JP6730056B2 - Method and apparatus for analyzing generated gas of power storage device - Google Patents

Method and apparatus for analyzing generated gas of power storage device Download PDF

Info

Publication number
JP6730056B2
JP6730056B2 JP2016066849A JP2016066849A JP6730056B2 JP 6730056 B2 JP6730056 B2 JP 6730056B2 JP 2016066849 A JP2016066849 A JP 2016066849A JP 2016066849 A JP2016066849 A JP 2016066849A JP 6730056 B2 JP6730056 B2 JP 6730056B2
Authority
JP
Japan
Prior art keywords
gas
test
storage device
container
electricity storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016066849A
Other languages
Japanese (ja)
Other versions
JP2017181212A (en
Inventor
義治 熊本
義治 熊本
裕文 戸塚
裕文 戸塚
井田 徹
徹 井田
大介 青才
大介 青才
邦明 常本
邦明 常本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Research Institute Inc
Original Assignee
Kobelco Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59963877&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6730056(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kobelco Research Institute Inc filed Critical Kobelco Research Institute Inc
Priority to JP2016066849A priority Critical patent/JP6730056B2/en
Priority to KR1020187026859A priority patent/KR102254111B1/en
Priority to CN201680084115.0A priority patent/CN109073514A/en
Priority to PCT/JP2016/087176 priority patent/WO2017168864A1/en
Publication of JP2017181212A publication Critical patent/JP2017181212A/en
Application granted granted Critical
Publication of JP6730056B2 publication Critical patent/JP6730056B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0022General constructional details of gas analysers, e.g. portable test equipment using a number of analysing channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Secondary Cells (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

本発明は、蓄電デバイスから発生するガスを捕集して分析する蓄電デバイスの発生ガス分析方法及び装置に関する。 The present invention relates to a method and an apparatus for analyzing generated gas of an electricity storage device, which collects and analyzes gas generated from the electricity storage device.

近年、蓄電デバイスとしてリチウムイオン電池等が盛んに活用されている。リチウムイオン電池は、エネルギー密度が高く、性能バランスが良いため汎用性が高い特長を有する。しかし、急激な熱発生により内部の電解液が分解、蒸発し、有害ガスが発生する等、安全性に関しては、課題が残されている。そこで、リチウムイオン電池の安全性評価試験中に発生するガスを分析して、その安全性を評価する分析装置が提案されている(例えば特許文献1)。この分析装置では、図6に示すように、密封耐圧ブースとなる試験容器19内に蓄電デバイス11をセットして、蓄電デバイス11を短絡させる安全性評価試験を行う。この試験中に発生したガス全量を配管65を通じてバッファータンク67に連通したガスバッグ71に捕集し、ガスバッグ71に溜まったガスを分析する。この試験装置によれば、安全性評価試験中に蓄電デバイス11から発生したガス全量が捕集され、この捕集されたガスが試験後に纏めて分析に供される。 In recent years, lithium ion batteries and the like have been widely used as power storage devices. Lithium-ion batteries have high versatility because of their high energy density and good performance balance. However, there is still a problem regarding safety such that the electrolytic solution inside is decomposed and vaporized due to abrupt heat generation, and a harmful gas is generated. Therefore, an analyzer that analyzes the gas generated during the safety evaluation test of the lithium-ion battery and evaluates its safety has been proposed (for example, Patent Document 1). In this analyzer, as shown in FIG. 6, a power storage device 11 is set in a test container 19 that serves as a sealed pressure resistant booth, and a safety evaluation test for short-circuiting the power storage device 11 is performed. The total amount of gas generated during this test is collected in the gas bag 71 communicating with the buffer tank 67 through the pipe 65, and the gas accumulated in the gas bag 71 is analyzed. According to this test apparatus, the entire amount of gas generated from the electricity storage device 11 is collected during the safety evaluation test, and the collected gas is collectively provided for analysis after the test.

特開2011−3513号公報JP, 2011-3513, A

しかしながら、上記の方法によれば、試験開始から終了までの間に発生したガスのトータルの発生ガス量、ガス成分の分析は可能であるが、試験途中のガス量の変化や各ガス成分の変化等の経時変化を把握できないという問題があった。 However, according to the above method, although it is possible to analyze the total amount of generated gas and gas components generated from the start to the end of the test, changes in the gas amount during the test and changes in each gas component However, there is a problem in that it is not possible to grasp the changes over time.

