a cross section perpendicular to the plate thickness direction. Examples of are described.

特開2010−126777号公報(特許文献2)には、高強度を維持しながら曲げ加工性に優れ且つ耐応力緩和性にも優れた銅合金板材として、1.2〜5.0質量%のTiを含み、残部がCuおよび不可避的不純物である組成を有し、板面上で無作為に選んだ同一の形状および大きさの複数の領域のそれぞれの領域における結晶粒径の平均値のうちの最大値を最大結晶粒径、それぞれの領域における結晶粒径の平均値のうちの最小値を最小結晶粒径、それぞれの領域における結晶粒径の平均値の平均値を平均結晶粒径とすると、平均結晶粒径が5〜25μm、(最大結晶粒径−最小結晶粒径)/平均結晶粒径が0.20以下であり、銅合金板材の板面における{420}結晶面のX線回折強度をI{420}とし、純銅標準粉末の{420}結晶面のX線回折強度をI0{420}とすると、I{420}/I0{420}>1.0を満たす結晶配向を有することを特徴とする、銅合金板材の例が記載されている。 Japanese Unexamined Patent Application Publication No. 2010-126777 (Patent Document 2) discloses a copper alloy sheet having excellent bending workability and stress relaxation resistance while maintaining high strength. Of the average value of the crystal grain size in each region of the plurality of regions having the same shape and size randomly selected on the plate surface, which has a composition containing Ti and the balance being Cu and unavoidable impurities The maximum value is the maximum grain size, the minimum value of the average grain sizes in each region is the minimum grain size, and the average value of the average grain sizes in each region is the average grain size. , Average crystal grain size of 5 to 25 μm, (maximum crystal grain size-minimum crystal grain size)/average crystal grain size of 0.20 or less, and X-ray diffraction of {420} crystal plane on the plate surface of the copper alloy plate material. When the intensity is I{420} and the X-ray diffraction intensity of the {420} crystal plane of the pure copper standard powder is I 0 {420}, a crystal orientation satisfying I{420}/I 0 {420}>1.0 is obtained. An example of a copper alloy sheet material characterized by having is described.

特開2008−308734号公報(特許文献3)には、高強度と優れた曲げ加工性、耐応力緩和性とを同時に具備し、スプリングバックについても改善した銅合金板材として、質量%で、Ti:1.0〜5.0%、残部Cuおよび不可避的不純物からなる組成を有し、I{420}/I0{420}>1.0を満たす結晶配向を有し、平均結晶粒径が10〜60μmである銅合金板材の例が記載されている。 Japanese Unexamined Patent Application Publication No. 2008-308734 (Patent Document 3) discloses a copper alloy plate material having high strength, excellent bending workability, and stress relaxation resistance at the same time, and improved springback, in a mass% of Ti : 1.0 to 5.0%, the balance being Cu and unavoidable impurities, having a crystal orientation satisfying I{420}/I 0 {420}>1.0, and having an average crystal grain size of An example of a copper alloy sheet material having a thickness of 10 to 60 μm is described.

特開平7−258803号公報(特許文献4)には、溶体化処理−冷間圧延工程の製造工程を調整することにより強度と曲げ加工性を改善した高強度銅合金の製造方法として、重量割合にてTi:0.01〜4.0%を含有し、残部がCuおよび不可避的不純物からなる銅合金に、(1)800℃以上の温度で240秒以内かつ平均結晶粒径が20μmを越えない熱処理条件で行う1回目の溶体化処理、(2)80%未満の加工度で行う1回目の冷間圧延、(3)800℃以上の温度で240秒以内かつ平均結晶粒径が1〜20μmを越えない範囲となる熱処理条件で行う2回目の溶体化処理、(4)50%以下の加工度で行う2回目の冷間圧延、(5)300〜700℃の温度で1時間以上15時間未満の時効処理、を順次施すことを特徴とする曲げ性および応力緩和特性に優れたチタン銅合金の製造方法が記載されている。 Japanese Unexamined Patent Publication No. 7-258803 (Patent Document 4) describes a weight ratio as a method for producing a high-strength copper alloy having improved strength and bending workability by adjusting the production process of solution treatment-cold rolling process. In a copper alloy containing Ti: 0.01 to 4.0% and the balance of Cu and unavoidable impurities, (1) at a temperature of 800° C. or higher, within 240 seconds and with an average crystal grain size exceeding 20 μm. The first solution heat treatment performed under no heat treatment condition, (2) the first cold rolling performed at a workability of less than 80%, (3) the temperature of 800° C. or higher within 240 seconds and the average grain size of 1 to 1. Second solution heat treatment performed under heat treatment conditions not exceeding 20 μm, (4) Second cold rolling performed at a workability of 50% or less, (5) At a temperature of 300 to 700° C. for 1 hour or more 15 There is described a method for producing a titanium-copper alloy having excellent bendability and stress relaxation characteristics, which is characterized by sequentially performing aging treatment for less than time.

特開2014−185370号公報JP, 2014-185370, A 特開2010−126777号公報JP, 2010-126777, A 特開2008−308734号公報JP 2008-308734 A 特開平7−258803号公報JP, 7-258803, A

近年、電子機器は高機能化に加えて更に高い信頼性も求められており、電子機器に使用される電子部品も同様に高い信頼性が求められている。中でも、耐熱性は、重要な指標のひとつであり、従来よりも高いレベルが求められている。チタン銅は耐応力緩和特性に比較的優れていることが知られているが、特許文献1〜4のチタン銅合金もまだ十分な耐応力緩和特性が得られているとはいえず、耐応力緩和特性の更なる向上が望まれている。 In recent years, electronic devices are required to have higher reliability in addition to higher functionality, and electronic components used in electronic devices are also required to have high reliability. Among them, heat resistance is one of the important indexes, and a higher level than before is required. It is known that titanium copper is relatively excellent in stress relaxation resistance, but it cannot be said that the titanium copper alloys of Patent Documents 1 to 4 have yet obtained sufficient stress relaxation resistance. Further improvement of relaxation characteristics is desired.

上記課題に鑑み、本開示は、優れた耐応力緩和特性を有するチタン銅、チタン銅の製造方法及びチタン銅を用いた電子部品を提供する。 In view of the above problems, the present disclosure provides titanium copper having excellent stress relaxation resistance, a method for producing titanium copper, and an electronic component using the titanium copper.

本発明者は上記課題を解決すべく鋭意検討を重ねた結果、圧延面に対するEBSD測定において算出された結晶粒内の方位差(GOS)とその面積率、及びシュミット因子が所定値となる結晶粒の面積率がそれぞれ特定の範囲となるチタン銅が、耐応力緩和特性に優れていることを見出した。 The present inventor has conducted extensive studies in order to solve the above-mentioned problems, and as a result, the misorientation (GOS) in the crystal grains calculated in the EBSD measurement with respect to the rolled surface and the area ratio thereof, and the crystal grain where the Schmid factor has a predetermined value It was found that the titanium-copper having the area ratios in the respective ranges above are excellent in stress relaxation resistance.

