JP6733004B1 - Equipment and parts failure evaluation device and failure evaluation method - Google Patents

Equipment and parts failure evaluation device and failure evaluation method Download PDF

Info

Publication number
JP6733004B1
JP6733004B1 JP2019085403A JP2019085403A JP6733004B1 JP 6733004 B1 JP6733004 B1 JP 6733004B1 JP 2019085403 A JP2019085403 A JP 2019085403A JP 2019085403 A JP2019085403 A JP 2019085403A JP 6733004 B1 JP6733004 B1 JP 6733004B1
Authority
JP
Japan
Prior art keywords
failure
equipment
classification information
evaluation
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019085403A
Other languages
Japanese (ja)
Other versions
JP2020181468A (en
Inventor
日隈 幸治
幸治 日隈
武宏 峯村
武宏 峯村
優弥 西
優弥 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2019085403A priority Critical patent/JP6733004B1/en
Application granted granted Critical
Publication of JP6733004B1 publication Critical patent/JP6733004B1/en
Publication of JP2020181468A publication Critical patent/JP2020181468A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing And Monitoring For Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

【課題】設備における機器または部品についての保全有効性評価を適正に行って、設備の信頼性を向上させ且つ保守費用を低減できること。【解決手段】設備における機器または部品の故障を評価するための収集条件を指定する収集条件指定手段11と、機器または部品の故障実績1から、収集条件を満たす機器または部品について故障事例を抽出する故障事例抽出手段12と、故障事例における故障原因を含む故障の特性を分類するための故障分類情報を、故障実績を参照して故障事例に付加する故障分類情報付加手段13と、設備に存在する機器または部品の情報2から、収集条件を満たす機器または部品について故障の評価に必要なデータ3を収集するデータ収集手段14と、故障の評価に必要なデータ及び故障分類情報を用いて、機器または部品の故障事例に対して故障発生確率を算出し分析する複数の分析手段と、を有するよう構成されたものである。【選択図】図1PROBLEM TO BE SOLVED: To appropriately perform maintenance effectiveness evaluation of equipment or parts in equipment, improve equipment reliability and reduce maintenance cost. SOLUTION: From a collection condition designating unit 11 for designating a collection condition for evaluating a failure of a device or a part in equipment, and a failure record 1 of the device or the part, a failure case of the device or the part satisfying the collection condition is extracted. The failure case extracting unit 12, the failure classification information adding unit 13 for adding the failure classification information for classifying the characteristics of the failure including the failure cause in the failure case to the failure case with reference to the failure record, and the equipment exist in the equipment. Using the data collection means 14 for collecting the data 3 necessary for the failure evaluation of the device or the part satisfying the collection condition from the information 2 of the device or the part, and the data necessary for the failure evaluation and the failure classification information, the device or the part And a plurality of analysis means for calculating and analyzing a failure occurrence probability for a failure case of a component. [Selection diagram] Figure 1

Description

本発明の実施形態は、設備における機器または部品の故障を評価する設備機器・部品の故障評価装置、及び設備機器・部品の故障評価方法に関する。 Embodiments of the present invention relate to a failure evaluation apparatus for equipment and parts, which evaluates failures of equipment or parts in equipment, and a failure evaluation method for equipment and parts.

発電所等のプラントや輸送機械等の大規模なシステムにおいて、システムの信頼性を維持するためには、その構成要素であるサブシステム、設備、機器等を適切に整備しなければならない。機器の整備には、JIS等で規定されているように、定期的に分解点検等を行う時間計画保全(TBM)と、設備の劣化や故障に関連したパラメータを観測し、その状態に応じて分解点検等を行う状態監視保全(CBM)と、機器の故障が発見された場合や機能喪失があった場合に修理を行う事後保全(BDM)との3種の保全方式がある。これらの保全方式を、機器の重要度や特性に応じて適切に組み合わせることにより、システムの信頼性を保持すると共に、補修費用や生産損失を抑制することが可能になる。 In a large-scale system such as a plant such as a power plant or a transportation machine, in order to maintain the reliability of the system, its constituent subsystems, facilities, equipment, etc. must be properly maintained. For the maintenance of equipment, as specified in JIS, etc., time-planned maintenance (TBM) that regularly performs overhauls and inspections, and parameters related to equipment deterioration and failure are observed, and according to the state There are three types of maintenance methods: condition monitoring maintenance (CBM) that performs overhaul and inspection, etc., and post-maintenance maintenance (BDM) that repairs when a device failure is discovered or when there is a loss of function. By appropriately combining these maintenance methods according to the importance and characteristics of the equipment, it becomes possible to maintain system reliability and suppress repair costs and production loss.

従来から、保全方式の最適な決定方法として様々な試みがなされている。例えば、米国の航空業界や軍部等において、莫大な数の機械部品を対象にした故障や劣化の調査から、故障特性(故障率の時間変化カーブ)を求め、この故障特性に応じて上述のどの保全方式が適切かの検討がなされている。この結果、TBMは、大部分の機械設備に対して所謂いじり壊しを誘発し、保守費用や損失費用の増大を招くのに対し、CBMは、信頼性確保と保全費用抑制を両立する最適な保全方式であることが明らかにされており、わが国でも鉄鋼業界や化学業界を中心に30〜40年前に導入されている。 Heretofore, various attempts have been made as an optimum determination method of a maintenance method. For example, in the US aviation industry, the military, etc., a failure characteristic (time-dependent curve of failure rate) is obtained from an investigation of failure and deterioration of a huge number of mechanical parts, and the above-mentioned It is being examined whether the maintenance method is appropriate. As a result, the TBM induces so-called tampering with most of the machinery and equipment, resulting in an increase in maintenance costs and loss costs, while the CBM provides optimum maintenance that ensures both reliability and maintenance costs. It has been clarified that this is a system, and it was introduced 30 to 40 years ago in Japan, mainly in the steel and chemical industries.

しかしながら、現在の原子力発電所の保全では、大部分の機器に対して予防保全として、決められた周期で機器の分解点検を行うTBMが実施されており、また、この分解点検のほとんどが、プラントの定期検査中に実施されている。TBMでは、分解点検の周期を本来の機器寿命に対して非常に短く設定せざるをえないので所謂オーバーメンテナンスとなり保守費用が大きくなるという問題点と、機器の劣化状態にかかわらず分解点検が行われるため、劣化が生じていない機器に対して分解・組立のプロセスで故障を発生させる所謂いじり壊しを発生させ易いという問題点がある。また、多くの作業が数ヶ月の定期検査中に集中して実施されるため、工程が錯綜してトラブルが発生しやすく、また、定期点検工程を短縮することができないため、プラント稼動率の改善が難しいという問題点もある。 However, in the current maintenance of nuclear power plants, as a preventive maintenance for most of the equipment, TBM that performs equipment overhaul and inspection at a fixed cycle is carried out, and most of the overhaul and inspection are performed by the plant. It is carried out during the periodic inspection of. With TBM, the cycle of overhaul and inspection must be set to be extremely short for the original life of the equipment, which causes so-called over-maintenance, which increases maintenance costs, and overhaul and inspection is performed regardless of the deterioration state of the equipment. Therefore, there is a problem that it is easy to cause so-called tampering which causes a failure in the disassembling/assembling process for a device that has not deteriorated. In addition, many operations are concentrated during the periodic inspections for several months, so the process is complicated and troubles are likely to occur, and the regular inspection process cannot be shortened, so the plant operation rate is improved. There is also the problem that it is difficult.

CBMは、振動や温度等の機器の劣化状態を表すデータを定期的に監視することにより、分解点検時期を決定する方式であり、上述のいじり壊しによる故障の低減や、機器の運用中に発生する突発的な故障を早期に発見することに効果がある。このようにCBMの効果が非常に大きいことには以下の理由がある。 CBM is a system that determines the timing of overhaul and inspection by periodically monitoring the data indicating the deterioration state of equipment such as vibration and temperature, and reduces the above-mentioned troubles caused by tampering and occurs during operation of equipment. This is effective in early detection of sudden failures that occur. The reason why the effect of CBM is very large is as follows.

まず、機械設備や部品の故障特性は、初期の故障率が高く、その後安定期(偶発故障期)に入り、この安定期が非常に長い(摩耗劣化による故障は非常に少なく、人為的なミスによる故障が多い)からである。次に、機械設備や部品の故障特性は、同一機種でも摩耗故障期に入るまでの時間が大きく異なるからである。更に、時間と共に故障率が増加する劣化特性を備えた機器であっても、その劣化を監視できれば、TBMよりも効率的で確実な保全が行えるからである。 First, the failure characteristics of mechanical equipment and parts have a high initial failure rate, then enter a stable period (random failure period), and this stable period is very long (the number of failures due to wear deterioration is very small and human error Because of many failures). Secondly, the failure characteristics of mechanical equipment and parts differ greatly even in the same model until the start of the wear failure period. Further, even if the device has a deterioration characteristic in which the failure rate increases with time, if the deterioration can be monitored, more efficient and reliable maintenance can be performed than the TBM.