そこで、本発明は、蓄電デバイスの安全性評価試験を行いながら、蓄電デバイスから試験中に発生するガスの経時変化の分析が可能な蓄電デバイスの発生ガス分析方法提供することを目的とする。 Therefore, an object of the present invention is to provide a method for analyzing generated gas of an electricity storage device, which is capable of analyzing a temporal change of gas generated from the electricity storage device during the test while performing a safety evaluation test of the electricity storage device.

本発明は、下記の蓄電デバイスの発生ガス分析方法を提供する。
蓄電デバイスから発生するガスを捕集して分析する蓄電デバイスの発生ガス分析方法であって、
筐体を有する前記蓄電デバイスを前記筐体ごと容器内部に収容し、前記容器内部が不活性ガスで満たされる試験容器と、前記試験容器よりも低い内圧に保持される複数のサンプル容器と、前記試験容器と複数の前記サンプル容器とを連通させる複数の連通流路と、複数の前記連通流路の前記試験容器と前記サンプル容器との間にそれぞれ設けられた流路開閉弁と、を備えるガス捕集器を用い、前記流路開閉弁を閉じて前記蓄電デバイスの安全性評価試験を開始した後、複数の前記連通流路に設けられた前記流路開閉弁を、前記連通流路毎に順次異なるタイミングで開閉動作させ、開閉動作させた前記流路開閉弁に連通する前記サンプル容器に、当該流路開閉弁が開閉動作したタイミングで前記試験容器の内部ガスを吸引して捕集する工程と、
複数の前記サンプル容器にそれぞれ異なるタイミングで捕集された前記内部ガスを、前記サンプル容器毎に分析する工程と、
を有する蓄電デバイスの発生ガス分析方法
The present invention provides the following generated gas analysis method for an electricity storage device.
A method for analyzing generated gas of an electricity storage device, which collects and analyzes gas generated from the electricity storage device, the method comprising:
A test container in which the power storage device having a housing is housed inside the container together with the housing, and the inside of the container is filled with an inert gas; a plurality of sample containers held at an internal pressure lower than that of the test container; A gas including a plurality of communication flow paths for communicating a test container and a plurality of the sample containers, and a flow path opening/closing valve provided between the test container and the sample container of the plurality of communication flow paths, respectively. Using a collector, after closing the flow passage opening/closing valve and starting a safety evaluation test of the electricity storage device, the flow passage opening/closing valves provided in the plurality of communication passages are provided for each of the communication passages. Opening and closing operations at different timings sequentially, and sucking and collecting the internal gas of the test container at the timing when the flow path opening and closing valve opens and closes in the sample container communicating with the opened and closed flow path opening and closing valve. When,
A step of analyzing the internal gas collected in each of the plurality of sample containers at different timings, for each sample container;
And a method for analyzing generated gas of an electricity storage device .

本発明によれば、蓄電デバイスの安全性評価試験時における発生ガスの経時変化の分析が可能となる。 According to the present invention, it is possible to analyze the change with time of the generated gas during the safety evaluation test of the electricity storage device.

蓄電デバイスの発生ガス分析装置の第1構成例である模式的な構成図である。It is a typical block diagram which is a 1st structural example of the generated gas analyzer of an electrical storage device. 第2構成例の分析装置の模式的な構成図である。It is a typical block diagram of the analyzer of a 2nd structural example. 第1構成例の分析装置のデータロガーが記録した電池表面温度と雰囲気温度と電圧との時間変化の様子を示すグラフである。It is a graph which shows the mode of time change of battery surface temperature, atmosphere temperature, and voltage which the data logger of the analyzer of the 1st example of composition recorded. 第2構成例の分析装置のデータロガーが記録した電圧、電流、電池温度、雰囲気温度との充電深度に対する変化の様子を示すグラフである。7 is a graph showing changes in voltage, current, battery temperature, and ambient temperature recorded by the data logger of the analyzer of the second configuration example with respect to the charging depth. 試験中に発生したガスの一部を分析器により連続的に分析した結果を示すグラフである。It is a graph which shows the result of having analyzed a part of gas generated during a test continuously with the analyzer. 従来の分析装置を示す模式的な構成図である。It is a typical block diagram which shows the conventional analyzer. 従来の分析装置による電圧、釘貫入深さ、電池表面温度、雰囲気温度の時間変化の様子を示すグラフである。It is a graph which shows the mode of the time change of voltage, nail penetration depth, battery surface temperature, and atmospheric temperature by the conventional analyzer.