本発明の実施の形態に係るチタン銅は一側面において、Tiを2.0〜4.5質量%含有し、第三元素としてFe、Co、Ni、Cr、Zn、Zr、P、B、Mo、V、Nb、Mn、Mg、及びSiからなる群から選択された1種以上を合計で0〜0.5質量%含有し、残部が銅及び不可避的不純物からなり、圧延面に対するEBSD測定における結晶方位解析において、方位差5°以上を結晶粒界とみなしたときのGOS(Grain Orientation Spread)が2〜6°となる結晶粒の面積率が60〜90%であり、シュミット因子が0.35以下となる結晶粒の面積率が5〜20%であることを特徴とするチタン銅である。 In one aspect, the titanium-copper according to the embodiment of the present invention contains 2.0 to 4.5 mass% of Ti, and Fe, Co, Ni, Cr, Zn, Zr, P, B and Mo as the third element. , V, Nb, Mn, Mg, and Si are contained in a total amount of 0 to 0.5% by mass, and the balance is copper and inevitable impurities. In the crystal orientation analysis, the area ratio of the crystal grains having a GOS (Grain Orientation Spread) of 2 to 6° when the orientation difference of 5° or more is regarded as a crystal grain boundary is 60 to 90%, and the Schmid factor is 0. The area ratio of crystal grains of 35 or less is 5 to 20%, which is titanium copper.

本発明の実施の形態に係るチタン銅の製造方法は一側面において、Tiを2.0〜4.5質量%含有し、第三元素としてFe、Co、Ni、Cr、Zn、Zr、P、B、Mo、V、Nb、Mn、Mg、及びSiからなる群から選択された1種以上を合計で0〜0.5質量%含有し、残部が銅及び不可避的不純物からなるチタン銅のインゴットを鋳造し、熱間圧延した後、冷間圧延工程及びその後の最終溶体化処理工程を行うことを含むチタン銅の製造方法であって、熱間圧延工程が、インゴットに対し、1パスあたりの圧縮歪を0.15〜0.30とし、700〜900℃での最大歪速度が2.0〜6.0/sとなるように処理し、最終溶体化処理工程が、Tiの添加量(質量%)をXとする場合に、加熱温度(℃)を52×X+610〜52×X+680とし、保持時間を5〜60秒で処理すること
を特徴とするチタン銅の製造方法である。
In one aspect, the method for producing titanium copper according to the embodiment of the present invention contains Ti in an amount of 2.0 to 4.5% by mass, and Fe, Co, Ni, Cr, Zn, Zr, P, and A titanium-copper ingot containing 0 to 0.5 mass% in total of one or more selected from the group consisting of B, Mo, V, Nb, Mn, Mg, and Si, with the balance comprising copper and unavoidable impurities. A method for producing titanium copper, comprising casting, hot-rolling, and then performing a cold-rolling step and a final solution treatment step thereafter, wherein the hot-rolling step is performed for each ingot with respect to one pass. The compressive strain was set to 0.15 to 0.30, and the treatment was performed so that the maximum strain rate at 700 to 900° C. was 2.0 to 6.0/s. Mass%) is X, the heating temperature (° C.) is 52×X+610 to 52×X+680, and the holding time is 5 to 60 seconds.

本発明によれば優れた耐応力緩和特性を有するチタン銅、チタン銅の製造方法及びチタン銅を用いた電子部品が得られる。 According to the present invention, titanium copper having excellent stress relaxation resistance, a method for producing titanium copper, and an electronic component using titanium copper can be obtained.

応力緩和率の測定原理を説明する図である。It is a figure explaining the measurement principle of a stress relaxation rate. 応力緩和率の測定原理を説明する図である。It is a figure explaining the measurement principle of a stress relaxation rate.

(Ti濃度)
本発明の実施の形態に係るチタン銅においては、Ti濃度を2.0〜4.5質量%とする。チタン銅は、溶体化処理によりCuマトリックス中へTiを固溶させ、時効処理により微細な析出物を合金中に分散させることにより、強度及び導電率を上昇させる。
Ti濃度が2.0質量%未満になると、析出物の析出が不充分となり所望の強度が得られない。Ti濃度が4.5質量%を超えると、加工性が劣化し、圧延の際に材料が割れやすくなる。強度及び加工性のバランスを考慮すると、好ましいTi濃度は2.5〜3.5質量%である。
(Ti concentration)
In the titanium copper according to the embodiment of the present invention, the Ti concentration is 2.0 to 4.5 mass %. Titanium-copper increases the strength and conductivity by solid-solutioning Ti in a Cu matrix by solution treatment and dispersing fine precipitates in the alloy by aging treatment.
If the Ti concentration is less than 2.0% by mass, the precipitation of precipitates will be insufficient and the desired strength cannot be obtained. If the Ti concentration exceeds 4.5 mass %, the workability deteriorates and the material is likely to crack during rolling. Considering the balance between strength and workability, the preferable Ti concentration is 2.5 to 3.5 mass %.

(第三元素)
本発明の実施の形態に係るチタン銅においては、Fe、Co、Ni、Cr、Zn、Zr、P、B、Mo、V、Nb、Mn、Mg、及びSiからなる群から選択される第三元素の1種以上を含有させることにより、強度を更に向上させることができる。但し、第三元素の合計濃度が0.5質量%を超えると、加工性が劣化し、圧延の際に材料が割れやすくなる。そこで、これら第三元素は合計で0〜0.5質量%含有することができ、強度及び加工性のバランスを考慮すると、上記元素の1種以上を総量で0.1〜0.4質量%含有させることが好ましい。なお、添加元素ごとには、Zr、P、B、V、MgおよびSiは0.01〜0.15質量%、Fe、Co、Ni、Cr、Mo、NbおよびMnは0.01〜0.3質量%、Znは0.1〜0.5質量%含有させることができる。
(Third element)
In the titanium copper according to the embodiment of the present invention, the third selected from the group consisting of Fe, Co, Ni, Cr, Zn, Zr, P, B, Mo, V, Nb, Mn, Mg, and Si. The strength can be further improved by containing at least one element. However, if the total concentration of the third element exceeds 0.5% by mass, the workability deteriorates and the material is easily cracked during rolling. Therefore, these third elements can be contained in a total amount of 0 to 0.5% by mass, and considering the balance of strength and workability, the total amount of one or more of the above elements is 0.1 to 0.4% by mass. It is preferable to contain it. For each additive element, Zr, P, B, V, Mg, and Si are 0.01 to 0.15 mass %, and Fe, Co, Ni, Cr, Mo, Nb, and Mn are 0.01 to 0. 3 mass% and Zn can be contained by 0.1-0.5 mass %.

(GOS)
本発明の実施の形態に係るチタン銅においては、結晶粒内の平均方位差を定量化したGrain Orientation Spread(GOS)を一定の範囲に制御することが特徴である。具体的には、GOSが2〜6°となる結晶粒の面積率が60〜90%とする。GOSが上記範囲内であれば、結晶粒内に微細な析出があることを意味し、これにより耐応力緩和特性を向上させることができる。
(GOS)
The titanium copper according to the embodiment of the present invention is characterized in that the Grain Orientation Spread (GOS) that quantifies the average orientation difference in the crystal grains is controlled within a certain range. Specifically, the area ratio of the crystal grains where GOS is 2 to 6° is 60 to 90%. When the GOS is within the above range, it means that there is fine precipitation in the crystal grains, which can improve the stress relaxation resistance property.

GOSが2〜6°となる結晶粒の面積率が60%より小さいと、微細な析出物が不足し、耐応力緩和特性が向上しない。一方、GOSが2〜6°となる結晶粒の面積率が90%より大きいと、粗大な析出が増えるため、耐応力緩和特性が向上しない。GOSが2〜6°となる結晶粒の面積率は、好ましくは65〜85%であり、より好ましくは70〜80%である。 When the area ratio of the crystal grains where GOS is 2 to 6° is smaller than 60%, fine precipitates are insufficient and the stress relaxation resistance property is not improved. On the other hand, if the area ratio of the crystal grains where GOS is 2 to 6° is larger than 90%, coarse precipitation increases, and the stress relaxation resistance property is not improved. The area ratio of the crystal grains in which GOS is 2 to 6° is preferably 65 to 85%, more preferably 70 to 80%.

