JP6730708B2 - Method for evaluating selective IL-4 production-inducing activity associated with NKT cell activation - Google Patents

Method for evaluating selective IL-4 production-inducing activity associated with NKT cell activation Download PDF

Info

Publication number
JP6730708B2
JP6730708B2 JP2016521063A JP2016521063A JP6730708B2 JP 6730708 B2 JP6730708 B2 JP 6730708B2 JP 2016521063 A JP2016521063 A JP 2016521063A JP 2016521063 A JP2016521063 A JP 2016521063A JP 6730708 B2 JP6730708 B2 JP 6730708B2
Authority
JP
Japan
Prior art keywords
gene
xloc
amount
test substance
blood cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016521063A
Other languages
Japanese (ja)
Other versions
JPWO2015178288A1 (en
Inventor
山村 隆
隆 山村
大介 能登
大介 能登
幸子 三宅
幸子 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Center of Neurology and Psychiatry
Original Assignee
National Center of Neurology and Psychiatry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Center of Neurology and Psychiatry filed Critical National Center of Neurology and Psychiatry
Publication of JPWO2015178288A1 publication Critical patent/JPWO2015178288A1/en
Application granted granted Critical
Publication of JP6730708B2 publication Critical patent/JP6730708B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、ナチュラルキラーT(NKT)細胞活性化に伴う選択的IL−4産生誘導活性の評価方法に関する。 The present invention relates to a method for evaluating selective IL-4 production inducing activity associated with activation of natural killer T (NKT) cells.

NKT細胞は、T細胞とナチュラルキラー(NK)細胞の中間的な性質を有する細胞である。NKT細胞は、T細胞抗原受容体(TCR)を有し、NK細胞のマーカー(マウスではNK1.1、ヒトではCD56)を発現する。特に、T細胞抗原受容体のVα鎖(マウスの場合、遺伝子断片Vα14−Jα28、ヒトではVα24−Jα18)に多様性がほとんど無いインバリアントTCRを発現するNKT細胞は、インバリアントNKT細胞と呼ばれる。1997年に、このインバリアントNKT細胞が、樹状細胞表面上の抗原提示分子であるCD1dに結合した糖脂質α−ガラクトシルセラミド(α−GalCer)を認識することが報告された(非特許文献1)。現在では、CD1dに結合したα−GalCerを認識して結合し、かつインバリアントTCRを発現する細胞をNKT細胞と呼ぶことが多い。 NKT cells are cells having intermediate properties between T cells and natural killer (NK) cells. NKT cells have T cell antigen receptors (TCRs) and express NK cell markers (NK1.1 in mouse, CD56 in human). In particular, an NKT cell expressing an invariant TCR with almost no diversity in the Vα chain of the T cell antigen receptor (gene fragment Vα14-Jα28 in mouse, Vα24-Jα18 in human) is called invariant NKT cell. In 1997, it was reported that this invariant NKT cell recognizes the glycolipid α-galactosylceramide (α-GalCer) bound to CD1d which is an antigen-presenting molecule on the surface of dendritic cells (Non-Patent Document 1). ). Currently, cells that recognize and bind α-GalCer bound to CD1d and that express invariant TCR are often called NKT cells.

ヒト及びマウスの実験結果によれば、CD1dに拘束されたNKT細胞は、CD1dに結合したα−GalCerによって活性化され、インターロイキン4(IL−4)、インターフェロンγ(IFN−γ)、インターロイキン13(IL−13)等のサイトカインを大量に産生することが知られている(非特許文献2)。また、NKT細胞は、数の少ない細胞集団ではあるが、上記のようなサイトカン産生を介したクロストークによって、NK細胞をはじめとする主要なリンパ球の機能に影響を与え、抗原特異的な免疫応答を調節していることが知られている(非特許文献3及び非特許文献4)。 According to the results of experiments in humans and mice, CD1d-restricted NKT cells are activated by α-GalCer bound to CD1d, and interleukin 4 (IL-4), interferon γ (IFN-γ), interleukin. It is known to produce a large amount of cytokines such as 13 (IL-13) (Non-Patent Document 2). In addition, although NKT cells are a small number of cell populations, crosstalk through cytocan production as described above influences the functions of major lymphocytes including NK cells and is antigen-specific. It is known to regulate the immune response (Non-Patent Documents 3 and 4).

NKT細胞を活性化する能力のある物質として、従来α−GalCerが知られている(例えば、非特許文献2)。また、特許文献1には、NKT細胞によるIL−4産生を選択的に誘導する能力のある糖脂質が開示されている。 Α-GalCer is conventionally known as a substance capable of activating NKT cells (for example, Non-Patent Document 2). Patent Document 1 discloses a glycolipid capable of selectively inducing IL-4 production by NKT cells.

特許第4064346号公報Japanese Patent No. 4064346

Kawano T,et al.,1997年,Science,278巻,pp.1626−1629.Kawano T, et al. , Science, 278, pp. 1626-1629. Bendelac A,et al.,2007年,Annu.Rev.Immunol.,25巻,pp.297−336.Bendelac A, et al. , 2007, Annu. Rev. Immunol. 25 volumes, pp. 297-336. Carnaud et al.,1999年,J.Immunol.,163巻,pp.4647.Carnaud et al. , 1999, J. Immunol. , 163, pp. 4647. Berzins SP, et al.,2011年,Nat.Rev.Immunol.,11巻,pp.131−142.Berzins SP, et al. , 2011, Nat. Rev. Immunol. , Vol. 11, pp. 131-142.

特許文献1に記載の糖脂質(以下、「合成糖脂質化合物」ともいう。)は、NKT細胞によるIL−4産生を選択的に誘導することができる(以下、「NKT細胞活性化に伴う選択的IL−4産生誘導活性」ともいう。)。これにより、例えば、Th1/Th2免疫バランスをTh2が増加する方向に調節すること、IL−17産生を低下させること、GM−CSF産生を低下させることができる。このようなNKT細胞活性化に伴う選択的IL−4産生誘導活性を有する物質は、例えば、Th1/Th2免疫バランスがTh1に偏向した疾患又はTh1細胞が病態を悪化させる疾患の治療、自己免疫疾患の治療、生体内におけるGM−CSF濃度の増加に起因する疾患の治療、及びIL−17産生T細胞の増加に起因する疾患の治療に極めて有効である。 The glycolipid described in Patent Document 1 (hereinafter, also referred to as “synthetic glycolipid compound”) can selectively induce IL-4 production by NKT cells (hereinafter, “selection accompanying activation of NKT cells”). IL-4 production-inducing activity"). Thereby, for example, it is possible to regulate the Th1/Th2 immune balance in the direction in which Th2 increases, reduce IL-17 production, and reduce GM-CSF production. Such a substance having a selective IL-4 production inducing activity associated with NKT cell activation is, for example, treatment of a disease in which the Th1/Th2 immune balance is biased to Th1 or a disease in which Th1 cells exacerbate the pathological condition, autoimmune disease. It is extremely effective for the treatment of the above, the treatment of the disease caused by the increase of the GM-CSF concentration in the living body, and the treatment of the disease caused by the increase of the IL-17-producing T cells.

ところで、新薬開発を目的とし、ある物質がNKT細胞活性化に伴う選択的IL−4産生誘導活性を有するか否かを評価する場合、試験管内(イン・ビトロ)での評価だけでは充分ではなく、ヒトに投与したときの免疫修飾能を評価することが望ましい。しかしながら、ヒトをはじめとする哺乳動物において、NKT細胞は末梢血中に僅かしか存在せず、NKT細胞の活性化状態を直接検出することは、従来技術では非常に困難である。 By the way, in the case of evaluating whether or not a substance has a selective IL-4 production-inducing activity associated with NKT cell activation for the purpose of developing a new drug, in vitro (in vitro) evaluation alone is not sufficient. It is desirable to evaluate the immunomodulating ability when administered to humans. However, in mammals including human beings, NKT cells are scarcely present in peripheral blood, and it is very difficult to directly detect the activation state of NKT cells by the conventional technique.

また、一般にヒトを対象とした臨床試験は、時間及びコストがかかるため、可能な限り早い段階で薬効を評価することのできる方法が求められる。 In addition, since clinical trials for humans generally take time and cost, a method capable of evaluating drug efficacy at an early stage is required.

そこで、本発明は、イン・ビボにおける被験物質のNKT細胞活性化に伴う選択的IL−4産生誘導活性を迅速に評価することのできる評価方法の提供を目的とする。 Therefore, an object of the present invention is to provide an evaluation method capable of rapidly evaluating the selective IL-4 production-inducing activity associated with NKT cell activation of a test substance in vivo.

本発明は、例えば、以下の(1)〜(17)に関する。
(1)被験物質のイン・ビボにおけるNKT細胞活性化に伴う選択的IL−4産生誘導活性を評価する方法であって、上記被験物質を投与されたヒト対象から採取された血液細胞で発現している転写産物量を測定する定量工程と、CHRD遺伝子、GYLTL1B遺伝子、MYOF遺伝子、EPS8遺伝子、SH3RF1遺伝子、RCC2遺伝子、MAFB遺伝子、SERPING1遺伝子、C9orf47遺伝子、PPARGC1B遺伝子、POT1遺伝子、RUFY4遺伝子、GPER遺伝子、GSG1遺伝子、IL4I1遺伝子、CD180遺伝子、EGR2遺伝子、OAS2遺伝子、OAS3遺伝子、XLOC_002727遺伝子、XLOC_005851遺伝子、XLOC_I2_012046遺伝子及びLOC645195遺伝子からなる群から選択される1種以上の遺伝子について測定された転写産物量が、上記被験物質を投与されていないヒト対象から採取された血液細胞で発現している転写産物量に基づいて定められた閾値よりも多い場合、又はCPT1A遺伝子、SLC25A20遺伝子、PER1遺伝子、SEMA3C遺伝子、EMP1遺伝子、DRC1遺伝子、PDK4遺伝子、CNTNAP3遺伝子、TRIM49遺伝子、RELL1遺伝子、CNTNAP3B遺伝子、DNAJB5遺伝子、PROM2遺伝子、MS4A2遺伝子、GATA2遺伝子、TAGAP遺伝子、F12遺伝子、KBTBD7遺伝子、KLF6遺伝子、HDC遺伝子、SH2D2A遺伝子、AGPAT4−IT1遺伝子、FOS遺伝子、KLF10遺伝子、SLC1A7遺伝子、MYOM2遺伝子、GNLY遺伝子、GZMB遺伝子、FGFBP2遺伝子、C1orf21遺伝子、COLGALT2遺伝子、AKR1C3遺伝子、F2R遺伝子、ZNF683遺伝子、PRF1遺伝子、DAAM2遺伝子、MYBL1遺伝子、FOSB遺伝子、NR4A2遺伝子、KIR2DL2遺伝子、KIR2DL4遺伝子、KIR2DS2遺伝子、KIR2DS4遺伝子、KIR2DL5A遺伝子、KIR3DL2遺伝子、FOS遺伝子、XLOC_000357遺伝子、XLOC_006688遺伝子、XLOC_010061遺伝子、LINC00222遺伝子、LOC400655遺伝子、LOC100130581遺伝子、XLOC_007314遺伝子、XLOC_I2_000092遺伝子、XLOC_010245遺伝子及びLOC286087遺伝子からなる群から選択される1種以上の遺伝子について測定された転写産物量が、上記被験物質を投与されていないヒト対象から採取された血液細胞で発現している転写産物量に基づいて定められた閾値よりも少ない場合に、上記被験物質がイン・ビボでNKT細胞活性化に伴う選択的IL−4産生誘導活性を示したと判定する判定工程と、を備える、方法。
The present invention relates to the following (1) to (17), for example.
(1) A method for evaluating a selective IL-4 production-inducing activity associated with in vivo NKT cell activation of a test substance, which is expressed in blood cells collected from a human subject to which the test substance is administered. Quantification step for measuring the amount of transcripts present, CHRD gene, GYLTL1B gene, MYOF gene, EPS8 gene, SH3RF1 gene, RCC2 gene, MAFB gene, SERPING1 gene, C9orf47 gene, PPARGC1B gene, POT1 gene, RUFY4 gene, GPER gene , The amount of transcript measured for one or more genes selected from the group consisting of GSG1 gene, IL4I1 gene, CD180 gene, EGR2 gene, OAS2 gene, OAS3 gene, XLOC_002727 gene, XLOC_005851 gene, XLOC_I2_012046 gene and LOC645195 gene. , If more than a threshold value determined based on the amount of transcripts expressed in blood cells collected from a human subject not administered the test substance, or CPT1A gene, SLC25A20 gene, PER1 gene, SEMA3C gene, EMP1 gene, DRC1 gene, PDK4 gene, CNTNAP3 gene, TRIM49 gene, RELL1 gene, CNTNAP3B gene, DNAJB5 gene, PROM2 gene, MS4A2 gene, GATA2 gene, TAGAP gene, F12 gene, KBTBBD7 gene, KLF6 gene, HDC gene, SH2D2 gene. , AGPAT4-IT1 gene, FOS gene, KLF10 gene, SLC1A7 gene, MYOM2 gene, GNLY gene, GZMB gene, FGFBP2 gene, C1orf21 gene, COLGALT2 gene, AKR1C3 gene, F2R gene, ZNF683 gene, PRF1 gene, DAAM2 gene. , FOSB gene, NR4A2 gene, KIR2DL2 gene, KIR2DL4 gene, KIR2DS2 gene, KIR2DS4 gene, KIR2DL5A gene, KIR3DL2 gene, FOS gene, XLOC_000357 gene, XLOC_006688 gene, XLOC_010061 gene, LINC00222C gene, LOC10065 gene, LOC1002C, LOC400655 gene. Gene, XLOC_01024 The amount of transcripts measured for one or more genes selected from the group consisting of 5 genes and LOC286087 gene is the amount of transcripts expressed in blood cells collected from a human subject not administered with the test substance. A determination step of determining that the test substance exhibits a selective IL-4 production-inducing activity associated with NKT cell activation in vivo when the amount is less than a threshold value determined based on the above.

(2)上記定量工程が、上記被験物質を投与されたヒト対象から投与5〜7時間後に採取された血液細胞で発現している転写産物量を測定することを含み、上記判定工程が、CHRD遺伝子、GYLTL1B遺伝子、MYOF遺伝子、EPS8遺伝子、SH3RF1遺伝子、RCC2遺伝子、MAFB遺伝子、SERPING1遺伝子、C9orf47遺伝子、PPARGC1B遺伝子、POT1遺伝子、IL4I1遺伝子、CD180遺伝子、EGR2遺伝子、OAS2遺伝子、XLOC_002727遺伝子、XLOC_005851遺伝子及びXLOC_I2_012046遺伝子からなる群から選択される1種以上の遺伝子について投与5〜7時間後の血液細胞に対して測定された転写産物量が、上記被験物質を投与されていないヒト対象から採取された血液細胞で発現している転写産物量に基づいて定められた閾値よりも多い場合、又はCPT1A遺伝子、SLC25A20遺伝子、PER1遺伝子、SEMA3C遺伝子、EMP1遺伝子、DRC1遺伝子、PDK4遺伝子、CNTNAP3遺伝子、TRIM49遺伝子、RELL1遺伝子、CNTNAP3B遺伝子、DNAJB5遺伝子、PROM2遺伝子、MS4A2遺伝子、GATA2遺伝子、TAGAP遺伝子、F12遺伝子、KBTBD7遺伝子、KLF6遺伝子、HDC遺伝子、SH2D2A遺伝子、AGPAT4−IT1遺伝子、KLF10遺伝子、FOSB遺伝子、NR4A2遺伝子、FOS遺伝子、XLOC_000357遺伝子、XLOC_006688遺伝子、XLOC_010061遺伝子、LINC00222遺伝子、LOC400655遺伝子、LOC100130581遺伝子、XLOC_007314遺伝子及びXLOC_I2_000092遺伝子からなる群から選択される1種以上の遺伝子について投与5〜7時間後の血液細胞に対して測定された転写産物量が、上記被験物質を投与されていないヒト対象から採取された血液細胞で発現している転写産物量に基づいて定められた閾値よりも少ない場合に、上記被験物質がイン・ビボでNKT細胞活性化に伴う選択的IL−4産生誘導活性を示したと判定することを含む、(1)に記載の方法。 (2) The quantification step includes measuring the amount of a transcript expressed in blood cells collected from a human subject administered the test substance 5 to 7 hours after the administration, and the determination step comprises CHRD. Gene, GYLTL1B gene, MYOF gene, EPS8 gene, SH3RF1 gene, RCC2 gene, MAFB gene, SERPING1 gene, C9orf47 gene, PPARGC1B gene, POT1 gene, IL4I1 gene, CD180 gene, EGR2 gene, OAS2 gene, XLOC_00270058 gene, XLOC_00270058 gene, XLOC_002727 gene. The amount of transcripts measured in blood cells 5 to 7 hours after administration of one or more genes selected from the group consisting of XLOC_I2_012046 gene is blood collected from a human subject not administered with the test substance. When it is more than a threshold value determined based on the amount of transcript expressed in cells, or CPT1A gene, SLC25A20 gene, PER1 gene, SEMA3C gene, EMP1 gene, DRC1 gene, PDK4 gene, CNTNAP3 gene, TRIM49 gene, RELL1 Gene, CNTNAP3B gene, DNAJB5 gene, PROM2 gene, MS4A2 gene, GATA2 gene, TAGAP gene, F12 gene, KBTBD7 gene, KLF6 gene, HDC gene, SH2D2A gene, AGPAT4-IT1 gene, KLF10 gene, FOSB gene, NR4A2 gene, FOS. Gene, XLOC_000357 gene, XLOC_006688 gene, XLOC_010061 gene, LINC00222 gene, LOC400655 gene, LOC100130581 gene, XLOC_007314 gene, and XLOC_I2_000092 gene, to the blood cells 5 to 7 hours after administration. When the measured amount of transcript is less than the threshold value determined based on the amount of transcript expressed in blood cells collected from a human subject not administered with the test substance, the test substance is The method according to (1), which comprises determining that it exhibited a selective IL-4 production-inducing activity associated with NKT cell activation in vivo.