以下、本発明の実施形態について、図面を参照して詳細に説明する。
<第1構成例>
図1は蓄電デバイスの発生ガス分析装置100の模式的な構成図である。この蓄電デバイスの発生ガス分析装置(以下、分析装置と略称する)100は、蓄電デバイス11の安全性評価試験中に蓄電デバイス11から発生するガスを捕集し、この捕集されたガスを分析する。ここで用いる蓄電デバイス11は、リチウムイオン電池を例示するが、他の種類の電池であってもよい。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
<First configuration example>
FIG. 1 is a schematic configuration diagram of an evolved gas analyzer 100 for an electricity storage device. The generated gas analyzer for the electricity storage device (hereinafter abbreviated as “analyzer”) 100 collects gas generated from the electricity storage device 11 during a safety evaluation test of the electricity storage device 11, and analyzes the collected gas. To do. The electricity storage device 11 used here is, for example, a lithium ion battery, but may be another type of battery.

分析装置100は、蓄電デバイス11から発生するガスを捕集するためのガス捕集器13と、ガス捕集器13が捕集したガスを分析する分析器15と、後述するデータロガー45と、を備える。 The analyzer 100 includes a gas collector 13 for collecting gas generated from the electricity storage device 11, an analyzer 15 for analyzing the gas collected by the gas collector 13, and a data logger 45 described later. Equipped with.

ガス捕集器13は、試験容器19と、試験容器19に接続される単数または複数のガス捕集ライン21と、を有する。試験容器19は、蓄電デバイス11を容器内部17に収容し、容器内部17が不活性ガスで満たされる。この状態で蓄電デバイス11の安全性評価試験が実施される。また、図示例のガス捕集ライン21は、合計4ラインを有する構成であるが、これに限らず、任意数のガス捕集ラインが配置可能である。 The gas collector 13 includes a test container 19 and one or more gas collection lines 21 connected to the test container 19. The test container 19 houses the electricity storage device 11 in the container interior 17, and the container interior 17 is filled with an inert gas. In this state, the safety evaluation test of the electricity storage device 11 is performed. Further, the gas collection line 21 in the illustrated example has a configuration having a total of four lines, but is not limited to this, and an arbitrary number of gas collection lines can be arranged.

ガス捕集ライン21は、試験容器19又は蓄電デバイス11の筐体から延設される連通流路23を有する。この連通流路23には、試験容器19側から順に、上流側流路開閉弁27、サンプル容器29、下流側流路開閉弁31が配置される。 The gas collection line 21 has a communication channel 23 extending from the housing of the test container 19 or the power storage device 11. In this communication flow path 23, an upstream flow path opening/closing valve 27, a sample container 29, and a downstream flow path opening/closing valve 31 are arranged in order from the test container 19 side.

上流側流路開閉弁27は、例えば駆動信号により開閉駆動される電磁弁であり、サンプル容器29へのガスの流入を制限する。サンプル容器29は、ガス捕集用の容器であり、図示しない真空ポンプ等に接続されて、試験容器19よりも低い内圧に保持される。下流側流路開閉弁31は、サンプル容器29へのガス捕集時には閉弁され、サンプル容器29に捕集された捕集ガスの分析器15への送出時に開弁される。 The upstream channel opening/closing valve 27 is, for example, an electromagnetic valve that is opened/closed by a drive signal, and limits the flow of gas into the sample container 29. The sample container 29 is a gas collection container, is connected to a vacuum pump or the like (not shown), and is maintained at an internal pressure lower than that of the test container 19. The downstream flow passage opening/closing valve 31 is closed when the gas is collected in the sample container 29, and is opened when the collected gas collected in the sample container 29 is sent to the analyzer 15.

連通流路23の試験容器19側の先端は、図示例のように蓄電デバイス11の筐体内部に配する他、蓄電デバイス11の外側近傍における試験容器19の内部で開口していてもよい。 The tip of the communication channel 23 on the side of the test container 19 may be arranged inside the housing of the electricity storage device 11 as in the illustrated example, or may be opened inside the test container 19 near the outside of the electricity storage device 11.

試験容器19には、安全性評価試験の一つである釘刺し試験を行うための釘差し部33が設けられる。釘差し部33は、蓄電デバイス11を突き刺す釘部33aを先端に有し、この釘部33aが上下動可能に支持される。この釘部33aの上下動は、手動であってもよく、モータ等による駆動機構による動作であってもよい。 The test container 19 is provided with a nail insertion portion 33 for performing a nail penetration test which is one of safety evaluation tests. The nail insertion portion 33 has a nail portion 33a at the tip thereof that pierces the electricity storage device 11, and the nail portion 33a is supported so as to be vertically movable. The vertical movement of the nail portion 33a may be manual, or may be operation by a drive mechanism such as a motor.