本実施形態において「GOS」とは、圧延面に対するEBSD(Electron Back Scatter Diffraction:電子後方散乱解析)測定における結晶方位解析において、EBSDに付属している解析ソフト(例えば、TSLソリューションズ社製のOIM Analysis)を用いて、方位差5°以上を結晶粒界とみなしたときの各結晶粒内の全ピクセル間の方位差の平均値を示すものであり、結晶粒内のあるピクセルと残りの全てのピクセル間の方位差の平均値を計算し、これを全結晶粒に対しておこなったときの平均値である。 In the present embodiment, “GOS” means analysis software attached to EBSD (for example, OIM Analysis manufactured by TSL Solutions, Inc.) in crystal orientation analysis in EBSD (Electron Back Scatter Diffraction) measurement on a rolled surface. ) Is used to show the average value of the orientation difference between all the pixels in each crystal grain when the orientation difference of 5° or more is regarded as a crystal grain boundary. This is an average value when the average value of the orientation difference between pixels is calculated and this is performed for all the crystal grains.

本実施形態ではEBSD測定における測定条件として以下を採用する。
(a)SEM条件
・ビーム条件:加速電圧15kV、照射電流量5×10-8
・ワークディスタンス:25mm
・観察視野:150μm×150μm
・観察面:圧延面
・観察面の事前処理:リン酸67%+硫酸10%+水の溶液中で15V×60秒の条件で電解研磨して組織を現出
(b)EBSD条件
・測定プログラム:OIM Data Collection
・データ解析プログラム:OIM Analysis(Ver.5.3)
・ステップ幅:0.25μm
In this embodiment, the following are adopted as the measurement conditions in the EBSD measurement.
(A) SEM conditions ・Beam conditions: acceleration voltage 15 kV, irradiation current amount 5×10 -8 A
・Work distance: 25mm
・Observation field: 150 μm × 150 μm
・Observation surface: Rolled surface ・Preliminary treatment of observation surface: Electropolishing in a solution of phosphoric acid 67%+sulfuric acid 10%+water under conditions of 15 V×60 seconds to reveal the structure (b) EBSD condition ・measurement program : OIM Data Collection
・Data analysis program: OIM Analysis (Ver.5.3)
・Step width: 0.25 μm

(シュミット因子)
本発明に係るチタン銅においては、シュミット因子が0.35以下となる結晶粒の面積率が5〜20%に制御されている。シュミット因子が0.35以下となる結晶粒の面積率が5〜20%であれば、前述したGOSが2〜6°となる結晶粒の面積率と相まって、本発明に係るチタン銅の耐応力緩和特性を向上させることができる。
(Schmidt factor)
In the titanium copper according to the present invention, the area ratio of crystal grains having a Schmid factor of 0.35 or less is controlled to 5 to 20%. When the area ratio of the crystal grains having a Schmid factor of 0.35 or less is 5 to 20%, the stress resistance of the titanium copper according to the present invention is combined with the area ratio of the crystal grains having the GOS of 2 to 6°. The relaxation characteristics can be improved.

材料にすべり変形が起こるときに必要なせん断応力τは、τ=σcosφcosλと表すことができる。ここで、σは引張応力であり、φは引張軸とすべり面の法線のなす角、λは引張軸とすべり方向のなす角を指し、cosφcosλの部分がシュミット因子である。シュミット因子は0〜0.5の値をとり、変形のしやすさを表す。すなわち、シュミット因子が小さいと変形しにくく、大きいと変形しやすいことを意味する。シュミット因子が0.35以下となる結晶粒の面積率が20%を超えると、応力を加えた時の抵抗が大きくなり、ひずみがたまりやすくなった結果、耐応力緩和特性は向上しない。シュミット因子が0.35以下となる結晶粒の面積率が小さいほど耐応力緩和特性は向上するが、完全に再結晶させた状態でシュミット因子が0.35以下となる結晶粒の面積率を5%未満に制御することは現実的には難しい。この観点から、シュミット因子が0.35以下となる結晶粒の面積率は、好ましくは6〜18%、より好ましくは7〜16%である。 The shear stress τ required when the material undergoes slip deformation can be expressed as τ=σcosφcosλ. Here, σ is the tensile stress, φ is the angle between the tensile axis and the normal to the slip surface, λ is the angle between the tensile axis and the slip direction, and the cosφcosλ portion is the Schmid factor. The Schmid factor takes a value of 0 to 0.5 and represents the easiness of deformation. That is, when the Schmid factor is small, it is difficult to deform, and when the Schmit factor is large, it is easy to deform. If the area ratio of the crystal grains with the Schmitt factor of 0.35 or less exceeds 20%, the resistance when stress is applied increases, and the strain easily accumulates. As a result, the stress relaxation resistance does not improve. The smaller the area ratio of the crystal grains with a Schmid factor of 0.35 or less, the more the stress relaxation resistance is improved, but the area ratio of the crystal grains with a Schmit factor of 0.35 or less when completely recrystallized is 5 or less. It is practically difficult to control it to be less than %. From this viewpoint, the area ratio of the crystal grains having a Schmid factor of 0.35 or less is preferably 6 to 18%, more preferably 7 to 16%.

なお、本実施形態において「シュミット因子」とは、圧延面に対するEBSD(Electron Back Scatter Diffraction:電子後方散乱解析)測定における結晶方位解析において、EBSDに付属している解析ソフト(例えば、TSLソリューションズ社製のOIM Analysis)を用いて、方位差5°以上を結晶粒界とみなしたときの個々の結晶粒について算出した結果を意味するものであり、EBSD測定における測定条件として、以下を採用する。
(a)SEM条件
・ビーム条件:加速電圧15kV、照射電流量5×10-8
・ワークディスタンス:25mm
・観察視野:150μm×150μm
・観察面:圧延面
・観察面の事前処理:リン酸67%+硫酸10%+水の溶液中で15V×60秒の条件で電解研磨して組織を現出
In the present embodiment, the “Schmid factor” means the analysis software attached to the EBSD (for example, manufactured by TSL Solutions Inc.) in the crystal orientation analysis in the EBSD (Electron Back Scatter Diffraction: Electron Backscatter Diffraction) measurement on the rolled surface. OIM Analysis) is used to mean the result calculated for each crystal grain when the misorientation of 5° or more is regarded as a crystal grain boundary, and the following is adopted as the measurement condition in the EBSD measurement.
(A) SEM conditions ・Beam conditions: acceleration voltage 15 kV, irradiation current amount 5×10 -8 A
・Work distance: 25mm
・Observation field: 150 μm × 150 μm
・Observation surface: Rolled surface ・Pre-treatment of observation surface: Electrolytic polishing in a solution of phosphoric acid 67%+sulfuric acid 10%+water under conditions of 15V×60 seconds to reveal the structure

(耐応力緩和特性)
本発明の実施の形態に係るチタン銅は優れた耐応力緩和特性を有することができる。一実施形態においては、チタン銅を300℃で10時間保持した後の応力緩和率が10%以下であるという特徴を有する。
(Stress relaxation property)
The titanium copper according to the embodiment of the present invention can have excellent stress relaxation resistance. One embodiment is characterized in that the stress relaxation rate after holding titanium copper at 300° C. for 10 hours is 10% or less.

(平均結晶粒径)
強度、曲げ加工性及び疲労特性をバランス良く高める観点から、本発明に係るチタン銅の一実施形態においては、圧延面における平均結晶粒径を2〜30μmの範囲に制御することが好ましく、2〜15μmの範囲に制御することがより好ましく、2〜10μmの範囲に制御することが更により好ましい。
(Average grain size)
From the viewpoint of enhancing the strength, bending workability, and fatigue characteristics in a well-balanced manner, in one embodiment of the titanium-copper according to the present invention, it is preferable to control the average crystal grain size on the rolled surface to a range of 2 to 30 μm, It is more preferable to control in the range of 15 μm, and it is even more preferable to control in the range of 2 to 10 μm.