一方で、CBMが不可能な、即ち状態を監視することができない時間依存の劣化が存在する場合には、必ずTBMを設定しなければならない。このため、このような機器に対してTBMの周期を最適化することは、CBMの導入と同様に、プラントの信頼性確保と保守費用抑制のために重要になる。一般に、プラントや設備の個別特性や重要度にあわせて、TBMとCBMを最適に組み合わせた保全を行うことが理想とされる。ここで、重要度は、信頼性重視保全(後述)の手法等により設定される。 On the other hand, the TBM must be set whenever there is a time-dependent degradation in which the CBM is not possible, ie the state cannot be monitored. Therefore, optimizing the TBM cycle for such equipment is important for securing the reliability of the plant and suppressing the maintenance cost, as in the introduction of the CBM. In general, it is ideal to perform maintenance by optimally combining TBM and CBM according to individual characteristics and importance of plants and equipment. Here, the degree of importance is set by a technique such as reliability-oriented maintenance (described later).

近年、石油化学等の他産業や米国の原子力発電所で実績のある信頼性重視保全(RCM)と、状態監視保全(CBM)とを含む保全方式の最適化が試みられている。また、原子力発電所における検査制度では、TBMの周期や方法、CBMの適用性等について、実データをもとに評価と見直しを行う「保全有効性評価」(JEAG4210)が求められている。 In recent years, optimization of maintenance methods including reliability-oriented maintenance (RCM) and condition monitoring maintenance (CBM), which have a proven record in other industries such as petrochemicals and nuclear power plants in the United States, has been attempted. In addition, the inspection system at a nuclear power plant requires “conservation effectiveness evaluation” (JEAG 4210) that evaluates and reviews the TBM cycle and method, the applicability of CBM, etc. based on actual data.

この保全有効性評価は、プラントや機器の保守実績や故障実績等から、プラントや機器の機能を維持する保全が適切に行われているか、保全の方法や周期に不備がないか等を評価するものである。この保全有効性評価では、保全が有効に行われていることの確認が求められるが、保全の実績が良好と認められ、且つ分解点検等の周期が機器の劣化速度に対して余裕があると認められるときには、その周期を延長することも可能である。 This maintenance effectiveness evaluation evaluates from the maintenance record and breakdown record of the plant and equipment whether maintenance that maintains the function of the plant and equipment is properly performed, and whether there are any flaws in the maintenance method or cycle. It is a thing. In this maintenance effectiveness evaluation, it is required to confirm that the maintenance is being performed effectively, but it is confirmed that the maintenance results are good, and that the cycle of overhaul and inspection has a margin for the deterioration speed of the equipment. It is also possible to extend the cycle when permitted.

また、プラント等の設備の機器または部品のCBMやTBMにおける状態監視データと、分解点検時における各種検査データとを組み合わせて、機器状態を総合的に判定する機器カルテ管理手法が適用可能である。この機器カルテ管理手法では、膨大なデータを処理して良否の判定を行うため、膨大なデータ処理を支援する手段として、各データに閾値を設定して一次スクリーニングを行うことにより、マンパワーの軽減が図られている。しかしながら、閾値の設定作業自体が膨大になるため、この閾値の設定支援方法も提案されている。また、信頼性重視保全(RCM)による機器重要度の設定等についても支援する方法が提案されている。 In addition, a device chart management method that comprehensively determines the device state can be applied by combining state monitoring data in the CBM or TBM of equipment or parts of equipment such as a plant and various inspection data during overhaul inspection. In this equipment chart management method, a huge amount of data is processed to determine pass/fail, so as a means for supporting the huge amount of data, a threshold is set for each data to perform primary screening, thereby reducing manpower. Has been planned. However, since the threshold setting work itself becomes enormous, a threshold setting support method has been proposed. In addition, a method of supporting the setting of device importance by reliability-oriented maintenance (RCM) has been proposed.

更に、保全有効性評価におけるデータの評価とプラントに設置される膨大な機器のデータとを効率よく処理し、この処理されたデータに基づき、保全を簡略化する候補となる機器を効率的に抽出すると共に、保全に誤りがあると疑われる機器も抽出し、これらに対して、グラフによる詳細なデータ分析と機器の劣化特性とを組み合わせた評価を行うことにより、機器の保全方法を最適化していく設備機器保全方法の有効性評価を支援する方法も提案されている。 Furthermore, the data evaluation in the maintenance effectiveness evaluation and the data of the huge amount of equipment installed in the plant are efficiently processed, and the equipment that is a candidate for simplifying the maintenance is efficiently extracted based on this processed data. At the same time, equipment that is suspected to have an error in maintenance is also extracted, and a detailed data analysis using graphs and equipment deterioration characteristics are combined and evaluated to optimize the equipment maintenance method. A method for supporting the effectiveness evaluation of the equipment maintenance method is also proposed.

一方、機器に発生した故障の頻度を評価することにより、機器の最適な保全周期を設定して故障率を低下させる試みもなされている。前述の設備機器保全方法の有効性評価では、当該機器の保全の実績データを用いて保全状況の良否を判断するが、故障率を用いれば、同一機種の機器の運転実績をもとに統計的な観点で、プラント全体や複数の機器にまたがる保全状況の良否が判断できる。これは、例えば、ある条件で運転され保守される機器について、その条件と故障率とを比較することで、故障率を低下させるように条件を改善できるからである。 On the other hand, attempts have been made to reduce the failure rate by setting the optimal maintenance cycle of the equipment by evaluating the frequency of failures that have occurred in the equipment. In the evaluation of the effectiveness of the equipment maintenance method described above, the quality data of the maintenance of the equipment is used to judge the quality of the maintenance status.However, if the failure rate is used, statistically based on the operation results of the equipment of the same model. From this point of view, it is possible to judge the quality of the maintenance situation across the entire plant or a plurality of devices. This is because, for example, for a device operated and maintained under a certain condition, the condition can be improved so as to reduce the failure rate by comparing the condition with the failure rate.

ここで、故障率は、信頼性工学の一般的な知識から、平均故障間隔(MTBF)を用いて、故障率=1/MTBF、MTBF=(システムの稼動時間)/(上記稼働時間内の故障回数)で求められる。つまり、故障率は、設備における機器の稼働状態の記録を統計処理することにより算出可能である。例えば、この故障率を算出して設備や部品の寿命を予測し、最適なメンテナンス周期を与えることを目的とした技術が開示されている。また、原子力発電の分野では、確率論的安全評価のためのインプットとして故障率が用いられている。 Here, the failure rate is, based on the general knowledge of reliability engineering, using the mean time between failures (MTBF), failure rate=1/MTBF, MTBF=(system operation time)/(failure within the above operation time) Number of times). That is, the failure rate can be calculated by statistically processing the record of the operating state of the equipment in the facility. For example, a technique has been disclosed for the purpose of calculating the failure rate, predicting the service life of equipment and parts, and providing an optimal maintenance cycle. In the field of nuclear power generation, the failure rate is used as an input for probabilistic safety evaluation.

国際公開第2012/157040号International Publication No. 2012/157040 特開2009−217718号公報JP, 2009-217718, A

しかしながら、前述のように、TBMで実施した分解点検による所謂いじり壊しの発生は人為ミス等により発生するものであり、システムの稼働時間に直接関係がない。このため、故障平均間隔(MTBF)に基づく故障率のみによる評価では、人為ミスによる故障と、機器が備える時間に依存した劣化による故障とを同列に扱うことになり、故障に対する原因や対策の立案に齟齬を生じる可能性がある。従って、故障率のみによる評価では保全の改善に結びつかず、システムについて真に故障回数を低下させる評価ができないことになる。 However, as described above, the so-called tampering damage caused by the overhaul and inspection performed by the TBM is caused by human error or the like, and is not directly related to the operating time of the system. Therefore, in the evaluation based only on the failure rate based on the mean time between failures (MTBF), the failure due to human error and the failure due to the deterioration depending on the time of the equipment are treated in the same row, and the cause of the failure and the planning of the countermeasure are planned. May cause discrepancies. Therefore, an evaluation based only on the failure rate does not lead to improvement in maintenance, and an evaluation that truly reduces the number of failures of the system cannot be performed.

また、時間傾向がある劣化による故障(例えば、腐食流体を扱うポンプにおいて発生する腐食の進行などのように、稼働時間と故障発生に明確な関係がある故障など)を減らすためには、稼働時間と故障率に基づく保全周期の設定でよいが、時間傾向がない故障(非時間依存故障)はその原因事象を取り除くことが必要であり、そのためには上述の故障率ではなく、原因事象と故障発生との関係の評価が必要である。ところが、前述のような機器の運転時間と故障の発生回数に基づいた故障率を用いた故障評価では、非時間依存故障に対して故障原因事象と故障発生との関係を適正に評価することができない。 Also, in order to reduce failures due to deterioration that tends to occur over time (for example, failures that have a clear relationship between operating time and failure occurrence, such as the progress of corrosion that occurs in pumps that handle corrosive fluids), It is sufficient to set the maintenance cycle based on the failure rate and the failure rate, but for the failure without time tendency (non-time-dependent failure), it is necessary to remove the cause event. It is necessary to evaluate the relationship with the occurrence. However, in the failure evaluation using the failure rate based on the operating time of the equipment and the number of failures as described above, it is possible to properly evaluate the relationship between the failure-causing event and the failure occurrence for the non-time-dependent failure. Can not.

