JP6734004B2 - Repair material for concrete structure and method for repairing concrete structure - Google Patents

Repair material for concrete structure and method for repairing concrete structure Download PDF

Info

Publication number
JP6734004B2
JP6734004B2 JP2014266800A JP2014266800A JP6734004B2 JP 6734004 B2 JP6734004 B2 JP 6734004B2 JP 2014266800 A JP2014266800 A JP 2014266800A JP 2014266800 A JP2014266800 A JP 2014266800A JP 6734004 B2 JP6734004 B2 JP 6734004B2
Authority
JP
Japan
Prior art keywords
concrete
strength
repair material
cement
design standard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014266800A
Other languages
Japanese (ja)
Other versions
JP2016125254A (en
Inventor
浩 丸田
浩 丸田
浜中 昭徳
昭徳 浜中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2014266800A priority Critical patent/JP6734004B2/en
Publication of JP2016125254A publication Critical patent/JP2016125254A/en
Application granted granted Critical
Publication of JP6734004B2 publication Critical patent/JP6734004B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Working Measures On Existing Buildindgs (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、設計基準強度が45N/mm以下のコンクリート構造物補修用の補修材に関する。また、本発明は、設計基準強度が45N/mm以下のコンクリート構造物用の補修方法に関する。 The present invention relates to a repair material for repairing a concrete structure having a design standard strength of 45 N/mm 2 or less. The present invention also relates to a repair method for a concrete structure having a design standard strength of 45 N/mm 2 or less.

鉄筋コンクリートや鉄骨鉄筋コンクリート等からなるコンクリート構造物は、周囲の酸性物質(例えば、酸性ガスや酸等)、飛来塩分、乾燥収縮等により劣化する。劣化がある水準に達すると、劣化部分のコンクリートを除去し、取り除いた部分をセメント系の補修材により成形し直すことが行われる(例えば特許文献1参照。)。 A concrete structure made of reinforced concrete, steel-framed reinforced concrete, or the like deteriorates due to surrounding acidic substances (eg, acidic gas or acid), flying salt, and drying shrinkage. When the deterioration reaches a certain level, the concrete in the deteriorated portion is removed, and the removed portion is re-molded with a cement-based repair material (see, for example, Patent Document 1).

特開2014−177394号公報JP, 2014-177394, A

設計基準強度が45N/mm以下のコンクリート構造物の劣化部分を除去し、セメント系補修材で取り除いた部分を成形し直すときに、補修材によっては補修後の性能が不充分となる虞があることが分かった。 そこで、本発明は、設計基準強度が45N/mm以下のコンクリート構造物の劣化部分除去後の成形し直しに用いると、新旧の材料の一体性に優れ、補修後の構造物がより高い強度が得られる、設計基準強度が45N/mm以下のコンクリート構造物補修用の補修材を提供することを目的とする。また、本発明は、設計基準強度が45N/mm以下のコンクリート構造物の劣化部分除去後にセメント系補修材で成形し直したときに、新旧の材料の一体性に優れ、補修後の構造物がより高い強度が得られる、設計基準強度が45N/mm以下のコンクリート構造物補修用の補修方法を提供することを目的とする。 When the deteriorated part of the concrete structure with the design standard strength of 45 N/mm 2 or less is removed and the part removed by the cement-based repair material is re-molded, the performance after repair may be insufficient depending on the repair material. I knew it was. Therefore, when the present invention is used for re-molding a concrete structure having a design standard strength of 45 N/mm 2 or less after removing a deteriorated portion, the old and new materials have excellent integrity and the structure after repair has a higher strength. It is an object of the present invention to provide a repair material for repairing a concrete structure having a design standard strength of 45 N/mm 2 or less. Further, the present invention is excellent in the integrity of the old and new materials when remolding with a cement-based repair material after removing the deteriorated part of the concrete structure having a design standard strength of 45 N/mm 2 or less, and the structure after repair It is an object of the present invention to provide a repairing method for repairing a concrete structure having a design standard strength of 45 N/mm 2 or less, which can obtain higher strength.

本発明者は、前記課題解決のため鋭意検討した結果、水硬性物質と、細骨材と、水と、特定の粗骨材を特定の体積割合で含有し、収縮率が特定の値以下とすることにより、上記課題を解決できることを見出し、本発明を完成させた。即ち、本発明は、以下の(1)又は(2)で表すコンクリート構造物補修用の補修材、並びに、(3)で表すコンクリート構造物の補修方法である。
(1)単位粗骨材量200〜400L/mの公称目開き11.2mmのふるいを95質量%以上通過する粗骨材と、
単位水量170〜230L/mの水と、珪酸カルシウム鉱物を主成分とするセメントにポゾラン粉末、フライアッシュ、高炉スラグ粉末又は石灰石微粉末から選ばれる無機フィラー粉末を併用している水硬性物質と、単位量で5〜50kg/mの膨張材と、105℃における不揮発成分換算で10〜110kg/mの結合材として用いられるセメント用ポリマーと、セメント分散剤と、増粘剤と、単位細骨材量で200〜400L/mの細骨材とを含有し、
下記の試験方法により求められる圧縮強度が躯体コンクリートの設計基準強度以上であり、且つ下記の試験方法により求められる付着強度が2.0N/mm 以上である、
JIS A 1129「モルタル及びコンクリートの長さ変化試験方法−第3部:ダイヤルゲージ法」に準じ、打ち込みから48時間後に基長し、20℃相対湿度60%で養生した材齢91日における収縮率が600μ以下であり、前記膨張材が石灰系膨張材、エトリンガイト系膨張材及びエトリンガイト−石灰複合系膨張材から選ばれる一種又は二種以上であり、且つ前記セメント用ポリマーが合成ゴム、天然ゴム、合成樹脂、瀝青質から選ばれる1種又は2種以上であることを特徴とする、設計基準強度が45N/mm以下のコンクリート構造物補修用の補修材。
(2)スランプフローの値が30〜70cmである上記(1)の補修材。
(3)設計基準強度が45N/mm以下のコンクリート構造物の劣化部分を除去する工程(A)と、前記工程(A)の除去により新たに露出したコンクリート表面を型枠で覆う工程(B)と、前記型枠とコンクリート表面との空間に請求項1又は2の補修材をポンプ圧送により充填する工程(C)とを具備する設計基準強度が45N/mm以下のコンクリート構造物の補修方法。
圧縮強度試験:
縦500mm、幅500mm、高さ200mmの型枠に設計基準強度27N/mm のコンクリート(躯体コンクリート)を打設し、打設後91日で縦方向に割裂し、割裂した面に補修材を打設し、48時間後脱型し、温度20℃、相対湿度60%にて養生し、補修材打設時より28日後に打ち継ぎ目が中心となるように径75mm、長さ150mmのコア供試体を採取し、圧縮強さ(圧縮強度)を測定する。
付着強度試験:
縦500mm、横200mm、高さ150mmの設計基準強度27N/mm のコンクリート成型し、ウォータージェットで打設上面を処理し、温度20℃、相対湿度60%にて養生し、打設後91日で処理面に補修材を高さ300mmとなるように打設し、48時間後脱型し、打ち継ぎ目が高さ方向において中心となるように径100mmのコア供試体を採取し、コア供試体の高さが200mmになるようにダイアモンドカッターでカットし、温度20℃、相対湿度60%にて養生し、NEXCO試験方法432−2006「断面修復用吹付けモルタルの試験方法」5.2引張接着性試験に準拠し、補修材を打設後28日の付着強度を測定する。
The present inventor, as a result of extensive studies for solving the above problems, a hydraulic substance, a fine aggregate, water, and a specific coarse aggregate contained at a specific volume ratio, the shrinkage ratio is a specific value or less. By doing so, they have found that the above problems can be solved, and have completed the present invention. That is, the present invention is a repair material for repairing a concrete structure represented by the following (1) or (2), and a method for repairing a concrete structure represented by (3).
(1) Coarse aggregate that passes through a sieve having a unit coarse aggregate amount of 200 to 400 L/m 3 and a nominal mesh size of 11.2 mm of 95% by mass or more,
A hydraulic substance in which water having a unit water amount of 170 to 230 L/m 3 and an inorganic filler powder selected from pozzolan powder, fly ash, blast furnace slag powder or limestone fine powder are used in combination with cement mainly composed of calcium silicate mineral. , an expansion material of 5 to 50 kg / m 3 in a unit volume, the cement polymer used as a binder for 10~110kg / m 3 in the non-volatile components in terms of 105 ° C., and the cement dispersing agent, a thickener, a unit Containing fine aggregate of 200 to 400 L/m 3 in the amount of fine aggregate,
The compressive strength determined by the following test method is equal to or higher than the design standard strength of the building concrete, and the adhesive strength determined by the following test method is 2.0 N/mm 2 or more,
According to JIS A 1129 "Method for testing length change of mortar and concrete-Part 3: Dial gauge method", the shrinkage rate was 91 days after curing at a relative humidity of 60% and a base length of 48 hours after driving. Is 600μ or less, the expansive material is one or more selected from lime expansive material, ettringite expansive material and ettringite-lime composite expansive material, and the cement polymer is a synthetic rubber, natural rubber, A repair material for repairing a concrete structure having a design standard strength of 45 N/mm 2 or less, which is one or more kinds selected from synthetic resins and bituminous substances.
(2) The repair material according to (1) above, which has a slump flow value of 30 to 70 cm.
(3) A step (A) of removing a deteriorated portion of a concrete structure having a design standard strength of 45 N/mm 2 or less, and a step (B) of covering the concrete surface newly exposed by the removal of the step (A) with a formwork. ) And a step (C) of filling the space between the mold and the concrete surface with the repair material according to claim 1 or 2 by pumping, repair of a concrete structure having a design standard strength of 45 N/mm 2 or less. Method.
Compressive strength test:
Concrete (skeleton concrete) with a design standard strength of 27 N /mm 2 is placed in a formwork with a length of 500 mm, a width of 500 mm, and a height of 200 mm , and it is split in the vertical direction 91 days after placement, and the repaired material is on the split surface. It is placed, demolded after 48 hours, cured at a temperature of 20°C and relative humidity of 60%, and a core with a diameter of 75 mm and a length of 150 mm is provided 28 days after the repair material is placed so that the joint is centered. A sample is taken and the compressive strength (compressive strength) is measured.
Adhesive strength test:
Concrete molding with a design standard strength of 27 N /mm 2 with a length of 500 mm, a width of 200 mm and a height of 150 mm, the upper surface of the casting is treated with a water jet, and cured at a temperature of 20° C. and a relative humidity of 60% for 91 days after placing. Then, the repair material is placed on the treated surface to a height of 300 mm, and after 48 hours, it is demolded, and a core specimen with a diameter of 100 mm is collected so that the joint is centered in the height direction. Cut with a diamond cutter to a height of 200 mm, cured at a temperature of 20° C. and a relative humidity of 60%, and tested by NEXCO test method 432-2006 “Test method for spray mortar for cross-section restoration” 5.2 Tensile adhesion Based on the property test, the adhesive strength is measured 28 days after the repair material is placed.