また、試験容器19に収容される蓄電デバイス11の表面には、蓄電デバイス11の温度を検出する温度センサ35が配置される。試験容器19の内部には、蓄電デバイス11の周囲温度を検出する温度センサ37が配置される。これら温度センサ35,37としては、熱電対、サーミスタ等が利用可能である。 Further, a temperature sensor 35 that detects the temperature of the electricity storage device 11 is arranged on the surface of the electricity storage device 11 housed in the test container 19. Inside the test container 19, a temperature sensor 37 that detects the ambient temperature of the electricity storage device 11 is arranged. A thermocouple, a thermistor, or the like can be used as the temperature sensors 35 and 37.

蓄電デバイス11の電極端子41A,41Bには、蓄電デバイス11の電流、電圧を検出する電流電圧検出部43が接続される。これら温度センサ35,37、電流電圧検出部43は、データロガー45に接続される。データロガー45は、接続された温度センサ35,37、電流電圧検出部43の各出力信号の経時変化を記録する。上記各部は、不図示のガス捕集駆動部により統括制御される。 To the electrode terminals 41A and 41B of the electricity storage device 11, a current/voltage detector 43 that detects the current and voltage of the electricity storage device 11 is connected. The temperature sensors 35 and 37 and the current/voltage detector 43 are connected to the data logger 45. The data logger 45 records changes over time in the output signals of the connected temperature sensors 35 and 37 and the current/voltage detector 43. The above-mentioned respective parts are integrally controlled by a gas collection drive part (not shown).

次に、上記構成の分析装置100を用いた発生ガス分析方法について説明する。
まず、被試験対象となる蓄電デバイス11を試験容器19にセットする。この蓄電デバイス11の表面に温度センサ35を取り付け、電流電圧検出部43のプローブを蓄電デバイス11の電極端子41A,41Bに取り付ける。そして、蓄電デバイス11が収容された試験容器19の容器内部を、図示しない不活性ガス供給部からヘリウムガスや窒素ガス等の不活性ガスで充満させる。
Next, a method of analyzing the generated gas using the analyzer 100 having the above configuration will be described.
First, the power storage device 11 to be tested is set in the test container 19. The temperature sensor 35 is attached to the surface of the electricity storage device 11, and the probe of the current/voltage detector 43 is attached to the electrode terminals 41A and 41B of the electricity storage device 11. Then, the inside of the test container 19 accommodating the electricity storage device 11 is filled with an inert gas such as helium gas or nitrogen gas from an inert gas supply unit (not shown).

一方、ガス捕集ライン21については、上流側流路開閉弁27、下流側流路開閉弁31を共に閉じ、サンプル容器29の内圧を、不図示の真空ポンプにより減圧しておく。このとき、サンプル容器29の内圧を試験容器19の内圧よりも低くする。 On the other hand, in the gas collection line 21, both the upstream flow passage opening/closing valve 27 and the downstream flow passage opening/closing valve 31 are closed, and the internal pressure of the sample container 29 is reduced by a vacuum pump (not shown). At this time, the internal pressure of the sample container 29 is made lower than the internal pressure of the test container 19.

以上の準備工程を完了した後、釘刺し部33を駆動して、釘部33aで蓄電デバイス11を突き刺し、安全性評価試験を開始する。 After completing the above-described preparation process, the nail piercing portion 33 is driven to pierce the electricity storage device 11 with the nail portion 33a, and the safety evaluation test is started.

この安全性評価試験開始後に、蓄電デバイス11の筐体内からガスが発生する。この発生したガスを、複数のガス捕集ライン21によって、異なるタイミングで順次に捕集する。このガス捕集方法を以下に具体的に説明する。 After the safety evaluation test is started, gas is generated from the inside of the housing of the electricity storage device 11. The generated gas is sequentially collected by the plurality of gas collection lines 21 at different timings. This gas collection method will be specifically described below.

上流側流路開閉弁27、及び下流側流路開閉弁31は、共に閉じた状態で安全性評価試験が開始される。試験開始後、複数の連通流路23に設けられた上流側流路開閉弁27を、順次に異なるタイミングで開く。すると、サンプル容器29の内圧よって試験容器19又は蓄電デバイス11の筐体内の内部ガスが、連通流路23を通じて吸引される。この吸引されたガスは、サンプル容器29の容器内にそれぞれ取り込まれる。そして、ガス捕集ライン21毎に、サンプル容器29の内圧が大気圧になった時点、又は所定時間後に上流側流路開閉弁27を閉じる。 The safety evaluation test is started in a state where both the upstream side flow passage opening/closing valve 27 and the downstream side flow passage opening/closing valve 31 are closed. After the test is started, the upstream side flow passage opening/closing valves 27 provided in the plurality of communication flow passages 23 are sequentially opened at different timings. Then, the internal pressure in the test container 19 or the housing of the electricity storage device 11 is sucked through the communication channel 23 due to the internal pressure of the sample container 29. The sucked gas is taken into the sample container 29. Then, for each gas collection line 21, the upstream side flow passage opening/closing valve 27 is closed when the internal pressure of the sample container 29 reaches the atmospheric pressure or after a predetermined time.