本発明の実施形態は、上述の事情を考慮してなされたものであり、設備における機器または部品についての保全有効性評価を適正に行って、設備の信頼性を向上させ且つ保守費用を低減できる設備機器・部品の故障評価装置及び故障評価方法を提供することを目的とする。 The embodiment of the present invention has been made in consideration of the above circumstances, and it is possible to appropriately perform maintenance effectiveness evaluation of a device or a part in equipment, improve equipment reliability, and reduce maintenance cost. An object of the present invention is to provide a failure evaluation device and a failure evaluation method for equipment and parts.

本発明の実施形態における設備機器・部品の故障評価装置は、設備における機器または部品の故障を評価するための収集条件を指定する収集条件指定手段と、前記機器または部品の故障実績から、前記収集条件を満たす前記機器または前記部品について故障事例を抽出する故障事例抽出手段と、前記故障事例における故障原因を含む故障の特性を分類するための、経年劣化に起因する故障と人為ミスに起因する故障を含む故障分類情報を、前記故障実績を参照して前記故障事例に付加する故障分類情報付加手段と、前記設備に存在する前記機器または前記部品の情報から、前記収集条件を満たす前記機器または前記部品について前記故障の評価に必要なデータを収集するデータ収集手段と、前記故障の評価に必要なデータ及び前記故障分類情報を用いて、前記機器または前記部品の前記故障事例に対して故障発生確率を算出し分析する複数の分析手段と、複数の前記分析手段のうちから前記故障分類情報に適合する前記分析手段を選択する選択手段と、を有し、前記選択手段は、前記故障事例に付加された前記故障分類情報を認識する認識手段と、この認識手段により認識された前記故障分類情報に適合する前記分析手段を選択すると共に、この選択した前記分析手段に、前記故障事例に関連づけられた故障の評価に必要なデータ及び前記故障分類情報を振り分ける振り分け手段と、を有し、前記選択手段により選択された前記分析手段により、前記機器または前記部品の前記故障事例に対して前記故障発生確率を算出し分析するよう構成され、前記分析手段が算出し分析する前記故障発生確率は、故障が経年劣化に起因する故障である場合には、前記機器または部品の稼働時間とこの稼働時間における故障回数とに基づき算出される故障率であり、故障が人為ミスに起因する故障である場合には、前記機器または部品の任意の期間における前記人為ミスを発生する恐れがある作業の回数と前記人為ミスの発生回数とに基づき算出される失敗発生確率であることを特徴とするものである。 A failure evaluation apparatus for facility equipment/parts according to an embodiment of the present invention includes a collection condition designating unit for designating a collection condition for evaluating a failure of a device or a component in the facility, and a failure record of the equipment or the component, Failure case extraction means for extracting a failure case for the device or the part satisfying a condition, and a failure caused by aged deterioration and a failure caused by human error for classifying characteristics of the failure including a failure cause in the failure case From the information on the device or the part existing in the equipment, the device or the condition satisfying the collecting condition A failure occurrence probability for the failure case of the device or the part using the data collection means for collecting the data necessary for the failure evaluation of the part and the data necessary for the failure evaluation and the failure classification information. A plurality of analyzing means for calculating and analyzing, and a selecting means for selecting the analyzing means that matches the failure classification information from the plurality of analyzing means, the selecting means adding to the failure case The recognizing means for recognizing the fault classification information thus selected and the analyzing means adapted to the fault classification information recognized by the recognizing means are selected, and the selected analyzing means is associated with the fault case. Distribution means for allocating the data necessary for failure evaluation and the failure classification information, and the failure occurrence probability for the failure case of the device or the component by the analysis means selected by the selection means. Is configured to calculate and analyze, the failure occurrence probability calculated and analyzed by the analysis means, if the failure is a failure due to aging deterioration, the operating time of the device or part and the failure at this operating time It is a failure rate calculated based on the number of times, and when the failure is caused by human error, the number of operations that may cause the human error in the arbitrary period of the equipment or parts and the human error. It is characterized in that it is a failure occurrence probability calculated based on the number of occurrences of mistakes .

本発明の実施形態における設備機器・部品の故障評価方法は、設備における機器または部品の故障を評価するための収集条件を収集条件指定手段により指定する収集条件指定ステップと、前記機器または前記部品の故障実績から、前記収集条件を満たす前記機器または前記部品について故障事例を故障事例抽出手段により抽出する故障事例抽出ステップと、前記故障事例における故障原因を含む故障の特性を分類するための、経年劣化に起因する故障と人為ミスに起因する故障を含む故障分類情報を、故障分類情報付加手段により前記故障実績を参照して前記故障事例に付加する故障分類情報付加ステップと、前記設備に存在する前記機器または前記部品の情報から、前記収集条件を満たす前記機器または前記部品について前記故障の評価に必要なデータをデータ収集手段により収集するデータ収集ステップと、前記故障の評価に必要なデータ及び前記故障分類情報を用い前記機器または前記部品の前記故障事例に対して故障発生確率を算出し分析する複数の分析手段のうちから、前記故障分類情報に適合する前記分析手段を選択手段により選択する選択ステップと、前記選択手段により選択された前記分析手段により、前記機器または前記部品の前記故障事例に対して前記故障発生確率を算出し分析する分析ステップと、を有し、前記選択手段は、前記故障事例に付加された前記故障分類情報を認識する認識手段と、この認識手段により認識された前記故障分類情報に適合する前記分析手段を選択すると共に、この選択した前記分析手段に、前記故障事例に関連づけられた故障の評価に必要なデータ及び前記故障分類情報を振り分ける振り分け手段と、を有し、前記分析手段が算出し分析する前記故障発生確率は、故障が経年劣化に起因する故障である場合には、前記機器または部品の稼働時間とこの稼働時間における故障回数とに基づき算出される故障率であり、故障が人為ミスに起因する故障である場合には、前記機器または部品の任意の期間における前記人為ミスを発生する恐れがある作業の回数と前記人為ミスの発生回数とに基づき算出される失敗発生確率であることを特徴とするものである。
A failure evaluation method for facility equipment/parts according to an embodiment of the present invention includes a collection condition designating step of designating a collection condition for assessing a failure of a device or a component in equipment by a collection condition designating means , Aged deterioration for classifying the characteristics of the failure including the cause of the failure in the failure case extraction step for extracting the failure case for the device or the part satisfying the collection condition from the failure record by the failure case extraction means. Fault classification information including a fault caused by a fault and a fault caused by a human error , the fault classification information adding means adds the fault classification information to the fault case with reference to the fault record, and the fault classification information existing in the facility is added. A data collecting step of collecting data necessary for evaluating the failure of the device or the part satisfying the collecting condition from the information of the device or the part by data collecting means , data necessary for the evaluation of the failure, and the failure. Selection of selecting the analysis means that matches the failure classification information by a selection means from a plurality of analysis means that calculates and analyzes a failure occurrence probability for the failure case of the device or the part using the classification information a step, by the analyzing means selected by said selecting means, have a, an analysis step of analyzing calculates the failure probability to the failure cases of the device or the component, said selection means, said A recognition unit that recognizes the failure classification information added to the failure case and an analysis unit that matches the failure classification information recognized by the recognition unit are selected, and the failure case is set to the selected analysis unit. And a distribution unit that distributes the data necessary for evaluation of the failure and the failure classification information associated with the failure occurrence probability calculated and analyzed by the analysis unit is a failure caused by aged deterioration. In this case, it is a failure rate calculated based on the operating time of the device or part and the number of failures in this operating time.If the failure is due to human error, any of the devices or parts It is characterized in that it is a failure occurrence probability calculated on the basis of the number of operations that may cause the human error in the period and the number of times the human error has occurred .

本発明の実施形態によれば、設備における機器または部品についての保全有効性評価を適正に行って、設備の信頼性を向上させ且つ保守費用を低減できる。 According to the embodiments of the present invention, it is possible to appropriately perform maintenance effectiveness evaluation for a device or a part in a facility, improve the reliability of the facility, and reduce maintenance costs.

第1実施形態に係る設備機器・部品の故障評価装置における構成を示すブロック図。The block diagram which shows the structure in the failure evaluation apparatus of the equipment and component which concerns on 1st Embodiment. 図1のデータ収集手段が収集した故障の評価に必要なデータを主に示す説明図。Explanatory drawing which mainly shows the data required for evaluation of the failure which the data collection means of FIG. 1 collected. 図1の分析手段と分析手段の選択手段との構成を示すブロック図。FIG. 2 is a block diagram showing the configuration of the analyzing means and the selecting means of the analyzing means of FIG. 1. 図2の故障の評価に必要なデータの具体例を示す図表。FIG. 3 is a chart showing a specific example of data required for evaluation of the failure in FIG. 2. 第2実施形態に係る設備機器・部品の故障評価装置におけるデータ収集手段が収集した故障の評価に必要なデータを主に示す説明図。Explanatory drawing which mainly shows the data required for the evaluation of the failure which the data collection means in the failure evaluation apparatus of the equipment device/part concerning 2nd Embodiment collected. 図5に示す設備機器・部品の故障評価装置における分析手段と分析手段の選択手段との構成を示すブロック図。The block diagram which shows the structure of the analysis means and the selection means of an analysis means in the failure evaluation apparatus of the equipment and parts shown in FIG.