本発明によれば、設計基準強度が45N/mm以下のコンクリート構造物の劣化部分除去後の成形し直しに用いると、新旧の材料の一体性に優れ、補修後の構造物がより高い強度が得られる、設計基準強度が45N/mm以下のコンクリート構造物補修用の補修材が得られる。また、本発明によれば、設計基準強度が45N/mm以下のコンクリート構造物の劣化部分除去後にセメント系補修材で成形し直したときに、新旧の材料の一体性に優れ、補修後の構造物がより高い強度が得られる、設計基準強度が45N/mm以下のコンクリート構造物補修用の補修方法が得られる。 According to the present invention, when it is used for remolding a concrete structure having a design standard strength of 45 N/mm 2 or less after removing a deteriorated part, the old and new materials have excellent integrity and the structure after repair has a higher strength. A repair material for repairing a concrete structure having a design standard strength of 45 N/mm 2 or less is obtained. Further, according to the present invention, when the concrete structure having a design standard strength of 45 N/mm 2 or less is removed from the deteriorated portion and is re-molded with a cement-based repair material, the old and new materials are excellent in integrity, and after repairing. A repairing method for repairing a concrete structure having a design standard strength of 45 N/mm 2 or less, which allows the structure to have higher strength, can be obtained.

本発明の補修材は、設計基準強度が45N/mm以下のコンクリートからなるコンクリート構造物を補修するための補修材、即ち、設計基準強度が45N/mm以下のコンクリート構造物補修用の補修材である。本発明の補修材は、単位粗骨材量200〜400L/mの公称目開き11.2mmのふるい95質量%以上通過する粗骨材と、単位水量170〜230L/mの水と、水硬性物質と、細骨材とを含有し、JIS A 1129「モルタル及びコンクリートの長さ変化試験方法−第3部:ダイヤルゲージ法」に準じ、打ち込みから48時間後に基長し、20℃相対湿度60%で養生した材齢91日における収縮率が600μ以下であることを特徴とする。ここで、収縮率が600μ以下とは、長さ変化率が−600μ以上であることを意味する。 Repairing material of the present invention, the repair material for repairing concrete structure design strength consists 45N / mm 2 or less of the concrete, i.e., repair of concrete structures repair design strength is 45N / mm 2 or less It is a material. The repair material of the present invention comprises a coarse aggregate that passes through a sieve having a unit coarse aggregate amount of 200 to 400 L/m 3 and a nominal mesh opening of 11.2 mm of 95% by mass or more, and a unit water amount of 170 to 230 L/m 3 of water. Containing a hydraulic material and fine aggregate, according to JIS A 1129 "Method for testing length change of mortar and concrete-Part 3: Dial gauge method", the base length is 48 hours after driving and the relative temperature is 20°C. The shrinkage rate at the age of 91 days after curing at a humidity of 60% is 600 μ or less. Here, the contraction rate of 600 μ or less means that the length change rate is −600 μ or more.

本発明で使用する水硬性物質としては、水硬性セメント、ポゾラン、膨張材および高炉スラグ粉末等の潜在水硬性物質等が挙げられる。膨張材としては、石灰系コンクリート用膨張材、エトリンガイト系コンクリート用膨張材、石灰−エトリンガイト複合系膨張材、硬焼生石灰、カルシウムサルホアルミネート粉末、カルシウムアルミノフェライト粉末、石膏等が挙げられる。ポゾランとしては、シリカフューム、フライアッシュ、メタカオリン等が挙げられる。水硬性セメントとしては、例えば普通、早強、超早強、低熱及び中庸熱の各種ポルトランドセメント、エコセメント、並びにこれらのポルトランドセメント又はエコセメントに、フライアッシュ、高炉スラグ粉末、シリカフューム又は石灰石微粉末等を混合した各種混合セメント、太平洋セメント社製「スーパージェットセメント」(商品名)や住友大阪セメント社製「ジェットセメント」(商品名)等の超速硬セメント、アルミナセメント等が挙げられ、これらの一種又は二種以上を使用することができる。本発明に使用する水硬性物質として、好ましくはポルトランドセメント、エコセメント又は混合セメント等の珪酸カルシウム鉱物を主成分とするセメントであり、より好ましくはポルトランドセメントである。ここで珪酸カルシウム鉱物を主成分とするとは、含まれるセメントクリンカ粉砕物中において珪酸カルシウム鉱物(CS、CS)を50質量%以上含むことをいい、好ましくは60質量%以上含むことをいい、より好ましくは70質量%以上含むことをいう。また、本発明に使用する水硬性物質として、珪酸カルシウム鉱物を主成分とするセメントに、シリカフューム等のポゾラン粉末、フライアッシュ、高炉スラグ粉末又は石灰石微粉末等の無機フィラー粉末を併用することが、本発明の補修材のコンシステンシーを高めたときに材料分離が起こり難く、ポンプ圧送性が高く下地コンクリートとの付着強度が高いことから好ましい。 Examples of hydraulic materials used in the present invention include hydraulic cement, pozzolan, expansive materials, and latent hydraulic materials such as blast furnace slag powder. Examples of the expansive material include expansive materials for lime concrete, expansive materials for ettringite concrete, lime-ettringite composite expansive materials, hard burned lime, calcium sulfaluminate powder, calcium aluminoferrite powder, and gypsum. Examples of pozzolan include silica fume, fly ash, and metakaolin. As the hydraulic cement, for example, ordinary, early strength, super early strength, various heat and low heat and moderate heat various portland cement, ecocement, and these portland cement or ecocement, fly ash, blast furnace slag powder, silica fume or limestone fine powder. Examples include various mixed cements, such as super-quick cement such as "Super Jet Cement" (trade name) manufactured by Taiheiyo Cement Co., Ltd. and "Jet Cement" (trade name) manufactured by Sumitomo Osaka Cement Co., and alumina cement. One kind or two or more kinds can be used. The hydraulic substance used in the present invention is preferably a cement containing calcium silicate mineral as a main component, such as Portland cement, ecocement or mixed cement, and more preferably Portland cement. Here, the main component calcium silicate mineral refers to include calcium silicate mineral (C 3 S, C 2 S ) at least 50 wt% in the cement clinker grind which included, preferably comprise 60 wt% or more , More preferably 70% by mass or more. Further, as a hydraulic material used in the present invention, cement mainly composed of calcium silicate mineral, pozzolan powder such as silica fume, fly ash, it is possible to use inorganic filler powder such as blast furnace slag powder or limestone fine powder in combination. When the consistency of the repairing material of the present invention is increased, material separation is unlikely to occur, pumpability is high, and adhesion strength with base concrete is high, which is preferable.