平均結晶粒径とは、前述した結晶粒径の変動係数の算出に用いられる平均結晶粒径と同様、圧延面に対するEBSD(Electron Back Scatter Diffraction:電子後方散乱回折)測定における結晶方位解析により、EBSDに付属している解析ソフト(例:TSLソリューションズ社製のOIM Analysis)を用いて、方位差5°以上を結晶粒界とみなした場合における平均結晶粒径をいう。 The average crystal grain size is the same as the average crystal grain size used for calculating the coefficient of variation of the crystal grain size described above, and the EBSD (Electron Back Scatter Diffraction) measurement on the rolling surface is performed by the crystal orientation analysis to determine the EBSD. The average crystal grain size when the orientation difference of 5° or more is regarded as a crystal grain boundary using the analysis software (eg, OIM Analysis manufactured by TSL Solutions) attached to the above.

(0.2%耐力)
本発明の実施の形態に係るチタン銅においては一実施形態において、圧延方向に平行な方向での0.2%耐力が800MPa以上を達成することができる。本発明に係るチタン銅の0.2%耐力は好ましい実施形態において850MPa以上であり、更に好ましい実施形態において900MPa以上であり、更に好ましい実施形態においては950MPa以上である。
(0.2% proof stress)
In the titanium copper according to the embodiment of the present invention, in one embodiment, 0.2% proof stress in a direction parallel to the rolling direction can achieve 800 MPa or more. The 0.2% proof stress of titanium copper according to the present invention is 850 MPa or more in a preferred embodiment, 900 MPa or more in a more preferred embodiment, and 950 MPa or more in a more preferred embodiment.

0.2%耐力の上限値は、本発明が目的とする強度の点からは特に規制されないが、手間及び費用がかかることから、本発明に係るチタン銅の0.2%耐力は一般には1300MPa以下であり、典型的には1200MPa以下であり、より典型的には1100MPa以下である。 The upper limit of the 0.2% proof stress is not particularly limited in terms of the strength intended by the present invention, but since it takes time and cost, the 0.2% proof stress of the titanium copper according to the present invention is generally 1300 MPa. Or less, typically 1200 MPa or less, and more typically 1100 MPa or less.

本発明においては、チタン銅の圧延方向に平行な方向での0.2%耐力は、JIS−Z2241(2011)(金属材料引張試験方法)に準拠して測定する。 In the present invention, the 0.2% proof stress in the direction parallel to the rolling direction of titanium copper is measured according to JIS-Z2241 (2011) (metal material tensile test method).

(チタン銅の厚み)
本発明に係るチタン銅の一実施形態においては、厚みを1.0mm以下とすることができ、典型的な実施形態においては厚みを0.02〜0.8mmとすることができ、より典型的な実施形態においては厚みを0.05〜0.5mmとすることができる。
(Thickness of titanium copper)
In one embodiment of the titanium-copper according to the present invention, the thickness can be 1.0 mm or less, and in a typical embodiment, the thickness can be 0.02-0.8 mm, and more typically. In another embodiment, the thickness can be 0.05-0.5 mm.

(用途)
本発明に係るチタン銅は種々の伸銅品、例えば板、条、管、棒及び線に加工することができる。本発明に係るチタン銅は、限定的ではないが、スイッチ、コネクタ、オートフォーカスカメラモジュール、ジャック、端子(特に、バッテリー端子)、リレー等の電子部品における導電材やばね材として好適に使用することができる。これらの電子部品は例えば車載部品や電気・電子機器用部品として使用可能である。
(Use)
The titanium-copper according to the present invention can be processed into various copper products such as plates, strips, tubes, rods and wires. The titanium copper according to the present invention is preferably used as a conductive material or a spring material in electronic parts such as, but not limited to, switches, connectors, autofocus camera modules, jacks, terminals (particularly battery terminals) and relays. You can These electronic components can be used as, for example, in-vehicle components or components for electric/electronic devices.

(製造方法)
以下、本発明の実施の形態に係るチタン銅の製造方法は、Tiを2.0〜4.5質量%含有し、第三元素としてFe、Co、Ni、Cr、Zn、Zr、P、B、Mo、V、Nb、Mn、Mg、及びSiからなる群から選択された1種以上を合計で0〜0.5質量%含有し、残部が銅及び不可避的不純物からなるチタン銅のインゴットを鋳造し、熱間圧延した後、冷間圧延工程及びその後の最終溶体化処理工程を行うことを含む。以下に、本実施形態に係るチタン銅の好適な製造例について、工程毎に順次説明する。
(Production method)
Hereinafter, the manufacturing method of titanium copper according to the embodiment of the present invention contains 2.0 to 4.5 mass% of Ti, and Fe, Co, Ni, Cr, Zn, Zr, P, B as the third element. A titanium-copper ingot containing at least one selected from the group consisting of Mo, V, Nb, Mn, Mg, and Si in a total amount of 0 to 0.5% by mass, with the balance being copper and inevitable impurities. After casting and hot rolling, it includes performing a cold rolling step and a subsequent final solution treatment step. Hereinafter, a preferable example of manufacturing titanium copper according to the present embodiment will be described step by step.

<インゴット製造>
溶解及び鋳造によるインゴットの製造は、基本的に真空中又は不活性ガス雰囲気中で行う。溶解において添加元素の溶け残りがあると、強度の向上に対して有効に作用しない。よって、溶け残りをなくすため、FeやCr等の高融点の第三元素は、添加してから十分に攪拌したうえで、一定時間保持する必要がある。一方、TiはCu中に比較的溶け易いので第三元素の溶解後に添加すればよい。従って、Cuに、Fe、Co、Ni、Cr、Zn、Zr、P、B、Mo、V、Nb、Mn、Mg、及びSiからなる群から選択される1種以上を合計で0〜0.5質量%含有するように添加し、次いでTiを2.0〜4.5質量%含有するように添加してインゴットを製造することが望ましい。
<Ingot manufacturing>
The production of ingots by melting and casting is basically carried out in vacuum or in an inert gas atmosphere. If there is an undissolved portion of the additional element in the dissolution, it will not work effectively for improving the strength. Therefore, in order to eliminate the undissolved residue, it is necessary to add a high melting point third element such as Fe or Cr, sufficiently stir it, and then hold it for a certain period of time. On the other hand, Ti is relatively easily dissolved in Cu, so it may be added after the third element is dissolved. Therefore, in Cu, one or more kinds selected from the group consisting of Fe, Co, Ni, Cr, Zn, Zr, P, B, Mo, V, Nb, Mn, Mg, and Si in total of 0 to 0. It is desirable to add 5 mass% and then add Ti to 2.0 to 4.5 mass% to produce an ingot.

<均質化焼鈍及び熱間圧延>
インゴット製造時に生じた凝固偏析や晶出物は粗大なので均質化焼鈍でできるだけ母相に固溶させて小さくし、可能な限り無くすことが望ましい。これは曲げ割れの防止に効果があるからである。具体的には、インゴット製造工程後には、900〜970℃に加熱して3〜24時間均質化焼鈍を行った後に、熱間圧延を実施するのが好ましい。液体金属脆性を防止するために、熱延前及び熱延中は960℃以下とし、且つ、元厚から全体の圧下率加工度が80%までのパスは800℃以上とするのが好ましい。
<Homogenized annealing and hot rolling>
Since the solidification segregation and crystallized substances generated during the production of ingots are coarse, it is desirable to make them as small as possible by forming a solid solution in the matrix phase by homogenizing annealing so as to eliminate them. This is because it is effective in preventing bending cracks. Specifically, it is preferable that after the ingot manufacturing step, hot rolling is performed after heating at 900 to 970° C. for homogenization annealing for 3 to 24 hours. In order to prevent liquid metal brittleness, it is preferable that the temperature is 960° C. or lower before and during hot rolling, and 800° C. or higher in the pass from the original thickness to 80% in the overall reduction workability.