以下、本発明を実施するための形態を、図面に基づき説明する。
[A]第1実施形態(図1〜図4)
図1は、第1実施形態に係る設備機器・部品の故障評価装置における構成を示すブロック図である。この図1に示す設備機器・部品の故障評価装置10は、発電プラントなどの設備における機器または部品の保全有効性評価を適切に行なうために、故障実績1、及び上記設備に存在する機器または部品の情報2(保守実績や運転時間など)から故障発生確率を、故障原因を含む故障の特性に応じて算出し分析して評価するものである。そして、この設備機器・部品の故障評価装置10は、収集条件指定手段11、故障事例抽出手段12、故障分類情報付加手段13、データ収集手段14、分析手段15、分析手段の選択手段16、分析結果格納手段17及び出力手段18を有して構成される。
Hereinafter, modes for carrying out the present invention will be described with reference to the drawings.
[A] First embodiment (FIGS. 1 to 4)
FIG. 1 is a block diagram showing the configuration of a failure evaluation device for facility equipment/parts according to the first embodiment. The equipment device/part failure evaluation apparatus 10 shown in FIG. 1 includes a failure record 1 and equipment or parts existing in the equipment in order to appropriately perform maintenance effectiveness evaluation of the equipment or parts in equipment such as a power plant. From the information 2 (maintenance record, operation time, etc.), the failure occurrence probability is calculated according to the characteristics of the failure including the cause of failure, analyzed, and evaluated. The equipment/parts failure evaluation apparatus 10 includes a collection condition designating means 11, a failure case extracting means 12, a failure classification information adding means 13, a data collecting means 14, an analyzing means 15, an analyzing means selecting means 16, and an analyzing means. It has a result storage means 17 and an output means 18.

ここで、保全有効性評価は、プラント等の設備、またはこの設備を構成する機器及び部品の保守実績や故障実績1等から、設備、機器または部品の機能を維持するための保全が適切に行われているか、保全の方法や周期に不備がないか等を評価するものである。 Here, the maintenance effectiveness evaluation is performed appropriately based on the maintenance record and the breakdown record 1 of the equipment such as the plant, or the equipment and parts constituting the equipment, to maintain the function of the equipment, the equipment or the parts. It is to evaluate whether or not there are any deficiencies in the maintenance method and cycle.

故障実績1は、一般的なプラントでは不適合管理情報として、台帳やデータベースに紙や電子的手段で記録されている。この故障実績1(不適合管理情報)には、故障の状況(振動増加、流量減少など)、故障の時系列、故障の原因(経年劣化、人為ミスなど)、故障に対する処置、水平展開などが記録されている。 The failure record 1 is recorded in a ledger or database by paper or electronic means as nonconformity management information in a general plant. In this failure record 1 (nonconformance management information), the status of failure (increase in vibration, decrease in flow rate, etc.), time series of failure, cause of failure (aging deterioration, human error, etc.), measures against failure, horizontal deployment, etc. are recorded. Has been done.

設備(例えばプラント等)に存在する機器または部品の情報2は、保守実績、運転時間、設計情報、使用条件、設備情報などである。保守実績は、故障に関連する機器または部品の保守がいつ行われたか、何回行われたか等、保守の内容と結果、施工業者等を表すデータである。具体的には、保守実績は、定期点検などにおいて実施される機器または部品の分解点検の報告書、機器の運転状態を監視した結果である状態監視報告書などに保存されている。例えば、ポンプにおける保守実績は、図4に示すように、通常運転中の状態監視として各部の振動測定や潤滑油の分析であり、分解点検として消耗部品の取り替え、インペラの非破壊検査、耐圧部の非破壊検査などである。 The information 2 of the equipment or parts existing in the facility (for example, plant) is the maintenance record, the operating time, the design information, the usage condition, the facility information and the like. The maintenance record is data indicating the content and result of maintenance such as when and how many times the maintenance of the device or part related to the failure was performed, the contractor, and the like. Specifically, the maintenance record is stored in a report of disassembly and inspection of equipment or parts performed in regular inspections, a status monitoring report which is a result of monitoring the operation status of the equipment, and the like. For example, as shown in FIG. 4, the maintenance record of the pump is vibration measurement of each part and analysis of lubricating oil as state monitoring during normal operation, and replacement of consumable parts, non-destructive inspection of impeller, pressure resistant part as disassembly and inspection. Such as non-destructive inspection.

運転時間は、故障に関連する機器または部品の稼働時間や機器または部品の設置後の暦時間、特に故障発生の原因となった部品の取り替えからの時間などである。例えばポンプにおける運転時間は、ポンプの実際の運転時間や、ポンプ設置後からの暦時間である。また、設計情報は、故障に関連する機器または部品の設計情報である。例えばポンプの設計情報は、ポンプの型式、製造者、定格性能などであり、一般的に設備台帳や設備管理システムに記録されている。 The operating time is, for example, an operating time of a device or a part related to a failure, a calendar time after the installation of the device or the part, particularly a time after replacement of the part causing the failure. For example, the operating time of the pump is the actual operating time of the pump or the calendar time after the pump is installed. Further, the design information is design information of a device or a part related to the failure. For example, pump design information includes a pump model, manufacturer, rated performance, etc., and is generally recorded in an equipment ledger or an equipment management system.

使用条件は、故障に関連する機器または部品の使用環境や負荷などの条件である。例えばポンプの使用条件は、ポンプの内部流体、運転負荷(常時運転負荷やトラブルに備えた即時待機負荷など)であり、一般的に設備台帳や設備管理システムに記録されている。また、設備情報は、故障に関連する機器または部品の所有者(担当部署)、機器番号、部品番号、プラント情報などである。 The use condition is a condition such as a use environment or load of a device or a part related to the failure. For example, the usage conditions of the pump are the internal fluid of the pump and the operating load (such as the constant operating load and the immediate standby load in preparation for troubles), which are generally recorded in the facility ledger and the facility management system. The facility information includes the owner (department in charge) of the device or part related to the failure, device number, part number, plant information, and the like.

収集条件指定手段11は、プラントなどの設備における機器または部品の故障を評価するための収集条件を、技術者などを介して指定する収集条件指定ステップを実施するものである。この収集条件は、任意の1台の機器や1個の部品、共通の属性を備えた複数台の機器や複数個の部品、プラント全体の設備などであり、更に、任意に設定された所定の収集時間を含む。この収集条件は、具体的には、機器(例えばポンプ)の属性の一つ(例えば遠心ポンプ)と、一定の収集期間である。 The collection condition designating means 11 carries out a collection condition designating step for designating, through an engineer or the like, a collection condition for evaluating a failure of a device or a component in equipment such as a plant. This collection condition is any one device or one part, a plurality of devices or parts having a common attribute, equipment of the entire plant, etc. Including collection time. Specifically, the collection condition is one of the attributes of the device (eg, pump) (eg, centrifugal pump) and a fixed collection period.

故障事例抽出手段12は、図1及び図2に示すように、プラント等の設備における機器または部品の故障実績1から、収集条件(例えば遠心ポンプ、一定の収集期間)を満たす機器または部品について故障事例1〜mを抽出する故障事例抽出ステップを実施するものである。この故障事例抽出手段12が実施する故障事例抽出ステップでは、例えば収集条件を遠心ポンプ、一定の収集期間とし、一の故障事例としての「振動増加」、他の故障事例としての「流量低下」にそれぞれ該当する機器または部品を故障実績1から抽出する。また、この故障事例抽出ステップでは、同一の収集条件において同一の故障が発生している場合があるので、故障事例1〜mは、それぞれが異なっている場合に限らず、同一の故障事例が複数ある場合も含む。 As shown in FIGS. 1 and 2, the failure case extraction unit 12 determines a failure for a device or a part that satisfies a collection condition (for example, a centrifugal pump, a fixed collection period) based on a failure record 1 of the device or a part in equipment such as a plant. The failure case extraction step of extracting cases 1 to m is executed. In the failure case extracting step performed by the failure case extracting unit 12, for example, a centrifugal pump and a fixed collection period are set as collection conditions, and “vibration increase” as one failure case and “flow rate decrease” as another failure case. Each applicable device or part is extracted from the failure record 1. Further, in this failure case extraction step, the same failure may occur under the same collection condition. Therefore, failure cases 1 to m are not limited to different cases, and the same failure case is plural. Including cases.