本発明で使用する粗骨材としては、公称目開き11.2mmのふるいを95質量%以上通過する粗骨材、即ち、11.2mmの通過率が95質量%以上の粗骨材、11.2mmの残留率が5質量%以下の粗骨材である。使用する粗骨材が、公称目開き11.2mmのふるいを95質量%以上通過する粗骨材であると、補修材とコンクリート構造物との一体性が高まる。11.2mmの通過率が95質量%未満の粗骨材であると、劣化部分を取り除いた部分への充填性がよくないことがある。好ましくは、使用する粗骨材が、公称目開き11.2mmのふるいを99質量%以上通過する粗骨材である。使用する粗骨材の種類は限定されない。例えば、川砂利、海砂利、山砂利、砕石、人工粗骨材、スラグ粗骨材、再生粗骨材等が挙げられ、これらの一種又は二種以上の使用が可能である。本発明において、粗骨材の使用量は、単位粗骨材量で200〜400L/mとする。200L/m未満では所定の流動性を確保するために単位水量が増加し、その結果収縮が大きくなる。400L/mを超えるとポンプ圧送性や充填性が低下する。粗骨材の好ましい使用量は、乾燥収縮の低減、ポンプ圧送性や充填性の向上の理由から単位粗骨材量で250〜350L/mとする。 The coarse aggregate used in the present invention is a coarse aggregate that passes through a sieve having a nominal mesh size of 11.2 mm by 95% by mass or more, that is, a coarse aggregate with a passage rate of 11.2 mm of 95% by mass or more; The coarse aggregate has a residual rate of 2 mm of 5% by mass or less. When the coarse aggregate used is a coarse aggregate that passes through a sieve having a nominal mesh size of 11.2 mm by 95 mass% or more, the integrity of the repair material and the concrete structure is enhanced. If the coarse aggregate has a passage rate of less than 95% by mass of 11.2 mm, the filling property in the portion where the deteriorated portion is removed may not be good. Preferably, the coarse aggregate used is a coarse aggregate which passes through a sieve having a nominal mesh size of 11.2 mm by 99% by mass or more. The type of coarse aggregate used is not limited. Examples thereof include river gravel, sea gravel, mountain gravel, crushed stone, artificial coarse aggregate, slag coarse aggregate, recycled coarse aggregate, and the like, and one or more of these can be used. In the present invention, the amount of coarse aggregate used is 200 to 400 L/m 3 per unit amount of coarse aggregate. If it is less than 200 L/m 3 , the amount of unit water increases in order to secure a predetermined fluidity, and as a result, the shrinkage increases. If it exceeds 400 L/m 3 , pumping property and filling property are deteriorated. The amount of coarse aggregate used is preferably 250 to 350 L/m 3 per unit amount of coarse aggregate in order to reduce drying shrinkage and improve pumpability and filling properties.

本発明で使用する細骨材は、特に限定されず、例えば川砂、海砂、山砂、砕砂、人工細骨材、スラグ細骨材、再生細骨材等が挙げられ、これらの一種又は二種以上の使用が可能である。本発明において、細骨材の使用量は、単位細骨材量で200〜400L/mとする。 200L/m未満では材料分離抵抗性が低下する。また、400L/mを超えると単位水量が増加することで収縮が大きくなる。粗骨材の好ましい使用量は、材料分離抵抗性の向上、収縮の低減の理由から単位粗骨材量で250〜350L/mとする。 The fine aggregate used in the present invention is not particularly limited, and examples thereof include river sand, sea sand, mountain sand, crushed sand, artificial fine aggregate, slag fine aggregate, regenerated fine aggregate, and one or two of these. It is possible to use more than one kind. In the present invention, the amount of fine aggregate used is 200 to 400 L/m 3 per unit amount of fine aggregate. If it is less than 200 L/m 3 , the resistance to material separation decreases. Further, when it exceeds 400 L/m 3 , the unit water amount increases and the shrinkage increases. The amount of coarse aggregate used is preferably 250 to 350 L/m 3 per unit amount of coarse aggregate in order to improve material separation resistance and reduce shrinkage.

本発明の補修材は、JIS A 1129「モルタル及びコンクリートの長さ変化試験方法−第3部:ダイヤルゲージ法」に準じ、打ち込みから48時間後に基長し、20℃相対湿度60%で養生した材齢91日における収縮率(以下、単に「収縮率」ということがある。)が600μ以下である。収縮率が600μを超えると、下地のコンクリートと本発明の補修材との一体性が不充分となる虞がある。当該虞がより低いことから、好ましくは収縮率が580μ以下である。本発明の補修材の収縮率を600μ以下、好ましくは580μ以下とするために、本発明の補修材に、膨張材又は/及び収縮低減剤を含有させることが好ましい。 The repairing material of the present invention is based on JIS A 1129 "Method for testing length change of mortar and concrete-Part 3: Dial gauge method", and is conditioned at 48 hours after driving and cured at 20°C and 60% relative humidity. The shrinkage rate at 91 days of age (hereinafter, simply referred to as “shrinkage rate”) is 600 μm or less. If the shrinkage ratio exceeds 600 μ, the integrity of the base concrete and the repair material of the present invention may be insufficient. Since the risk is lower, the shrinkage ratio is preferably 580 μm or less. In order for the repair material of the present invention to have a shrinkage ratio of 600 μ or less, preferably 580 μ or less, it is preferable that the repair material of the present invention contains an expansion material and/or a shrinkage reducing agent.

本発明に用いる膨張材としては、石灰系膨張材、エトリンガイト系膨張材及びエトリンガイト−石灰複合系膨張材から選ばれる一種又は二種以上を用いることが好ましい。石灰系膨張材としては、例えば硬焼生石灰、フリーライム(CaO)とカルシウムシリケートを主体とする鉱物の粉砕物を主体とした膨張材等が挙げられ、市販品では太平洋マテリアル社製「エクスパン」(商品名)や「ハイパーエクスパン」(商品名)等がある。エトリンガイト系膨張材としては、例えば、カルシウムサルホアルミネートを主体とした膨張材、カルシウムアルミノフェライトを主体とした膨張材、石膏を主体とした膨張材等が挙げられ、市販品では電気化学工業社製「デンカCSA」(商品名)、住友大阪セメント社製「サクス」(商品名)等がある。エトリンガイト−石灰複合系膨張材は、生石灰(フリーライムを含有する鉱物を含む。)と、カルシウムサルホアルミネートやカルシウムアルミノフェライト等のエトリンガイトを生成する鉱物とを含有する膨張材で、市販品では、電気化学工業社製「デンカパワーCSA」(商品名)、住友大阪セメント社製「スーパーサクス」(商品名)等がある。本発明に膨張材を用いるときは、単位量で5〜50kg/mとすることが好ましい。5kg/m未満では、膨張材を添加する効果が得られ難く、50kg/mを超えると圧縮強度又は付着強度が低い虞がある。本発明の補修材の収縮率が小さく且つ圧縮強度及び付着強度が高いことから、膨張材の混和量を10〜40kg/mとすることが更に好ましく、最も好ましくは20〜35kg/mとする。 As the expansive material used in the present invention, it is preferable to use one kind or two or more kinds selected from a lime expansive material, an ettringite expansive material and an ettringite-lime composite expansive material. Examples of the lime-based expansive material include hard-burned quick lime, expansive material mainly composed of pulverized minerals mainly composed of free lime (CaO) and calcium silicate, and commercially available "Expan" manufactured by Taiheiyo Material Co., Ltd. ( Product name) and "Hyper Expan" (product name). Examples of the ettringite-based expansive material include expansive materials mainly composed of calcium sulfaluminate, expansive materials mainly composed of calcium aluminoferrite, expansive materials mainly composed of gypsum, and commercial products manufactured by Denki Kagaku Kogyo Co., Ltd. There are "Denka CSA" (product name), "Sakus" (product name) manufactured by Sumitomo Osaka Cement Co., etc. The ettringite-lime composite expansive material is an expansive material containing quick lime (including a mineral containing free lime) and a mineral that produces ettringite such as calcium sulfaluminate or calcium aluminoferrite. There are “Denka Power CSA” (trade name) manufactured by Denki Kagaku Kogyo Co., Ltd., “Super Sax” (trade name) manufactured by Sumitomo Osaka Cement Co., Ltd. When the expansive material is used in the present invention, the unit amount is preferably 5 to 50 kg/m 3 . If it is less than 5 kg/m 3, it is difficult to obtain the effect of adding the expansive material, and if it exceeds 50 kg/m 3 , the compressive strength or adhesive strength may be low. Since the repair material of the present invention has a low shrinkage ratio and high compressive strength and adhesive strength, it is more preferable that the admixture amount of the expansive material is 10 to 40 kg/m 3, and most preferably 20 to 35 kg/m 3 . To do.