(3)上記定量工程が、上記被験物質を投与されたヒト対象から投与23〜25時間後に採取された血液細胞で発現している転写産物量を測定することを含み、上記判定工程が、CHRD遺伝子、GYLTL1B遺伝子、MYOF遺伝子、EPS8遺伝子、SH3RF1遺伝子、RCC2遺伝子、MAFB遺伝子、SERPING1遺伝子、C9orf47遺伝子、PPARGC1B遺伝子、POT1遺伝子、RUFY4遺伝子、GPER遺伝子、GSG1遺伝子、IL4I1遺伝子、CD180遺伝子、EGR2遺伝子、OAS2遺伝子、OAS3遺伝子、XLOC_002727遺伝子、XLOC_005851遺伝子、XLOC_I2_012046遺伝子及びLOC645195遺伝子からなる群から選択される1種以上の遺伝子について投与23〜25時間後の血液細胞に対して測定された転写産物量が、上記被験物質を投与されていないヒト対象から採取された血液細胞で発現している転写産物量に基づいて定められた閾値よりも多い場合、又はDRC1遺伝子、PDK4遺伝子、CNTNAP3遺伝子、TRIM49遺伝子、RELL1遺伝子、CNTNAP3B遺伝子、DNAJB5遺伝子、PROM2遺伝子、MS4A2遺伝子、GATA2遺伝子、TAGAP遺伝子、F12遺伝子、KBTBD7遺伝子、KLF6遺伝子、HDC遺伝子、SH2D2A遺伝子、AGPAT4−IT1遺伝子、KLF10遺伝子、SLC1A7遺伝子、MYOM2遺伝子、GNLY遺伝子、GZMB遺伝子、FGFBP2遺伝子、C1orf21遺伝子、COLGALT2遺伝子、AKR1C3遺伝子、F2R遺伝子、ZNF683遺伝子、PRF1遺伝子、DAAM2遺伝子、MYBL1遺伝子、FOSB遺伝子、NR4A2遺伝子、KIR2DL2遺伝子、KIR2DL4遺伝子、KIR2DS2遺伝子、KIR2DS4遺伝子、KIR2DL5A遺伝子、KIR3DL2遺伝子、FOS遺伝子、XLOC_007314遺伝子、XLOC_I2_000092遺伝子、XLOC_010245遺伝子及びLOC286087遺伝子からなる群から選択される1種以上の遺伝子について投与23〜25時間後の血液細胞に対して測定された転写産物量が、上記被験物質を投与されていないヒト対象から採取された血液細胞で発現している転写産物量に基づいて定められた閾値よりも少ない場合に、上記被験物質がイン・ビボでNKT細胞活性化に伴う選択的IL−4産生誘導活性を示したと判定することを含む、(1)又は(2)に記載の方法。 (3) The quantification step includes measuring the amount of a transcript expressed in blood cells collected from a human subject administered the test substance 23 to 25 hours after administration, and the determination step comprises CHRD. Gene, GYLTL1B gene, MYOF gene, EPS8 gene, SH3RF1 gene, RCC2 gene, MAFB gene, SERPING1 gene, C9orf47 gene, PPARGC1B gene, POT1 gene, RUFY4 gene, GPER gene, GSG1 gene, IL4I1 gene, CD180 gene, EGR2 gene, EGR2 gene. The transcript amount measured for blood cells 23 to 25 hours after administration for one or more genes selected from the group consisting of OAS2 gene, OAS3 gene, XLOC_002727 gene, XLOC_005851 gene, XLOC_I2_012046 gene and LOC645195 gene is When the amount is greater than a threshold value determined based on the amount of transcripts expressed in blood cells collected from a human subject to which the test substance is not administered, or DRC1 gene, PDK4 gene, CNTNAP3 gene, TRIM49 gene, RELL1 Gene, CNTNAP3B gene, DNAJB5 gene, PROM2 gene, MS4A2 gene, GATA2 gene, TAGAP gene, F12 gene, KBTBD7 gene, KLF6 gene, HDC gene, SH2D2A gene, AGPAT4-IT1 gene, KLF10 gene, SLC1A7 gene, MYOM2 gene, GOMY2 gene. Gene, GZMB gene, FGFBP2 gene, C1orf21 gene, COLGALT2 gene, AKR1C3 gene, F2R gene, ZNF683 gene, PRF1 gene, DAAM2 gene, MYBL1 gene, FOSB gene, NR4A2 gene, KIR2DL2 gene, KIR2DL4 gene, KIR2DS2 gene. Transcripts measured in blood cells 23 to 25 hours after administration for one or more genes selected from the group consisting of KIR2DL5A gene, KIR3DL2 gene, FOS gene, XLOC_007314 gene, XLOC_I2_000092 gene, XLOC_010245 gene and LOC286087 gene If the amount is less than a threshold value determined based on the amount of transcripts expressed in blood cells collected from a human subject not receiving the test substance, the test substance is The method according to (1) or (2), comprising determining in vivo that a selective IL-4 production-inducing activity associated with NKT cell activation is exhibited.

(4)上記判定工程が、CHRD遺伝子、GYLTL1B遺伝子、MYOF遺伝子、EPS8遺伝子、SH3RF1遺伝子、RCC2遺伝子、MAFB遺伝子、SERPING1遺伝子、C9orf47遺伝子、PPARGC1B遺伝子、POT1遺伝子、RUFY4遺伝子、GPER遺伝子、GSG1遺伝子、IL4I1遺伝子、CD180遺伝子、EGR2遺伝子、OAS2遺伝子、OAS3遺伝子、XLOC_002727遺伝子、XLOC_005851遺伝子、XLOC_I2_012046遺伝子及びLOC645195遺伝子について測定された転写産物量が、上記被験物質を投与されていないヒト対象から採取された血液細胞で発現している転写産物量に基づいて定められた閾値よりも多い場合、並びに/又はCPT1A遺伝子、SLC25A20遺伝子、PER1遺伝子、SEMA3C遺伝子、EMP1遺伝子、DRC1遺伝子、PDK4遺伝子、CNTNAP3遺伝子、TRIM49遺伝子、RELL1遺伝子、CNTNAP3B遺伝子、DNAJB5遺伝子、PROM2遺伝子、MS4A2遺伝子、GATA2遺伝子、TAGAP遺伝子、F12遺伝子、KBTBD7遺伝子、KLF6遺伝子、HDC遺伝子、SH2D2A遺伝子、AGPAT4−IT1遺伝子、FOS遺伝子、KLF10遺伝子、SLC1A7遺伝子、MYOM2遺伝子、GNLY遺伝子、GZMB遺伝子、FGFBP2遺伝子、C1orf21遺伝子、COLGALT2遺伝子、AKR1C3遺伝子、F2R遺伝子、ZNF683遺伝子、PRF1遺伝子、DAAM2遺伝子、MYBL1遺伝子、FOSB遺伝子、NR4A2遺伝子、KIR2DL2遺伝子、KIR2DL4遺伝子、KIR2DS2遺伝子、KIR2DS4遺伝子、KIR2DL5A遺伝子、KIR3DL2遺伝子、FOS遺伝子、XLOC_000357遺伝子、XLOC_006688遺伝子、XLOC_010061遺伝子、LINC00222遺伝子、LOC400655遺伝子、LOC100130581遺伝子、XLOC_007314遺伝子、XLOC_I2_000092遺伝子、XLOC_010245遺伝子及びLOC286087遺伝子について測定された転写産物量が、上記被験物質を投与されていないヒト対象から採取された血液細胞で発現している転写産物量に基づいて定められた閾値よりも少ない場合に、上記被験物質がイン・ビボでNKT細胞活性化に伴う選択的IL−4産生誘導活性を示したと判定することを含む、(1)〜(3)のいずれかに記載の方法。 (4) The determination step includes CHRD gene, GYLTL1B gene, MYOF gene, EPS8 gene, SH3RF1 gene, RCC2 gene, MAFB gene, SERPING1 gene, C9orf47 gene, PPARGC1B gene, POT1 gene, RUFY4 gene, GPER gene, GSG1 gene, Blood collected from a human subject to which the amount of transcripts measured for IL4I1 gene, CD180 gene, EGR2 gene, OAS2 gene, OAS3 gene, XLOC_002727 gene, XLOC_005851 gene, XLOC_I2_012046 gene and LOC645195 gene was not administered to the test substance. When it is more than a threshold value determined based on the amount of transcript expressed in cells, and/or CPT1A gene, SLC25A20 gene, PER1 gene, SEMA3C gene, EMP1 gene, DRC1 gene, PDK4 gene, CNTNAP3 gene, TRIM49 gene , RELL1 gene, CNTNAP3B gene, DNAJB5 gene, PROM2 gene, MS4A2 gene, GATA2 gene, TAGAP gene, F12 gene, KBTBBD7 gene, KLF6 gene, HDC gene, SH2D2A gene, AGPAT4-IT1 gene, FOS gene, KLF10 gene, SLC1A7 gene. , MYOM2 gene, GNLY gene, GZMB gene, FGFBP2 gene, C1orf21 gene, COLGALT2 gene, AKR1C3 gene, F2R gene, ZNF683 gene, PRF1 gene, DAAM2 gene, MYBL1 gene, FOSB gene, NR4A2 gene, KIR2DL2 gene, KIR2DL2 gene, KIR2DL2 gene, KIR2DL2 gene, KIR2DL2 gene, KIR2DL2 gene, KIR2DL2 gene, KIR2DL2 gene, KIR2DL2 gene, KIR2DL2 gene, KIR2DL2 gene, KIR2DL2 gene, KIR2DL2 gene, KIR2DL2 gene, KIR2DL2 gene Gene, KIR2DS4 gene, KIR2DL5A gene, KIR3DL2 gene, FOS gene, XLOC_000357 gene, XLOC_006688 gene, XLOC_010061 gene, LINC00222 gene, LOC400655 gene, LOC100130581 gene, XLOC_007314 gene, XLOC_I2_28_0102 gene, 60 gene, and XLOC_I2_00_90 gene, XLO_002_0102 gene, XLO_000092 gene, XLO_000092 gene, XLO_00002 gene, and XLO_00002 gene. Is less than a threshold value determined based on the amount of transcripts expressed in blood cells collected from a human subject not administered the test substance, the test substance is The method according to any one of (1) to (3), which comprises determining that it exhibited a selective IL-4 production-inducing activity associated with NKT cell activation in vivo.

(5)上記定量工程が、上記被験物質を投与されたヒト対象から投与5〜7時間後に採取された血液細胞で発現している転写産物量を測定することを含み、上記判定工程が、CHRD遺伝子、GYLTL1B遺伝子、MYOF遺伝子、EPS8遺伝子、SH3RF1遺伝子、RCC2遺伝子、MAFB遺伝子、SERPING1遺伝子、C9orf47遺伝子、PPARGC1B遺伝子、POT1遺伝子、IL4I1遺伝子、CD180遺伝子、EGR2遺伝子、OAS2遺伝子、XLOC_002727遺伝子、XLOC_005851遺伝子及びXLOC_I2_012046遺伝子について投与5〜7時間後の血液細胞に対して測定された転写産物量が、上記被験物質を投与されていないヒト対象から採取された血液細胞で発現している転写産物量に基づいて定められた閾値よりも多い場合、並びに/又はCPT1A遺伝子、SLC25A20遺伝子、PER1遺伝子、SEMA3C遺伝子、EMP1遺伝子、DRC1遺伝子、PDK4遺伝子、CNTNAP3遺伝子、TRIM49遺伝子、RELL1遺伝子、CNTNAP3B遺伝子、DNAJB5遺伝子、PROM2遺伝子、MS4A2遺伝子、GATA2遺伝子、TAGAP遺伝子、F12遺伝子、KBTBD7遺伝子、KLF6遺伝子、HDC遺伝子、SH2D2A遺伝子、AGPAT4−IT1遺伝子、KLF10遺伝子、FOSB遺伝子、NR4A2遺伝子、FOS遺伝子、XLOC_000357遺伝子、XLOC_006688遺伝子、XLOC_010061遺伝子、LINC00222遺伝子、LOC400655遺伝子、LOC100130581遺伝子、XLOC_007314遺伝子及びXLOC_I2_000092遺伝子について投与5〜7時間後の血液細胞に対して測定された転写産物量が、上記被験物質を投与されていないヒト対象から採取された血液細胞で発現している転写産物量に基づいて定められた閾値よりも少ない場合に、上記被験物質がイン・ビボでNKT細胞活性化に伴う選択的IL−4産生誘導活性を示したと判定することを含む、(1)〜(4)のいずれかに記載の方法。 (5) The quantification step includes measuring the amount of a transcript expressed in blood cells collected from a human subject administered the test substance 5 to 7 hours after the administration, and the determination step comprises CHRD. Gene, GYLTL1B gene, MYOF gene, EPS8 gene, SH3RF1 gene, RCC2 gene, MAFB gene, SERPING1 gene, C9orf47 gene, PPARGC1B gene, POT1 gene, IL4I1 gene, CD180 gene, EGR2 gene, OAS2 gene, XLOC_00270058 gene, XLOC_00270058 gene, XLOC_002727 gene. The amount of transcripts measured for blood cells 5 to 7 hours after administration of the XLOC_I2_012046 gene is based on the amount of transcripts expressed in blood cells collected from a human subject not administered with the above-mentioned test substance. When it is more than the defined threshold value and/or CPT1A gene, SLC25A20 gene, PER1 gene, SEMA3C gene, EMP1 gene, DRC1 gene, PDK4 gene, CNTNAP3 gene, TRIM49 gene, RELL1 gene, CNTNAP3B gene, DNAJB5 gene, PROM2 gene , MS4A2 gene, GATA2 gene, TAGAP gene, F12 gene, KBTBD7 gene, KLF6 gene, HDC gene, SH2D2A gene, AGPAT4-IT1 gene, KLF10 gene, FOSB gene, NR4A2 gene, FOS gene, XLOC_000357 gene, XLOC_0066880061 gene, XLOC_006601 gene. , LINC00222 gene, LOC400655 gene, LOC100130581 gene, XLOC_007314 gene, and XLOC_I2_000092 gene, the amount of transcripts measured in blood cells 5 to 7 hours after administration was collected from a human subject not administered with the test substance. It is determined that the test substance exhibits a selective IL-4 production-inducing activity associated with NKT cell activation in vivo when the amount is less than a threshold value determined based on the amount of transcript expressed in blood cells. The method according to any one of (1) to (4), which comprises:

(6)上記定量工程が、上記被験物質を投与されたヒト対象から投与23〜25時間後に採取された血液細胞で発現している転写産物量を測定することを含み、上記判定工程が、CHRD遺伝子、GYLTL1B遺伝子、MYOF遺伝子、EPS8遺伝子、SH3RF1遺伝子、RCC2遺伝子、MAFB遺伝子、SERPING1遺伝子、C9orf47遺伝子、PPARGC1B遺伝子、POT1遺伝子、RUFY4遺伝子、GPER遺伝子、GSG1遺伝子、IL4I1遺伝子、CD180遺伝子、EGR2遺伝子、OAS2遺伝子、OAS3遺伝子、XLOC_002727遺伝子、XLOC_005851遺伝子、XLOC_I2_012046遺伝子及びLOC645195遺伝子について投与23〜25時間後の血液細胞に対して測定された転写産物量が、上記被験物質を投与されていないヒト対象から採取された血液細胞で発現している転写産物量に基づいて定められた閾値よりも多い場合、並びに/又はDRC1遺伝子、PDK4遺伝子、CNTNAP3遺伝子、TRIM49遺伝子、RELL1遺伝子、CNTNAP3B遺伝子、DNAJB5遺伝子、PROM2遺伝子、MS4A2遺伝子、GATA2遺伝子、TAGAP遺伝子、F12遺伝子、KBTBD7遺伝子、KLF6遺伝子、HDC遺伝子、SH2D2A遺伝子、AGPAT4−IT1遺伝子、KLF10遺伝子、SLC1A7遺伝子、MYOM2遺伝子、GNLY遺伝子、GZMB遺伝子、FGFBP2遺伝子、C1orf21遺伝子、COLGALT2遺伝子、AKR1C3遺伝子、F2R遺伝子、ZNF683遺伝子、PRF1遺伝子、DAAM2遺伝子、MYBL1遺伝子、FOSB遺伝子、NR4A2遺伝子、KIR2DL2遺伝子、KIR2DL4遺伝子、KIR2DS2遺伝子、KIR2DS4遺伝子、KIR2DL5A遺伝子、KIR3DL2遺伝子、FOS遺伝子、XLOC_007314遺伝子、XLOC_I2_000092遺伝子、XLOC_010245遺伝子及びLOC286087遺伝子について投与23〜25時間後の血液細胞に対して測定された転写産物量が、上記被験物質を投与されていないヒト対象から採取された血液細胞で発現している転写産物量に基づいて定められた閾値よりも少ない場合に、上記被験物質がイン・ビボでNKT細胞活性化に伴う選択的IL−4産生誘導活性を示したと判定することを含む、(1)〜(5)のいずれかに記載の方法。 (6) The quantification step includes measuring the amount of transcript expressed in blood cells collected from a human subject administered the test substance 23 to 25 hours after administration, and the determination step comprises CHRD. Gene, GYLTL1B gene, MYOF gene, EPS8 gene, SH3RF1 gene, RCC2 gene, MAFB gene, SERPING1 gene, C9orf47 gene, PPARGC1B gene, POT1 gene, RUFY4 gene, GPER gene, GSG1 gene, IL4I1 gene, CD180 gene, EGR gene, EGR2 gene. The transcript amount of OAS2 gene, OAS3 gene, XLOC_002727 gene, XLOC_005851 gene, XLOC_I2_012046 gene and LOC645195 gene measured in blood cells 23 to 25 hours after administration was collected from a human subject not administered with the test substance. When it is more than a threshold value determined based on the amount of transcript expressed in the blood cells, and/or DRC1 gene, PDK4 gene, CNTNAP3 gene, TRIM49 gene, RELL1 gene, CNTNAP3B gene, DNAJB5 gene, PROM2 gene , MS4A2 gene, GATA2 gene, TAGAP gene, F12 gene, KBTBD7 gene, KLF6 gene, HDC gene, SH2D2A gene, AGPAT4-IT1 gene, KLF10 gene, SLC1A7 gene, MYOM2 gene, GNLY gene, GZMB gene, FGFBP21 gene, C1or2. , COLGALT2 gene, AKR1C3 gene, F2R gene, ZNF683 gene, PRF1 gene, DAAM2 gene, MYBL1 gene, FOSB gene, NR4A2 gene, KIR2DL2 gene, KIR2DL4 gene, KIR2DS2 gene, KIR2DS4 gene, KIR2DL5X gene, CIR2DL5A2 gene, CIR2DL5A14 gene, KIR2DL5A2 gene, KIR2DL5A gene, KIR2DL5A gene, KIR2DL5A gene, KIR2DL5A gene, KIR3DL3A gene Gene, XLOC_I2_000092 gene, XLOC_010245 gene and LOC286087 gene, the amount of transcripts measured in blood cells 23 to 25 hours after administration was expressed in blood cells collected from a human subject not administered with the above-mentioned test substance. It was determined that the test substance exhibited selective IL-4 production-inducing activity associated with NKT cell activation in vivo when the amount was less than a threshold value determined based on the amount of transcripts The method according to any one of (1) to (5), which comprises:

(7)上記閾値が、上記被験物質を投与する前に上記ヒト対象から採取された血液細胞で発現している各遺伝子の転写産物量である、(1)〜(6)のいずれかに記載の方法。 (7) The threshold value is the transcript amount of each gene expressed in blood cells collected from the human subject before administration of the test substance, according to any one of (1) to (6) the method of.

(8)上記NKT細胞活性化に伴う選択的IL−4産生誘導活性が、NKT細胞のインターフェロンγ(IFN−γ)産生を誘導せず、かつNKT細胞のIL−4産生を誘導する活性である、(1)〜(7)のいずれかに記載の方法。 (8) The selective IL-4 production-inducing activity associated with the activation of NKT cells is an activity that does not induce interferon γ (IFN-γ) production by NKT cells and that induces IL-4 production by NKT cells. The method according to any one of (1) to (7).

(9)上記定量工程において、配列番号1〜78のいずれかに示す塩基配列を含むプローブからなる群から選択される少なくとも1種を使用して転写産物量を測定する、(1)〜(8)のいずれかに記載の方法。 (9) In the quantification step, the amount of the transcript is measured using at least one selected from the group consisting of probes containing the nucleotide sequences shown in any of SEQ ID NOS: 1 to 78, (1) to (8) ).

(10)イン・ビボでNKT細胞活性化に伴う選択的IL−4産生誘導活性を有する物質のスクリーニング方法であって、候補物質に対して、(1)〜(7)のいずれかに記載の方法を実施することを含む、スクリーニング方法。 (10) A method for screening a substance having a selective IL-4 production-inducing activity associated with NKT cell activation in vivo, wherein the candidate substance is described in any one of (1) to (7). A method of screening comprising performing the method.

(11)上記候補物質が、NKT細胞の抗原受容体、及びCD1dに結合する物質である、(10)に記載のスクリーニング方法。 (11) The screening method according to (10), wherein the candidate substance is a substance that binds to an NKT cell antigen receptor and CD1d.