故障分類情報付加手段13は、故障事例における故障の特性(故障原因を含む)を分類するための故障分類情報a1〜amを、故障実績1を参照して、故障事例1〜mのそれぞれに付加する故障分類情報付加ステップを実施するものである。故障分類情報には、例えば機器や部品の経年劣化に起因する故障と、人為ミスに起因する故障(例えば保守作業における作業員のミス、機械または部品の製造における設計ミスや製造ミス、運転操作における機器操作の失敗など)とがある。また、人為ミスが起点となって一定期間劣化が進展し、故障として顕在化されたものは、経年劣化ではなく、人為ミスに分類するか、または、経年劣化や人為ミスとは異なる別の故障分類とする。 The failure classification information adding means 13 adds the failure classification information a1 to am for classifying the characteristics of the failure (including the cause of the failure) in the failure case to each of the failure cases 1 to m with reference to the failure record 1. The failure classification information adding step is executed. The failure classification information includes, for example, failures due to aging of devices and parts and failures due to human error (for example, operator error in maintenance work, design error or manufacturing error in manufacturing machine or parts, operation error in operation). Device operation failure). Also, if a human error is the starting point of deterioration that has progressed for a certain period of time and is manifested as a failure, it is not aged deterioration but is classified as a human error or another failure different from aged deterioration or human error. Classify.

収集条件が遠心ポンプであり、故障事例が「振動増加」の場合、例えば軸受などの部品の寿命により振動が増加した故障を経年劣化に起因する故障として分類し、分解点検の組立調整ミスが原因となって振動が増加した故障を人為ミスに起因する故障と分類する。 If the collection condition is a centrifugal pump and the failure case is "vibration increase", for example, a failure in which vibration increases due to the life of parts such as bearings is classified as a failure due to aged deterioration, and it is caused by an assembly and adjustment error in disassembly and inspection. Then, the failure with increased vibration is classified as a failure caused by human error.

故障実績1には、通常、故障が発生した原因、またはその故障の手掛りとなる情報が記載されている。従って、故障分類情報付加手段13は、この故障実績1を参照することで、故障事例1〜mのそれぞれに対して故障分類情報a1〜amを付加する。なお、この故障分類情報a1〜amの付加は、適切なアルゴリズム、AI(人工知能)的手法または人間系により行われる。 In the failure record 1, usually, the cause of the failure or information serving as a clue to the failure is described. Therefore, the failure classification information adding unit 13 adds the failure classification information a1 to am to each of the failure cases 1 to m by referring to the failure record 1. The fault classification information a1 to am is added by an appropriate algorithm, AI (artificial intelligence) method, or human system.

故障分類情報付加手段13により故障原因を含む故障の特性を明確に分類することが保守の改善に寄与する理由は、次の通りである。つまり、人為ミスに起因する故障を経年劣化に起因する故障と同一視して、故障率や平均故障間隔(MTBF)を評価した場合、機器または部品の交換間隔が短くなりすぎて、オーバーメンテナンスになる可能性があるからである。また、機器または部品の交換作業に人為ミスの原因が内在するのであれば、この交換作業間隔が短くなることで故障の発生を増加させてしまうことになるからである。更に、人為ミスに起因する故障を経年劣化に起因する故障と同一視することで、人為ミスの原因に注意が設けられなくなる可能性があるからである。 The reason why clearly classifying the characteristics of a failure including the cause of the failure by the failure classification information adding unit 13 contributes to the improvement of maintenance is as follows. In other words, if the failure rate and the mean time between failures (MTBF) are evaluated by equating the failure due to human error with the failure due to aging deterioration, the replacement interval of the equipment or parts becomes too short, resulting in over maintenance. Because there is a possibility that Further, if the cause of human error is inherent in the replacement work of the equipment or parts, the replacement work interval will be shortened and the occurrence of failures will be increased. Furthermore, by equating a failure caused by human error with a failure caused by deterioration over time, it may not be possible to pay attention to the cause of human error.

データ収集手段14は、プラント等の設備に存在する機器または部品の情報2(即ち保守実績、運転時間、設計情報、使用条件、設備情報など)から、収集条件(例えば遠心ポンプと一定の収集期間)を満たす機器または部品のそれぞれについて故障の評価に必要なデータ3を収集し、この故障の評価に必要なデータ3を故障事例1〜mのそれぞれに関連づけるデータ収集ステップを実施する。上記故障の評価に必要な情報3は、後述の故障発生確率の算出、分析に必要なデータであり、保守実績b1〜bm、運転時間c1〜cm、設計情報d1〜dm、使用条件e1〜em、設備情報f1〜fm等であって、その具体例を図4に示す。 The data collection means 14 uses information 2 (that is, maintenance records, operating hours, design information, usage conditions, facility information, etc.) of equipment or parts existing in facilities such as plants to collect conditions (for example, a centrifugal pump and a fixed collection period). The data 3 necessary for the evaluation of the failure is collected for each of the devices or parts satisfying the condition (4), and the data collection step is performed to associate the data 3 required for the evaluation of the failure with each of the failure cases 1 to m. The information 3 required for the above-mentioned failure evaluation is data necessary for calculation and analysis of the failure occurrence probability described later, and includes maintenance records b1 to bm, operating hours c1 to cm, design information d1 to dm, and usage conditions e1 to em. , Equipment information f1 to fm, etc., and a specific example thereof is shown in FIG.

例えば、収集条件が遠心ポンプを含み、故障事例が「振動増加」である場合、故障の評価に必要なデータ3は、故障分類が、機器または部品の寿命により振動が増加した経年劣化に起因する故障のときには、後述の故障率を算出するために運転時間(図4の稼働時間)が少なくとも必要であり、故障分類が、分解点検時の組立調整ミスにより振動が増加した人為ミスに起因する故障のときには、後述の失敗発生確率を算出するための保守回数(図4の分解点検の回数)が少なくとも必要である。 For example, when the collection condition includes a centrifugal pump and the failure case is “vibration increase”, the data 3 required for failure evaluation is that the failure classification is due to aged deterioration in which vibration increases due to the life of the device or part. At the time of failure, at least the operating time (operating time in FIG. 4) is required to calculate the failure rate described later, and the failure classification is a failure caused by human error in which vibration increases due to an assembly adjustment error at the time of overhaul and inspection. In the case of, at least the number of maintenances (the number of overhauls and inspections in FIG. 4) for calculating the failure occurrence probability described later is necessary.

また、データ収集手段14は、後述のように分析手段15により機器または部品における収集条件となった属性(例えば、遠心ポンプ)以外の他の属性について故障発生確率が算出される場合には、その他の属性に関する情報も設備に存在する機器または部品の情報2から収集する。例えば、分析手段15が施工業者ごとの故障発生確率を算出し分析する場合には、データ収集手段14は、設備に存在する機器または部品の情報2から施工業者(図4の発注先業者)のデータを収集する。 In addition, the data collection unit 14 may perform the other operation if the failure occurrence probability is calculated by the analysis unit 15 for an attribute other than the attribute (for example, centrifugal pump) that is the collection condition for the device or the component as described later. Information regarding the attribute of is also collected from the information 2 of the equipment or parts existing in the facility. For example, when the analyzing unit 15 calculates and analyzes the failure occurrence probability for each contractor, the data collecting unit 14 determines the contractor (the contractor in FIG. 4) from the information 2 of the equipment or parts existing in the facility. Collect data.

分析手段の選択手段16は、複数(例えばn個)存在する分析手段15のうちから故障分類情報a1〜amに適合する分析手段15を選択するものであり、図3に示すように認識手段16A及び振り分け手段16Bを有する。認識手段16Aは、故障事例1〜mに付加された故障分類情報a1〜amを認識するものであり、ソフトウェア的手段または人間系にて構成される。 The selecting means 16 of the analyzing means selects the analyzing means 15 that matches the failure classification information a1 to am from the plural (for example, n) existing analyzing means 15, and the recognizing means 16A as shown in FIG. And a distribution means 16B. The recognition means 16A is for recognizing the failure classification information a1 to am added to the failure cases 1 to m, and is configured by software means or human system.

振り分け手段16Bは、認識手段16Aにより認識された故障分類情報a1〜amに適合する分析手段15を選択すると共に、この選択した分析手段15に、故障事例1〜mに関連づけられた故障の評価に必要なデータ3及び故障分類情報a1〜amを振り分けるものである。ここで、分析手段15は複数存在し、後述の如くそれぞれの分析手段15は、故障分類(例えば経年劣化に起因する故障、人為ミスに起因する故障など)に対応して故障発生確率の算出方式が異なる。このため、振り分け手段16Bは、故障分類情報a1〜amに適合する故障発生確率の算出方式を備えた分析手段15を選択するものである。 The distribution means 16B selects the analysis means 15 that matches the failure classification information a1 to am recognized by the recognition means 16A, and evaluates the failures associated with the failure cases 1 to m by the selected analysis means 15. The necessary data 3 and the failure classification information a1 to am are distributed. Here, there are a plurality of analysis means 15, and as described later, each analysis means 15 calculates the failure occurrence probability corresponding to the failure classification (for example, failure due to aging deterioration, failure due to human error, etc.). Is different. Therefore, the distribution unit 16B selects the analysis unit 15 having a failure occurrence probability calculation method that matches the failure classification information a1 to am.