本発明の収縮低減剤としては、グリコールエーテル系、低級アルコールのアルキレンオキシド付加物、ポリエーテル系等の収縮低減剤を用いることができる。本発明に収縮低減剤を用いるときは、単位量で2〜15kg/mとすることが好ましい。2kg/m未満では、収縮低減を添加する効果が得られ難く、15kg/mを超えると圧縮強度又は付着強度が低い虞がある。本発明の補修材の収縮率が小さく且つ圧縮強度及び付着強度が高いことから、収縮低減の混和量を3〜12kg/mとすることが更に好ましく、最も好ましくは4〜10kg/mとする。 As the shrinkage reducing agent of the present invention, a shrinkage reducing agent such as a glycol ether type, an alkylene oxide adduct of a lower alcohol, or a polyether type can be used. When the shrinkage reducing agent is used in the present invention, the unit amount is preferably 2 to 15 kg/m 3 . If it is less than 2 kg/m 3, it is difficult to obtain the effect of reducing shrinkage, and if it exceeds 15 kg/m 3 , the compressive strength or adhesive strength may be low. Since the repair material of the present invention has a low shrinkage ratio and a high compressive strength and adhesive strength, it is more preferable that the admixture amount for shrinkage reduction is 3 to 12 kg/m 3, and most preferably 4 to 10 kg/m 3 . To do.

本発明の補修材には、水硬性物質、粗骨材及び細骨材、並びに膨張材及び収縮低減剤の他に、各種混和材料から選ばれる1種又は2種以上を本発明の効果を実質損なわない範囲で併用することができる。この混和材料としては、例えばセメント分散剤(減水剤、AE減水剤、高性能AE減水剤、高性能減水剤、流動化剤を含む。)、セメント用ポリマー、防水材、防錆剤、増粘剤、保水剤、顔料、繊維、撥水剤、白華防止剤、急結剤(材)、急硬剤(材)、凝結遅延剤、消泡剤、発泡剤、空気連行剤、表面硬化剤等が挙げられる。 For the repair material of the present invention, in addition to a hydraulic material, coarse aggregate and fine aggregate, and expander and shrinkage reducing agent, one or more selected from various admixtures can be used to substantially obtain the effect of the present invention. It can be used in combination within a range that does not impair it. Examples of the admixture include cement dispersants (including water reducing agents, AE water reducing agents, high-performance AE water reducing agents, high-performance water reducing agents, and fluidizing agents), polymers for cement, waterproof materials, rust preventives, thickeners. Agent, water retention agent, pigment, fiber, water repellent, anti-whitening agent, quick-setting agent (material), quick-hardening agent (material), setting retarder, defoaming agent, foaming agent, air entraining agent, surface hardening agent Etc.

本発明の補修材には、セメント分散剤、増粘剤、保水剤、繊維、セメント用ポリマー、防錆剤、消泡剤、空気連行剤から選ばれる一種又は二種以上を含有することが好ましい。特に、セメント分散剤、増粘剤、セメント用ポリマー、防錆剤、消泡剤から選ばれる一種又は二種以上を含有することが好ましい。本発明の補修材に、セメント分散剤、増粘剤、セメント用ポリマー、消泡剤から選ばれる一種又は二種以上を含有すると、補修材の流動性を高めたときに下地コンクリートとの付着強度を高くし易い。また、本発明の補修材に防錆剤を使用すると、下地コンクリートに鉄筋などの鋼材が含まれるときに防錆効果が得られ鋼材が腐食し難いことから好ましい。 The repair material of the present invention preferably contains one or more selected from cement dispersants, thickeners, water retention agents, fibers, polymers for cement, rust preventives, defoamers, and air entrainers. .. In particular, it is preferable to contain one kind or two or more kinds selected from a cement dispersant, a thickener, a polymer for cement, a rust preventive and an antifoaming agent. When the repair material of the present invention contains one or more selected from cement dispersants, thickeners, polymers for cement, and defoaming agents, the adhesive strength to the underlying concrete when the fluidity of the repair material is increased. Easy to raise. Further, it is preferable to use a rust preventive agent in the repair material of the present invention, because when a base concrete contains a steel material such as a reinforcing bar, a rust preventive effect is obtained and the steel material is unlikely to corrode.

本発明に使用するセメント用ポリマー(有機質結合材)としては、ポリマーセメントモルタルやポリマーセメントコンクリートの結合材として用いられるものであればよく、例えば、スチレン・ブタジエン共重合体,クロロプレンゴム,アクリロニトリル・ブタジエン共重合体又はメチルメタクリレート・ブタジエン共重合体等の合成ゴム、天然ゴム、ポリエチレンやポリプロピレン等のポリオレフィン、ポリクロロピレン、ポリアクリル酸エステル、スチレン・アクリル共重合体、オールアクリル共重合体、ポリ酢酸ビニル,酢酸ビニル・アクリル共重合体,酢酸ビニル・アクリル酸エステル共重合体,変性酢酸ビニル,エチレン・酢酸ビニル共重合体,エチレン・酢酸ビニル・塩化ビニル共重合体,酢酸ビニルビニルバーサテート共重合体,アクリル・酢酸ビニル・ベオバ(t-デカン酸ビニルの商品名)共重合体等の酢酸ビニル系樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、アルキド樹脂及びエポキシ樹脂等の合成樹脂、アスファルト,ゴムアスファルト及びパラフィン等の瀝青質等が好ましい例として挙げられ、これらの1種又は2種以上を用いることができる。 The polymer (organic binder) for cement used in the present invention may be any polymer used as a binder for polymer cement mortar or polymer cement concrete, and examples thereof include styrene/butadiene copolymer, chloroprene rubber, acrylonitrile/butadiene. Synthetic rubber such as copolymer or methylmethacrylate/butadiene copolymer, natural rubber, polyolefin such as polyethylene and polypropylene, polychloropyrene, polyacrylic acid ester, styrene/acrylic copolymer, all acrylic copolymer, polyvinyl acetate , Vinyl acetate/acrylic copolymer, vinyl acetate/acrylic acid ester copolymer, modified vinyl acetate, ethylene/vinyl acetate copolymer, ethylene/vinyl acetate/vinyl chloride copolymer, vinyl acetate vinyl versatate copolymer , Vinyl acetate resin such as acrylic/vinyl acetate/veova (trade name of t-vinyl decanoate) copolymer, synthetic resin such as unsaturated polyester resin, polyurethane resin, alkyd resin and epoxy resin, asphalt, rubber asphalt and Preference is given to bituminous substances such as paraffin, and one or more of these can be used.

本発明の補修材においてセメント用ポリマーを混和するときの混和量としては、有効成分換算(105℃における不揮発成分換算)で、10〜110kg/mとすることが好ましい。10kg/m未満では、セメント用ポリマーを混和する効果が得られ難く、110kg/mを超えると補修材の粘性が高くなり過ぎ、混練作業や充填作業等が行い難くなり、また、使用した機械及び道具の洗浄が行い難い。 The admixture amount of the cement polymer in the repair material of the present invention is preferably 10 to 110 kg/m 3 in terms of active ingredient (non-volatile component at 105° C.). If it is less than 10 kg/m 3, it is difficult to obtain the effect of mixing the polymer for cement, and if it exceeds 110 kg/m 3 , the viscosity of the repair material becomes too high, and it becomes difficult to perform kneading work or filling work. Difficult to clean machinery and tools.

本発明に使用するセメント分散剤としては、特に限定されないが、高性能減水剤、高性能AE減水剤又は流動化剤から選ばれる一種又は二種以上であると、補修材の流動性を高くし易く且つ圧縮強度及び付着強度を高くし易いことから好ましい。 The cement dispersant used in the present invention is not particularly limited, but if it is one or more selected from a high performance water reducing agent, a high performance AE water reducing agent or a fluidizing agent, the fluidity of the repair material is increased. It is preferable because it is easy and the compressive strength and adhesive strength are easily increased.