(12)上記NKT細胞活性化に伴う選択的IL−4産生誘導活性が、NKT細胞のインターフェロンγ(IFN−γ)産生を誘導せず、かつNKT細胞のIL−4産生を誘導する活性である、(10)又は(11)に記載のスクリーニング方法。 (12) The selective IL-4 production-inducing activity associated with the activation of NKT cells is an activity that does not induce interferon γ (IFN-γ) production by NKT cells and that induces IL-4 production by NKT cells. The screening method according to (10) or (11).

(13)被験物質のイン・ビボにおけるナチュラルキラーT(NKT)細胞活性化に伴う選択的IL−4産生誘導活性の検出剤であって、配列番号1〜78のいずれかに示す塩基配列を含むプローブからなる群から選択される少なくとも1種からなる、検出剤。 (13) A detection agent for a selective IL-4 production inducing activity associated with activation of a natural killer T (NKT) cell of a test substance in vivo, comprising the nucleotide sequence shown in any one of SEQ ID NOs: 1 to 78. A detection agent comprising at least one selected from the group consisting of probes.

(14)上記NKT細胞活性化に伴う選択的IL−4産生誘導活性が、NKT細胞のインターフェロンγ(IFN−γ)産生を誘導せず、かつNKT細胞のIL−4産生を誘導する活性である、(13)に記載の検出剤。 (14) The selective IL-4 production-inducing activity associated with the activation of NKT cells is an activity that does not induce interferon γ (IFN-γ) production by NKT cells and that induces IL-4 production by NKT cells. The detection agent according to (13).

本発明によれば、ヒト対象から採取された血液サンプルに含まれる特定の遺伝子の転写産物量の変化に基づいて、イン・ビボにおける被験物質のNKT細胞活性化に伴う選択的IL−4産生誘導活性を迅速に(すなわち、投与後の早い段階で)評価することができる。したがって、ヒトを対象とした臨床試験における薬効評価用として好適である。 According to the present invention, based on a change in the transcript amount of a specific gene contained in a blood sample collected from a human subject, in vitro induction of selective IL-4 production of a test substance with activation of NKT cells is performed. Activity can be assessed rapidly (ie, early after administration). Therefore, it is suitable for evaluation of drug efficacy in clinical tests in humans.

また、本発明によれば、例えば、特許文献1に記載の合成糖脂質化合物のイン・ビボでの薬効評価が可能であり、更にNKT細胞活性化に伴う選択的IL−4産生誘導活性を有する新規物質(新薬候補)のスクリーニングも可能である。 Further, according to the present invention, for example, it is possible to evaluate the in vivo drug efficacy of the synthetic glycolipid compound described in Patent Document 1, and further has a selective IL-4 production inducing activity associated with NKT cell activation. It is also possible to screen for new substances (new drug candidates).

さらに本発明の検出剤は、配列番号1〜78のいずれかに示す塩基配列を含むプローブ1種以上からなるものであるため、ヒト対象から採取された血液サンプルに含まれる特定の遺伝子の転写産物量を再現性よくかつ精度よく測定することができる。これにより、被験物質がイン・ビボでNKT細胞活性化に伴う選択的IL−4産生誘導活性を示したか否かをより高い精度で検出することが可能となる。 Furthermore, since the detection agent of the present invention comprises at least one probe containing the nucleotide sequence shown in any of SEQ ID NOS: 1 to 78, it is a transcription product of a specific gene contained in a blood sample collected from a human subject. The amount can be measured reproducibly and accurately. This makes it possible to detect with high accuracy whether or not the test substance exhibited in vivo selective IL-4 production-inducing activity associated with NKT cell activation.

実施例1のAコホートにおける投与6時間後のスキャッタープロットである。グラフの縦軸、横軸共にアレイ間正規化後のシグナル値の平均値を示す。3 is a scatter plot 6 hours after administration in the A cohort of Example 1. Both the vertical axis and the horizontal axis of the graph show average values of signal values after inter-array normalization. 実施例1のAコホートにおける投与24時間後のスキャッタープロットである。グラフの縦軸、横軸共にアレイ間正規化後のシグナル値の平均値を示す。2 is a scatter plot 24 hours after administration in the A cohort of Example 1. Both the vertical axis and the horizontal axis of the graph show average values of signal values after inter-array normalization. 実施例1のCコホートにおける投与6時間後のスキャッタープロットである。グラフの縦軸、横軸共にアレイ間正規化後のシグナル値の平均値を示す。6 is a scatter plot 6 hours after administration in the C cohort of Example 1. Both the vertical axis and the horizontal axis of the graph show average values of signal values after inter-array normalization. 実施例1のCコホートにおける投与24時間後のスキャッタープロットである。グラフの縦軸、横軸共にアレイ間正規化後のシグナル値の平均値を示す。2 is a scatter plot 24 hours after administration in the C cohort of Example 1. Both the vertical axis and the horizontal axis of the graph show average values of signal values after inter-array normalization. 化合物31を投与した被験者における、末梢血中の転写産物量の経時変化を示すグラフである。3 is a graph showing changes over time in the amount of transcripts in peripheral blood in a subject administered with Compound 31. 化合物31を投与した被験者における、末梢血中の転写産物量の経時変化を示すグラフである。3 is a graph showing changes over time in the amount of transcripts in peripheral blood in a subject administered with Compound 31. 化合物31を投与した被験者における、末梢血中の転写産物量の経時変化を示すグラフである。3 is a graph showing changes over time in the amount of transcripts in peripheral blood in a subject administered with Compound 31. 化合物31を投与した被験者における、末梢血中の転写産物量の経時変化を示すグラフである。3 is a graph showing changes over time in the amount of transcripts in peripheral blood in a subject administered with Compound 31. 化合物31を投与した被験者における、末梢血中の転写産物量の経時変化を示すグラフである。3 is a graph showing changes over time in the amount of transcripts in peripheral blood in a subject administered with Compound 31. 化合物31を投与した被験者における、末梢血中の転写産物量の経時変化を示すグラフである。3 is a graph showing changes over time in the amount of transcripts in peripheral blood in a subject administered with Compound 31. 化合物31を投与した被験者における、末梢血中の転写産物量の経時変化を示すグラフである。3 is a graph showing changes over time in the amount of transcripts in peripheral blood in a subject administered with Compound 31. 化合物31を投与した被験者における、末梢血中の転写産物量の経時変化を示すグラフである。3 is a graph showing changes over time in the amount of transcripts in peripheral blood in a subject administered with Compound 31. 化合物31を投与した被験者における、末梢血中の転写産物量の経時変化を示すグラフである。3 is a graph showing changes over time in the amount of transcripts in peripheral blood in a subject administered with Compound 31. 化合物31を投与した被験者における、末梢血中の転写産物量の経時変化を示すグラフである。3 is a graph showing changes over time in the amount of transcripts in peripheral blood in a subject administered with Compound 31. 化合物31を投与した被験者における、末梢血中の転写産物量の経時変化を示すグラフである。3 is a graph showing changes over time in the amount of transcripts in peripheral blood in a subject administered with Compound 31. 化合物31を投与した被験者における、末梢血中の転写産物量の経時変化を示すグラフである。3 is a graph showing changes over time in the amount of transcripts in peripheral blood in a subject administered with Compound 31. 化合物31を投与した被験者における、末梢血中の転写産物量の経時変化を示すグラフである。3 is a graph showing changes over time in the amount of transcripts in peripheral blood in a subject administered with Compound 31. 化合物31を投与した被験者における、末梢血中の転写産物量の経時変化を示すグラフである。3 is a graph showing changes over time in the amount of transcripts in peripheral blood in a subject administered with Compound 31. 化合物31を投与した被験者における、末梢血中の転写産物量の経時変化を示すグラフである。3 is a graph showing changes over time in the amount of transcripts in peripheral blood in a subject administered with Compound 31.

以下、本発明を実施するための形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, modes for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments.

(転写産物)
本明細書において、「転写産物」は、メッセンジャーRNA(mRNA)に加え、タンパク質に翻訳されないノンコーディングRNAも包含する。
(Transcript)
As used herein, "transcript" includes messenger RNA (mRNA) as well as non-coding RNA that is not translated into protein.

〔被験物質のイン・ビボにおけるNKT細胞活性化に伴う選択的IL−4産生誘導活性の評価方法〕
本発明に係る被験物質のイン・ビボにおけるNKT細胞活性化に伴う選択的IL−4産生誘導活性を評価する方法(以下、単に「評価方法」ともいう。)は、被験物質を投与されたヒト対象から採取された血液細胞で発現している所定の遺伝子の転写産物量を測定する定量工程(以下、単に「定量工程」ともいう。)と、測定された転写産物量と各遺伝子に対して設定された閾値との比較に基づいて、被験物質がイン・ビボでNKT細胞活性化に伴う選択的IL−4産生誘導活性を示したと判定する判定工程(以下、単に「判定工程」ともいう。)と、を備える。また、本発明は、上記定量工程を含む、被験物質のイン・ビボにおけるNKT細胞活性化に伴う選択的IL−4産生誘導活性を評価するためのデータを収集する方法と捉えることもできる。
[Evaluation method of selective IL-4 production inducing activity associated with activation of NKT cells in vivo of test substance]
The method for evaluating the selective IL-4 production inducing activity associated with in vivo NKT cell activation of a test substance according to the present invention (hereinafter, also simply referred to as “evaluation method”) is a human to which the test substance is administered. A quantification step for measuring the transcript amount of a predetermined gene expressed in blood cells collected from a subject (hereinafter, also simply referred to as “quantification step”), and the measured transcript amount and each gene Based on the comparison with the set threshold value, the determination step of determining that the test substance exhibited the selective IL-4 production-inducing activity associated with NKT cell activation in vivo (hereinafter, also simply referred to as “determination step”). ), and. The present invention can also be regarded as a method of collecting data for evaluating a selective IL-4 production inducing activity associated with in vivo NKT cell activation of a test substance, which includes the above-mentioned quantification step.

(所定の遺伝子)
本発明に係る評価方法における「所定の遺伝子」は、特許文献1に記載の合成糖脂質化合物の一つである(2S,3S,4R)−1−O−(α−D−ガラクトシル)−2−(N−テトラコサノイルアミノ)−1,3,4−ノナントリオール(以下、「化合物31」ともいう。)をヒト対象(健常者対象)に投与したときに、投与前と比べて、血液サンプル(血液細胞)中で転写産物量が統計上有意に増加又は減少する遺伝子である。すなわち、「所定の遺伝子」の転写産物量の増加又は減少と、NKT細胞活性化に伴う選択的IL−4産生誘導活性とは相関しているため、本発明に係る評価方法により、被験物質の評価が可能となる。
(Predetermined gene)
The “predetermined gene” in the evaluation method according to the present invention is one of the synthetic glycolipid compounds described in Patent Document 1 (2S,3S,4R)-1-O-(α-D-galactosyl)-2. When (-N-tetracosanoylamino)-1,3,4-nonanetriol (hereinafter, also referred to as "Compound 31") is administered to a human subject (healthy subject), blood is compared with that before administration. A gene in which the amount of transcript in a sample (blood cell) is statistically significantly increased or decreased. That is, since the increase or decrease in the amount of the transcript of the “predetermined gene” is correlated with the selective IL-4 production-inducing activity associated with NKT cell activation, the evaluation method according to the present invention Evaluation is possible.

第一実施形態において「所定の遺伝子」は、CHRD遺伝子、GYLTL1B遺伝子、MYOF遺伝子、EPS8遺伝子、SH3RF1遺伝子、RCC2遺伝子、MAFB遺伝子、SERPING1遺伝子、C9orf47遺伝子、PPARGC1B遺伝子、POT1遺伝子、RUFY4遺伝子、GPER遺伝子、GSG1遺伝子、CPT1A遺伝子、SLC25A20遺伝子、PER1遺伝子、SEMA3C遺伝子、EMP1遺伝子、DRC1遺伝子、PDK4遺伝子、CNTNAP3遺伝子、TRIM49遺伝子、RELL1遺伝子、CNTNAP3B遺伝子、DNAJB5遺伝子、PROM2遺伝子、MS4A2遺伝子、GATA2遺伝子、TAGAP遺伝子、F12遺伝子、KBTBD7遺伝子、KLF6遺伝子、HDC遺伝子、SH2D2A遺伝子、AGPAT4−IT1遺伝子、KLF10遺伝子、SLC1A7遺伝子、MYOM2遺伝子、GNLY遺伝子、GZMB遺伝子、FGFBP2遺伝子、C1orf21遺伝子、COLGALT2遺伝子、AKR1C3遺伝子、F2R遺伝子、ZNF683遺伝子、PRF1遺伝子、DAAM2遺伝子、MYBL1遺伝子、XLOC_002727遺伝子、XLOC_005851遺伝子、XLOC_I2_012046遺伝子、LOC645195遺伝子、XLOC_000357遺伝子、XLOC_006688遺伝子、XLOC_010061遺伝子、LINC00222遺伝子、LOC400655遺伝子、LOC100130581遺伝子、XLOC_007314遺伝子、XLOC_I2_000092遺伝子、XLOC_010245遺伝子及びLOC286087遺伝子(以下、「遺伝子群1」ともいう。)である。各遺伝子の詳細については、表1〜表9に記載した。 In the first embodiment, the “predetermined gene” is a CHRD gene, GYLTL1B gene, MYOF gene, EPS8 gene, SH3RF1 gene, RCC2 gene, MAFB gene, SERPING1 gene, C9orf47 gene, PPARGC1B gene, POT1 gene, RUFY4 gene, GPER gene. , GSG1 gene, CPT1A gene, SLC25A20 gene, PER1 gene, SEMA3C gene, EMP1 gene, DRC1 gene, PDK4 gene, CNTNAP3 gene, TRIM49 gene, RELL1 gene, CNTNAP3B gene, DNAJB5 gene, PROM2 gene, MS4A2 gene, GATA2 gene, TAG. Gene, F12 gene, KBTBBD7 gene, KLF6 gene, HDC gene, SH2D2A gene, AGPAT4-IT1 gene, KLF10 gene, SLC1A7 gene, MYOM2 gene, GNLY gene, GZMB gene, FGFBP2 gene, C1orf21 gene, COLGALT2 gene, AKRKR2 gene, AKRKR2 gene, AKRKR2 gene. Gene, ZNF683 gene, PRF1 gene, DAAM2 gene, MYBL1 gene, XLOC_002727 gene, XLOC_005851 gene, XLOC_I2_012046 gene, LOC645195 gene, XLOC_000357 gene, XLOC_006688 gene, XLOC_01LO gene, LINC00222 gene, LOC10025 gene, LOC41005 gene, LOC40065 gene. XLOC — 010245 gene and LOC286087 gene (hereinafter, also referred to as “gene group 1”). Details of each gene are shown in Tables 1 to 9.

第一実施形態では、遺伝子群1から選択される1種の遺伝子について、定量工程及び判定工程を実施してもよく、また、遺伝子群1から選択される2種以上の遺伝子について、又は遺伝子群1の全ての遺伝子について、定量工程及び判定工程を実施してもよい。複数の遺伝子について定量工程及び判定工程を実施することにより、被験物質のイン・ビボにおけるNKT細胞活性化に伴う選択的IL−4産生誘導活性をより一層精度よく評価することができる。 In the first embodiment, the quantification step and the determination step may be carried out for one kind of gene selected from the gene group 1, and also for two or more kinds of genes selected from the gene group 1, or the gene group. The quantification step and the determination step may be performed for all the genes of 1. By performing the quantification step and the determination step for a plurality of genes, the selective IL-4 production-inducing activity associated with the in vivo NKT cell activation of the test substance can be evaluated more accurately.

第二実施形態において「所定の遺伝子」は、遺伝子群1の各遺伝子、IL4I1遺伝子、CD180遺伝子、EGR2遺伝子、OAS2遺伝子、OAS3遺伝子、FOSB遺伝子、NR4A2遺伝子、KIR2DL2遺伝子、KIR2DL4遺伝子、KIR2DS2遺伝子、KIR2DS4遺伝子、KIR2DL5A遺伝子、KIR3DL2遺伝子及びFOS遺伝子(以下、「遺伝子群2」ともいう。)である。各遺伝子の詳細については、表1〜表9に記載した。 In the second embodiment, the “predetermined gene” is each gene of gene group 1, IL4I1 gene, CD180 gene, EGR2 gene, OAS2 gene, OAS3 gene, FOSB gene, NR4A2 gene, KIR2DL2 gene, KIR2DL4 gene, KIR2DS2 gene, KIR2DS4. A gene, a KIR2DL5A gene, a KIR3DL2 gene and a FOS gene (hereinafter, also referred to as "gene group 2"). Details of each gene are shown in Tables 1 to 9.

第二実施形態では、遺伝子群2から選択される1種以上の遺伝子について、定量工程及び判定工程を実施してもよく、遺伝子群2から選択される2種以上の遺伝子について、定量工程及び判定工程を実施してもよい。また、第二実施形態では、評価の精度をより一層高める観点から、遺伝子群2の全ての遺伝子について、定量工程及び判定工程を実施することが好ましい。 In the second embodiment, the quantification step and the determination step may be performed on one or more genes selected from the gene group 2, and the quantification step and the determination step may be performed on two or more genes selected from the gene group 2. The steps may be performed. In addition, in the second embodiment, it is preferable to perform the quantification step and the determination step for all the genes of the gene group 2 from the viewpoint of further improving the evaluation accuracy.

遺伝子群1又は2に含まれる各遺伝子は、被験物質投与後の時間経過に伴う転写産物量の変化パターンに応じて、遺伝子群A、遺伝子群B、遺伝子群C、遺伝子群D及び遺伝子群Eに分けることができる。 Each gene included in the gene group 1 or 2 has a gene group A, a gene group B, a gene group C, a gene group D, and a gene group E in accordance with the change pattern of the transcript amount with the lapse of time after administration of the test substance. Can be divided into

遺伝子群Aは、投与前と比較して、投与6時間後及び投与24時間後に転写産物量が統計上有意に増加する。遺伝子群Aに含まれる遺伝子は、CHRD遺伝子、GYLTL1B遺伝子、MYOF遺伝子、EPS8遺伝子、SH3RF1遺伝子、IL4I1遺伝子、CD180遺伝子、EGR2遺伝子、RCC2遺伝子、OAS2遺伝子、MAFB遺伝子、SERPING1遺伝子、C9orf47遺伝子、PPARGC1B遺伝子、POT1遺伝子、XLOC_002727遺伝子、XLOC_005851遺伝子及びXLOC_I2_012046遺伝子である。 In the gene group A, the transcript amount is statistically significantly increased 6 hours after administration and 24 hours after administration, as compared with before administration. Genes included in the gene group A include CHRD gene, GYLTL1B gene, MYOF gene, EPS8 gene, SH3RF1 gene, IL4I1 gene, CD180 gene, EGR2 gene, RCC2 gene, OAS2 gene, MAFB gene, SERPING1 gene, C9orf47 gene, PPARGC1B gene. , POT1 gene, XLOC_002727 gene, XLOC_005851 gene and XLOC_I2_012046 gene.

遺伝子群Bは、投与前と比較して、投与24時間後に転写産物量が統計上有意に増加する。投与6時間後の転写産物量と投与前の転写産物量には統計上有意差はない。遺伝子群Bに含まれる遺伝子は、OAS3遺伝子、RUFY4遺伝子、GPER遺伝子、GSG1遺伝子及びLOC645195遺伝子である。 The gene group B has a statistically significant increase in the amount of transcripts 24 hours after administration, as compared with that before administration. There is no statistically significant difference between the transcript amount 6 hours after administration and the transcript amount before administration. The genes included in the gene group B are OAS3 gene, RUFY4 gene, GPER gene, GSG1 gene and LOC645195 gene.