分析手段15は、故障の評価に必要なデータ3及び故障分類情報a1〜amを用いて、統計的手法により、機器または部品の故障事例1〜mに対して故障発生確率を算出し分析する分析ステップを実施するものであり、故障分類情報に応じて複数存在する。各分析手段15のそれぞれは、故障発生確率の算出方式が異なり、分析手段の選択手段16により選択された分析手段15が、故障分類情報a1〜amのそれぞれに対応した故障発生確率を算出し分析する。 The analysis unit 15 uses the data 3 and the failure classification information a1 to am necessary for the failure evaluation to calculate and analyze the failure occurrence probabilities for the failure cases 1 to m of the equipment or parts by a statistical method. The step is executed, and there are a plurality of steps according to the failure classification information. Each of the analysis means 15 has a different failure occurrence probability calculation method, and the analysis means 15 selected by the selection means 16 of the analysis means calculates and analyzes the failure occurrence probability corresponding to each of the failure classification information a1 to am. To do.

つまり、機器または部品の経年劣化に起因する故障、例えば機器または部品の寿命により振動が増加した経年劣化による故障に対して、一の分析手段15は、故障発生確率としての故障率を、機器または部品の稼働時間及びこの稼働時間における故障回数に基づいて算出し分析する。
故障率=(機器または部品の稼働時間における故障回数)/(機器または部品の上記稼働時間)
That is, for a failure due to aged deterioration of a device or a component, for example, a failure due to aged deterioration in which vibration is increased due to the life of the device or a component, one analysis unit 15 determines the failure rate as the failure occurrence probability to the device or the component. It is calculated and analyzed based on the operating time of parts and the number of failures in this operating time.
Failure rate = (number of failures in the operating time of the device or part) / (above operating time of the device or part)

また、人為ミスに起因する機器または部品の故障、例えば分解点検の組立調整ミスが原因で振動が増加した人為ミスによる故障に対して、他の分析手段15は、故障発生確率としての失敗発生確率を、機器または部品の任意の期間における人為ミスを発生する恐れがある作業の回数と人為ミスの発生回数とに基づいて算出し分析する。
失敗発生確率=(人為ミスの発生回数)/(上記人為ミスを発生する恐れがある作業の回数)
Further, with respect to a failure of a device or a part due to a human error, for example, a failure due to a human error in which vibration is increased due to an assembly/adjustment error in disassembly and inspection, the other analysis means 15 uses the failure occurrence probability as the failure occurrence probability. Is calculated and analyzed based on the number of operations that may cause human error and the number of times human error has occurred in any period of equipment or parts.
Failure probability = (number of human error occurrences) / (number of operations that may cause human error above)

また、分析手段15よる故障発生確率(故障率、失敗発生確率)の算出、分析は、収集条件としての特定の1台の機器や1個の部品、または例えば遠心ポンプのように共通の属性を備えた複数台の機器や複数個の部品などに対して実施されるものである。更に分析手段15は、機器または部品における収集条件となった属性(例えば遠心ポンプなどの機種)以外の他の属性、例えば保守を行った施工業者、ポンプの内部流体の種別について、機器または部品の故障事例1〜m(振動増加、流量減少など)に対して故障発生確率を算出し分析してもよい。上述の収集条件となった属性以外の他の属性に関するデータは、データ収集手段14により設備に存在する機器または部品の情報2から収集され、機器または部品の故障事例1〜mに関連づけられたものが用いられる。 Further, in the calculation and analysis of the failure occurrence probability (failure rate, failure occurrence probability) by the analysis means 15, one specific device or one part as a collection condition, or a common attribute such as a centrifugal pump is used. It is implemented for a plurality of devices and a plurality of parts provided. Furthermore, the analysis unit 15 determines other attributes other than the attribute (for example, the model such as a centrifugal pump) that is a collection condition in the device or the component, such as the maintenance contractor, the type of the internal fluid of the pump, or the like of the device or the component. Failure probability may be calculated and analyzed for failure cases 1 to m (vibration increase, flow rate decrease, etc.). Data relating to attributes other than the above-mentioned attributes which are the collection conditions are collected by the data collecting means 14 from the information 2 of the equipment or parts existing in the facility and are associated with the failure cases 1 to m of the equipment or parts. Is used.

上述のように分析手段15により故障分類情報a1〜amに基づいて算出され分析された故障発生確率が、分析結果として分析結果格納手段17に格納される。また、出力手段18は、分析結果格納手段17に格納された分析結果(故障発生確率)を出力し表示する。 The failure occurrence probability calculated and analyzed by the analysis unit 15 based on the failure classification information a1 to am as described above is stored in the analysis result storage unit 17 as the analysis result. Further, the output unit 18 outputs and displays the analysis result (probability of failure) stored in the analysis result storage unit 17.

以上のように構成されたことから、本第1実施形態によれば、次の効果(1)を奏する。
(1)図1及び図2に示すように、設備機器・部品の故障評価装置10は、プラント等の設備における機器または部品について、その故障原因を含む故障の特性(故障分類)に応じて故障発生確率を算出し分析している。即ち、設備機器・部品の故障評価装置10における分析手段15は、故障が機器または部品の経年劣化に起因する故障であると分類される場合に故障発生確率として故障率を求め、故障が人為ミスに起因する故障であると分類された場合に故障発生確率として失敗発生確率を求めて、それぞれ分析し評価する。
With the above configuration, according to the first embodiment, the following effect (1) is achieved.
(1) As shown in FIG. 1 and FIG. 2, the failure evaluation apparatus 10 for facility equipment/parts fails according to the failure characteristics (failure classification) of the equipment or parts in the equipment such as a plant, including the cause of the failure. Occurrence probability is calculated and analyzed. That is, the analysis means 15 in the equipment/component failure evaluation apparatus 10 obtains the failure rate as the failure occurrence probability when the failure is classified as a failure due to the aged deterioration of the equipment or the component, and the failure is a human error. If the failure is classified as a failure due to, the failure occurrence probability is obtained as the failure occurrence probability, and each is analyzed and evaluated.

この結果、プラント等の設備の保全有効性評価を適正に行なうことができ、機器または部品の交換を含む保守の周期が適正化されて所謂オーバーメンテナンスを防止できるので、保守費用を低減できる。また、故障原因を含む機器の特性が明確になって故障を改善できると共に、保守の周期を適正化することで所謂いじり壊しを抑制できるので、設備の信頼性を向上させることができる。 As a result, the maintenance effectiveness of equipment such as a plant can be properly evaluated, and the maintenance cycle including the replacement of equipment or parts can be optimized to prevent so-called over-maintenance, so that the maintenance cost can be reduced. In addition, since the characteristics of the device including the cause of the failure are clarified, the failure can be improved, and so-called tampering can be suppressed by optimizing the maintenance cycle, so that the reliability of the equipment can be improved.

[B]第2実施形態(図5、図6)
図5は、第2実施形態に係る設備機器・部品の故障評価装置におけるデータ収集手段が収集した故障の評価に必要なデータを主に示す説明図である。この第2実施形態において第1実施形態と同様な部分については、第1実施形態と同一の符号を付すことにより説明を簡略化し、または省略する。
[B] Second embodiment (FIGS. 5 and 6)
FIG. 5 is an explanatory diagram mainly showing the data necessary for the failure evaluation collected by the data collecting means in the failure evaluation device for facility equipment/parts according to the second embodiment. In the second embodiment, the same parts as those in the first embodiment are designated by the same reference numerals as those in the first embodiment to simplify or omit the description.

本第2実施形態の設備機器・部品の故障評価装置20が第1実施形態と異なる点は、データ収集手段21により故障事例1〜mに関連づけて収集される故障の評価に必要なデータ5には、故障した機器または部品に関するデータ(即ち、第1実施形態の故障の評価に必要データ3;本第2実施形態において「故障した機器または部品に関するデータ」を符号3で表す)のほかに、故障した機器または部品と種類もしくは使用条件が同一の、故障していない同種の機器または部品に関するデータ4が含まれる点である。ここで、種類もしくは使用条件が同一とは、例えば遠心ポンプなどのように機種が同一、またはポンプ内を流れる内部流体が同一の場合をいう。 The failure evaluation device 20 for facility equipment/parts of the second embodiment is different from the failure evaluation device 20 of the first embodiment in that the data 5 required for evaluation of failures collected by the data collection means 21 in association with the failure cases 1 to m. In addition to the data related to the failed device or component (that is, the data 3 required for the failure evaluation of the first embodiment; the “data related to the failed device or component” is represented by reference numeral 3 in the second embodiment), This is the point that the data 4 regarding the same type of equipment or component that has the same type or use condition as the faulty equipment or component but does not fail is included. Here, the same type or use condition means that the model is the same, such as a centrifugal pump, or the internal fluid flowing in the pump is the same.

即ち、データ収集手段21は、故障事例抽出手段12により故障実績1から、収集条件を満たす機器または部品について故障事例が抽出されていない場合においても、設備に存在する機器または部品の情報2から上記収集条件を満たす機器または部品について、故障していない同種の機器または部品に関するデータ4を収集する。 That is, the data collection means 21 uses the information 2 of the equipment or parts existing in the equipment even if no failure case is extracted from the failure record 1 by the failure case extraction means 12 for the equipment or parts satisfying the collection condition. For devices or parts that satisfy the collection condition, data 4 regarding similar devices or parts that have not failed is collected.