本発明に使用する増粘剤としては、例えばヒドロキシエチルセルロース(HEC)、ヒドロキシプロピルセルロース(HPC)等のヒドロキシアルキルセルロース、或いは、ヒドロキシエチルメチルセルロース(HEMC)、ヒドロキシプロピルメチルセルロース(HPMC)、ヒドロキシエチルエチルセルロース(HEEC)等のヒドロキシアルキルアルキルセルロース等の水溶性セルロース;アルギン酸、β−1,3グルカン、プルラン、ウェランガム等の多糖類;アクリル樹脂やポリビニルアルコール等のポリビニル化合物;メチルスターチ,エチルスターチ,プロピルスターチ又はメチルプロピルスターチ等のアルキルスターチ、ヒドロキシエチルスターチ又はヒドロキシプロピルスターチ等のヒドロキシアルキルスターチ、或いは、ヒドロキシプロピルメチルスターチ等のヒドロキシアルキルアルキルスターチ等スターチエーテル等が挙げられ、これらの一種又は二種以上の使用が可能であるが、本発明の補修材の流動性を高めたときに材料分離が起こり難いことから、水溶性セルロース及び/又はスターチエーテルが好ましい。本発明の補修材における増粘剤の混和量は、単位水量100質量部に対し、1.0〜250質量部とすることが好ましい。1.0質量部未満では、未補修材の流動性を高めたときに材料分離が起こる虞があり。また、250質量部を超えると、充填作業が行い難い。 Examples of the thickener used in the present invention include hydroxyethyl cellulose (HEC), hydroxyalkyl cellulose such as hydroxypropyl cellulose (HPC), hydroxyethyl methyl cellulose (HEMC), hydroxypropyl methyl cellulose (HPMC), hydroxyethyl ethyl cellulose ( HEEC) and other water-soluble celluloses such as hydroxyalkylalkylcelluloses; polysaccharides such as alginic acid, β-1,3 glucan, pullulan, and welan gum; polyvinyl compounds such as acrylic resins and polyvinyl alcohol; methyl starch, ethyl starch, propyl starch or Examples include alkyl starch such as methylpropyl starch, hydroxyalkyl starch such as hydroxyethyl starch or hydroxypropyl starch, or starch ether such as hydroxyalkylalkyl starch such as hydroxypropylmethyl starch, and use of one or more of them. However, water-soluble cellulose and/or starch ether is preferable because material separation hardly occurs when the fluidity of the repair material of the present invention is increased. The admixture amount of the thickening agent in the repair material of the present invention is preferably 1.0 to 250 parts by mass with respect to 100 parts by mass of the unit amount of water. If it is less than 1.0 part by mass, material separation may occur when the fluidity of the unrepaired material is increased. If it exceeds 250 parts by mass, the filling work is difficult to perform.

本発明に使用する消泡剤としては、市販のセメント用消泡剤、市販のセメントモルタル用消泡剤又は市販のコンクリート用消泡剤の他、他用途の鉱物油系,エーテル系,シリコーン系等の消泡剤、トリブチルフォスフェート、ポリジメチルシロキサン又はポリオキシアルキレンアルキルエーテル系非イオン界面活性剤が好適な例として挙げられる。消泡剤は、これらの二種以上を組み合わせて用いてもよい。また、無機質粉末に担持させ粉末状にしたものでもよい。 Examples of the defoaming agent used in the present invention include a commercially available defoaming agent for cement, a commercially available defoaming agent for cement mortar or a commercially available defoaming agent for concrete, as well as mineral oils, ethers, and silicones for other applications. Suitable examples include defoaming agents such as tributyl phosphate, polydimethylsiloxane, and polyoxyalkylene alkyl ether-based nonionic surfactants. The antifoaming agent may be used in combination of two or more kinds thereof. Further, it may be powdered by supporting it on an inorganic powder.

本発明の補修材は、スランプフローの値が30〜70cmであることが、ポンプ圧送し易く、補修箇所へ充填し易く且つことから好ましく、更に好ましくはスランプフローの値が40〜65cm、最も好ましくは45〜63cmとする。スランプフローの値が30cm未満であると、ポンプ圧送し難く且つ補修箇所へ充填し難い。又、スランプフローの値が70cmを超えると、圧縮強度又は下地コンクリートとの付着強度が不足する虞がある。 The repair material of the present invention preferably has a slump flow value of 30 to 70 cm, because it is easy to pump under pressure and easily fills the repaired portion, and more preferably, the slump flow value is 40 to 65 cm, and most preferably. Is 45 to 63 cm. When the value of slump flow is less than 30 cm, it is difficult to pump under pressure and it is difficult to fill repair points. If the slump flow value exceeds 70 cm, the compressive strength or the adhesive strength with the concrete foundation may be insufficient.

本発明の補修材は、単位水量170〜230L/mの水を含有する。170L/m未満では、流動性が低下することにより、充填性やポンプ圧送性が低下する。また、230L/mを超えると、材料分離が起きる虞がある。好ましい補修材に含まれる水量は、180〜220L/mとすることが好ましい。 The repair material of the present invention contains water having a unit water amount of 170 to 230 L/m 3 . If it is less than 170 L/m 3 , the fluidity is lowered, so that the filling property and the pumping property are lowered. If it exceeds 230 L/m 3 , material separation may occur. The amount of water contained in the preferred repair material is preferably 180 to 220 L/m 3 .

本発明の補修材を製造する方法及び装置は特に限定されない。例えば、可傾式コンクリートミキサ等の重力式ミキサ、パン型コンクリートミキサ、パグミル型コンクリートミキサ、重力式コンクリートミキサ、グラウトミキサ、ハンドミキサ、左官ミキサ等のミキサに、上記各材料を投入し混合することで製造することができる。 The method and apparatus for manufacturing the repair material of the present invention is not particularly limited. For example, put the above materials into a mixer such as a gravity mixer such as a tilting concrete mixer, a pan concrete mixer, a pug mill concrete mixer, a gravity concrete mixer, a grout mixer, a hand mixer, or a plasterer mixer, and mix them. Can be manufactured in.

本発明の補修材は、コンクリート構造物の劣化部分を除去した部分の修復に主に用いる。 The repair material of the present invention is mainly used for repairing a portion of a concrete structure from which a deteriorated portion has been removed.

本発明のコンクリート構造物の補修方法は、設計基準強度が45N/mm以下のコンクリート構造物の劣化部分を除去する工程(A)と、前記工程(A)の除去により新たに露出したコンクリート表面を型枠で覆う工程(B)と、前記型枠とコンクリート表面との空間に上記の補修材をポンプ圧送により充填する工程(C)とを具備する。 The method for repairing a concrete structure of the present invention comprises a step (A) of removing a deteriorated portion of the concrete structure having a design standard strength of 45 N/mm 2 or less, and a concrete surface newly exposed by the removal of the step (A). (B) of covering the above with a mold and a step (C) of filling the space between the mold and the concrete surface with the above-mentioned repair material by pumping.

工程(A)でコンクリート構造物の劣化部分を除去する方法は、特に限定されない。例えば、好適な除去方法としては、ダイヤモンドカッターやワイヤーソーにより切断する方法、コンクリートハンマー等のコンクリートブレーカにより斫り取る方法、劣化したコンクリート面に設けた穴や溝に静的破砕剤等の破砕剤を充填し発生する圧力により破砕する方法、劣化したコンクリート面に設けた穴や溝にクサビ等を打ち込み破砕する方法、路面切削機や舗装路面切削整正機等により削り取る方法、サンドブラストのようにブラスト材を劣化したコンクリート面に衝突させ削り取る方法、ウォータージェットを用いて切断又は削り取る方法、或いはこれらの2種以上を併用する方法が挙げられる。 The method of removing the deteriorated portion of the concrete structure in the step (A) is not particularly limited. For example, as a suitable removal method, a method of cutting with a diamond cutter or a wire saw, a method of scraping off with a concrete breaker such as a concrete hammer, a crushing agent such as a static crushing agent in a hole or groove provided on a deteriorated concrete surface Filling and crushing by generated pressure, crushing by hammering wedges etc. into the holes and grooves provided on the deteriorated concrete surface, shaving with a road surface cutting machine or paving road surface cutting and straightening machine, blasting like sand blasting Examples thereof include a method of colliding a material with a deteriorated concrete surface and shaving, a method of cutting or shaving with a water jet, or a method of using two or more of these in combination.

工程(B)で工程(A)の除去により新たに露出したコンクリート表面を型枠で覆う方法は特に限定されず、常用の方法を用いることができる。本発明に使用する型枠の種類も限定されない。本発明に使用する型枠としては、木製、合成樹脂性、鋼材等の金属製又はセラミックス製、或いはこれらの2種以上を併用したものを用いることができる。また、当該型枠の設置方法も限定されない。 The method of covering the concrete surface newly exposed by the removal of the step (A) in the step (B) with a form is not particularly limited, and a conventional method can be used. The type of formwork used in the present invention is also not limited. As the mold used in the present invention, wood, synthetic resin, metal such as steel, or ceramic, or a combination of two or more of these can be used. Further, the method of installing the mold is not limited.

工程(C)における型枠とコンクリート表面との空間に上記の補修材をポンプ圧送により充填する方法も特に限定されない。本発明で使用するポンプは、手動式でも機械式でもよい。また、圧送する方法も特に限定されず、スクイズ式、シリンダー式、フランジャー式等が挙げられ、コンクリートプレーサーも本発明で使用するポンプの一種として用いることができる。本発明におけるポンプとは、圧送器具(圧送機・圧送器含む)のことをいう。本発明で使用するポンプとしては、コンクリートポンプ又はモルタルポンプを用いることが好ましい。工程(C)において、上記ポンプで送られた補修材は、圧送管内を通り、型枠とコンクリート表面との空間に送られ、充填される。ポンプ圧送されていることから、下地のコンクリート表面と、充填した補修材との接触面積が大きく、付着強度が充分に得られる。 The method of filling the space between the mold and the concrete surface in the step (C) with the above-mentioned repair material by pumping is also not particularly limited. The pump used in the present invention may be manual or mechanical. The method of pressure feeding is not particularly limited, and examples thereof include a squeeze type, a cylinder type, a flanger type and the like, and a concrete placer can also be used as one type of pump used in the present invention. The pump in the present invention refers to a pumping device (including a pumping machine and a pumping machine). As the pump used in the present invention, it is preferable to use a concrete pump or a mortar pump. In the step (C), the repair material sent by the above-mentioned pump passes through the inside of the pressure feed pipe and is sent to the space between the formwork and the concrete surface to be filled. Since it is pumped, the contact area between the concrete surface as the base and the filled repair material is large, and sufficient adhesion strength can be obtained.