遺伝子群Cは、投与前と比較して、投与6時間後に転写産物量が統計上有意に減少する。投与24時間後の転写産物量と投与前の転写産物量には統計上有意差はない。遺伝子群Cに含まれる遺伝子は、CPT1A遺伝子、SLC25A20遺伝子、PER1遺伝子、SEMA3C遺伝子、EMP1遺伝子、XLOC_000357遺伝子、XLOC_006688遺伝子、XLOC_010061遺伝子、LINC00222遺伝子、LOC400655遺伝子及びLOC100130581遺伝子である。 In the gene group C, the transcript amount is statistically significantly reduced 6 hours after the administration, as compared with that before the administration. There is no statistically significant difference between the transcript amount 24 hours after administration and the transcript amount before administration. The genes included in the gene group C are CPT1A gene, SLC25A20 gene, PER1 gene, SEMA3C gene, EMP1 gene, XLOC_000357 gene, XLOC_006688 gene, XLOC_010061 gene, LINC00222 gene, LOC400655 gene and LOC100130581 gene.

遺伝子群Dは、投与前と比較して、投与6時間後及び投与24時間後に転写産物量が統計上有意に減少する。遺伝子群Dに含まれる遺伝子は、DRC1遺伝子、FOSB遺伝子、PDK4遺伝子、CNTNAP3遺伝子、TRIM49遺伝子、RELL1遺伝子、CNTNAP3B遺伝子、DNAJB5遺伝子、PROM2遺伝子、MS4A2遺伝子、NR4A2遺伝子、GATA2遺伝子、TAGAP遺伝子、F12遺伝子、KBTBD7遺伝子、KLF6遺伝子、HDC遺伝子、SH2D2A遺伝子、AGPAT4−IT1遺伝子、FOS遺伝子、KLF10遺伝子、XLOC_007314遺伝子及びXLOC_I2_000092遺伝子である。 In the gene group D, the transcript amount is statistically significantly decreased 6 hours after administration and 24 hours after administration, as compared with before administration. The genes included in the gene group D are DRC1 gene, FOSB gene, PDK4 gene, CNTNAP3 gene, TRIM49 gene, RELL1 gene, CNTNAP3B gene, DNAJB5 gene, PROM2 gene, MS4A2 gene, NR4A2 gene, GATA2 gene, TAGAP gene, F12 gene. , KBTBD7 gene, KLF6 gene, HDC gene, SH2D2A gene, AGPAT4-IT1 gene, FOS gene, KLF10 gene, XLOC_007314 gene, and XLOC_I2_000092 gene.

遺伝子群Eは、投与前と比較して、投与24時間後に転写産物量が統計上有意に減少する。投与6時間後の転写産物量と投与前の転写産物量には統計上有意差はない。遺伝子群Eに含まれる遺伝子は、SLC1A7遺伝子、MYOM2遺伝子、GNLY遺伝子、GZMB遺伝子、FGFBP2遺伝子、C1orf21遺伝子、COLGALT2遺伝子、AKR1C3遺伝子、F2R遺伝子、ZNF683遺伝子、PRF1遺伝子、DAAM2遺伝子、MYBL1遺伝子、KIR2DL2遺伝子、KIR2DL4遺伝子、KIR2DL5A遺伝子、KIR2DS2遺伝子、KIR2DS4遺伝子、KIR3DL2遺伝子、XLOC_010245遺伝子及びLOC286087遺伝子である。 In the gene group E, the amount of transcripts is statistically significantly reduced 24 hours after administration, as compared with that before administration. There is no statistically significant difference between the transcript amount 6 hours after administration and the transcript amount before administration. Genes included in the gene group E include SLC1A7 gene, MYOM2 gene, GNLY gene, GZMB gene, FGFBP2 gene, C1orf21 gene, COLGALT2 gene, AKR1C3 gene, F2R gene, ZNF683 gene, PRF1 gene, DAAM2 gene, MYBL1 gene, KIR2DL. , KIR2DL4 gene, KIR2DL5A gene, KIR2DS2 gene, KIR2DS4 gene, KIR3DL2 gene, XLOC_010245 gene and LOC286087 gene.

したがって、本発明に係る評価方法は、定量工程が、被験物質を投与されたヒト対象から投与5〜7時間後に採取された血液細胞で発現している転写産物量を測定することを含み、判定工程が、遺伝子群Aに含まれる遺伝子の転写産物量が、各遺伝子に対して設定された閾値よりも多い場合、又は遺伝子群C若しくは遺伝子群Dに含まれる遺伝子の転写産物量が、各遺伝子に対して設定された閾値よりも少ない場合に、被験物質がイン・ビボでNKT細胞活性化に伴う選択的IL−4産生誘導活性を示したと判定することを含むものであってもよい(以下、便宜上「6時間評価」ともいう。)。血液細胞の採取は、被験物質の投与5.5〜6.5時間後に行うことが好ましく、被験物質の投与5.75〜6.25時間後に行うことがより好ましく、被験物質の投与6時間後に行うことが更に好ましい。 Therefore, in the evaluation method according to the present invention, the quantification step includes measuring the amount of a transcript expressed in blood cells collected from a human subject administered with the test substance 5 to 7 hours after the administration. In the step, when the transcript amount of the gene included in the gene group A is larger than the threshold value set for each gene, or when the transcript amount of the gene included in the gene group C or the gene group D is It may include determining that the test substance exhibits a selective IL-4 production-inducing activity associated with NKT cell activation in vivo when the amount is less than the threshold value set for , For convenience, also referred to as "6 hour evaluation".) The blood cells are preferably collected 5.5 to 6.5 hours after the administration of the test substance, more preferably 5.75 to 6.25 hours after the administration of the test substance, and 6 hours after the administration of the test substance. It is more preferable to carry out.

なお、第一実施形態においては、6時間評価の場合、遺伝子群Aに含まれる遺伝子は、CHRD遺伝子、GYLTL1B遺伝子、MYOF遺伝子、EPS8遺伝子、SH3RF1遺伝子、RCC2遺伝子、MAFB遺伝子、SERPING1遺伝子、C9orf47遺伝子、PPARGC1B遺伝子、POT1遺伝子、XLOC_002727遺伝子、XLOC_005851遺伝子及びXLOC_I2_012046遺伝子であり、遺伝子群C又は遺伝子群Dに含まれる遺伝子は、CPT1A遺伝子、SLC25A20遺伝子、PER1遺伝子、SEMA3C遺伝子、EMP1遺伝子、DRC1遺伝子、PDK4遺伝子、CNTNAP3遺伝子、TRIM49遺伝子、RELL1遺伝子、CNTNAP3B遺伝子、DNAJB5遺伝子、PROM2遺伝子、MS4A2遺伝子、GATA2遺伝子、TAGAP遺伝子、F12遺伝子、KBTBD7遺伝子、KLF6遺伝子、HDC遺伝子、SH2D2A遺伝子、AGPAT4−IT1遺伝子、KLF10遺伝子、XLOC_000357遺伝子、XLOC_006688遺伝子、XLOC_010061遺伝子、LINC00222遺伝子、LOC400655遺伝子、LOC100130581遺伝子、XLOC_007314遺伝子及びXLOC_I2_000092遺伝子である。 In the first embodiment, in the case of 6-hour evaluation, the genes included in the gene group A are CHRD gene, GYLTL1B gene, MYOF gene, EPS8 gene, SH3RF1 gene, RCC2 gene, MAFB gene, SERPING1 gene, C9orf47 gene. , PPARGC1B gene, POT1 gene, XLOC_002727 gene, XLOC_005851 gene and XLOC_I2_012046 gene, and the genes contained in gene group C or gene group D are CPT1A gene, SLC25A20 gene, PER1 gene, SEMA3C gene, EMP1 gene, DRC1 gene, PDK4. Gene, CNTNAP3 gene, TRIM49 gene, RELL1 gene, CNTNAP3B gene, DNAJB5 gene, PROM2 gene, MS4A2 gene, GATA2 gene, TAGAP gene, F12 gene, KBTBD7 gene, KLF6 gene, HDC gene, SH2D2A gene, AGPAT4-IT1 gene, KLFF10 gene, KLPF10 gene. Genes, XLOC_000357 gene, XLOC_006688 gene, XLOC_010061 gene, LINC00222 gene, LOC400655 gene, LOC100130581 gene, XLOC_007314 gene, and XLOC_I2_000092 gene.

第二実施形態においては、6時間評価の場合、遺伝子群Aに含まれる遺伝子は、第一実施形態の遺伝子、IL4I1遺伝子、CD180遺伝子、EGR2遺伝子及びOAS2遺伝子であり、遺伝子群C又は遺伝子群Dに含まれる遺伝子は、第一実施形態の遺伝子、FOSB遺伝子、NR4A2遺伝子及びFOS遺伝子である。 In the second embodiment, in the case of 6-hour evaluation, the genes included in the gene group A are the gene of the first embodiment, the IL4I1 gene, the CD180 gene, the EGR2 gene and the OAS2 gene, and the gene group C or the gene group D. The genes included in are the gene of the first embodiment, the FOSB gene, the NR4A2 gene and the FOS gene.

本発明に係る評価方法はまた、定量工程が、被験物質を投与されたヒト対象から投与23〜25時間後に採取された血液細胞で発現している転写産物量を測定することを含み、判定工程が、遺伝子群A若しくは遺伝子群Bに含まれる遺伝子の転写産物量が、各遺伝子に対して設定された閾値よりも多い場合、又は遺伝子群D若しくは遺伝子群Eに含まれる遺伝子の転写産物量が、各遺伝子に対して設定された閾値よりも少ない場合に、被験物質がイン・ビボでNKT細胞活性化に伴う選択的IL−4産生誘導活性を示したと判定することを含むものであってもよい(以下、便宜上「24時間評価」ともいう。)。血液細胞の採取は、被験物質の投与23.5〜24.5時間後に行うことが好ましく、被験物質の投与23.75〜24.25時間後に行うことがより好ましく、被験物質の投与24時間後に行うことが更に好ましい。 In the evaluation method according to the present invention, the quantification step further includes the step of determining the amount of transcript expressed in blood cells collected from a human subject administered with the test substance 23 to 25 hours after administration, and the determination step However, when the transcript amount of the gene contained in the gene group A or gene group B is larger than the threshold value set for each gene, or the transcript amount of the gene contained in the gene group D or gene group E is , Which includes determining that the test substance exhibits a selective IL-4 production-inducing activity associated with NKT cell activation in vivo when the amount is less than the threshold value set for each gene. Good (hereinafter, also referred to as “24-hour evaluation” for convenience). Blood cells are preferably collected 23.5 to 24.5 hours after administration of the test substance, more preferably 23.75 to 24.25 hours after administration of the test substance, and more preferably 24 hours after administration of the test substance. It is more preferable to carry out.

なお、第一実施形態においては、24時間評価の場合、遺伝子群A又は遺伝子群Bに含まれる遺伝子は、CHRD遺伝子、GYLTL1B遺伝子、MYOF遺伝子、EPS8遺伝子、SH3RF1遺伝子、RCC2遺伝子、MAFB遺伝子、SERPING1遺伝子、C9orf47遺伝子、PPARGC1B遺伝子、POT1遺伝子、RUFY4遺伝子、GPER遺伝子、GSG1遺伝子、XLOC_002727遺伝子、XLOC_005851遺伝子、XLOC_I2_012046遺伝子及びLOC645195遺伝子であり、遺伝子群D又は遺伝子群Eに含まれる遺伝子は、DRC1遺伝子、PDK4遺伝子、CNTNAP3遺伝子、TRIM49遺伝子、RELL1遺伝子、CNTNAP3B遺伝子、DNAJB5遺伝子、PROM2遺伝子、MS4A2遺伝子、GATA2遺伝子、TAGAP遺伝子、F12遺伝子、KBTBD7遺伝子、KLF6遺伝子、HDC遺伝子、SH2D2A遺伝子、AGPAT4−IT1遺伝子、KLF10遺伝子、SLC1A7遺伝子、MYOM2遺伝子、GNLY遺伝子、GZMB遺伝子、FGFBP2遺伝子、C1orf21遺伝子、COLGALT2遺伝子、AKR1C3遺伝子、F2R遺伝子、ZNF683遺伝子、PRF1遺伝子、DAAM2遺伝子、MYBL1遺伝子、XLOC_007314遺伝子、XLOC_I2_000092遺伝子、XLOC_010245遺伝子及びLOC286087遺伝子である。 In the first embodiment, in the case of 24-hour evaluation, the genes included in the gene group A or the gene group B are CHRD gene, GYLTL1B gene, MYOF gene, EPS8 gene, SH3RF1 gene, RCC2 gene, MAFB gene, SERPING1. Gene, C9orf47 gene, PPARGC1B gene, POT1 gene, RUFY4 gene, GPER gene, GSG1 gene, XLOC_002727 gene, XLOC_005851 gene, XLOC_I2_012046 gene and LOC645195 gene, and the genes included in gene group D or gene group E are DRC1 gene, PDK4 gene, CNTNAP3 gene, TRIM49 gene, RELL1 gene, CNTNAP3B gene, DNAJB5 gene, PROM2 gene, MS4A2 gene, GATA2 gene, TAGAP gene, F12 gene, KBTBD7 gene, KLF6 gene, HDC gene, SH2D2A gene, AGPAT4-IT1 gene. KLF10 gene, SLC1A7 gene, MYOM2 gene, GNLY gene, GZMB gene, FGFBP2 gene, C1orf21 gene, COLGALT2 gene, AKR1C3 gene, F2R gene, ZNF683 gene, PRF1 gene, XLO_0_C1_XLO_CII_XLO_CII_XLOC_007314 gene, XLOC_007314 gene, XLOC_007314 gene. And LOC286087 gene.

第二実施形態においては、24時間評価の場合、遺伝子群A又は遺伝子群Bに含まれる遺伝子は、第一実施形態の遺伝子、IL4I1遺伝子、CD180遺伝子、EGR2遺伝子、OAS2遺伝子及びOAS3遺伝子であり、遺伝子群D又は遺伝子群Eに含まれる遺伝子は、第一実施形態の遺伝子、FOSB遺伝子、NR4A2遺伝子、KIR2DL2遺伝子、KIR2DL4遺伝子、KIR2DS2遺伝子、KIR2DS4遺伝子、KIR2DL5A遺伝子、KIR3DL2遺伝子及びFOS遺伝子である。 In the second embodiment, in the case of 24-hour evaluation, the genes included in the gene group A or the gene group B are the gene of the first embodiment, the IL4I1 gene, the CD180 gene, the EGR2 gene, the OAS2 gene, and the OAS3 gene, The genes included in the gene group D or the gene group E are the gene of the first embodiment, the FOSB gene, the NR4A2 gene, the KIR2DL2 gene, the KIR2DL4 gene, the KIR2DS2 gene, the KIR2DS4 gene, the KIR2DL5A gene, the KIR3DL2 gene and the FOS gene.

第一実施形態及び第二実施形態のいずれにおいても、6時間評価又は24時間評価を実施する場合は、6時間評価又は24時間評価のいずれかを実施してもよく、6時間評価及び24時間評価を組み合わせて実施してもよい。 In any of the first embodiment and the second embodiment, when carrying out the 6-hour evaluation or the 24-hour evaluation, either the 6-hour evaluation or the 24-hour evaluation may be carried out. You may carry out combining evaluation.

(被験物質)
被験物質としては、低分子化合物であってもよく、高分子化合物であってもよい。低分子化合物としては、例えば、ペプチド、siRNA、miRNA、糖脂質等から任意に選択される。高分子化合物としては、例えば、タンパク質、抗体等から任意に選択される。
(Test substance)
The test substance may be a low molecular weight compound or a high molecular weight compound. The low molecular weight compound is arbitrarily selected from, for example, peptides, siRNA, miRNA, glycolipids and the like. The polymer compound is arbitrarily selected from, for example, proteins and antibodies.

一実施態様として、被験物質として、NKT細胞活性化に伴う選択的IL−4産生誘導活性を有することが確認されている特許文献1に記載の糖脂質(例えば、下記式(I)で表されるαガラクトシルセラミドの誘導体)を選択してもよい。この場合、例えば、当該糖脂質の投与量、投与方法等を変化させた場合のイン・ビボにおけるNKT細胞活性化に伴う選択的IL−4産生誘導活性との相関を評価することができる。

[一般式(I)中、Rはアルドピラノース残基を表し、Rは水素原子又は水酸基を表し、Rは−CH−、−CH(OH)−CH−、又は−CH=CH−を表し、Rは水素原子又はCHを表し、xは0〜35であり、y及びzは、y+z=0〜3を満たす整数を表す。]
In one embodiment, the test substance is a glycolipid described in Patent Document 1 (eg, represented by the following formula (I)), which has been confirmed to have selective IL-4 production-inducing activity associated with NKT cell activation. A derivative of α-galactosylceramide) may be selected. In this case, for example, it is possible to evaluate the correlation with the selective IL-4 production-inducing activity associated with activation of NKT cells in vivo when the dosage, administration method, etc. of the glycolipid are changed.

[In general formula (I), R 1 represents an aldopyranose residue, R 2 represents a hydrogen atom or a hydroxyl group, and R 3 represents —CH 2 —, —CH(OH)—CH 2 —, or —CH═. represents CH-, R 4 represents a hydrogen atom or CH 3, x is 0 to 35, y and z represent integers satisfying y + z = 0 to 3. ]

また、被験物質として、イン・ビボでNKT細胞活性化に伴う選択的IL−4産生誘導活性を有するか否か不明の物質を選択してもよい。本発明の評価方法によりイン・ビボでNKT細胞活性化に伴う選択的IL−4産生誘導活性を示したと判定された物質は、例えば、Th1/Th2免疫バランスがTh1に偏向した疾患又はTh1細胞が病態を悪化させる疾患の治療、自己免疫疾患の治療、生体内におけるGM−CSF濃度の増加に起因する疾患の治療、及びIL−17産生T細胞の増加に起因する疾患の治療に極めて有効である。被験物質は、非臨床試験において設定された安全性基準を達成した物質であることが好ましく、ヒト対象に投与した場合に安全性を有すると判断された物質であることがより好ましい。「ヒト対象に投与した場合に安全性を有する」とは、例えば、臨床試験のフェーズIにおいて安全性が確認されたことを意味し、より具体的には、当該物質の有効量の10倍又は100倍の血中濃度においても重篤な副作用を呈さないことが挙げられる。 In addition, as a test substance, a substance which is unknown whether or not it has a selective IL-4 production inducing activity associated with NKT cell activation in vivo may be selected. The substance determined to exhibit the selective IL-4 production-inducing activity associated with NKT cell activation in vivo by the evaluation method of the present invention includes, for example, a disease in which the Th1/Th2 immune balance is biased to Th1 or Th1 cells. It is extremely effective for the treatment of diseases that worsen the pathological condition, the treatment of autoimmune diseases, the treatment of diseases caused by an increase in GM-CSF concentration in vivo, and the treatment of diseases caused by an increase in IL-17-producing T cells. .. The test substance is preferably a substance which has achieved the safety standard set in the non-clinical test, and more preferably a substance which is judged to be safe when administered to a human subject. “Has safety when administered to a human subject” means, for example, that safety was confirmed in Phase I of a clinical trial, and more specifically, it is 10 times the effective dose of the substance or It can be said that no serious side effect is exhibited even at a blood concentration of 100 times.