上述のように、故障の評価に必要なデータ5に、故障した機器または部品に関するデータ3のほかに、故障した機器または部品と種類もしくは使用条件が同一の、故障していない同種の機器または部品に関するデータ4を含む場合に、図6に示すように、分析手段22は、これらの故障した機器または部品に関するデータ3及び故障していない同種の機器または部品に関するデータ4を含む故障の評価に必要なデータ5と故障分類情報a1〜amとを用いて、故障発生確率を算出し分析する。 As described above, in addition to the data 3 related to the failed device or part, the data 5 necessary for the failure evaluation includes the same kind of non-failed device or part with the same type or use condition as the failed device or part. 6 includes data 4 relating to these, the analysis means 22 is required for evaluation of the failure including data 3 relating to these failed devices or parts and data 4 relating to non-faulty similar devices or parts. The failure occurrence probability is calculated and analyzed using various data 5 and the failure classification information a1 to am.

つまり、分析手段22は、故障が機器または部品の経年劣化に起因する故障である場合に、機器または部品の稼働時間、及びこの稼働時間における故障回数に基づいて故障率を算出し分析するが、上記稼働時間として、故障した機器または部品に関するデータ3中の稼働時間と、故障していない同種の機器または部品に関するデータ4中の稼働時間との和が用いられる。 That is, when the failure is a failure due to the aged deterioration of the device or the component, the analysis unit 22 calculates and analyzes the failure rate based on the operating time of the device or the component and the number of failures in the operating time. As the above-mentioned operating time, the sum of the operating time in the data 3 regarding the failed device or component and the operating time in the data 4 regarding the same type of device or component that has not failed is used.

また、分析手段22は、故障が人為ミスに起因する機器または部品の故障である場合に、機器または部品の任意の期間における人為ミスを発生する恐れがある作業(例えば分解点検)の回数と人為ミスの発生回数とに基づいて失敗発生確率を算出し分析するが、上記人為ミスを発生する恐れがある作業の回数として、故障した機器または部品に関するデータ3中の上記作業回数と、故障していない同種の機器または部品に関するデータ4中の上記作業回数との和が用いられる。 Further, when the failure is a failure of the device or the part caused by the human error, the analysis means 22 determines the number of operations (for example, overhaul and inspection) that may cause the human error of the device or the part in an arbitrary period and the human error. The failure probability is calculated and analyzed based on the number of mistakes made. As the number of works that may cause human error, the number of works in the data 3 relating to the failed device or part and the number of works The sum of the above-mentioned number of times of work in the data 4 regarding the same type of non-equipment or parts is used.

更に、分析手段22は、機器または部品における収集条件となった属性以外の他の属性について故障発生確率を分析する場合においても、故障した機器または部品に関するデータ3及び故障していない同種の機器または部品に関するデータ4を含む故障の評価に必要なデータ5と故障分類情報a1〜amとを用いて故障発生確率を算出し分析する。 Further, when analyzing the failure occurrence probability for an attribute other than the attribute that is the collection condition for the device or part, the analysis unit 22 further includes the data 3 regarding the failed device or part and the same type of device that has not failed or The failure occurrence probability is calculated and analyzed using the data 5 necessary for the failure evaluation including the data 4 regarding the parts and the failure classification information a1 to am.

以上のように構成されたことから、本第2実施形態においても第1実施形態の効果(1)と同様な効果を奏するほか、次の効果(2)を奏する。 With the above configuration, the second embodiment also has the same effect as the effect (1) of the first embodiment, and also has the following effect (2).

(2)分析手段22は、故障した機器または部品に関するデータ3、及びこの故障した機器または部品と種類もしくは使用条件が同一の故障していない同種の機器または部品に関するデータ4と、故障分類情報a1〜amとを用いて、故障発生確率を算出し分析している。このように、故障した機器または部品を含む同種の機器または部品について故障発生確率を分析することで、同種の機器または部品毎に故障を評価することができる。 (2) The analysis unit 22 includes data 3 regarding a failed device or part, data 4 regarding a similar device or part that has the same type or usage condition as the failed device or part but has not failed, and the failure classification information a1. ~ Am is used to calculate and analyze the failure probability. In this way, by analyzing the failure occurrence probability for the same type of equipment or part including the failed equipment or part, it is possible to evaluate the failure for each of the same type of equipment or part.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができ、また、それらの置き換えや変更は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention, and the replacements and changes thereof can be performed. Is included in the scope and gist of the invention, and is also included in the invention described in the claims and its equivalent scope.

1…故障実績、2…設備に存在する機器または部品の情報、3…故障の評価に必要なデータ、4…故障していない同種の機器または部品に関するデータ、5…故障の評価に必要なデータ、10…設備機器・部品の故障評価装置、11…収集条件指定手段、12…故障事例抽出手段、13…故障分類情報付加手段、14…データ収集手段、15…分析手段、16…分析手段の選択手段、16A…認識手段、16B…振り分け手段、20…設備機器・部品の故障評価装置、21…データ収集手段、22…分析手段、1〜m…故障事例、a1〜am…故障分類情報 1...Failure record, 2...Information of equipment or parts existing in equipment, 3...Data required for failure evaluation, 4...Data relating to similar equipment or parts that have not failed, 5...Data required for failure evaluation 10... Failure evaluation device for equipment/parts, 11... Collection condition designating means, 12... Failure case extracting means, 13... Failure classification information adding means, 14... Data collecting means, 15... Analyzing means, 16... Analyzing means Selection means, 16A... Recognition means, 16B... Sorting means, 20... Failure evaluation device for equipment/parts, 21... Data collecting means, 22... Analysis means, 1-m... Failure cases, a1-am... Failure classification information

Claims (5)