充填した補修材が硬化した後に、上記型枠を取り外すことが好ましい。また、充填した補修材の強度が充分得られるまで型枠を取り外さずに養生することが好ましい。この養生期間としては、1〜7日程度が好ましい。養生期間が長引くと、全体の工事日程が長くなる。 It is preferable to remove the mold after the filled repair material is cured. Further, it is preferable to cure without removing the mold until the strength of the filled repair material is sufficiently obtained. The curing period is preferably about 1 to 7 days. The longer the curing period, the longer the entire construction schedule.

[実施例1]
表1に示す配合割合で、水を実質的に含まない材料が20kgとなる量のセメント、混和材料(無機フィラー粉末、再乳化型粉末樹脂、セメント分散剤、防錆剤及び増粘剤)及び水を容量20Lのステンレス製円筒容器に投入後30秒間ハンドミキサ(回転数:400r.p.m.)より混練しセメントペーストを作製した。作製したセメントペーストに細骨材及び粗骨材を表1に示す割合で加え、更に60秒間混練し、補修材を作製した。作製に用いた材料を以下に示した。
<使用材料>
・セメント : 普通ポルトランドセメント(太平洋セメント社製、珪酸カルシウム鉱物を70質量%以上含有)
・無機フィラー粉末 : 石灰石微粉末(ブレーン比表面積;4210cm/g,岩手県産)
・膨張材:
石灰系膨張材「太平洋エクスパン(構造用)」(商品名)(太平洋マテリアル社製)
石灰系膨張材「太平洋ハイパーエクスパン(構造用)」(商品名)(太平洋マテリアル社製)
エトリンガイト系膨張材「デンカCSA#20」(商品名)(電気化学工業社製)
エトリンガイト−石灰複合系膨張材「デンカパワーCSA タイプS」(商品名)(電気化学工業社製)
・再乳化型粉末樹脂 : アクリル酸エステル共重合体系粉末「LDM 7000P」(商品名)(日本合成化学工業社製)
・セメント分散剤 :
ナフタレンスルホン酸系高性能減水剤「マイテイ100」(商品名)(花王社製、粉末)
ポリカルボン酸系高性能減水剤「コアフローNF−200」(商品名)(太平洋マテリアル社製、粉末)
ポリカルボン酸系高性能減水剤「マスターグレニウム6500」(商品名)(BASFジャパン社製、液体)
リグニンスルホン酸系AE減水剤「マスターポゾリスNo.70」(商品名)(BASFジャパン社製、液体)
・増粘剤
アクリル樹脂系高吸水性樹脂「Starvis S5514F」(商品名)(BASFジャパン社製)
水溶性セルロースエーテル「メトローズ90SH−30000」(商品名)(信越化学工業社製、ヒドロキシプロピルメチルセルロース)
・細骨材:
山砂(静岡県掛川市産、表乾密度;2.59g/cm、吸水率;1.5%、F.M.;2.73)
人工軽量細骨材「太平洋アサノライト」(商品名)(太平洋アサノライト細骨材)(関西太平洋鉱業社製、表乾密度;2.06g/cm、吸水率;18.0%、F.M.;2.99)
・粗骨材 :
砕石1005(茨城県産、表乾密度;2.65g/cm、吸水率;0.49%、F.M.;6.12)
砕石2005(茨城県産、表乾密度;2.65g/cm、吸水率;0.55%、F.M.;6.57)
人工軽量粗骨材「太平洋アサノライト」(商品名)(太平洋アサノライト粗骨材1505)(関西太平洋鉱業社製、表乾密度;1.61g/cm、吸水率;29.0%、F.M.;5.98、最大寸法;15mm)
人工軽量粗骨材「太平洋アサノライト」(商品名)(太平洋アサノライト粗骨材1005)(関西太平洋鉱業社製、表乾密度;1.61g/cm、吸水率;29.0%、F.M.;5.98、最大寸法;10mm)
・水 : 水道水(千葉県佐倉市上水道水)
・セメント系断面補修材「リペアミックスJ1」(商品名)(トクヤマエムテック社製ポリマーセメントモルタル)
・セメント系無収縮グラウト材「JSグラウト」(商品名)(日本スタッコ社製無収縮モルタル)
[Example 1]
Cement, admixture (inorganic filler powder, re-emulsifying powder resin, cement dispersant, rust preventive and thickener) in an amount of 20 kg of a material substantially free of water in the mixing ratio shown in Table 1 and Water was charged into a stainless steel cylindrical container having a capacity of 20 L and kneaded with a hand mixer (rotation speed: 400 rpm) for 30 seconds to prepare a cement paste. Fine aggregates and coarse aggregates were added to the produced cement paste in the proportions shown in Table 1, and the mixture was further kneaded for 60 seconds to produce a repair material. The materials used for the production are shown below.
<Materials used>
-Cement: Ordinary Portland cement (manufactured by Taiheiyo Cement Co., containing 70% by mass or more of calcium silicate mineral)
・Inorganic filler powder: Limestone fine powder (Blaine specific surface area; 4210 cm 2 /g, produced in Iwate prefecture)
・Expansion material:
Lime-based expansive material "Pacific Expan (for structure)" (trade name) (manufactured by Pacific Materials)
Lime-based expansive material "Pacific hyperexpan (for structure)" (trade name) (manufactured by Pacific Materials)
Ettringite type expansion material "Denka CSA#20" (trade name) (manufactured by Denki Kagaku Kogyo)
Ettringite-lime composite expansion material "Denka Power CSA Type S" (trade name) (manufactured by Denki Kagaku Kogyo Co., Ltd.)
Re-emulsifiable powder resin: Acrylic ester copolymer powder "LDM 7000P" (trade name) (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.)
・Cement dispersant:
Naphthalenesulfonic acid-based high-performance water reducing agent "Mighty 100" (trade name) (Kao, powder)
Polycarboxylic acid type high-performance water reducing agent "Coreflow NF-200" (trade name) (Pacific Materials, powder)
Polycarboxylic acid-based high-performance water reducing agent "Master Glenium 6500" (trade name) (BASF Japan, liquid)
Lignin sulfonic acid type AE water reducing agent "Master Pozzolith No. 70" (trade name) (BASF Japan, liquid)
・Thickener Acrylic resin-based super absorbent polymer "Starvis S5514F" (trade name) (manufactured by BASF Japan Ltd.)
Water-soluble cellulose ether "Metroses 90SH-30000" (trade name) (Shin-Etsu Chemical Co., Ltd., hydroxypropyl methylcellulose)
・Fine aggregate:
Mountain sand (Kakegawa City, Shizuoka Prefecture, surface dry density: 2.59 g/cm 3 , water absorption rate: 1.5%, FM; 2.73)
Artificial lightweight fine aggregate "Pacific Asanolite" (trade name) (Pacific Asanolite fine aggregate) (manufactured by Kansai Pacific Mining Co., Ltd., surface dry density: 2.06 g/cm 3 , water absorption rate: 18.0%, F.I. M.; 2.99)
・Coarse aggregate :
Crushed stone 1005 (produced in Ibaraki prefecture, surface dry density; 2.65 g/cm 3 , water absorption rate: 0.49%, FM; 6.12)
Crushed stone 2005 (produced in Ibaraki prefecture, surface dry density; 2.65 g/cm 3 , water absorption rate: 0.55%, FM; 6.57)
Artificial lightweight coarse aggregate "Pacific Asanolite" (trade name) (Pacific Asanolite coarse aggregate 1505) (Kansai Pacific Mining Co., Ltd., surface dry density: 1.61 g/cm 3 , water absorption rate: 29.0%, F .M.; 5.98, maximum size; 15 mm)
Artificial lightweight coarse aggregate "Pacific Asanolite" (trade name) (Pacific Asanolite coarse aggregate 1005) (manufactured by Kansai Pacific Mining Co., Ltd., surface dry density: 1.61 g/cm 3 , water absorption rate: 29.0%, F .M.; 5.98, maximum dimension: 10 mm)
・Water: Tap water (water tap water in Sakura City, Chiba Prefecture)
・Cement-based cross-section repair material "Repair Mix J1" (product name) (polymer cement mortar manufactured by Tokuyama M-Tech)
・Cement-based non-shrink grout "JS grout" (trade name) (Non-shrink mortar manufactured by Japan Stucco)