(血液細胞)
血液細胞は、被験物質を投与される前、又は被験物質を投与されたヒト対象から採取されたものである。被験物質を投与した後、血液細胞を採取するまでの時間は、例えば、投与1時間後〜投与72時間後の間で設定することができる。血液細胞は、真空採血管により採血し、遠心分離により血液細胞を回収する方法等の公知の方法により採取することができる。ヒト対象の性別、年齢、身長、体重、健康状態等は特に制限されるものではなく、評価の目的に応じて適宜設定してよい。被験物質の投与方法は、目的に応じて設定すればよく、経口投与であってもよく、非経口投与であってもよい。非経口投与は、全身投与(例えば、血管内注射)であってもよく、局所投与(例えば、皮下投与、経皮投与、経粘膜投与、又は経直腸的投与等)であってもよい。被験物質の投与量は、被験物質の種類等、及び目的に応じて設定すればよい。
(Blood cells)
Blood cells were taken before administration of the test substance or from a human subject administered with the test substance. The time from administration of the test substance to collection of blood cells can be set, for example, between 1 hour after administration and 72 hours after administration. Blood cells can be collected by a known method such as collecting blood cells by a vacuum blood collection tube and collecting blood cells by centrifugation. The sex, age, height, weight, health condition, etc. of the human subject are not particularly limited, and may be appropriately set according to the purpose of evaluation. The administration method of the test substance may be set according to the purpose, and may be oral administration or parenteral administration. Parenteral administration may be systemic administration (for example, intravascular injection) or local administration (for example, subcutaneous administration, transdermal administration, transmucosal administration, transrectal administration, etc.). The dose of the test substance may be set according to the type of the test substance and the purpose.

(定量工程)
血液細胞で発現している転写産物量を測定する方法としては、当業者に公知の任意の方法を採用してよい。定量工程は、例えば、以下の手順にしたがって実施することができる。
(1)被験物質を投与されたヒト対象から、投与1日前、投与6時間後、投与24時間後に採取された血液サンプルを用意する。なお、投与1日前の血液サンプルは、転写産物量の基準として使用する(例えば、閾値を決定するのに使用する)。
(2)血液サンプルを遠心分離して、血液細胞を沈殿として回収する。
(3)回収した血液細胞から、常法に従い、総RNAを精製する。市販されている総RNAの抽出キット又は精製キットを使用してもよい。総RNAサンプルから転写産物を精製(又は濃縮)してもよい。
(4)精製した総RNAを鋳型とし、常法に従い、所定の遺伝子の転写産物量を測定する。総RNAを鋳型とした転写産物量の測定は、例えば、マイクロアレイ解析、(リアルタイム)定量PCR解析、核酸デジタル計数システム(ncounter)、RNA−Seq等により実施することができる。
(Quantitative process)
As a method for measuring the amount of transcript expressed in blood cells, any method known to those skilled in the art may be adopted. The quantification step can be performed, for example, according to the following procedure.
(1) A blood sample collected from a human subject administered with a test substance is collected 1 day before administration, 6 hours after administration, and 24 hours after administration. A blood sample one day before administration is used as a standard for the amount of transcript (for example, used to determine a threshold value).
(2) The blood sample is centrifuged to collect blood cells as a precipitate.
(3) Purify total RNA from the collected blood cells according to a conventional method. A commercially available total RNA extraction kit or purification kit may be used. Transcripts may be purified (or enriched) from total RNA samples.
(4) Using the purified total RNA as a template, the transcription amount of a predetermined gene is measured by a conventional method. The amount of transcripts using total RNA as a template can be measured by, for example, microarray analysis, (real-time) quantitative PCR analysis, nucleic acid digital counting system (ncounter), RNA-Seq, or the like.

定量工程では、血液サンプル(血液細胞)の量のバラつきを補正するため、所定の遺伝子に加えて、内部標準としてハウスキーピング遺伝子(例えば、GAPDH)の転写産物量も併せて測定してもよい。これにより、より正確な転写産物量の比較が可能になる。 In the quantification step, in order to correct the variation in the amount of the blood sample (blood cells), in addition to the predetermined gene, the amount of the transcript of the housekeeping gene (eg, GAPDH) as an internal standard may also be measured. This allows a more accurate comparison of transcript amounts.

(判定工程)
判定工程では、定量工程で測定された転写産物量(又は補正後の転写産物量)と、各遺伝子に対して設定された閾値との比較に基づいて、被験物質がイン・ビボでNKT細胞活性化に伴う選択的IL−4産生誘導活性を示したか否かを判定する。
(Judgment process)
In the determination step, the test substance was tested for in vivo NKT cell activity based on the comparison between the transcript amount (or corrected transcript amount) measured in the quantification step and the threshold value set for each gene. It is determined whether or not the selective IL-4 production-inducing activity associated with the activation was exhibited.

(閾値)
閾値は、被験物質を投与されていないヒト対象から採取された血液細胞で発現している転写産物量に基づいて定められる。閾値は、各遺伝子について、当該血液細胞で発現しているそれぞれの遺伝子の転写産物量であることが好ましい。これにより、被験物質の投与による所定の遺伝子の転写産物量の変化をより感度よく判定することが可能になる。閾値は、例えば、被験物質を投与されていない(1人又は複数人の)ヒト対象から採取された血液細胞で発現している所定の遺伝子の転写産物量を測定しておき、当該転写産物量(複数人の場合は、例えば、平均値)を閾値として予め設定してもよい。また、閾値は、被験物質の投与が予定されているヒト対象から、被験物質の投与前に採取された血液細胞で発現している所定の遺伝子の転写産物量を測定し、当該転写産物量を閾値としてもよい。これによりより一層感度よく判定することが可能になる。
(Threshold)
The threshold is established based on the amount of transcript expressed in blood cells collected from a human subject that has not received the test substance. The threshold value is preferably the transcript amount of each gene expressed in the blood cell for each gene. This makes it possible to more sensitively determine the change in the transcript amount of a given gene due to the administration of the test substance. The threshold value is, for example, the amount of a transcript of a predetermined gene expressed in blood cells collected from a human subject (one or more) who has not been administered the test substance, and the amount of the transcript is measured in advance. (For a plurality of people, for example, an average value) may be set in advance as a threshold value. In addition, the threshold is measured by measuring the transcript amount of a predetermined gene expressed in blood cells collected before administration of the test substance from a human subject who is scheduled to administer the test substance, and measuring the transcript amount. It may be a threshold value. This makes it possible to make a determination with even higher sensitivity.

(NKT細胞活性化に伴う選択的IL−4産生誘導活性)
本明細書において、被験物質のイン・ビボにおけるNKT細胞活性化に伴う選択的IL−4産生誘導活性とは、NKT細胞を活性化し、NKT細胞によるIL−4産生を選択的に誘導する活性を意味する。NKT細胞活性化に伴う選択的IL−4産生誘導活性は、NKT細胞のIFN−γ産生を誘導せず、かつNKT細胞のIL−4産生を誘導する活性であることがより好ましい。
(Selective IL-4 production-inducing activity associated with NKT cell activation)
In the present specification, the selective IL-4 production-inducing activity associated with in vivo NKT cell activation of a test substance refers to the activity of activating NKT cells and selectively inducing IL-4 production by NKT cells. means. More preferably, the selective IL-4 production-inducing activity associated with NKT cell activation is an activity that does not induce IFN-γ production by NKT cells and induces IL-4 production by NKT cells.

〔イン・ビボでNKT細胞活性化に伴う選択的IL−4産生誘導活性を有する物質のスクリーニング方法〕
本発明に係る評価方法は、上述の構成を採用していることから、イン・ビボでNKT細胞活性化に伴う選択的IL−4産生誘導活性を有する物質のスクリーニング方法としても使用することができる。すなわち、1又は複数の候補物質を被験物質として、本発明に係る評価方法を実施することにより、イン・ビボでNKT細胞活性化に伴う選択的IL−4産生誘導活性を有する物質のスクリーニングが可能になる。
[Method of screening for substance having selective IL-4 production inducing activity associated with activation of NKT cells in vivo]
Since the evaluation method according to the present invention employs the above-mentioned constitution, it can be used also as a screening method for a substance having a selective IL-4 production inducing activity associated with NKT cell activation in vivo. .. That is, by carrying out the evaluation method according to the present invention using one or more candidate substances as test substances, it is possible to screen a substance having a selective IL-4 production inducing activity associated with NKT cell activation in vivo. become.

本発明に係るスクリーニング方法により選抜される物質は、イン・ビボでNKT細胞活性化に伴う選択的IL−4産生誘導活性を有する。したがって、当該物質は、Th1/Th2免疫バランスがTh1に偏向した疾患又はTh1細胞が病態を悪化させる疾患の治療剤又は予防剤として用いることができる。また、当該物質は、自己免疫疾患の治療剤又は予防剤としても用いることができる。更に当該物質は、生体内におけるGM−CSF濃度の増加に起因する疾患の治療剤又は予防剤としても用いることができる。更にまた、当該物質は、IL−17産生T細胞の増加に起因する疾患の治療剤又は予防剤としても用いることができる。 The substance selected by the screening method according to the present invention has a selective IL-4 production-inducing activity associated with NKT cell activation in vivo. Therefore, the substance can be used as a therapeutic or prophylactic agent for a disease in which the Th1/Th2 immune balance is biased to Th1 or a disease in which Th1 cells exacerbate the pathological condition. In addition, the substance can also be used as a therapeutic or prophylactic agent for autoimmune diseases. Furthermore, the substance can also be used as a therapeutic or prophylactic agent for diseases caused by an increase in GM-CSF concentration in the body. Furthermore, the substance can also be used as a therapeutic or prophylactic agent for diseases caused by an increase in IL-17-producing T cells.

Th1/Th2免疫バランスがTh1に偏向した疾患とは、多発性硬化症、関節リウマチ、乾癬、I型糖尿病、ぶどう膜炎、シェーグレン症候群等の自己免疫疾患に加え、劇症肝炎、移植片拒絶、細胞内感染病原体による感染症等の主として細胞性免疫による疾患を意味する。自己免疫疾患とは、多発性硬化症、関節リウマチ、乾癬、クローン病、尋常性白斑、ベーチェット病、膠原病、I型糖尿病、ぶどう膜炎、シェーグレン症候群、自己免疫性心筋炎、自己免疫性肝疾患、自己免疫性胃炎、天疱瘡、ギラン・バレー症候群、慢性炎症性脱髄性多発神経炎、HTLV−1関連脊髄症等の疾患を意味する。生体内におけるGM−CSF濃度の増加に起因する疾患とは、慢性臓器炎、関節リウマチ等の慢性炎症性疾患等の疾患を意味する。IL−17産生T細胞の増加に起因する疾患とは、乾癬、関節リウマチ、多発性硬化症、視神経脊髄炎、炎症性腸疾患等の疾患を意味する。 Diseases in which Th1/Th2 immune balance is biased to Th1 include autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, psoriasis, type I diabetes, uveitis, and Sjogren's syndrome, as well as fulminant hepatitis, graft rejection, It mainly means diseases caused by cell-mediated immunity such as infectious diseases caused by intracellular infectious agents. Autoimmune diseases include multiple sclerosis, rheumatoid arthritis, psoriasis, Crohn's disease, vitiligo vulgaris, Behcet's disease, collagen disease, type I diabetes, uveitis, Sjogren's syndrome, autoimmune myocarditis, autoimmune liver. It means diseases such as diseases, autoimmune gastritis, pemphigus, Guillain-Barre syndrome, chronic inflammatory demyelinating polyneuritis, HTLV-1 associated myelopathy and the like. The disease caused by the increase in GM-CSF concentration in the living body means a disease such as chronic organ inflammation, chronic inflammatory disease such as rheumatoid arthritis and the like. The disease caused by an increase in IL-17-producing T cells means diseases such as psoriasis, rheumatoid arthritis, multiple sclerosis, neuromyelitis optica and inflammatory bowel disease.

〔被験物質のイン・ビボにおけるNKT細胞活性化に伴う選択的IL−4産生誘導活性の検出剤〕
本発明に係る被験物質のイン・ビボにおけるNKT細胞活性化に伴う選択的IL−4産生誘導活性性の検出剤は、配列番号1〜78のいずれかに示す塩基配列を含むプローブからなる群から選択される少なくとも1種からなる。各プローブは、配列番号1〜78のいずれかに示す塩基配列からなるものであってもよい。
[Detective agent for selective IL-4 production inducing activity associated with in vivo NKT cell activation of test substance]
The agent for detecting the selective IL-4 production inducing activity associated with in vivo NKT cell activation of the test substance according to the present invention is selected from the group consisting of probes including the nucleotide sequences shown in SEQ ID NOs: 1 to 78. It consists of at least one selected. Each probe may consist of the base sequence shown in any of SEQ ID NOs: 1 to 78.

配列番号1〜78に示す塩基配列は、表1〜表9に示すように、遺伝子群2に含まれる遺伝子のcRNA(又は転写産物)とハイブリダイズする。したがって、上記検出剤は、所定の遺伝子のcRNA(又は転写産物)と定量的なハイブリダイズが可能であり、これにより、例えば、血液細胞で発現している転写産物量を反映した蛍光シグナル等によるシグナルを取り出すことができ、被験物質のイン・ビボにおけるNKT細胞活性化に伴う選択的IL−4産生誘導活性を検出することができる。 As shown in Tables 1 to 9, the nucleotide sequences shown in SEQ ID NOs: 1 to 78 hybridize with cRNAs (or transcripts) of the genes included in gene group 2. Therefore, the above-mentioned detection agent can quantitatively hybridize with cRNA (or transcript) of a predetermined gene, and thus, for example, by a fluorescent signal or the like reflecting the amount of transcript expressed in blood cells. A signal can be taken out, and the selective IL-4 production inducing activity associated with activation of NKT cells in vivo of the test substance can be detected.

以下、実施例に基づいて本発明をより具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on Examples. However, the present invention is not limited to the following examples.

<実施例1:遺伝子の同定>
化合物31をヒト対象に経口単回投与し、末梢血中の遺伝子発現の変化をマイクロアレイによって解析した。実施例1では、ヒト対象として健常成人(以下、「被験者」という。)を採用し、以下の手順にて試験を行った。
<Example 1: Gene identification>
Compound 31 was orally administered once to human subjects, and changes in gene expression in peripheral blood were analyzed by microarray. In Example 1, a healthy adult (hereinafter referred to as “subject”) was adopted as a human subject, and the test was conducted according to the following procedure.

(方法)
(1)被験者への合成糖脂質化合物の投与
インフォームドコンセントを得た被験者6名を2つのコホート(A及びCコホート)に分類し、各被験者に化合物31、すなわち以下の式(II)で示される、(2S,3S,4R)−1−O−(α−D−ガラクトシル)−2−(N−テトラコサノイルアミノ)−1,3,4−ノナントリオールを経口単回投与した。Aコホートに分類された被験者には、化合物31を0.3mg/人の投与量で投与し、Cコホートに分類された被験者には、化合物31を3mg/人の投与量で投与した。
(Method)
(1) Administration of Synthetic Glycolipid Compound to Subjects Six subjects who obtained informed consent were classified into two cohorts (A and C cohorts), and each subject was represented by compound 31, that is, the following formula (II). (2S,3S,4R)-1-O-(α-D-galactosyl)-2-(N-tetracosanoylamino)-1,3,4-nonanetriol was orally administered once as a single dose. Subjects in the A cohort received Compound 31 at a dose of 0.3 mg/person, and subjects in the C cohort received Compound 31 at a dose of 3 mg/person.

(2)末梢血からの総RNA抽出
まず、真空採血管(PAXgene Blood miRNA Kit;QIAGEN社)を用いて、化合物31を投与してから6時間後及び24時間後(1日目)に、各被験者の静脈よりそれぞれ2.5mLの血液を採取した。なお、化合物31を投与する日の前日に、各被験者の静脈より同様に2.5mLの血液を採取し、対照として使用した。
(2) Extraction of Total RNA from Peripheral Blood First, using a vacuum blood collection tube (PAXgene Blood miRNA Kit; QIAGEN), 6 hours and 24 hours (1 day) after administration of Compound 31, 2.5 mL of blood was collected from each subject's vein. On the day before the administration of Compound 31, 2.5 mL of blood was similarly collected from the vein of each subject and used as a control.

続いて、採取した血液が入った真空採血管を2,500rpmで10分間遠心分離して、血液細胞を沈殿させ、上清を除去した。得られた沈殿をRNase Freeの水で洗浄し、BM1(再懸濁バッファー)に懸濁させた後、BM2(結合バッファー)とproteinase Kを添加して、55℃、900rpmで10分間溶解させた。得られた溶解液を上記キットに付属のPAXgene Shredder spin columnに通して破砕した後、遠心分離により不要なペレットを取り除いて、上清を得た。得られた上清に700μLのイソプロパノールを添加して、総RNAを析出させた。その後、キットに付属のPAXgene miRNA Spin Columnを使用して、総RNAを精製し、20μL又は30μLのBM5(溶出バッファー)にて溶出した。 Then, the vacuum blood collection tube containing the collected blood was centrifuged at 2,500 rpm for 10 minutes to precipitate blood cells and remove the supernatant. The obtained precipitate was washed with RNase Free water and suspended in BM1 (resuspension buffer), and then BM2 (binding buffer) and proteinase K were added and dissolved at 55° C. and 900 rpm for 10 minutes. .. The resulting lysate was crushed by passing through a PAXgene Shredder spin column attached to the above kit, and then unnecessary pellets were removed by centrifugation to obtain a supernatant. 700 μL of isopropanol was added to the obtained supernatant to precipitate total RNA. Then, total RNA was purified using PAXgene miRNA Spin Column attached to the kit, and eluted with 20 μL or 30 μL of BM5 (elution buffer).

(3)マイクロアレイによる遺伝子発現解析
次に、Agilent社が推奨するプロトコル(One−Color Microarray−Based Gene Expression Analysis(Low Input Quick Amp Labeling),ver 6.5,May 2010)に記載の方法に従って遺伝子発現解析を実施した。まず、上記工程で抽出した総RNA 100ngを鋳型として、cDNAを合成した。次に、合成したcDNAからOne Color Spike Mix Kit(Agilent社製)及びQuick−Amp Labeling Kit(1カラー用)(Agilent社製)を用いて、ラベル化cRNAを得た。RNeasy Mini kit(QIAGEN社製)を用いて、ラベル化cRNAの精製を行った後、NanoDrop ND−1000(Thermo Fisher Scientific)を用いて濃度測定を行った。この時、精製されたラベル化cRNAの増幅効率が15倍以上、かつラベルの取り込み効率が6pmol/μg以上のサンプルを合格とし、以降の試験に用いた。
(3) Gene Expression Analysis by Microarray Next, according to the protocol recommended by Agilent (One-Color Microarray-Based Gene Expression Analysis (Low Input Quick Amp Labeling), ver 6.5, May 2010 gene expression). Analysis was performed. First, cDNA was synthesized using 100 ng of total RNA extracted in the above step as a template. Next, labeled cRNA was obtained from the synthesized cDNA using One Color Spike Mix Kit (manufactured by Agilent) and Quick-Amp Labeling Kit (for one color) (manufactured by Agilent). After the labeled cRNA was purified using RNeasy Mini kit (manufactured by QIAGEN), the concentration was measured using NanoDrop ND-1000 (Thermo Fisher Scientific). At this time, a sample in which the amplification efficiency of the purified labeled cRNA was 15 times or more and the label incorporation efficiency was 6 pmol/μg or more was regarded as a pass and used for the subsequent tests.