本実施形態では、1パスあたりの圧縮歪は0.15〜0.30とし、700〜900℃の最大歪速度は2.0〜6.0/s、好ましい一実施態様では3.0〜5.0とする。これによりGOSやシュミット因子を上述の範囲に制御することが可能になる。尚、1パスあたりの圧縮歪は、圧縮歪であるη=ln{(熱間圧延前の断面積)/(熱間圧延後の断面積)}を熱間圧延での総パス数で除することにより算出することができる。また、歪速度ε(/s)は次式(1)より算出する。 In this embodiment, the compressive strain per pass is 0.15 to 0.30, the maximum strain rate at 700 to 900° C. is 2.0 to 6.0/s, and in one preferred embodiment, 3.0 to 5 .0. This makes it possible to control the GOS and Schmitt factor within the above range. The compressive strain per pass is the compressive strain η=ln{(cross-sectional area before hot rolling)/(cross-sectional area after hot rolling)} divided by the total number of passes in hot rolling. It can be calculated by Further, the strain rate ε(/s) is calculated by the following equation (1).

Figure 0006736630
ここで、H0:入側での板厚(mm)、n:圧延ロールの回転速度(rpm)、R:圧延ロールの半径(mm)、r’:加工度((入側での板厚)−(出側での板厚)/入側での板厚)である。
Figure 0006736630
Here, H 0 : plate thickness on the entry side (mm), n: rotational speed of the rolling roll (rpm), R: radius of the rolling roll (mm), r′: working ratio ((plate thickness on the entry side )-(Thickness at exit side)/(thickness at entrance side).

<冷間圧延及び焼鈍>
熱間圧延後、冷間圧延を行う。冷間圧延の加工度は典型的には60%以上とする。パスあたりの加工度は、当該パスによる圧延を行う前のインゴットの厚さをT0、当該パスによる圧延が終了した時のインゴットの厚さをTとすると、式(2)により求められる。
加工度(%)={(T0−T)/T0}×100 ・・・(2)
次いで、焼鈍を実施することができる。焼鈍の条件は典型的には900℃で1〜5分とする。この冷間圧延及び焼鈍は必要に応じて適宜繰り返すことができる。
<Cold rolling and annealing>
After hot rolling, cold rolling is performed. The workability of cold rolling is typically 60% or more. The workability per pass is calculated by the equation (2), where T 0 is the thickness of the ingot before rolling in the pass and T is the thickness of the ingot when rolling in the pass is completed.
Workability (%)={(T 0 −T)/T 0 }×100 (2)
Annealing can then be performed. The annealing condition is typically 900° C. for 1 to 5 minutes. This cold rolling and annealing can be appropriately repeated if necessary.

<第一溶体化処理>
冷間圧延及び焼鈍を適宜繰り返した後、第一溶体化処理を行うのが好ましい。ここで予め溶体化を行っておく理由は、最終の溶体化処理での負担を軽減させるためである。すなわち、最終の溶体化処理では、第二相粒子を固溶させるための熱処理ではなく、既に溶体化されてあるのだから、その状態を維持しつつ再結晶のみ起こさせればよいので、軽めの熱処理で済む。具体的には、第一溶体化処理は加熱温度を850〜900℃とし、2〜10分間行えばよい。そのときの昇温速度及び冷却速度においても極力速くし、ここでは第二相粒子が析出しないようにするのが好ましい。なお、第一溶体化処理は行わなくても良い。
<First solution treatment>
It is preferable to perform the first solution treatment after appropriately repeating cold rolling and annealing. The reason why the solution treatment is performed in advance here is to reduce the load in the final solution treatment. That is, in the final solution treatment, it is not a heat treatment for solid-solving the second phase particles, but since it has already been solutionized, it is sufficient to cause only recrystallization while maintaining that state. Heat treatment is enough. Specifically, the first solution heat treatment may be performed at a heating temperature of 850 to 900° C. for 2 to 10 minutes. It is preferable that the temperature rising rate and the cooling rate at that time are as fast as possible so that the second phase particles are not precipitated here. The first solution treatment may not be performed.

<中間圧延>
次いで 中間圧延を行う。中間圧延の加工度は典型的には60%以上とする。
<Intermediate rolling>
Then, intermediate rolling is performed. The workability of the intermediate rolling is typically 60% or more.

<最終の溶体化処理>
最終の溶体化処理では、析出物を完全に固溶させることが望ましいが、完全に無くすまで高温に加熱すると、結晶粒が粗大化しやすいので、加熱温度は第二相粒子組成の固溶限付近の温度とする。具体的には、Tiの添加量(質量%)をXとする場合、加熱温度(℃)を52×X+610〜52×X+680の範囲とする。
<Final solution treatment>
In the final solution treatment, it is desirable to completely dissolve the precipitate, but if heated to a high temperature until it completely disappears, the crystal grains tend to coarsen, so the heating temperature is near the solid solution limit of the second phase particle composition. Temperature. Specifically, when the amount of Ti added (% by mass) is X, the heating temperature (° C.) is in the range of 52×X+610 to 52×X+680.

加熱温度が52×X+610℃を下回る場合、未再結晶となり、加熱温度が52×X+680を上回る場合、結晶粒径が粗大化し、最終的に得られるチタン銅の強度はいずれも低下する。 When the heating temperature is lower than 52×X+610° C., it is not recrystallized, and when the heating temperature is higher than 52×X+680, the crystal grain size becomes coarse and the strength of finally obtained titanium copper decreases.

最終の溶体化処理での加熱時間を調整することでGOS及びシュミット因子を制御することができる。加熱時間は、例えば5〜60秒とすることができ、典型的には20〜45秒とすることができる。 The GOS and Schmid factor can be controlled by adjusting the heating time in the final solution treatment. The heating time can be, for example, 5 to 60 seconds, and typically 20 to 45 seconds.

<最終の冷間圧延>
最終の溶体化処理に引き続いて最終の冷間圧延を行う。最終の冷間加工によって強度を高めることができるが、良好な耐応力緩和特性を得るためには、加工度を5〜50%、更には20〜40%とすることが望ましい。
<Final cold rolling>
After the final solution heat treatment, final cold rolling is performed. Although the strength can be increased by the final cold working, the working ratio is preferably 5 to 50%, and more preferably 20 to 40% in order to obtain good stress relaxation resistance.

<時効処理>
最終の冷間圧延に引き続いて時効処理を行う。材料温度300〜500℃で1〜50時間加熱することが好ましく、材料温度350〜450℃で10〜30時間加熱することがより好ましい。時効処理は、酸化被膜の発生を抑制するためにAr、N2、H2等の不活性雰囲気で行うことが好ましい。
<Aging treatment>
Following the final cold rolling, an aging treatment is performed. Heating at a material temperature of 300 to 500° C. for 1 to 50 hours is preferable, and heating at a material temperature of 350 to 450° C. for 10 to 30 hours is more preferable. The aging treatment is preferably performed in an inert atmosphere of Ar, N 2 , H 2 or the like in order to suppress the generation of an oxide film.