Figure 0006734004
Figure 0006734004

作製した補修材の品質試験として、以下に示す通り、スランプフロー試験、充填性能試験、ポンプ圧送性能試験、圧縮強度試験、付着強度試験及び長さ変化率試験を行った。試験結果を表2に示した。参考として、ポリマーセメントモルタルと無収縮モルタルの市販品についても同様に試験を行い、その結果を表2に示した。
<品質試験方法>
・スランプフロー試験
JIS A 1150「コンクリートのスランプフロー試験方法」に基づき、スランプフロー値を測定した。なお、スランプフロー板は長さ900mm、幅900mmのスランプフロー板を使用した。

・充填性能試験
縦1000mm、横500mm、高さ200mmのコンクリートの下面から深さ30mmの位置で、縦方向となるようにD13異形鉄筋を設置した供試体を下面から深さ50mm程度はつり、はつった部分に型枠を設置し、補修材を上向きに充填し、48時間後脱型し、鉄筋から10mmの位置で縦方向に供試体をカットし、空隙率を測定した。空隙率が5%未満を充填良好な範囲(○)とし、5%以上を充填不十分な範囲(×)とした。なお、空隙率とは補修材の面積に対する空隙面積の比を表す。

・ポンプ圧送性能試験
岡三機工社製スクイズ式ポンプ(型番:OKG−35E)および内径38mm、長さ20mのグラウトホースを用いて補修材を圧送し、圧送性の評価をした。吐出口から補修材が20L以上流出した場合(○)とし、吐出口から補修材が20L以上流出しない場合(×)とした。

・圧縮強度試験
縦500mm、幅500mm、高さ200mmの型枠に設計基準強度27N/mmのコンクリート(躯体コンクリート)を打設し、打設後91日で縦方向に割裂し、割裂した面に補修材を打設し、48時間後脱型し、温度20℃、相対湿度60%にて養生し、補修材打設時より28日後に打ち継ぎ目が中心となるように径75mm、長さ150mmのコア供試体を採取し、圧縮強さ(圧縮強度)を測定した。圧縮強度が設計基準強度以上を躯体コンクリートとの一体性が良好(○)とし、設計基準強度未満を躯体コンクリートとの一体性が不十分(×)とした。

・付着強度試験
縦500mm、横200mm、高さ150mmの設計基準強度27N/mmのコンクリート成型し、ウォータージェットで打設上面を処理し、温度20℃、相対湿度60%にて養生し、打設後91日で処理面に補修材を高さ300mmとなるように打設し、48時間後脱型し、打ち継ぎ目が高さ方向において中心となるように径100mmのコア供試体を採取し、コア供試体の高さが200mmになるようにダイアモンドカッターでカットし、温度20℃、相対湿度60%にて養生し、NEXCO試験方法432−2006「断面修復用吹付けモルタルの試験方法」5.2引張接着性試験に準拠し、補修材を打設後28日の付着強度を測定した。付着強度2.0N/mm以上を良好な範囲(○)とし、2.0N/mm未満を付着強度不足(×)とした。

・長さ変化率試験
JIS A 1129「モルタル及びコンクリートの長さ変化測定方法‐第3部:ダイヤルゲージ方法」に基づき、100×100×400mmの供試体を作製し、48時間後に基長を測定し、その後20℃相対湿度60%にて養生し、基長測定時より91日後の長さ変化を測定した。乾燥収縮率が600μ以下(600×10−6以下)を良好な範囲(○)とし、600μより大きい場合を乾燥収縮が過大な範囲(×)とした。
As the quality test of the prepared repair material, as shown below, a slump flow test, a filling performance test, a pump pressure feeding performance test, a compression strength test, an adhesive strength test and a length change rate test were performed. The test results are shown in Table 2. As a reference, the same tests were carried out on commercial products of polymer cement mortar and non-shrink mortar, and the results are shown in Table 2.
<Quality test method>
Slump flow test The slump flow value was measured based on JIS A 1150 "Concrete slump flow test method". As the slump flow plate, a slump flow plate having a length of 900 mm and a width of 900 mm was used.

-Filling performance test A specimen with D13 deformed rebars installed in a vertical direction at a position 30 mm deep from the bottom surface of concrete with a length of 1000 mm, a width of 500 mm, and a height of 200 mm is about 50 mm deep from the bottom surface. A mold was installed in the above part, the repair material was filled upward, and after 48 hours, it was demolded, the specimen was cut in the longitudinal direction at a position 10 mm from the reinforcing bar, and the porosity was measured. A porosity of less than 5% was defined as a good filling range (∘), and a porosity of 5% or more was defined as an insufficient filling range (x). The porosity represents the ratio of the void area to the area of the repair material.

Pump pumping performance test A repair material was pumped using a squeeze pump (model number: OKG-35E) manufactured by Okasan Kiko Co., Ltd. and a grout hose having an inner diameter of 38 mm and a length of 20 m to evaluate the pumpability. The case where 20 L or more of the repair material flows out from the discharge port is indicated as (◯), and the case where the repair material does not flow out of 20 L or more through the discharge port is indicated as (x).

・Compressive strength test Concrete (frame concrete) with a design standard strength of 27 N/mm 2 was placed in a formwork with a length of 500 mm, a width of 500 mm, and a height of 200 mm, and it was split in the vertical direction 91 days after placement, and the split surface was split. The repair material is placed in the mold, demolded after 48 hours, and cured at a temperature of 20°C and a relative humidity of 60%. The diameter is 75 mm and the length is 28 days after the repair material is placed so that the joint is centered. A 150 mm core specimen was sampled and the compressive strength (compressive strength) was measured. If the compressive strength is equal to or higher than the design standard strength, the integrity with the concrete is good (○), and if the compressive strength is less than the design standard strength, the integrity with the concrete is insufficient (x).

-Adhesion strength test: Concrete molding with a design standard strength of 27 N/mm 2 having a length of 500 mm, a width of 200 mm, and a height of 150 mm, treated with a water jet to treat the upper surface, and cured at a temperature of 20° C. and a relative humidity of 60%. 91 days after installation, the repair material was placed on the treated surface to a height of 300 mm, and after 48 hours, it was demolded, and a core specimen with a diameter of 100 mm was taken so that the joint was centered in the height direction. , The core specimen was cut with a diamond cutter so that the height was 200 mm, and cured at a temperature of 20° C. and a relative humidity of 60%, NEXCO test method 432-2006 “test method for spray mortar for cross-section restoration” 5 Based on the tensile adhesion test, the adhesive strength was measured 28 days after the repair material was placed. An adhesion strength of 2.0 N/mm 2 or more was regarded as a good range (◯), and an adhesion strength of less than 2.0 N/mm 2 was regarded as insufficient adhesion strength (x).

・Length change rate test Based on JIS A 1129 "Method for measuring length change of mortar and concrete-Part 3: Dial gauge method", 100 × 100 × 400 mm specimens are prepared, and the base length is measured 48 hours later. Then, it was cured at 20° C. and 60% relative humidity, and the change in length was measured 91 days after the measurement of the base length. A dry shrinkage rate of 600 μm or less (600×10 −6 or less) was set as a good range (◯), and a dry shrinkage rate of more than 600 μ was set as an excessive dry shrinkage range (×).

Figure 0006734004
Figure 0006734004

本発明の実施例に当たる補修材は、何れも充填性、ポンプ圧送性及び補修部分の躯体コンクリートとの一体性に優れていた。 All of the repair materials according to the examples of the present invention were excellent in the filling property, the pumping property, and the integrity of the repair part with the skeleton concrete.

本発明によれば、設計基準強度が45N/mm以下のコンクリート構造物補修工事等に好適に用いることができる。 INDUSTRIAL APPLICABILITY According to the present invention, it can be suitably used for repair work of concrete structures having a design standard strength of 45 N/mm 2 or less.