続いて、600ngのラベル化cRNAを分取し、Expression Hybridization kit(Agilent社製)を用いて、ラベル化cRNAとマイクロアレイとのハイブリダイゼーションを行った。マイクロアレイは、SurePrint G3 Human GEマイクロアレイ(8×60K) ver 2.0(Agilent社製)を用いた。サンプルをマイクロアレイ面にアプライした後、8×60Kガスケットスライド(Agilent社製)でカバーし、ハイブリダイゼーションチャンバ(Agilent社製)で固定した。固定したアレイをDNA Microarray Hybridization Oven(Agilent社製)内で17時間(65℃、10回転)の条件下にてハイブリダイゼーションを行った後、マイクロアレイをGene Expression Wash Buffer 1(Agilent社製)、Gene Expression Wash Buffer 2(Agilent社製)、10% Triton X−102(Agilent社製)で洗浄し、Agilent DNA Microarray Scanner(Agilent社製)を用いて洗浄後のマイクロアレイをスキャニングした。 Subsequently, 600 ng of the labeled cRNA was collected, and the labeled cRNA and the microarray were hybridized using the Expression Hybridization kit (manufactured by Agilent). As the microarray, SurePrint G3 Human GE microarray (8×60K) ver 2.0 (manufactured by Agilent) was used. After applying the sample to the microarray surface, it was covered with an 8×60K gasket slide (manufactured by Agilent) and fixed by a hybridization chamber (manufactured by Agilent). The immobilized array was hybridized in a DNA Microarray Hybridization Oven (Agilent) under conditions of 17 hours (65° C., 10 rotations), and then the microarray was used as a Gene Expression Wash Buffer 1 (Agilent), Gene. After washing with Expression Wash Buffer 2 (manufactured by Agilent) and 10% Triton X-102 (manufactured by Agilent), the washed microarray was scanned using an Agilent DNA Microarray Scanner (manufactured by Agilent).

得られたスキャニングデータをソフトウェアFeature Extraction ver 10.7.1.1(Agilent社製)により数値化プロトコルGE1_107_Sep09を用いて数値化した(数値化グリッドファイル:039494_D_F_2012628)。数値化されたデータは、以下の方法により解析した。
(a)アレイ間の正規化
一色法の際のアレイ間正規化法として、GeneSpring GX 12.0(Agilent社製)を用いてAgilent社奨励のグローバルノーマライゼーションを行った。数値化データ(Raw Signal)が1.0以下のプローブを除外した後、アレイごとに測定値の75パーセンタイル値で補正し、アレイ間のばらつきを抑えて、生物学的な変動のみを抽出した。
アレイ間正規化と同時に、数値化データ(Raw Data)に記載された5項目のフラグ情報に基づいて、データの信頼度の指標となる3種類(Detected、Compromised、Not Detected)のGeneSpring flagに変換した)。表1に数値化データ(Raw Data)とGeneSpringにおけるフラグ情報を示す。
The obtained scanning data was quantified using the software Feature Extraction ver 10.7.1.1 (manufactured by Agilent) using the quantification protocol GE1_107_Sep09 (numericalized grid file: 039494_D_F_2012628). The digitized data was analyzed by the following method.
(A) Normalization between Arrays As a normalization method between arrays in the one-color method, GeneSpring GX 12.0 (manufactured by Agilent) was used to perform global normalization promoted by Agilent. After excluding probes whose numerical data (Raw Signal) was 1.0 or less, correction was carried out by the 75th percentile value of the measured value for each array, the variation between arrays was suppressed, and only biological variation was extracted.
Simultaneously with the normalization between arrays, based on the flag information of 5 items described in the digitized data (Raw Data), it is converted into three types (Detected, Compromised, Not Detected) of GeneSpring flags which are indicators of the reliability of the data. did). Table 1 shows the digitized data (Raw Data) and flag information in GeneSpring.

各プローブに付すGeneSpring flagの選択基準は、以下のとおりである。いずれか一項目でも「Not Detected」と判定されたプローブには「Not Detected」のGeneSpring flagを付した。また、「Not Detected」判定は全く無いものの、いずれかの項目で「Compromised」と判定されたプローブには「Compromised」のGeneSpring flagを付した。「Compromised」及び「Not Detected」の判定が全く無いプローブには「Detected」のGeneSpring flagsを付した。なお、「Detected」のGeneSpring flagsを付されたプローブが、最も信頼性の高いプローブであることを意味する。全てのプローブに3種いずれかのGeneSpring flagを付した後、データごとにGeneSpring flagで分類されたプローブ数をカウントした。 The selection criteria of the GeneSpring flag attached to each probe are as follows. The GeneSpring flag of "Not Detected" was attached to the probe determined to be "Not Detected" in any one item. Further, although there is no “Not Detected” determination, the probe determined to be “Compromised” in any of the items is given a GeneSpring flag of “Compromised”. GeneSpring flags of "Detected" were attached to the probes that had no determination of "Compromised" and "Not Detected". It is to be noted that the probe with GeneSpring flags of "Detected" is the most reliable probe. After applying any of the three GeneSpring flags to all the probes, the number of probes classified by the GeneSpring flag was counted for each data.

(b)相関性解析
各群内の被験者間の相関性を調べるために、同一群内の2被験者間で相関解析を行った(3通り/群)。まず、同一群内の各2被験者で共通してGeneSpring flagが「Detected」又は「Compromised」フラグを付されたプローブを選定し、それらの正規化されたシグナル値データに基づいてスキャッタープロットを作成し、決定係数(r2)を算出した。
(B) Correlation analysis In order to investigate the correlation between the subjects in each group, a correlation analysis was performed between two subjects in the same group (3 ways/group). First, a probe with a GeneSpring flag flagged as “Detected” or “Compromised” is selected for each of the two subjects in the same group, and a scatter plot is generated based on their normalized signal value data. It was created and the coefficient of determination (r2) was calculated.

(c)階層的クラスタリング解析
遺伝子発現プロファイルデータ間の類似性及び独立性を調査するために、被検者6名×3検体の計18検体の全てのデータで共通して、「Detected」又は「Compromised」を示すプローブを選定した後、これらの正規化されたシグナル値に基づいて、GeneSpring GX 12.0(Agilent社製)を用いて階層的クラスタリングを行った。なお、解析条件のうち、Distance metricを「Pearson Uncentered」として設定し、Linkage ruleを「Ward’s」として設定した。その後、上記相関性解析で得られた決定係数(r2)の結果と併せて、同一群内の類似性及び各群の独立性を評価し、有意差検定が実施できるか否かを判断した。
(C) Hierarchical clustering analysis In order to investigate the similarity and independence between gene expression profile data, “Detected” or “Detected” is commonly used for all data of a total of 18 samples of 6 subjects×3 samples. After selecting a probe indicating “Compromised”, hierarchical clustering was performed using GeneSpring GX 12.0 (Agilent) based on these normalized signal values. Among the analysis conditions, the Distance metric was set as "Pearson Uncentered" and the Linkage rule was set as "Ward's". Then, together with the results of the coefficient of determination (r2) obtained by the above correlation analysis, the similarity within the same group and the independence of each group were evaluated to determine whether or not a significant difference test could be performed.

(d)発現比の算出及び変動遺伝子群の抽出
各群内で相関性が認められた正規化後のシグナル値に基づいて、GeneSpring GX 12.0(Agilent社)を用いて0時間(投与前)群と、6時間群又は24時間群との間で2群間の有意差検定(Welch’s t検定)を行い、p値を算出した。
(D) Calculation of expression ratio and extraction of variable gene group Based on the signal value after normalization, in which correlation was observed in each group, GeneSpring GX 12.0 (Agilent) was used for 0 hours (before administration). ) Group and a 6-hour group or a 24-hour group were subjected to a significant difference test between two groups (Welch's t-test) to calculate the p-value.

また、各群の平均シグナル値、0時間群に対する6時間群又は24時間群の発現比(log2 ratio)を算出した後、全検体で「Detected」フラグ又は「Compromised」フラグを付されたプローブについて、0時間群(x軸)対する処理群(y軸)のスキャッタープロットを作成した(図1〜図4)。なお、解析には、両群で「Detected」フラグ又は「Compromised」フラグを付されたプローブを用いた。図1〜4は、それぞれ、Aコホートにおける投与6時間後、Aコホートにおける投与24時間後、Cコホートにおける投与6時間後、及びCコホートにおける投与24時間後のスキャッタープロットである。グラフの縦軸、横軸共にアレイ間正規化後のシグナル値の平均値を示す。また、図1〜図4において、点線は1.5倍、破線は0.67倍の境界を示し、白四角ドットは変動遺伝子を示す。 Moreover, after calculating the average signal value of each group and the expression ratio (log2 ratio) of the 6-hour group or the 24-hour group relative to the 0-hour group, for all the probes, the probe with the "Detected" flag or the "Compromised" flag was added. , Scatter plots of the treatment group (y-axis) versus the 0-hour group (x-axis) were prepared (FIGS. 1 to 4). In addition, the probe which attached the "Detected" flag or the "Compromised" flag in both groups was used for the analysis. 1-4 are scatter plots 6 hours after administration in the A cohort, 24 hours after administration in the A cohort, 6 hours after administration in the C cohort, and 24 hours after administration in the C cohort, respectively. Both the vertical axis and the horizontal axis of the graph show average values of signal values after inter-array normalization. In addition, in FIGS. 1 to 4, a dotted line indicates a boundary of 1.5 times, a broken line indicates a boundary of 0.67 times, and a white square dot indicates a variable gene.

次に、化合物31の投与後に発現が変動した遺伝子群を抽出するために、以下の3つの条件のいずれかに合致するプローブを選定した。
(条件1)6時間群及び24時間群の両群で、「Detected」フラグ又は「Compromised」フラグを付され、発現比が1.5倍以上又は0.67倍以下であり、かつ有意差検定においてp<0.05を示したプローブ
(条件2)6時間群及び24時間群の両群で、「Detected」フラグ又は「Compromised」フラグを付され、発現比が1倍より大きく1.5倍未満か又は0.67倍より大きく1倍より小さく、かつ有意差検定においてp<0.01を示したプローブ
(条件3)
・スイッチON型:
0時間群では一被験者以上が「Not Detected」フラグを付されたものの、処理群では全てが「Detected」フラグ又は「Compromised」フラグを付され、発現比が4倍以上であり、かつ有意差検定においてp<0.01を示したプローブ
・スイッチOFF型:
処理群では一被験者以上が「Not Detected」フラグを付されたものの、0時間群では全てで「Detected」フラグ又は「Compromised」フラグを付され、発現比が0.25倍以下であり、かつ有意差検定においてp<0.01を示したプローブ
ただし、相関性解析及び階層的クラスタリング解析で、同一処理群のばらつきが大きかった場合は、その要因となる被験体を解析から除外した。この場合、統計処理は行えないため、p値による選定基準を適用せず、また被験体数減少により平均値の精度が低下するため、(条件2)も適用しない。この場合は、以下の2つの条件のいずれかに合致するプローブを選定した。
(条件1’)6時間群及び24時間群の両群で、「Detected」フラグ又は「Compromised」フラグを付され、かつ発現比が1.5倍以上又は0.67倍以下であるプローブ
(条件3’)
・スイッチON型:
0時間群では一被験者以上が「Not Detected」フラグを付されたものの、処理群では全てが「Detected」フラグ又は「Compromised」フラグを付され、かつ発現比が4倍以上であるプローブ
・スイッチOFF型:
処理群では一被験者以上が「Not Detected」フラグを付されたものの、0時間群では全てが「Detected」フラグ又は「Compromised」フラグを付され、かつ発現比が0.25倍以下であるプローブ
Next, in order to extract a group of genes whose expression varied after administration of Compound 31, a probe matching any of the following three conditions was selected.
(Condition 1) In both the 6-hour group and the 24-hour group, the "Detected" flag or the "Compromised" flag was added, and the expression ratio was 1.5 times or more or 0.67 times or less, and a significant difference test In both the 6-hour group and the 24-hour group of the probe (condition 2) that showed p<0.05 in 1), the "Detected" flag or the "Compromised" flag was added, and the expression ratio was more than 1 time and 1.5 times. Probes that were less than or more than 0.67 times and less than 1 time and showed p<0.01 in the significance test (condition 3)
・Switch ON type:
One or more subjects were flagged as "Not Detected" in the 0-hour group, but all were flagged as "Detected" or "Compromised" in the treatment group, and the expression ratio was 4 times or more and a significant difference test Probe switch OFF type showing p<0.01 in:
In the treatment group, one or more subjects were flagged as “Not Detected”, but in the 0-hour group, all were flagged as “Detected” or “Compromised”, and the expression ratio was 0.25 times or less, and significant. However, a probe showing p<0.01 in the difference test However, in the correlation analysis and the hierarchical clustering analysis, when there was a large variation in the same treatment group, the subject that caused the variation was excluded from the analysis. In this case, since the statistical processing cannot be performed, the selection criterion based on the p-value is not applied, and since the accuracy of the average value is reduced due to the decrease in the number of subjects, (Condition 2) is also not applied. In this case, a probe that meets either of the following two conditions was selected.
(Condition 1') A probe having a "Detected" flag or a "Compromised" flag and an expression ratio of 1.5 times or more or 0.67 times or less in both the 6-hour group and the 24-hour group (condition 3')
・Switch ON type:
One or more subjects were flagged as "Not Detected" in the 0-hour group, but all were flagged as "Detected" or "Compromised" in the treatment group and the expression ratio was 4 times or more. Type:
In the treatment group, one or more subjects were flagged as "Not Detected", but in the 0-hour group, all were flagged as "Detected" or "Compromised" and the expression ratio was 0.25 times or less.

(e)ベン図解析
Aコホート及びCコホートの間で共通して転写産物量が変動したプローブ数を調べるため、6時間群及び24時間群のそれぞれで、プローブの転写産物量の増加と減少に分けてベン図解析を行った。2つの組合せ間で重複したプローブ群及び特異的な変動を示したプローブを抽出した。
(E) Venn diagram analysis To investigate the number of probes in which the transcript amount varied in common between the A and C cohorts, the probe transcript amount was divided into increase and decrease in each of the 6-hour group and the 24-hour group. Venn diagram analysis was performed. Probes that showed overlapping probe groups and specific variations between the two combinations were extracted.

(結果)
Aコホート及びCコホートに共通して、化合物31の投与6時間後及び24時間後に、投与前と比較して、転写産物量が有意に増加した遺伝子の転写産物量の経時変化を図5〜図7、及び図15〜図16に示した。図5、図6及び図15は、投与6時間後及び24時間後のいずれにおいても、投与前と比較して、転写産物量が有意に増加した遺伝子を示している。図7及び図16は、投与24時間後のみ、投与前と比較して、転写産物量が有意に増加した遺伝子を示している。
(result)
In both the A cohort and the C cohort, the time course of the transcript amount of the gene in which the transcript amount was significantly increased 6 hours and 24 hours after the administration of Compound 31 as compared with that before the administration is shown in FIG. 7 and FIGS. 15 to 16. 5, 6 and 15 show genes in which the transcript amount was significantly increased as compared with that before administration, both 6 hours and 24 hours after administration. FIG. 7 and FIG. 16 show genes in which the transcript amount was significantly increased as compared with that before the administration only after 24 hours from the administration.

すなわち、転写産物量の増加が見られた遺伝子として、CHRD遺伝子、GYLTL1B遺伝子、MYOF遺伝子、EPS8遺伝子、SH3RF1遺伝子、IL4I1遺伝子、CD180遺伝子、EGR2遺伝子、OAS3遺伝子、RUFY4遺伝子、GPER遺伝子、RCC2遺伝子、OAS2遺伝子、MAFB遺伝子、SERPING1遺伝子、C9orf47遺伝子、PPARGC1B遺伝子、POT1遺伝子、GSG1遺伝子、XLOC_002727遺伝子、XLOC_005851遺伝子及びXLOC_I2_012046遺伝子及びLOC645195遺伝子が同定された(表2、表3及び表8も参照)。 That is, as genes in which the amount of transcripts was increased, CHRD gene, GYLTL1B gene, MYOF gene, EPS8 gene, SH3RF1 gene, IL4I1 gene, CD180 gene, EGR2 gene, OAS3 gene, RUFY4 gene, GPER gene, RCC2 gene, The OAS2 gene, MAFB gene, SERPING1 gene, C9orf47 gene, PPARGC1B gene, POT1 gene, GSG1 gene, XLOC_002727 gene, XLOC_005851 gene and XLOC_I2_012046 gene and LOC645195 gene were identified (see also Table 2, Table 3 and Table 8).

Aコホート及びCコホートに共通して、化合物31の投与6時間後及び24時間後に、投与前と比較して、転写産物量が有意に減少した遺伝子の転写産物量の経時変化を図8〜図14、及び図17〜図19に示した。図8及び図17は、投与6時間後のみ、投与前と比較して、転写産物量が有意に減少した遺伝子を示している。図9〜図11、図18は、投与6時間後及び投与24時間後のいずれにおいても、投与前と比較して、転写産物量が有意に減少した遺伝子を示している。図12〜図14、図19は、投与24時間後のみ、投与前と比較して、転写産物量が有意に減少した遺伝子を示している。 Common to the A cohort and the C cohort, the time course of the transcript amount of the gene in which the transcript amount was significantly reduced 6 hours and 24 hours after the administration of Compound 31 as compared with that before the administration is shown in FIGS. 14 and FIGS. 17 to 19. FIG. 8 and FIG. 17 show genes in which the transcript amount was significantly reduced as compared with that before the administration only 6 hours after the administration. FIGS. 9 to 11 and FIG. 18 show genes in which the transcript amount was significantly reduced as compared with that before administration, both 6 hours after administration and 24 hours after administration. FIGS. 12 to 14 and 19 show genes in which the transcript amount was significantly reduced only 24 hours after the administration as compared with that before the administration.

すなわち、転写産物量の減少が見られた遺伝子として、DRC1遺伝子、FOSB遺伝子、PDK4遺伝子、CNTNAP3遺伝子、CPT1A遺伝子、TRIM49遺伝子、RELL1遺伝子、CNTNAP3B遺伝子、DNAJB5遺伝子、PROM2遺伝子、MS4A2遺伝子、NR4A2遺伝子、GATA2遺伝子、SLC25A20遺伝子、PER1遺伝子、SEMA3C遺伝子、EMP1遺伝子、TAGAP遺伝子、F12遺伝子、KBTBD7遺伝子、KLF6遺伝子、SLC1A7遺伝子、MYOM2遺伝子、GNLY遺伝子、GZMB遺伝子、FGFBP2遺伝子、C1orf21遺伝子、COLGALT2遺伝子、AKR1C3遺伝子、HDC遺伝子、F2R遺伝子、ZNF683遺伝子、PRF1遺伝子、SH2D2A遺伝子、DAAM2遺伝子、AGPAT4−IT1遺伝子、MYBL1遺伝子、FOS遺伝子、KLF10遺伝子、XLOC_000357遺伝子、XLOC_006688遺伝子、XLOC_010061遺伝子、LINC00222遺伝子、LOC400655遺伝子、LOC100130581遺伝子、XLOC_007314遺伝子、XLOC_I2_000092遺伝子、XLOC_010245遺伝子及びLOC286087遺伝子が同定された。さらに、発現の減少が見られた遺伝子として、KIR2DL2遺伝子、KIR2DL4遺伝子、KIR2DL5A遺伝子、KIR2DS2遺伝子、KIR2DS4遺伝子及びKIR3DL2遺伝子等のKIRファミリーに属する遺伝子が同定された(表4〜表6、表8も参照)。 That is, as genes in which the amount of transcripts was decreased, DRC1 gene, FOSB gene, PDK4 gene, CNTNAP3 gene, CPT1A gene, TRIM49 gene, RELL1 gene, CNTNAP3B gene, DNAJB5 gene, PROM2 gene, MS4A2 gene, NR4A2 gene, GATA2 gene, SLC25A20 gene, PER1 gene, SEMA3C gene, EMP1 gene, TAGAP gene, F12 gene, KBTBBD7 gene, KLF6 gene, SLC1A7 gene, MYOM2 gene, GNLY gene, GZMB gene, FGFBP2 gene, C1orf21C gene, COLGALT2 gene. , HDC gene, F2R gene, ZNF683 gene, PRF1 gene, SH2D2A gene, DAAM2 gene, AGPAT4-IT1 gene, MYBL1 gene, FOS gene, KLF10 gene, XLOC_000357 gene, XLOC_006688 gene, XLOC_010061 gene, LINC00222 gene, LOC400655 gene. , XLOC_007314 gene, XLOC_I2_000092 gene, XLOC_010245 gene and LOC286087 gene were identified. Furthermore, as the genes whose expression was decreased, genes belonging to the KIR family such as KIR2DL2 gene, KIR2DL4 gene, KIR2DL5A gene, KIR2DS2 gene, KIR2DS4 gene and KIR3DL2 gene were identified (see Tables 4 to 6 and Table 8). reference).