以上を総括すると、本発明の実施の形態に係るチタン銅の製造方法は、
Tiを2.0〜4.5質量%含有し、第三元素としてFe、Co、Ni、Cr、Zn、Zr、P、B、Mo、V、Nb、Mn、Mg、及びSiからなる群から選択された1種以上を合計で0〜0.5質量%含有し、残部が銅及び不可避的不純物からなるチタン銅のインゴットを鋳造する工程と、
当該インゴットに対し、1パスあたりの圧縮歪を0.15〜0.30とし、700〜900℃での最大歪速度が2.0〜6.0/sとなるように処理する熱間圧延工程と、
Tiの添加量(質量%)をXとする場合に、加熱温度(℃)を52×X+610〜52×X+680とし、保持時間を5〜60秒で処理する最終溶体化処理工程とを含む。
Summarizing the above, the method for producing titanium copper according to the embodiment of the present invention,
From the group consisting of Fe, Co, Ni, Cr, Zn, Zr, P, B, Mo, V, Nb, Mn, Mg, and Si as the third element, containing 2.0 to 4.5 mass% of Ti. A step of casting an ingot of titanium copper containing the selected one or more kinds in a total amount of 0 to 0.5 mass% and the balance copper and unavoidable impurities;
A hot rolling step of treating the ingot so that the compression strain per pass is 0.15 to 0.30 and the maximum strain rate at 700 to 900° C. is 2.0 to 6.0/s. When,
When the addition amount (% by mass) of Ti is X, the heating temperature (° C.) is 52×X+610 to 52×X+680, and the final solution treatment step is a treatment time of 5 to 60 seconds.

なお、当業者であれば上記各工程の合間に適宜、表面の酸化スケール除去のための研削、研磨、ショットブラスト酸洗等の工程を行なうことができることは理解できるだろう。 It will be understood by those skilled in the art that steps such as grinding, polishing, and shot blast pickling for removing oxide scale on the surface can be appropriately performed between the above steps.

以下に本発明の発明例を比較例と共に示すが、これらは本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 Hereinafter, the invention examples of the present invention will be shown together with comparative examples, but these are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.

表1に示す合金成分を含有し残部が銅及び不可避的不純物からなる合金を実験材料とし、合金成分、熱間圧延及び最終溶体化処理の製造条件が、0.2%耐力、平均結晶粒径、GOS、シュミット因子及び耐応力緩和特性に及ぼす影響を調査した。 An alloy containing the alloy components shown in Table 1 and the balance consisting of copper and unavoidable impurities was used as an experimental material. The alloy components, hot rolling, and final solution heat treatment conditions were 0.2% proof stress and average crystal grain size. , GOS, the Schmid factor and the effect on stress relaxation resistance were investigated.

まず、真空溶解炉にて電気銅2.5kgを溶解し、第三元素を表1に示す配合割合でそれぞれ添加した後、同表に示す配合割合のTiを添加した。添加元素の溶け残りがないよう添加後の保持時間にも十分に配慮した後に、これらをAr雰囲気で鋳型に注入して、それぞれ約2kgのインゴットを製造した。 First, 2.5 kg of electrolytic copper was melted in a vacuum melting furnace, and the third element was added at the mixing ratio shown in Table 1, and then Ti was added at the mixing ratio shown in the same table. After paying sufficient attention to the holding time after addition so as not to leave undissolved additive elements, these were injected into a mold in an Ar atmosphere to produce ingots of about 2 kg each.

上記インゴットに対して950℃で3時間加熱する均質化焼鈍の後、900〜950℃で熱間圧延を行い、板厚10mmの熱延板を得た。面削による脱スケール後、冷間圧延と焼鈍を繰り返して素条の板厚(2.0mm)とし、素条での第一の溶体化処理を行った。第一の溶体化処理の条件は850℃で10分間加熱とし、その後、水冷した。次いで中間の冷間圧延を行った後、最終の溶体化処理を行い、その後、水冷した。次いで、酸洗による脱スケール後、加工度25%の最終冷間圧延を行い板厚0.1mmとし、最後に400℃×15時間の条件で時効処理を行って発明例及び比較例の試験片とした。 After homogenizing annealing in which the ingot was heated at 950° C. for 3 hours, hot rolling was performed at 900 to 950° C. to obtain a hot-rolled sheet having a sheet thickness of 10 mm. After descaling by chamfering, cold rolling and annealing were repeated to obtain a strip thickness (2.0 mm), and the first solution treatment was performed on the strip. The conditions of the first solution heat treatment were heating at 850° C. for 10 minutes and then water cooling. Next, after intermediate cold rolling, final solution treatment was performed, and then water cooling was performed. Then, after descaling by pickling, final cold rolling with a workability of 25% was performed to a plate thickness of 0.1 mm, and finally an aging treatment was performed under the conditions of 400° C.×15 hours to obtain test pieces of the invention examples and comparative examples. And

作製した試験片について、次の評価を行った。
(0.2%耐力)
JIS13B号試験片を作製し、上述した測定方法に従い引張試験機を用いて圧延方向と平行な方向の0.2%耐力を測定した。
The following evaluation was performed about the produced test piece.
(0.2% proof stress)
A JIS 13B test piece was prepared, and 0.2% proof stress in a direction parallel to the rolling direction was measured by using a tensile tester according to the above-described measuring method.

(平均結晶粒径)
各試験片の板面(圧延面)を研磨したのちエッチングし、これに対しEBSD(Electron Back Scatter Diffraction:電子後方散乱回折)測定における結晶方位解析により、EBSDに付属している解析ソフト(例:TSLソリューションズ社製のOIM Analysis)を用いて、方位差5°以上を結晶粒界とみなした場合における平均結晶粒径を測定した。
(Average grain size)
The plate surface (rolled surface) of each test piece was polished and then etched, and the crystal orientation analysis in EBSD (Electron Back Scatter Diffraction) measurement was performed to analyze the software attached to the EBSD (Example: Using OIM Analysis manufactured by TSL Solutions, Inc., the average crystal grain size when the orientation difference of 5° or more was regarded as the crystal grain boundary was measured.

(GOS)
各試験片の板面(圧延面)を研磨したのちエッチングし、これに対しEBSD測定における結晶方位解析を行った。解析ソフト(例:TSLソリューションズ社製のOIM Analysis)を用いて、方位差5°以上を結晶粒界とみなしたときの各結晶粒内の全ピクセル間の方位差の平均値を示し、結晶粒内のあるピクセルと残りの全てのピクセル間の方位差の平均値を計算し、これを全結晶粒に対して行って平均値を算出した。
(GOS)
The plate surface (rolled surface) of each test piece was polished and then etched, and crystal orientation analysis in EBSD measurement was performed on this. Using the analysis software (eg: OIM Analysis manufactured by TSL Solutions Inc.), the average value of the orientation difference between all pixels in each crystal grain when the orientation difference of 5° or more is regarded as a crystal grain boundary is shown. The average value of the orientation difference between a certain pixel and all the remaining pixels was calculated, and this was performed for all the crystal grains to calculate the average value.

(シュミット因子)
各試験片の板面(圧延面)を研磨したのちエッチングし、これに対しEBSD測定における結晶方位解析を行った。解析ソフト(例:TSLソリューションズ社製のOIM Analysis)を用いて、方位差5°以上を結晶粒界とみなしたときの個々の結晶粒のシュミット因子を算出した。
(Schmidt factor)
The plate surface (rolled surface) of each test piece was polished and then etched, and crystal orientation analysis in EBSD measurement was performed on this. The Schmid factor of each crystal grain when the orientation difference of 5° or more was regarded as a crystal grain boundary was calculated using analysis software (eg, OIM Analysis manufactured by TSL Solutions).