Claims (3)

単位粗骨材量200〜400L/mの公称目開き11.2mmのふるい95質量%以上通過する粗骨材と、
単位水量170〜230L/mの水と、珪酸カルシウム鉱物を主成分とするセメントにポゾラン粉末、フライアッシュ、高炉スラグ粉末又は石灰石微粉末から選ばれる無機フィラー粉末を併用している水硬性物質と、単位量で5〜50kg/mの膨張材と、105℃における不揮発成分換算で10〜110kg/mの結合材として用いられるセメント用ポリマーと、セメント分散剤と、増粘剤と、単位細骨材量で200〜400L/mの細骨材とを含有し、
下記の試験方法により求められる圧縮強度が躯体コンクリートの設計基準強度以上であり、且つ下記の試験方法により求められる付着強度が2.0N/mm 以上である、
JIS A 1129「モルタル及びコンクリートの長さ変化試験方法−第3部:ダイヤルゲージ法」に準じ、打ち込みから48時間後に基長し、20℃相対湿度60%で養生した材齢91日における収縮率が600μ以下であり、前記膨張材が石灰系膨張材、エトリンガイト系膨張材及びエトリンガイト−石灰複合系膨張材から選ばれる一種又は二種以上であり、且つ前記セメント用ポリマーが合成ゴム、天然ゴム、合成樹脂、瀝青質から選ばれる1種又は2種以上であることを特徴とする、設計基準強度が45N/mm以下のコンクリート構造物補修用の補修材。
圧縮強度試験:
縦500mm、幅500mm、高さ200mmの型枠に設計基準強度27N/mm のコンクリート(躯体コンクリート)を打設し、打設後91日で縦方向に割裂し、割裂した面に補修材を打設し、48時間後脱型し、温度20℃、相対湿度60%にて養生し、補修材打設時より28日後に打ち継ぎ目が中心となるように径75mm、長さ150mmのコア供試体を採取し、圧縮強さ(圧縮強度)を測定する。
付着強度試験:
縦500mm、横200mm、高さ150mmの設計基準強度27N/mm のコンクリート成型し、ウォータージェットで打設上面を処理し、温度20℃、相対湿度60%にて養生し、打設後91日で処理面に補修材を高さ300mmとなるように打設し、48時間後脱型し、打ち継ぎ目が高さ方向において中心となるように径100mmのコア供試体を採取し、コア供試体の高さが200mmになるようにダイアモンドカッターでカットし、温度20℃、相対湿度60%にて養生し、NEXCO試験方法432−2006「断面修復用吹付けモルタルの試験方法」5.2引張接着性試験に準拠し、補修材を打設後28日の付着強度を測定する。
A coarse aggregate having a unit coarse aggregate amount of 200 to 400 L/m 3 and a sieve having a nominal opening of 11.2 mm of 95% by mass or more;
A hydraulic substance in which water having a unit water amount of 170 to 230 L/m 3 and an inorganic filler powder selected from pozzolan powder, fly ash, blast furnace slag powder or limestone fine powder are used in combination with cement mainly composed of calcium silicate mineral. , an expansion material of 5 to 50 kg / m 3 in a unit volume, the cement polymer used as a binder for 10~110kg / m 3 in the non-volatile components in terms of 105 ° C., and the cement dispersing agent, a thickener, a unit Containing fine aggregate of 200 to 400 L/m 3 in the amount of fine aggregate,
The compressive strength determined by the following test method is equal to or higher than the design standard strength of the building concrete, and the adhesive strength determined by the following test method is 2.0 N/mm 2 or more,
According to JIS A 1129 "Method for testing length change of mortar and concrete-Part 3: Dial gauge method", the shrinkage rate was 91 days after curing at a relative humidity of 60% and a base length of 48 hours after driving. Is 600μ or less, the expansive material is one or more selected from lime expansive material, ettringite expansive material and ettringite-lime composite expansive material, and the cement polymer is a synthetic rubber, natural rubber, A repair material for repairing a concrete structure having a design standard strength of 45 N/mm 2 or less, which is one or more kinds selected from synthetic resins and bituminous substances.
Compressive strength test:
Concrete (skeleton concrete) with a design standard strength of 27 N /mm 2 is placed in a formwork with a length of 500 mm, a width of 500 mm, and a height of 200 mm , and it is split in the vertical direction 91 days after placement, and the repaired material is on the split surface. It is placed, demolded after 48 hours, cured at a temperature of 20°C and relative humidity of 60%, and a core with a diameter of 75 mm and a length of 150 mm is provided 28 days after the repair material is placed so that the joint is centered. A sample is taken and the compressive strength (compressive strength) is measured.
Adhesive strength test:
Concrete molding with a design standard strength of 27 N /mm 2 with a length of 500 mm, a width of 200 mm and a height of 150 mm, the upper surface of the casting is treated with a water jet, and cured at a temperature of 20° C. and a relative humidity of 60% for 91 days after placing. Then, the repair material is placed on the treated surface to a height of 300 mm, and after 48 hours, it is demolded, and a core specimen with a diameter of 100 mm is collected so that the joint is centered in the height direction. Cut with a diamond cutter to a height of 200 mm, cured at a temperature of 20° C. and a relative humidity of 60%, and tested by NEXCO test method 432-2006 “Test method for spray mortar for cross-section restoration” 5.2 Tensile adhesion Based on the property test, the adhesive strength is measured 28 days after the repair material is placed.
スランプフローの値が30〜70cmである請求項1記載の補修材。 The repair material according to claim 1, which has a slump flow value of 30 to 70 cm. 設計基準強度が45N/mm以下のコンクリート構造物の劣化部分を除去する工程(A)と、前記工程(A)の除去により新たに露出したコンクリート表面を型枠で覆う工程(B)と、前記型枠とコンクリート表面との空間に請求項1又は2の補修材をポンプ圧送により充填する工程(C)とを具備する設計基準強度が45N/mm以下のコンクリート構造物の補修方法。 A step (A) of removing a deteriorated portion of the concrete structure having a design standard strength of 45 N/mm 2 or less, and a step (B) of covering the concrete surface newly exposed by the removal of the step (A) with a formwork, A method for repairing a concrete structure having a design standard strength of 45 N/mm 2 or less, comprising a step (C) of filling the space between the formwork and the concrete surface with the repair material according to claim 1 or 2 by pumping.
JP2014266800A 2014-12-27 2014-12-27 Repair material for concrete structure and method for repairing concrete structure Active JP6734004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014266800A JP6734004B2 (en) 2014-12-27 2014-12-27 Repair material for concrete structure and method for repairing concrete structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014266800A JP6734004B2 (en) 2014-12-27 2014-12-27 Repair material for concrete structure and method for repairing concrete structure

Publications (2)

Publication Number Publication Date
JP2016125254A JP2016125254A (en) 2016-07-11
JP6734004B2 true JP6734004B2 (en) 2020-08-05

Family

ID=56359057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014266800A Active JP6734004B2 (en) 2014-12-27 2014-12-27 Repair material for concrete structure and method for repairing concrete structure

Country Status (1)

Country Link
JP (1) JP6734004B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6383446B2 (en) * 2017-02-22 2018-08-29 信越化学工業株式会社 Concrete composition and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5876656A (en) * 1981-10-30 1983-05-09 積水化学工業株式会社 Repairing of cement structure
JP2623662B2 (en) * 1988-04-05 1997-06-25 三井石油化学工業株式会社 Repair method of concrete structure
JP3784323B2 (en) * 1999-12-16 2006-06-07 太平洋セメント株式会社 Cement additive and concrete composition and structure using the same
JP2004292201A (en) * 2003-03-26 2004-10-21 Denki Kagaku Kogyo Kk Admixture for concrete and concrete composition
JP2009013682A (en) * 2007-07-05 2009-01-22 Shimizu Corp Synthetic flooring, precast concrete floor plate, and method of constructing synthetic flooring
JP2009023878A (en) * 2007-07-20 2009-02-05 Sumitomo Osaka Cement Co Ltd Concrete for repairing cross section, and construction method for repairing cross section of concrete structure using the same
JP2011136864A (en) * 2009-12-28 2011-07-14 Taiheiyo Materials Corp Admixture for porous concrete and porous concrete

Also Published As

Publication number Publication date
JP2016125254A (en) 2016-07-11

Similar Documents

Publication Publication Date Title
JP6223813B2 (en) Mortar composition
JP5939776B2 (en) Repair mortar composition
JP5051579B2 (en) High fluidity super early strength admixture and high fluidity super early strength concrete
JP6276029B2 (en) Plasterer mortar
Gaimster et al. Self-compacting concrete
JP2020158371A (en) Polymer cement mortar and repair method of reinforced concrete
JP2022069599A (en) Polymer cement mortar
JP4944734B2 (en) Cement fixing material
JP5941299B2 (en) Spraying material and spraying method using the same
Hamzah et al. Nomograph of self-compacting concrete mix design incorporating coal bottom ash as partial replacement of fine aggregates
JP6133597B2 (en) Quick-setting mortar composition
Mathur et al. Performance of concrete by partial replacement of alccofine–1203
JP6734004B2 (en) Repair material for concrete structure and method for repairing concrete structure
JP2006219333A (en) Sulfuric acid-resistant cement, cement paste, mortar, concrete and their hardened body using the same
JP4999179B2 (en) Admixture for high-strength cement composition and high-strength cement composition using the same
Tampus et al. Proportion and property specifications and strength behavior of mortar using wood ash as partial replacement of lime
JP2007246293A (en) Low shrinkage type light-weight concrete
JP7350425B2 (en) Highly durable grout composition
JP6654932B2 (en) High strength grout composition and high strength grout material
JP2009023878A (en) Concrete for repairing cross section, and construction method for repairing cross section of concrete structure using the same
JP4893083B2 (en) Hydraulic composition
JP2015000820A (en) Polymer cement mortar, and construction method using the same
JP2021178744A (en) concrete
Ranjitham et al. Performance Assessment of Self Compacting Concrete Incorporating Mineral Admixtures
Arif et al. The effect of using ceramic waste powder as a substitute for cement on the compressive strength of K250 concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190530

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200529

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200708

R150 Certificate of patent or registration of utility model

Ref document number: 6734004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250