ここで、Miyamotoら(2001年,Nature,413巻,pp.531−534)によれば、化合物31を投与することにより、NKT細胞が活性化し、IL−4タンパク質の分泌量が一時的に亢進するものの、IFN−γタンパク質の分泌量は大きく変化しないことが理解できる。また、IL4I1タンパク質は、IL−4の刺激によりB細胞やミエロイド系の細胞から分泌され、T細胞の増殖を抑制すること(Boulland et al.,2007年,Blood,110巻,pp.220−227)、及びTh17細胞において発現しており、IL−2産生や細胞増殖の抑制に関与すること(Santarlasci et al.,2012年,Immunity,36巻,pp.201−214)が報告されている。これらは、タンパク質レベルでの報告ではあるが、本実施例における、化合物31の投与によるIL4I1の転写産物量の増加は、化合物31によるNKT細胞の活性化を反映しているものと理解できる。したがって、上記遺伝子群の転写産物量の変化は、化合物31がイン・ビボでNKT細胞活性化に伴う選択的IL−4産生誘導活性を示したことを反映しているといえる。 Here, according to Miyamoto et al. (2001, Nature, 413, pp.531-534), administration of compound 31 activates NKT cells and temporarily enhances the secretion amount of IL-4 protein. However, it can be understood that the secreted amount of IFN-γ protein does not change significantly. IL4I1 protein is secreted from B cells and myeloid cells by stimulation with IL-4 and suppresses T cell proliferation (Boulland et al., 2007, Blood, 110, pp. 220-227. ), and Th17 cells, and is involved in the suppression of IL-2 production and cell growth (Santalarsci et al., 2012, Immunity, 36, pp. 201-214). Although these are reports at the protein level, it can be understood that the increase in the amount of IL4I1 transcript by administration of compound 31 in this example reflects the activation of NKT cells by compound 31. Therefore, it can be said that the change in the transcript amount of the above-mentioned gene group reflects that Compound 31 showed the selective IL-4 production-inducing activity associated with NKT cell activation in vivo.

本実施例において、転写産物量の増加又は減少がみられた遺伝子を表2〜表6、表8にまとめた。表2〜表6、表8中の配列番号は、マイクロアレイ上のプローブ配列に対応している。また、表7及び表9に各プローブの配列を示した。なお、ensembl IDとは、ゲノムのデータベースであるEnsemble Genome Browser(http://www.ensembl.org/index.html)の識別番号である。なお、配列番号65〜78の遺伝子に対応する転写産物の塩基配列を、配列表の配列番号79〜103に示し、その対応関係を表10に示した。








In the present Example, the genes whose increase or decrease in the transcript amount were observed are summarized in Tables 2 to 6 and 8. The sequence numbers in Tables 2 to 6 and 8 correspond to the probe sequences on the microarray. The sequences of each probe are shown in Tables 7 and 9. The ensembl ID is an identification number of Ensemble Genome Browser (http://www.ensembl.org/index.html) which is a database of genome. The nucleotide sequences of the transcripts corresponding to the genes of SEQ ID NOs: 65 to 78 are shown in SEQ ID NOs: 79 to 103 of the sequence listing, and the correspondence is shown in Table 10.








Claims (14)