(耐応力緩和特性)
試験片を300℃で10時間保持した後の応力緩和率を測定した。幅10mm、長さ100mmの短冊形状の試験片を、試験片の長手方向が圧延方向と平行になるように採取した。図1のように、l=50mmの位置を作用点として、試験片にy0のたわみを与え、圧延方向の0.2%耐力の80%に相当する応力(s)を負荷した。y0は次式により求めた。
0=(2/3)・l2・s / (E・t)
ここで、Eは圧延方向のヤング率であり、tは試料の厚みである。300℃にて10時間加熱後に除荷し、図2のように永久変形量(高さ)yを測定し、応力緩和率{[y(mm)/y0(mm)]×100(%)}を算出した。
応力緩和率が10%以下の場合、耐応力緩和特性が良好(○)とみなした。
(Stress relaxation property)
The stress relaxation rate after the test piece was kept at 300° C. for 10 hours was measured. A strip-shaped test piece having a width of 10 mm and a length of 100 mm was sampled so that the longitudinal direction of the test piece was parallel to the rolling direction. As shown in FIG. 1, the deflection of y 0 was given to the test piece with the position of l=50 mm as the point of action, and the stress (s) corresponding to 80% of the 0.2% proof stress in the rolling direction was applied. y 0 was calculated by the following equation.
y 0 =(2/3)·l 2 ·s / (E·t)
Here, E is Young's modulus in the rolling direction, and t is the thickness of the sample. After heating at 300° C. for 10 hours, the load is removed, the permanent deformation amount (height) y is measured as shown in FIG. 2, and the stress relaxation rate {[y (mm)/y 0 (mm)]×100(%) } Was calculated.
When the stress relaxation rate was 10% or less, the stress relaxation resistance was considered good (◯).

Figure 0006736630
Figure 0006736630

発明例1〜18の場合はいずれも300℃10時間保持した後の応力緩和率が10%以下となり、優れた耐応力緩和特性を示した。 In each of Inventive Examples 1 to 18, the stress relaxation rate after holding at 300° C. for 10 hours was 10% or less, and excellent stress relaxation resistance properties were exhibited.

一方、比較例1は、1パス当たりの圧縮歪が低すぎたことで、微細な析出物が十分に得られず、GOSが2〜6°となる結晶率の面積率が60%よりも低くなり、発明例1〜18よりも優れた耐応力緩和特性が得られなかった。 On the other hand, in Comparative Example 1, since the compression strain per pass was too low, fine precipitates were not sufficiently obtained, and the area ratio of the crystal ratio at which GOS was 2 to 6° was lower than 60%. Therefore, the stress relaxation resistance superior to those of Invention Examples 1 to 18 was not obtained.

比較例2は、1パス当たりの圧縮歪が高すぎて圧延中の形状が悪くなってしまったため製造することができなかった。比較例3及び4は700〜900℃の最大歪速度が適切ではなかったため、シュミット因子が0.35以下となる結晶粒の面積率が大きくなり、発明例1〜18よりも優れた耐応力緩和特性が得られなかった。 Comparative Example 2 could not be manufactured because the compression strain per pass was too high and the shape during rolling deteriorated. In Comparative Examples 3 and 4, the maximum strain rate of 700 to 900° C. was not appropriate, so that the area ratio of the crystal grains where the Schmid factor was 0.35 or less was large, and the stress relaxation resistance superior to that of Invention Examples 1 to 18 was obtained. The characteristics could not be obtained.

比較例5は、最終の溶体化処理の温度が低すぎたため、発明例1〜18よりも優れた耐応力緩和特性が得られなかった。比較例6は、最終の溶体化処理の温度が高すぎたためGOSが2〜6°となる結晶率の面積率が90%よりも高くなり、発明例1〜18よりも優れた耐応力緩和特性が得られなかった。 In Comparative Example 5, the temperature of the final solution treatment was too low, so that the stress relaxation resistance characteristics superior to those of Invention Examples 1 to 18 were not obtained. In Comparative Example 6, since the temperature of the final solution treatment was too high, the area ratio of the crystallization rate at which GOS was 2 to 6° was higher than 90%, and the stress relaxation resistance characteristics superior to those of Inventive Examples 1 to 18 were obtained. Was not obtained.

比較例7は、最終溶体化処理の保持時間が短すぎたため、結晶粒径は混粒となり、GOSが2〜6°となる結晶率の面積率が60%よりも低くなり、またシュミット因子が0.35以下となる結晶粒の面積率が小さくなり、発明例1〜18よりも優れた耐応力緩和特性が得られなかった。比較例8は、最終溶体化処理の保持時間が長すぎたため、結晶粒径は粗大化し、GOSが2〜6°となる結晶率の面積率が90%よりも高くなり、発明例1〜18よりも優れた耐応力緩和特性が得られなかった。 In Comparative Example 7, since the holding time of the final solution treatment was too short, the crystal grain size became a mixed grain, the area ratio of the crystal ratio where GOS was 2 to 6° was lower than 60%, and the Schmid factor was The area ratio of the crystal grains of 0.35 or less was small, and the stress relaxation resistance characteristics superior to those of Inventive Examples 1 to 18 were not obtained. In Comparative Example 8, since the holding time of the final solution treatment was too long, the crystal grain size was coarsened, and the area ratio of the crystal ratio where GOS was 2 to 6° was higher than 90%. Better stress relaxation resistance could not be obtained.

比較例9〜11は、チタン又は第三元素の添加量が適切ではなかった場合を示す。比較例9は、添加元素の量が多すぎたため、熱間圧延で割れが発生したため製造することができなかった。比較例10は、Tiの添加量が少なすぎたため、シュミット因子が0.35以下となる結晶粒の面積率が大きくなり、発明例1〜18よりも優れた耐応力緩和特性が得られなかった。比較例11は、Tiの添加元素が多すぎたため、熱間圧延で割れが発生したため製造することができなかった。 Comparative Examples 9 to 11 show cases where the amount of titanium or the third element added was not appropriate. Comparative Example 9 could not be manufactured because the amount of the additional element was too large and cracking occurred during hot rolling. In Comparative Example 10, since the addition amount of Ti was too small, the area ratio of crystal grains having a Schmid factor of 0.35 or less was large, and the stress relaxation resistance characteristics superior to those of Inventive Examples 1 to 18 were not obtained. .. Comparative Example 11 could not be manufactured because the additive element of Ti was too much and cracking occurred in the hot rolling.

Claims (6)