設備における機器または部品の故障を評価するための収集条件を指定する収集条件指定手段と、
前記機器または部品の故障実績から、前記収集条件を満たす前記機器または前記部品について故障事例を抽出する故障事例抽出手段と、
前記故障事例における故障原因を含む故障の特性を分類するための、経年劣化に起因する故障と人為ミスに起因する故障を含む故障分類情報を、前記故障実績を参照して前記故障事例に付加する故障分類情報付加手段と、
前記設備に存在する前記機器または前記部品の情報から、前記収集条件を満たす前記機器または前記部品について前記故障の評価に必要なデータを収集するデータ収集手段と、
前記故障の評価に必要なデータ及び前記故障分類情報を用いて、前記機器または前記部品の前記故障事例に対して故障発生確率を算出し分析する複数の分析手段と、
複数の前記分析手段のうちから前記故障分類情報に適合する前記分析手段を選択する選択手段と、を有し、
前記選択手段は、前記故障事例に付加された前記故障分類情報を認識する認識手段と、この認識手段により認識された前記故障分類情報に適合する前記分析手段を選択すると共に、この選択した前記分析手段に、前記故障事例に関連づけられた故障の評価に必要なデータ及び前記故障分類情報を振り分ける振り分け手段と、を有し、
前記選択手段により選択された前記分析手段により、前記機器または前記部品の前記故障事例に対して前記故障発生確率を算出し分析するよう構成され
前記分析手段が算出し分析する前記故障発生確率は、故障が経年劣化に起因する故障である場合には、前記機器または部品の稼働時間とこの稼働時間における故障回数とに基づき算出される故障率であり、故障が人為ミスに起因する故障である場合には、前記機器または部品の任意の期間における前記人為ミスを発生する恐れがある作業の回数と前記人為ミスの発生回数とに基づき算出される失敗発生確率であることを特徴とする設備機器・部品の故障評価装置。
Collection condition designating means for designating collection conditions for evaluating a failure of equipment or parts in equipment,
Failure case extraction means for extracting a failure case for the device or the part satisfying the collection condition from the failure record of the device or the part;
Fault classification information including a fault due to aged deterioration and a fault due to human error for classifying characteristics of a fault including a fault cause in the fault case is added to the fault case with reference to the failure record. Failure classification information adding means,
Data collection means for collecting data necessary for evaluation of the failure of the device or the part satisfying the collection condition from the information of the device or the part existing in the facility,
A plurality of analysis means for calculating and analyzing a failure occurrence probability for the failure case of the device or the part by using the data necessary for the evaluation of the failure and the failure classification information;
Selecting means for selecting the analyzing means that matches the failure classification information from among the plurality of analyzing means,
The selecting means selects a recognizing means for recognizing the failure classification information added to the failure case and an analyzing means suitable for the failure classification information recognized by the recognizing means, and the selected analysis. The means has a distribution means for allocating the data necessary for evaluation of a failure associated with the failure case and the failure classification information,
The analyzing unit selected by the selecting unit is configured to calculate and analyze the failure occurrence probability for the failure case of the device or the component ,
The failure occurrence probability calculated and analyzed by the analysis unit is a failure rate calculated based on the operating time of the device or part and the number of failures in this operating time when the failure is a failure due to aging deterioration. If the failure is a failure caused by human error, it is calculated based on the number of operations that may cause the human error and the number of times the human error occurs in any period of the device or part. A failure evaluation device for equipment and parts, which is characterized by the probability of failure occurrence .
前記データ収集手段は、収集条件に基づいて収集した故障の評価に必要なデータを、故障事例に関連づけるよう構成されたことを請求項1に記載の設備機器・部品の故障評価装置。 The equipment/parts failure evaluation apparatus according to claim 1, wherein the data collection means is configured to associate the data necessary for the failure evaluation, which is collected based on the collection conditions, with the failure case. 前記分析手段は、機器または部品における収集条件となった属性以外の他の属性について、前記機器または前記部品の故障事例に対して故障発生確率を算出し分析可能に構成されたことを特徴とする請求項1または2に記載の設備機器・部品の故障評価装置。 The analysis means is configured to be able to calculate and analyze a failure occurrence probability for a failure case of the device or the component with respect to an attribute other than the attribute that is a collection condition in the device or the component. A failure evaluation device for equipment and parts according to claim 1 or 2 . 前記データ収集手段により故障事例に関連づけられる故障の評価に必要なデータには、故障した機器または部品に関するデータのほかに、故障した前記機器または前記部品と種類もしくは使用条件が同一の、故障していない同種の機器または部品に関するデータが含まれることを特徴とする請求項1乃至のいずれか1項に記載の設備機器・部品の故障評価装置。 The data necessary for the evaluation of the failure associated with the failure case by the data collection means includes, in addition to the data on the failed device or part, the same type or use condition as the failed device or the part, or the failure condition. 4. The failure evaluation device for facility equipment/parts according to any one of claims 1 to 3 , wherein data relating to the same type of equipment or part that does not exist is included. 設備における機器または部品の故障を評価するための収集条件を収集条件指定手段により指定する収集条件指定ステップと、
前記機器または前記部品の故障実績から、前記収集条件を満たす前記機器または前記部品について故障事例を故障事例抽出手段により抽出する故障事例抽出ステップと、
前記故障事例における故障原因を含む故障の特性を分類するための、経年劣化に起因する故障と人為ミスに起因する故障を含む故障分類情報を、故障分類情報付加手段により前記故障実績を参照して前記故障事例に付加する故障分類情報付加ステップと、
前記設備に存在する前記機器または前記部品の情報から、前記収集条件を満たす前記機器または前記部品について前記故障の評価に必要なデータをデータ収集手段により収集するデータ収集ステップと、
前記故障の評価に必要なデータ及び前記故障分類情報を用い前記機器または前記部品の前記故障事例に対して故障発生確率を算出し分析する複数の分析手段のうちから、前記故障分類情報に適合する前記分析手段を選択手段により選択する選択ステップと、
前記選択手段により選択された前記分析手段により、前記機器または前記部品の前記故障事例に対して前記故障発生確率を算出し分析する分析ステップと、を有し、
前記選択手段は、前記故障事例に付加された前記故障分類情報を認識する認識手段と、この認識手段により認識された前記故障分類情報に適合する前記分析手段を選択すると共に、この選択した前記分析手段に、前記故障事例に関連づけられた故障の評価に必要なデータ及び前記故障分類情報を振り分ける振り分け手段と、を有し、
前記分析手段が算出し分析する前記故障発生確率は、故障が経年劣化に起因する故障である場合には、前記機器または部品の稼働時間とこの稼働時間における故障回数とに基づき算出される故障率であり、故障が人為ミスに起因する故障である場合には、前記機器または部品の任意の期間における前記人為ミスを発生する恐れがある作業の回数と前記人為ミスの発生回数とに基づき算出される失敗発生確率であることを特徴とする設備機器・部品の故障評価方法。
A collection condition designating step of designating a collection condition for assessing a failure of a device or a part of equipment by a collection condition designating means ,
A failure case extraction step of extracting a failure case of the device or the part satisfying the collection condition from a failure record of the device or the part by a failure case extracting means ;
For classifying the characteristics of the failure including the failure cause in the failure case, the failure classification information including the failure due to aged deterioration and the failure due to human error is referred to by the failure classification information adding unit. Failure classification information adding step to be added to the failure case,
A data collecting step of collecting data necessary for evaluating the failure of the device or the part satisfying the collecting condition from the information of the device or the part existing in the facility by a data collecting means ;
From among the plurality of analyzing means for calculating and analyzing the failure probability to the failure cases of the device or the component by using the data and the fault classification information necessary for evaluation of the fault, it matches the fault classification information A selecting step of selecting the analyzing means by the selecting means,
By the analyzing means selected by said selecting means, have a, an analysis step of analyzing calculates the failure probability to the failure cases of the device or the component,
The selecting means selects a recognizing means for recognizing the failure classification information added to the failure case and an analyzing means suitable for the failure classification information recognized by the recognizing means, and the selected analysis. The means has a distribution means for allocating the data necessary for evaluation of a failure associated with the failure case and the failure classification information,
The failure occurrence probability calculated and analyzed by the analysis unit is a failure rate calculated based on the operating time of the device or part and the number of failures in this operating time when the failure is a failure due to aging deterioration. If the failure is a failure caused by human error, it is calculated based on the number of operations that may cause the human error and the number of times the human error occurs in any period of the device or part. A failure evaluation method for equipment/parts, which is characterized by a failure probability .
JP2019085403A 2019-04-26 2019-04-26 Equipment and parts failure evaluation device and failure evaluation method Active JP6733004B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019085403A JP6733004B1 (en) 2019-04-26 2019-04-26 Equipment and parts failure evaluation device and failure evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019085403A JP6733004B1 (en) 2019-04-26 2019-04-26 Equipment and parts failure evaluation device and failure evaluation method

Publications (2)

Publication Number Publication Date
JP6733004B1 true JP6733004B1 (en) 2020-07-29
JP2020181468A JP2020181468A (en) 2020-11-05

Family

ID=71738470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019085403A Active JP6733004B1 (en) 2019-04-26 2019-04-26 Equipment and parts failure evaluation device and failure evaluation method

Country Status (1)

Country Link
JP (1) JP6733004B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114565108A (en) * 2020-11-27 2022-05-31 华晨宝马汽车有限公司 Method, server and medium for managing fault data

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63208716A (en) * 1987-02-26 1988-08-30 Nippon Atom Ind Group Co Ltd Device for supporting equipment maintenance control
JP2000002785A (en) * 1998-06-17 2000-01-07 Hitachi Ltd Method and device for evaluating reliability and maintainability for plant equipment
JP2012058937A (en) * 2010-09-08 2012-03-22 Hitachi-Ge Nuclear Energy Ltd Equipment diagnostic method and equipment diagnostic system for nuclear power plant
JP6812312B2 (en) * 2017-06-21 2021-01-13 三菱重工業株式会社 Plant support evaluation system and plant support evaluation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114565108A (en) * 2020-11-27 2022-05-31 华晨宝马汽车有限公司 Method, server and medium for managing fault data

Also Published As

Publication number Publication date
JP2020181468A (en) 2020-11-05

Similar Documents

Publication Publication Date Title
Amari et al. Cost-effective condition-based maintenance using Markov decision processes
EP3105644B1 (en) Method of identifying anomalies
US7328133B2 (en) Method of managing maintenance and maintenance managing apparatus
JP4550632B2 (en) Equipment maintenance plan support system and support method thereof
Mortada et al. Rogue components: their effect and control using logical analysis of data
JP2008191900A (en) Reliability-oriented plant maintenance operation support system, and operation support method
CN112633611A (en) Submarine cable state maintenance strategy optimization method and system based on big data analysis
US11720093B2 (en) Method for predictive maintenance of equipment via distribution chart
Becherer et al. Intelligent choice of machine learning methods for predictive maintenance of intelligent machines
Misra Maintenance engineering and maintainability: An introduction
JP6733004B1 (en) Equipment and parts failure evaluation device and failure evaluation method
Latiffianti et al. Wind turbine gearbox failure detection through cumulative sum of multivariate time series data
KR102061404B1 (en) Preventive maintenance job selection system, method considering failure prevention effect and storing medium of program executing preventive maintenance job selection
Liao et al. Data-driven Machinery Prognostics Approach using in a Predictive Maintenance Model.
US20180204095A1 (en) Systems and methods to evaluate and reduce outages in power plants
JP5330095B2 (en) Plant maintenance device and plant maintenance method
CN116258482B (en) Method for automatically selecting maintenance scheme, server and electronic equipment
Atmaji et al. Implementation of maintenance scenario for critical subsystem in aircraft engine: Case study NTP CT7 Engine
JP2023108670A (en) Device and method for predicting reliability and maintenance cost of apparatus
Atmaji et al. Implementation Of Maintenance Scenario For Critical Subsystem In Aircraft Engine Case study: NTP CT7 engine
Ignat Power plants maintenance optimization based on CBM techniques
Pham et al. Prognostic Health Monitoring System: Component Selection Based on Risk Criteria and Economic Benefit Assessment
Mohamat Nor et al. Unit Health Assessment-Oil & Gas Equipment Probabilistic Case Study
Nurdiansyah et al. Analysis of Maintenance Management at PT. XYZ Power Plant (With MTTR, MTTF, and Availability Factors) and Development of Performance Improvement Program
Schwenke et al. Analysis of maintenance histories of industrial equipment with frequent maintenance demand

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190911

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190911

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200708

R150 Certificate of patent or registration of utility model

Ref document number: 6733004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150