被験物質のイン・ビボにおけるナチュラルキラーT(NKT)細胞活性化に伴う選択的IL−4産生誘導活性を評価する方法であって、
前記被験物質を投与されたヒト対象から採取された血液細胞で発現している転写産物量を測定する定量工程と、
CHRD遺伝子、GYLTL1B遺伝子、MYOF遺伝子、EPS8遺伝子、SH3RF1遺伝子、RCC2遺伝子、MAFB遺伝子、SERPING1遺伝子、C9orf47遺伝子、PPARGC1B遺伝子、POT1遺伝子、RUFY4遺伝子、GPER遺伝子、GSG1遺伝子、IL4I1遺伝子、CD180遺伝子、EGR2遺伝子、OAS2遺伝子、OAS3遺伝子、XLOC_002727遺伝子、XLOC_005851遺伝子、XLOC_I2_012046遺伝子及びLOC645195遺伝子からなる群から選択される1種以上の遺伝子について測定された転写産物量が、前記被験物質を投与されていないヒト対象から採取された血液細胞で発現している転写産物量に基づいて定められた閾値よりも多い場合、又は
CPT1A遺伝子、SLC25A20遺伝子、PER1遺伝子、SEMA3C遺伝子、EMP1遺伝子、DRC1遺伝子、PDK4遺伝子、CNTNAP3遺伝子、TRIM49遺伝子、RELL1遺伝子、CNTNAP3B遺伝子、DNAJB5遺伝子、PROM2遺伝子、MS4A2遺伝子、GATA2遺伝子、TAGAP遺伝子、F12遺伝子、KBTBD7遺伝子、KLF6遺伝子、HDC遺伝子、SH2D2A遺伝子、AGPAT4−IT1遺伝子、FOS遺伝子、KLF10遺伝子、SLC1A7遺伝子、MYOM2遺伝子、GNLY遺伝子、GZMB遺伝子、FGFBP2遺伝子、C1orf21遺伝子、COLGALT2遺伝子、AKR1C3遺伝子、F2R遺伝子、ZNF683遺伝子、PRF1遺伝子、DAAM2遺伝子、MYBL1遺伝子、FOSB遺伝子、NR4A2遺伝子、KIR2DL2遺伝子、KIR2DL4遺伝子、KIR2DS2遺伝子、KIR2DS4遺伝子、KIR2DL5A遺伝子、KIR3DL2遺伝子、XLOC_000357遺伝子、XLOC_006688遺伝子、XLOC_010061遺伝子、LINC00222遺伝子、LOC400655遺伝子、LOC100130581遺伝子、XLOC_007314遺伝子、XLOC_I2_000092遺伝子、XLOC_010245遺伝子及びLOC286087遺伝子からなる群から選択される1種以上の遺伝子について測定された転写産物量が、前記被験物質を投与されていないヒト対象から採取された血液細胞で発現している転写産物量に基づいて定められた閾値よりも少ない場合に、
前記被験物質がイン・ビボでNKT細胞活性化に伴う選択的IL−4産生誘導活性を示したと判定する判定工程と、
を備える、方法。
A method for evaluating a selective IL-4 production inducing activity associated with activation of a natural killer T (NKT) cell of a test substance in vivo, comprising:
A quantification step of measuring the amount of transcripts expressed in blood cells collected from a human subject administered with the test substance,
CHRD gene, GYLTL1B gene, MYOF gene, EPS8 gene, SH3RF1 gene, RCC2 gene, MAFB gene, SERPING1 gene, C9orf47 gene, PPARGC1B gene, POT1 gene, RUFY4 gene, GPER gene, GSG1 gene, IL4I1R gene, CD180 gene. , OAS2 gene, OAS3 gene, XLOC_002727 gene, XLOC_005851 gene, XLOC_I2_012046 gene, and LOC645195 gene, the amount of transcripts measured for one or more genes selected from the human subject not administered with the test substance When it is more than the threshold value determined based on the amount of transcripts expressed in the collected blood cells, or CPT1A gene, SLC25A20 gene, PER1 gene, SEMA3C gene, EMP1 gene, DRC1 gene, PDK4 gene, CNTNAP3 gene, TRIM49 gene, RELL1 gene, CNTNAP3B gene, DNAJB5 gene, PROM2 gene, MS4A2 gene, GATA2 gene, TAGAP gene, F12 gene, KBTBBD7 gene, KLF6 gene, HDC gene, SH2D2A gene, AGPAT4-IT1 gene, FOS gene, KLF10 gene, SLC1A7 gene, MYOM2 gene, GNLY gene, GZMB gene, FGFBP2 gene, C1orf21 gene, COLGALT2 gene, AKR1C3 gene, F2R gene, ZNF683 gene, PRF1 gene, DAAM2 gene, MYBL1 gene, FOSB gene, NR4DL2 gene, KIR4DL2 gene, KIR2A2 gene, KIR4DL2 gene, KIR4DL2 gene, KIR4DL2 gene , KIR2DS2 gene, KIR2DS4 gene, KIR2DL5A gene, KIR3DL2 gene , XLOC_000357 gene, XLOC_006688 gene, XLOC_010061 gene, LINC00222 gene, LOC400655 gene, LOC100130581 gene, XLOC_007314 gene, XLOC_45 gene and XLOC_ILO_CLO_I2_000092 gene. The amount of transcript measured for one or more genes is a threshold value determined based on the amount of transcript expressed in blood cells collected from a human subject not administered with the test substance. Less than
A determination step of determining that the test substance exhibits a selective IL-4 production-inducing activity associated with NKT cell activation in vivo;
Comprising a method.
前記定量工程が、前記被験物質を投与されたヒト対象から投与5〜7時間後に採取された血液細胞で発現している転写産物量を測定することを含み、
前記判定工程が、CHRD遺伝子、GYLTL1B遺伝子、MYOF遺伝子、EPS8遺伝子、SH3RF1遺伝子、RCC2遺伝子、MAFB遺伝子、SERPING1遺伝子、C9orf47遺伝子、PPARGC1B遺伝子、POT1遺伝子、IL4I1遺伝子、CD180遺伝子、EGR2遺伝子、OAS2遺伝子、XLOC_002727遺伝子、XLOC_005851遺伝子及びXLOC_I2_012046遺伝子からなる群から選択される1種以上の遺伝子について投与5〜7時間後の血液細胞に対して測定された転写産物量が、前記被験物質を投与されていないヒト対象から採取された血液細胞で発現している転写産物量に基づいて定められた閾値よりも多い場合、又は
CPT1A遺伝子、SLC25A20遺伝子、PER1遺伝子、SEMA3C遺伝子、EMP1遺伝子、DRC1遺伝子、PDK4遺伝子、CNTNAP3遺伝子、TRIM49遺伝子、RELL1遺伝子、CNTNAP3B遺伝子、DNAJB5遺伝子、PROM2遺伝子、MS4A2遺伝子、GATA2遺伝子、TAGAP遺伝子、F12遺伝子、KBTBD7遺伝子、KLF6遺伝子、HDC遺伝子、SH2D2A遺伝子、AGPAT4−IT1遺伝子、KLF10遺伝子、FOSB遺伝子、NR4A2遺伝子、FOS遺伝子、XLOC_000357遺伝子、XLOC_006688遺伝子、XLOC_010061遺伝子、LINC00222遺伝子、LOC400655遺伝子、LOC100130581遺伝子、XLOC_007314遺伝子及びXLOC_I2_000092遺伝子からなる群から選択される1種以上の遺伝子について投与5〜7時間後の血液細胞に対して測定された転写産物量が、前記被験物質を投与されていないヒト対象から採取された血液細胞で発現している転写産物量に基づいて定められた閾値よりも少ない場合に、
前記被験物質がイン・ビボでNKT細胞活性化に伴う選択的IL−4産生誘導活性を示したと判定することを含む、請求項1に記載の方法。
The quantification step comprises measuring the amount of transcript expressed in blood cells collected from a human subject administered the test substance 5-7 hours after administration,
The determination step includes CHRD gene, GYLTL1B gene, MYOF gene, EPS8 gene, SH3RF1 gene, RCC2 gene, MAFB gene, SERPING1 gene, C9orf47 gene, PPARGC1B gene, POT1 gene, IL4I1 gene, CD180 gene, EGR2 gene, OAS2 gene, A human in which the amount of transcript measured in blood cells 5 to 7 hours after administration of one or more genes selected from the group consisting of XLOC_002727 gene, XLOC_005851 gene and XLOC_I2_012046 gene is not administered with the test substance. When the amount is greater than a threshold value determined based on the amount of transcript expressed in blood cells collected from the subject, or CPT1A gene, SLC25A20 gene, PER1 gene, SEMA3C gene, EMP1 gene, DRC1 gene, PDK4 gene, CNTNAP3 Gene, TRIM49 gene, RELL1 gene, CNTNAP3B gene, DNAJB5 gene, PROM2 gene, MS4A2 gene, GATA2 gene, TAGAP gene, F12 gene, KBTBBD7 gene, KLF6 gene, HDC gene, SH2D2A gene, AGPAT4-IT1 gene, KLF10 gene, FOSB. 5 to 7 hours after administration for at least one gene selected from the group consisting of the gene, the NR4A2 gene, the FOS gene, the XLOC_000357 gene, the XLOC_006688 gene, the XLOC_010061 gene, the LINC00222 gene, the LOC400655 gene, the LOC100130581 gene, the XLOC_007314 gene, and the XLOC_I2_000092 gene. When the amount of transcripts measured for blood cells of is less than a threshold value determined based on the amount of transcripts expressed in blood cells collected from a human subject not administered with the test substance. ,
The method according to claim 1, which comprises determining that the test substance exhibits a selective IL-4 production-inducing activity associated with NKT cell activation in vivo.
前記定量工程が、前記被験物質を投与されたヒト対象から投与23〜25時間後に採取された血液細胞で発現している転写産物量を測定することを含み、
前記判定工程が、CHRD遺伝子、GYLTL1B遺伝子、MYOF遺伝子、EPS8遺伝子、SH3RF1遺伝子、RCC2遺伝子、MAFB遺伝子、SERPING1遺伝子、C9orf47遺伝子、PPARGC1B遺伝子、POT1遺伝子、RUFY4遺伝子、GPER遺伝子、GSG1遺伝子、IL4I1遺伝子、CD180遺伝子、EGR2遺伝子、OAS2遺伝子、OAS3遺伝子、XLOC_002727遺伝子、XLOC_005851遺伝子、XLOC_I2_012046遺伝子及びLOC645195遺伝子からなる群から選択される1種以上の遺伝子について投与23〜25時間後の血液細胞に対して測定された転写産物量が、前記被験物質を投与されていないヒト対象から採取された血液細胞で発現している転写産物量に基づいて定められた閾値よりも多い場合、又は
DRC1遺伝子、PDK4遺伝子、CNTNAP3遺伝子、TRIM49遺伝子、RELL1遺伝子、CNTNAP3B遺伝子、DNAJB5遺伝子、PROM2遺伝子、MS4A2遺伝子、GATA2遺伝子、TAGAP遺伝子、F12遺伝子、KBTBD7遺伝子、KLF6遺伝子、HDC遺伝子、SH2D2A遺伝子、AGPAT4−IT1遺伝子、KLF10遺伝子、SLC1A7遺伝子、MYOM2遺伝子、GNLY遺伝子、GZMB遺伝子、FGFBP2遺伝子、C1orf21遺伝子、COLGALT2遺伝子、AKR1C3遺伝子、F2R遺伝子、ZNF683遺伝子、PRF1遺伝子、DAAM2遺伝子、MYBL1遺伝子、FOSB遺伝子、NR4A2遺伝子、KIR2DL2遺伝子、KIR2DL4遺伝子、KIR2DS2遺伝子、KIR2DS4遺伝子、KIR2DL5A遺伝子、KIR3DL2遺伝子、FOS遺伝子、XLOC_007314遺伝子、XLOC_I2_000092遺伝子、XLOC_010245遺伝子及びLOC286087遺伝子からなる群から選択される1種以上の遺伝子について投与23〜25時間後の血液細胞に対して測定された転写産物量が、前記被験物質を投与されていないヒト対象から採取された血液細胞で発現している転写産物量に基づいて定められた閾値よりも少ない場合に、
前記被験物質がイン・ビボでNKT細胞活性化に伴う選択的IL−4産生誘導活性を示したと判定することを含む、請求項1又は2に記載の方法。
The quantifying step comprises measuring the amount of transcript expressed in blood cells collected from a human subject administered the test substance 23-25 hours after administration,
The determination step includes CHRD gene, GYLTL1B gene, MYOF gene, EPS8 gene, SH3RF1 gene, RCC2 gene, MAFB gene, SERPING1 gene, C9orf47 gene, PPARGC1B gene, POT1 gene, RUFY4 gene, GPER gene, GSG1 gene, IL4I1 gene. One or more genes selected from the group consisting of CD180 gene, EGR2 gene, OAS2 gene, OAS3 gene, XLOC_002727 gene, XLOC_005851 gene, XLOC_I2_012046 gene and LOC645195 gene were measured in blood cells 23 to 25 hours after administration. The amount of transcripts is higher than a threshold value determined based on the amount of transcripts expressed in blood cells collected from a human subject not administered with the test substance, or DRC1 gene, PDK4 gene, CNTNAP3 Gene, TRIM49 gene, RELL1 gene, CNTNAP3B gene, DNAJB5 gene, PROM2 gene, MS4A2 gene, GATA2 gene, TAGAP gene, F12 gene, KBTBBD7 gene, KLF6 gene, HDC gene, SH2D2A gene, AGPAT4-IT1 gene, KLF10 gene, SLC1 gene. Gene, MYOM2 gene, GNLY gene, GZMB gene, FGFBP2 gene, C1orf21 gene, COLGALT2 gene, AKR1C3 gene, F2R gene, ZNF683 gene, PRF1 gene, DAAM2 gene, MYBL1 gene, FOSB gene, NR4A2 gene, KIR2DL2 gene, KIR2DL2 gene, KIR2DL2 gene. One or more genes selected from the group consisting of KIR2DS2 gene, KIR2DS4 gene, KIR2DL5A gene, KIR3DL2 gene, FOS gene, XLOC_007314 gene, XLOC_I2_000092 gene, XLOC_010245 gene and LOC286087 gene to blood cells 23 to 25 hours after administration When the amount of transcript measured by the method is less than a threshold value determined based on the amount of transcript expressed in blood cells collected from a human subject not administered with the test substance,
The method according to claim 1 or 2, which comprises determining that the test substance exhibits a selective IL-4 production-inducing activity associated with NKT cell activation in vivo.
前記判定工程が、CHRD遺伝子、GYLTL1B遺伝子、MYOF遺伝子、EPS8遺伝子、SH3RF1遺伝子、RCC2遺伝子、MAFB遺伝子、SERPING1遺伝子、C9orf47遺伝子、PPARGC1B遺伝子、POT1遺伝子、RUFY4遺伝子、GPER遺伝子、GSG1遺伝子、IL4I1遺伝子、CD180遺伝子、EGR2遺伝子、OAS2遺伝子、OAS3遺伝子、XLOC_002727遺伝子、XLOC_005851遺伝子、XLOC_I2_012046遺伝子及びLOC645195遺伝子について測定された転写産物量が、前記被験物質を投与されていないヒト対象から採取された血液細胞で発現している転写産物量に基づいて定められた閾値よりも多い場合、並びに/又は
CPT1A遺伝子、SLC25A20遺伝子、PER1遺伝子、SEMA3C遺伝子、EMP1遺伝子、DRC1遺伝子、PDK4遺伝子、CNTNAP3遺伝子、TRIM49遺伝子、RELL1遺伝子、CNTNAP3B遺伝子、DNAJB5遺伝子、PROM2遺伝子、MS4A2遺伝子、GATA2遺伝子、TAGAP遺伝子、F12遺伝子、KBTBD7遺伝子、KLF6遺伝子、HDC遺伝子、SH2D2A遺伝子、AGPAT4−IT1遺伝子、FOS遺伝子、KLF10遺伝子、SLC1A7遺伝子、MYOM2遺伝子、GNLY遺伝子、GZMB遺伝子、FGFBP2遺伝子、C1orf21遺伝子、COLGALT2遺伝子、AKR1C3遺伝子、F2R遺伝子、ZNF683遺伝子、PRF1遺伝子、DAAM2遺伝子、MYBL1遺伝子、FOSB遺伝子、NR4A2遺伝子、KIR2DL2遺伝子、KIR2DL4遺伝子、KIR2DS2遺伝子、KIR2DS4遺伝子、KIR2DL5A遺伝子、KIR3DL2遺伝子、XLOC_000357遺伝子、XLOC_006688遺伝子、XLOC_010061遺伝子、LINC00222遺伝子、LOC400655遺伝子、LOC100130581遺伝子、XLOC_007314遺伝子、XLOC_I2_000092遺伝子、XLOC_010245遺伝子及びLOC286087遺伝子について測定された転写産物量が、前記被験物質を投与されていないヒト対象から採取された血液細胞で発現している転写産物量に基づいて定められた閾値よりも少ない場合に、
前記被験物質がイン・ビボでNKT細胞活性化に伴う選択的IL−4産生誘導活性を示したと判定することを含む、請求項1〜3のいずれか一項に記載の方法。
The determination step includes CHRD gene, GYLTL1B gene, MYOF gene, EPS8 gene, SH3RF1 gene, RCC2 gene, MAFB gene, SERPING1 gene, C9orf47 gene, PPARGC1B gene, POT1 gene, RUFY4 gene, GPER gene, GSG1 gene, IL4I1 gene. The amount of transcripts measured for CD180 gene, EGR2 gene, OAS2 gene, OAS3 gene, XLOC_002727 gene, XLOC_005851 gene, XLOC_I2_012046 gene and LOC645195 gene is expressed in blood cells collected from a human subject not administered with the test substance. When the amount is greater than a threshold value determined based on the amount of transcripts being produced, and/or CPT1A gene, SLC25A20 gene, PER1 gene, SEMA3C gene, EMP1 gene, DRC1 gene, PDK4 gene, CNTNAP3 gene, TRIM49 gene, RELL1 gene , CNTNAP3B gene, DNAJB5 gene, PROM2 gene, MS4A2 gene, GATA2 gene, TAGAP gene, F12 gene, KBTBBD7 gene, KLF6 gene, HDC gene, SH2D2A gene, AGPAT4-IT1 gene, FOS gene, KLF10 gene, SLC1A7 gene, MYOM2 gene. , GNLY gene, GZMB gene, FGFBP2 gene, C1orf21 gene, COLGALT2 gene, AKR1C3 gene, F2R gene, ZNF683 gene, PRF1 gene, DAAM2 gene, MYBL1 gene, FOSB gene, NR4A2 gene, KIR2DL2 gene, KIR2DL4 gene, KIR2DL4 gene, KIR2DL4 gene, KIR2DL4 gene. Gene, KIR2DL5A gene, KIR3DL2 gene, XLOC_000357 gene , XLOC_006688 gene, XLOC_010061 gene, LINC00222 gene, LOC400655 gene, LOC100130581 gene, XLOC_007314 gene, XLOC_I2_000092 gene, XLOC_010245 gene, the amount of the test substance and the LOC28608 gene measured, and LOC28608 gene of the tested substance and LOC28608. Less than a threshold determined based on the amount of transcripts expressed in blood cells collected from a human subject not receiving
The method according to any one of claims 1 to 3, which comprises determining that the test substance exhibits a selective IL-4 production-inducing activity associated with NKT cell activation in vivo.
前記定量工程が、前記被験物質を投与されたヒト対象から投与5〜7時間後に採取された血液細胞で発現している転写産物量を測定することを含み、
前記判定工程が、CHRD遺伝子、GYLTL1B遺伝子、MYOF遺伝子、EPS8遺伝子、SH3RF1遺伝子、RCC2遺伝子、MAFB遺伝子、SERPING1遺伝子、C9orf47遺伝子、PPARGC1B遺伝子、POT1遺伝子、IL4I1遺伝子、CD180遺伝子、EGR2遺伝子、OAS2遺伝子、XLOC_002727遺伝子、XLOC_005851遺伝子及びXLOC_I2_012046遺伝子について投与5〜7時間後の血液細胞に対して測定された転写産物量が、前記被験物質を投与されていないヒト対象から採取された血液細胞で発現している転写産物量に基づいて定められた閾値よりも多い場合、並びに/又は
CPT1A遺伝子、SLC25A20遺伝子、PER1遺伝子、SEMA3C遺伝子、EMP1遺伝子、DRC1遺伝子、PDK4遺伝子、CNTNAP3遺伝子、TRIM49遺伝子、RELL1遺伝子、CNTNAP3B遺伝子、DNAJB5遺伝子、PROM2遺伝子、MS4A2遺伝子、GATA2遺伝子、TAGAP遺伝子、F12遺伝子、KBTBD7遺伝子、KLF6遺伝子、HDC遺伝子、SH2D2A遺伝子、AGPAT4−IT1遺伝子、KLF10遺伝子、FOSB遺伝子、NR4A2遺伝子、FOS遺伝子、XLOC_000357遺伝子、XLOC_006688遺伝子、XLOC_010061遺伝子、LINC00222遺伝子、LOC400655遺伝子、LOC100130581遺伝子、XLOC_007314遺伝子及びXLOC_I2_000092遺伝子について投与5〜7時間後の血液細胞に対して測定された転写産物量が、前記被験物質を投与されていないヒト対象から採取された血液細胞で発現している転写産物量に基づいて定められた閾値よりも少ない場合に、
前記被験物質がイン・ビボでNKT細胞活性化に伴う選択的IL−4産生誘導活性を示したと判定することを含む、請求項1〜4のいずれか一項に記載の方法。
The quantification step comprises measuring the amount of transcript expressed in blood cells collected from a human subject administered the test substance 5-7 hours after administration,
The determination step includes CHRD gene, GYLTL1B gene, MYOF gene, EPS8 gene, SH3RF1 gene, RCC2 gene, MAFB gene, SERPING1 gene, C9orf47 gene, PPARGC1B gene, POT1 gene, IL4I1 gene, CD180 gene, EGR2 gene, OAS2 gene, The transcript amount of XLOC_002727 gene, XLOC_005851 gene and XLOC_I2_012046 gene measured in blood cells 5 to 7 hours after administration is expressed in blood cells collected from a human subject not administered with the test substance. When it is more than a threshold value determined based on the amount of transcript, and/or CPT1A gene, SLC25A20 gene, PER1 gene, SEMA3C gene, EMP1 gene, DRC1 gene, PDK4 gene, CNTNAP3 gene, TRIM49 gene, RELL1 gene, CNTNAP3B gene , DNAJB5 gene, PROM2 gene, MS4A2 gene, GATA2 gene, TAGAP gene, F12 gene, KBTBBD7 gene, KLF6 gene, HDC gene, SH2D2A gene, AGPAT4-IT1 gene, KLF10 gene, FOSB gene, NR4A2 gene, FOS gene, XLOC_000357 gene. , XLOC_006688 gene, XLOC_010061 gene, LINC00222 gene, LOC400655 gene, LOC100130581 gene, XLOC_007314 gene, and XLOC_I2_000092 gene, the amount of transcript measured in blood cells 5 to 7 hours after administration was not administered with the test substance. When it is less than a threshold value determined based on the amount of transcript expressed in blood cells collected from a human subject,
The method according to any one of claims 1 to 4, which comprises determining that the test substance exhibits a selective IL-4 production-inducing activity associated with NKT cell activation in vivo.
前記定量工程が、前記被験物質を投与されたヒト対象から投与23〜25時間後に採取された血液細胞で発現している転写産物量を測定することを含み、
前記判定工程が、CHRD遺伝子、GYLTL1B遺伝子、MYOF遺伝子、EPS8遺伝子、SH3RF1遺伝子、RCC2遺伝子、MAFB遺伝子、SERPING1遺伝子、C9orf47遺伝子、PPARGC1B遺伝子、POT1遺伝子、RUFY4遺伝子、GPER遺伝子、GSG1遺伝子、IL4I1遺伝子、CD180遺伝子、EGR2遺伝子、OAS2遺伝子、OAS3遺伝子、XLOC_002727遺伝子、XLOC_005851遺伝子、XLOC_I2_012046遺伝子及びLOC645195遺伝子について投与23〜25時間後の血液細胞に対して測定された転写産物量が、前記被験物質を投与されていないヒト対象から採取された血液細胞で発現している転写産物量に基づいて定められた閾値よりも多い場合、並びに/又は
DRC1遺伝子、PDK4遺伝子、CNTNAP3遺伝子、TRIM49遺伝子、RELL1遺伝子、CNTNAP3B遺伝子、DNAJB5遺伝子、PROM2遺伝子、MS4A2遺伝子、GATA2遺伝子、TAGAP遺伝子、F12遺伝子、KBTBD7遺伝子、KLF6遺伝子、HDC遺伝子、SH2D2A遺伝子、AGPAT4−IT1遺伝子、KLF10遺伝子、SLC1A7遺伝子、MYOM2遺伝子、GNLY遺伝子、GZMB遺伝子、FGFBP2遺伝子、C1orf21遺伝子、COLGALT2遺伝子、AKR1C3遺伝子、F2R遺伝子、ZNF683遺伝子、PRF1遺伝子、DAAM2遺伝子、MYBL1遺伝子、FOSB遺伝子、NR4A2遺伝子、KIR2DL2遺伝子、KIR2DL4遺伝子、KIR2DS2遺伝子、KIR2DS4遺伝子、KIR2DL5A遺伝子、KIR3DL2遺伝子、FOS遺伝子、XLOC_007314遺伝子、XLOC_I2_000092遺伝子、XLOC_010245遺伝子及びLOC286087遺伝子について投与23〜25時間後の血液細胞に対して測定された転写産物量が、前記被験物質を投与されていないヒト対象から採取された血液細胞で発現している転写産物量に基づいて定められた閾値よりも少ない場合に、
前記被験物質がイン・ビボでNKT細胞活性化に伴う選択的IL−4産生誘導活性を示したと判定することを含む、請求項1〜5のいずれか一項に記載の方法。
The quantifying step comprises measuring the amount of transcript expressed in blood cells collected from a human subject administered the test substance 23-25 hours after administration,
The determination step includes CHRD gene, GYLTL1B gene, MYOF gene, EPS8 gene, SH3RF1 gene, RCC2 gene, MAFB gene, SERPING1 gene, C9orf47 gene, PPARGC1B gene, POT1 gene, RUFY4 gene, GPER gene, GSG1 gene, IL4I1 gene. CD180 gene, EGR2 gene, OAS2 gene, OAS3 gene, XLOC_002727 gene, XLOC_005851 gene, XLOC_I2_012046 gene and LOC645195 gene, the amount of transcript measured in blood cells 23 to 25 hours after the administration, the test substance was administered. When the amount is higher than a threshold value determined based on the amount of transcripts expressed in blood cells collected from a human subject that is not present, and/or DRC1 gene, PDK4 gene, CNTNAP3 gene, TRIM49 gene, RELL1 gene, CNTNAP3B gene , DNAJB5 gene, PROM2 gene, MS4A2 gene, GATA2 gene, TAGAP gene, F12 gene, KBTBBD7 gene, KLF6 gene, HDC gene, SH2D2A gene, AGPAT4-IT1 gene, KLF10 gene, SLC1A7 gene, MYOM2 gene, GNLY gene, GZMB gene. , FGFBP2 gene, C1orf21 gene, COLGALT2 gene, AKR1C3 gene, F2R gene, ZNF683 gene, PRF1 gene, DAAM2 gene, MYBL1 gene, FOSB gene, NR4A2 gene, KIR2DL2 gene, KIR2DL4 gene, KIR2DS2 gene, KIR2DS4 gene, KIR2DS4KIR2DS4 gene Gene, FOS gene, XLOC_007314 gene, XLOC_I2_000092 gene, XLOC_010245 gene and LOC286087 gene, the amount of transcript measured in blood cells 23 to 25 hours after administration was collected from a human subject not administered with the test substance. When it is less than the threshold value determined based on the amount of transcript expressed in the blood cells,
The method according to any one of claims 1 to 5, which comprises determining that the test substance exhibits a selective IL-4 production-inducing activity associated with NKT cell activation in vivo.
前記閾値が、前記被験物質を投与する前に前記ヒト対象から採取された血液細胞で発現している各遺伝子の転写産物量である、請求項1〜6のいずれか一項に記載の方法。 7. The method according to any one of claims 1 to 6, wherein the threshold value is a transcript amount of each gene expressed in blood cells collected from the human subject before administration of the test substance. 前記NKT細胞活性化に伴う選択的IL−4産生誘導活性が、NKT細胞のインターフェロンγ(IFN−γ)産生を誘導せず、かつNKT細胞のIL−4産生を誘導する活性である、請求項1〜7のいずれか一項に記載の方法。 The selective IL-4 production-inducing activity associated with NKT cell activation is an activity that does not induce interferon γ (IFN-γ) production by NKT cells and induces IL-4 production by NKT cells. The method according to any one of 1 to 7. 前記定量工程において、配列番号1〜78のいずれかに示す塩基配列を含むプローブからなる群から選択される少なくとも1種を使用して転写産物量を測定する、請求項1〜8のいずれか一項に記載の方法。 9. In the quantification step, the amount of transcript is measured using at least one kind selected from the group consisting of probes containing the nucleotide sequences shown in any of SEQ ID NOS: 1 to 78. The method described in the section. イン・ビボでNKT細胞活性化に伴う選択的IL−4産生誘導活性を有する物質のスクリーニング方法であって、
候補物質に対して、請求項1〜7のいずれか一項に記載の方法を実施することを含む、スクリーニング方法。
A method for screening a substance having a selective IL-4 production-inducing activity associated with NKT cell activation in vivo, comprising:
A screening method comprising performing the method according to any one of claims 1 to 7 on a candidate substance.
前記候補物質が、NKT細胞の抗原受容体、及びCD1dに結合する物質である、請求項10に記載のスクリーニング方法。 The screening method according to claim 10, wherein the candidate substance is a substance that binds to an NKT cell antigen receptor and CD1d. 前記NKT細胞活性化に伴う選択的IL−4産生誘導活性が、NKT細胞のインターフェロンγ(IFN−γ)産生を誘導せず、かつNKT細胞のIL−4産生を誘導する活性である、請求項10又は11に記載のスクリーニング方法。 The selective IL-4 production-inducing activity associated with NKT cell activation is an activity that does not induce interferon γ (IFN-γ) production by NKT cells and induces IL-4 production by NKT cells. The screening method according to 10 or 11. 被験物質のイン・ビボにおけるナチュラルキラーT(NKT)細胞活性化に伴う選択的IL−4産生誘導活性の検出剤であって、
配列番号1〜78のいずれかに示す塩基配列を含むプローブからなる群から選択される少なくとも1種からなる、検出剤。
A detection agent for a selective IL-4 production inducing activity associated with activation of a natural killer T (NKT) cell of a test substance in vivo,
A detection agent comprising at least one selected from the group consisting of probes containing the nucleotide sequences shown in any of SEQ ID NOs: 1 to 78.
前記NKT細胞活性化に伴う選択的IL−4産生誘導活性が、NKT細胞のインターフェロンγ(IFN−γ)産生を誘導せず、かつNKT細胞のIL−4産生を誘導する活性である、請求項13に記載の検出剤。 The selective IL-4 production-inducing activity associated with NKT cell activation is an activity that does not induce interferon γ (IFN-γ) production by NKT cells and induces IL-4 production by NKT cells. 13. The detection agent according to 13.
JP2016521063A 2014-05-20 2015-05-14 Method for evaluating selective IL-4 production-inducing activity associated with NKT cell activation Active JP6730708B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014104272 2014-05-20
JP2014104272 2014-05-20
PCT/JP2015/063935 WO2015178288A1 (en) 2014-05-20 2015-05-14 Method for evaluating selective il-4 production inducing activity associated with nkt cell activation

Publications (2)

Publication Number Publication Date
JPWO2015178288A1 JPWO2015178288A1 (en) 2017-04-20
JP6730708B2 true JP6730708B2 (en) 2020-07-29

Family

ID=54553961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016521063A Active JP6730708B2 (en) 2014-05-20 2015-05-14 Method for evaluating selective IL-4 production-inducing activity associated with NKT cell activation

Country Status (2)

Country Link
JP (1) JP6730708B2 (en)
WO (1) WO2015178288A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108611413B (en) * 2018-03-30 2021-10-01 青岛泱深生物医药有限公司 Parkinson related biomarker and application thereof
JP2024512318A (en) 2021-03-01 2024-03-19 ディシジュアス セラピューティクス, インコーポレイテッド Compounds for activating invariant natural killer T cells and methods of use in eliminating inflammatory senescent cells

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006065613A2 (en) * 2004-12-14 2006-06-22 Irm Llc Methods for identifying t cell activation-modulating compounds
US9623083B2 (en) * 2011-08-30 2017-04-18 Cornell University Method to screen for an activator of adipose-resident NK cells

Also Published As

Publication number Publication date
WO2015178288A1 (en) 2015-11-26
JPWO2015178288A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
Coit et al. Epigenome profiling reveals significant DNA demethylation of interferon signature genes in lupus neutrophils
Xu et al. Role of osteopontin in amplification and perpetuation of rheumatoid synovitis
US20160194715A1 (en) Molecular predictors of fungal infection
Stikker et al. Decoding the genetic and epigenetic basis of asthma
CA2895133A1 (en) Blood transcriptional signatures of active pulmonary tuberculosis and sarcoidosis
Meugnier et al. Gene expression profiling in peripheral blood cells of patients with rheumatoid arthritis in response to anti-TNF-α treatments
JP2011510650A (en) Method and kit for quickly determining patients at high risk of dying during septic shock
US20090136945A1 (en) Compositions and methods for assessing disorders
Bos et al. Molecular subtypes of systemic sclerosis in association with anti-centromere antibodies and digital ulcers
Galbraith et al. Peripheral blood gene expression in postinfective fatigue syndrome following from three different triggering infections
JP6730708B2 (en) Method for evaluating selective IL-4 production-inducing activity associated with NKT cell activation
Voskamp et al. Inflammatory and tolerogenic myeloid cells determine outcome following human allergen challenge
CN116808063B (en) Marker for diabetes and application thereof
KR101501125B1 (en) Composition for diagnosing obesity
KR101620274B1 (en) Composition for diagnosis of obesity and uses thereof
Gofshteyn et al. Association of Juvenile Dermatomyositis Disease Activity With the Expansion of Blood Memory B and T Cell Subsets Lacking Follicular Markers
KR20210104206A (en) Composition for diagnosing polymyositis or dermatomyositis
CN101720435A (en) Be used for tool and method that the sample of multiple sclerosis patients is classified
AU2011268223B2 (en) Method for predicting a therapy response in subjects with multiple sclerosis
KR101594735B1 (en) Composition for early diagnosis of obesity and uses thereof
WO2010015632A2 (en) Interferon
JP2022061491A (en) Method for getting data to classify patients with chronic sinusitis and applications thereof
Morsi et al. Quantitative expression of toll-like receptors TLR-7 and TLR-9 on peripheral blood mononuclear cells in leukemias
Wu et al. Probe signal values in mRNA arrays imply an excessive involvement of neutrophil FCGR1 in tuberculosis
JP2012205590A (en) Method for determining fatigue using gene expression

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200619

R150 Certificate of patent or registration of utility model

Ref document number: 6730708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250