Tiを2.0〜4.5質量%含有し、第三元素としてFe、Co、Ni、Cr、Zn、Zr、P、B、Mo、V、Nb、Mn、Mg、及びSiからなる群から選択された1種以上を合計で0〜0.5質量%含有し、残部が銅及び不可避的不純物からなり、圧延面に対するEBSD測定において、方位差5°以上を結晶粒界とみなしたときのGOS(Grain Orientation Spread)が2〜6°となる結晶粒の面積率が60〜90%であり、シュミット因子が0.35以下となる結晶粒の面積率が5〜20%であることを特徴とするチタン銅。 From 2.0 to 4.5 mass% of Ti, and Fe, Co, Ni, Cr, Zn, Zr, P, B, Mo, V, Nb, Mn, Mg, and Si as the third element. When one or more selected ones are contained in a total amount of 0 to 0.5% by mass, the balance consists of copper and unavoidable impurities, and an orientation difference of 5° or more is regarded as a grain boundary in EBSD measurement on the rolled surface. The area ratio of crystal grains having a GOS (Grain Orientation Spread) of 2 to 6° is 60 to 90%, and the area ratio of crystal grains having a Schmid factor of 0.35 or less is 5 to 20%. Titanium copper. 300℃で10時間保持後の応力緩和率が、10%以下である請求項1に記載のチタン銅。 The titanium-copper according to claim 1, which has a stress relaxation rate of 10% or less after being kept at 300°C for 10 hours. 圧延面に対するEBSD測定における結晶方位解析において、方位差5°以上を結晶粒界とみなしたときの平均結晶粒径が、2〜30μmである請求項1又は2に記載のチタン銅。 The titanium-copper according to claim 1 or 2, which has an average crystal grain size of 2 to 30 µm when the orientation difference of 5° or more is regarded as a crystal grain boundary in the crystal orientation analysis in the EBSD measurement with respect to the rolled surface. JIS−Z2241(2011)に従って引張試験を行ったときの、圧延方向に平行な方向における0.2%耐力が800MPa以上である請求項1〜3のいずれか一項に記載のチタン銅。 The titanium-copper according to any one of claims 1 to 3, which has a 0.2% proof stress of 800 MPa or more in a direction parallel to the rolling direction when a tensile test is performed according to JIS-Z2241 (2011). 請求項1〜4の何れか一項に記載のチタン銅を備えた電子部品。 An electronic component comprising the titanium-copper according to claim 1. Tiを2.0〜4.5質量%含有し、第三元素としてFe、Co、Ni、Cr、Zn、Zr、P、B、Mo、V、Nb、Mn、Mg、及びSiからなる群から選択された1種以上を合計で0〜0.5質量%含有し、残部が銅及び不可避的不純物からなるチタン銅のインゴットを鋳造し、熱間圧延した後、冷間圧延工程及びその後の最終溶体化処理工程を行うことを含む請求項1〜4の何れか一項に記載のチタン銅の製造方法であって、
熱間圧延工程が、前記インゴットに対し、1パスあたりの圧縮歪を0.15〜0.30とし、700〜900℃での最大歪速度が2.0〜6.0/sとなるように処理し、
前記最終溶体化処理工程が、Tiの添加量(質量%)をXとする場合に、加熱温度(℃)を52×X+610〜52×X+680とし、保持時間を5〜60秒で処理すること
を特徴とするチタン銅の製造方法。
From the group consisting of Fe, Co, Ni, Cr, Zn, Zr, P, B, Mo, V, Nb, Mn, Mg, and Si as the third element, containing 2.0 to 4.5 mass% of Ti. After casting the ingot of titanium copper containing the selected one or more kinds in total in an amount of 0 to 0.5 mass% and the balance consisting of copper and unavoidable impurities, hot-rolling, cold-rolling step and subsequent final The method for producing titanium copper according to any one of claims 1 to 4, which comprises performing a solution treatment step,
In the hot rolling process, the compressive strain per pass for the ingot is set to 0.15 to 0.30, and the maximum strain rate at 700 to 900° C. is set to 2.0 to 6.0/s. Process and
In the final solution treatment step, when the addition amount (% by mass) of Ti is X, the heating temperature (° C.) is 52×X+610 to 52×X+680, and the holding time is 5 to 60 seconds. A method for producing titanium-copper characterized.
JP2018198622A 2018-10-22 2018-10-22 Titanium copper, method for producing titanium copper, and electronic component Active JP6736630B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018198622A JP6736630B2 (en) 2018-10-22 2018-10-22 Titanium copper, method for producing titanium copper, and electronic component
EP19202704.3A EP3643799B1 (en) 2018-10-22 2019-10-11 Titanium copper, method for producing titanium copper and electronic component
RU2019133232A RU2795791C2 (en) 2018-10-22 2019-10-21 Titanium-copper material, method for producing titanium-copper material and electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018198622A JP6736630B2 (en) 2018-10-22 2018-10-22 Titanium copper, method for producing titanium copper, and electronic component

Publications (2)

Publication Number Publication Date
JP2020066756A JP2020066756A (en) 2020-04-30
JP6736630B2 true JP6736630B2 (en) 2020-08-05

Family

ID=68280828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018198622A Active JP6736630B2 (en) 2018-10-22 2018-10-22 Titanium copper, method for producing titanium copper, and electronic component

Country Status (2)

Country Link
EP (1) EP3643799B1 (en)
JP (1) JP6736630B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111733372B (en) * 2020-08-27 2020-11-27 宁波兴业盛泰集团有限公司 Elastic copper-titanium alloy and preparation method thereof
CN114152638B (en) * 2021-11-29 2024-05-14 宁波江丰电子材料股份有限公司 Sample preparation method for EBSD detection of MoNb target material
CN115011841B (en) * 2022-08-08 2022-10-04 沧州渤海防爆特种工具集团有限公司 Casting method of titanium-copper alloy explosion-proof material
CN116024444B (en) * 2022-12-28 2024-04-26 付亚波 High-strength high-conductivity high-elasticity titanium bronze alloy, preparation method thereof and vacuum melting solidification device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2790238B2 (en) 1994-03-23 1998-08-27 日鉱金属株式会社 Method for producing titanium copper alloy excellent in bending property and stress relaxation property
JP4357548B2 (en) 2007-06-14 2009-11-04 Dowaメタルテック株式会社 Cu-Ti-based copper alloy sheet and method for producing the same
JP4563480B2 (en) 2008-11-28 2010-10-13 Dowaメタルテック株式会社 Copper alloy sheet and manufacturing method thereof
JP6263333B2 (en) 2013-03-25 2018-01-17 Dowaメタルテック株式会社 Cu-Ti copper alloy sheet, method for producing the same, and current-carrying component
JP6073268B2 (en) * 2014-08-29 2017-02-01 Jx金属株式会社 High strength titanium copper foil and method for producing the same

Also Published As

Publication number Publication date
EP3643799B1 (en) 2020-12-09
RU2019133232A (en) 2021-04-21
EP3643799A1 (en) 2020-04-29
JP2020066756A (en) 2020-04-30

Similar Documents

Publication Publication Date Title
JP6736630B2 (en) Titanium copper, method for producing titanium copper, and electronic component
JP4677505B1 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4837697B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
KR101793854B1 (en) Copper-titanium alloy for electronic component
KR101808469B1 (en) Copper-titanium alloy for electronic component
TWI691606B (en) Coppor alloy plate and method for producing the same
JP6125409B2 (en) Titanium copper for electronic parts
JP6151636B2 (en) Titanium copper for electronic parts
TW201313924A (en) Copper alloy for electronic device, method for manufacturing copper alloy for electronic device, wrought copper alloy material for electronic device, and part for electronic device
JP6080823B2 (en) Titanium copper for electronic parts
JP6125410B2 (en) Titanium copper for electronic parts
JP6080822B2 (en) Titanium copper for electronic parts and manufacturing method thereof
JP6736631B2 (en) Titanium copper, method for producing titanium copper, and electronic component
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP6165071B2 (en) Titanium copper for electronic parts
RU2795791C2 (en) Titanium-copper material, method for producing titanium-copper material and electronic component
JP6192552B2 (en) Titanium copper for electronic parts
RU2795584C2 (en) Titanium-copper material, titanium-copper material production method and electronic component
JP6310131B1 (en) Titanium copper for electronic parts
EP3460081B1 (en) Titanium copper for electronic components
JP2017179392A (en) Cu-Ni-Co-Si-BASED COPPER ALLOY AND MANUFACTURING METHOD THEREFOR
TW202338108A (en) Cu-ti-based copper alloy plate, method of manufacturing the same, current-carrying parts, and heat-radiating parts
CN118176312A (en) Copper alloy for electronic material and electronic component
JP2016138335A (en) Titanium copper for electronic component
JP2016145424A (en) Titanium copper for electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190710

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190813

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200715

R151 Written notification of patent or utility model registration

Ref document number: 6736630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250