これにより、各ガス捕集ライン21のサンプル容器29には、ガス捕集ライン21毎に上流側流路開閉弁27を開閉動作させたタイミングで試験容器19側から吸引したガスが捕集される。つまり、各サンプル容器29には、経時的に異なるタイミングで、試験容器19又は蓄電デバイス11の筐体内から吸引されたガスが捕集される。 As a result, the sample container 29 of each gas collection line 21 collects the gas sucked from the test container 19 side at the timing of opening and closing the upstream flow passage opening/closing valve 27 for each gas collection line 21. .. That is, the gas sucked from the inside of the housing of the test container 19 or the power storage device 11 is collected in each sample container 29 at different timings with time.

次に、各サンプル容器29に捕集されたガスを、サンプル容器29毎に順次、分析器15により分析する。例えば、複数のガス捕集ライン21の各サンプル容器29を、時間軸上において、上流側流路開閉弁27を開閉動作させたタイミングの早い順序で、サンプル容器29を分析器15にセットし、捕集ガスの分析を行う。 Next, the gas collected in each sample container 29 is sequentially analyzed by the analyzer 15 for each sample container 29. For example, the sample containers 29 of the plurality of gas collection lines 21 are set on the analyzer 15 in the order of earlier opening/closing operation of the upstream side flow path opening/closing valve 27 on the time axis, Analyze the collected gas.

分析器15による捕集ガスの分析工程は、GC−MS法、GC法、IC法、ICP−AES法、ICP−MS法、吸光光度法、IR法の少なくとも一つの方式に基づく分析を実施する工程である。 In the step of analyzing the collected gas by the analyzer 15, analysis based on at least one of GC-MS method, GC method, IC method, ICP-AES method, ICP-MS method, absorptiometry method, and IR method is performed. It is a process.

GC−MS(Gas Chromatograph Mass Spectrometry)法は、ガスクロマトグラフ-質量分析計による分析手法である。この手法によれば、横軸に検出時間、縦軸に検出強度で表したクロマトグラムが測定され、これに基づいて分離した成分毎に測定されたマススペクトルからガス種の同定を行う。また、GC(Gas Chromatograph)法は、上記のクロマトグラムを用いる分析である。 The GC-MS (Gas Chromatograph Mass Spectrometry) method is an analysis method using a gas chromatograph-mass spectrometer. According to this method, a chromatogram represented by the detection time on the horizontal axis and the detection intensity on the vertical axis is measured, and the gas species is identified from the mass spectrum measured for each component separated based on this. The GC (Gas Chromatograph) method is an analysis using the above chromatogram.

IC(Immunochromatography)法は、溶液試料をイオン交換樹脂に通し、含まれているイオン種を分離し、電気伝導度を測定する。あらかじめ標準溶液で作成した電気伝導度とイオン含有率の関係線より試料中のイオン種の含有率を定量する測定法である。 In the IC (Immunochromatography) method, a solution sample is passed through an ion exchange resin to separate the contained ionic species, and the electrical conductivity is measured. It is a measuring method for quantitatively determining the content of ionic species in a sample from the relational line between the electric conductivity and the content of ions prepared in advance with a standard solution.

ICP−AES(Inductively Coupled Plasma Atomic Emission Spectroscopy)法は、高周波誘導結合プラズマ(ICP)を光源とする発光分光分析法である。試料溶液を霧状にしてArプラズマに導入し、励起された元素が基底状態に戻る際に放出される光を分光して、波長から元素の定性、強度から定量を行う。 The ICP-AES (Inductively Coupled Plasma Atomic Emission Spectroscopy) method is an emission spectroscopic analysis method using a high frequency inductively coupled plasma (ICP) as a light source. The sample solution is atomized and introduced into Ar plasma, and the light emitted when the excited element returns to the ground state is dispersed, and the element is qualitatively determined from the wavelength and quantitatively determined from the intensity.

上記した各分析方法の中から、蓄電デバイス11の種別、評価項目や評価目的に応じて、最適な方式が選定される。 An optimum method is selected from the above-described analysis methods according to the type of the power storage device 11, the evaluation item, and the evaluation purpose.

また、蓄電デバイス11の安全性評価試験は、上記した釘刺し試験に限らず、例えば、過充電試験、加熱試験、外部短絡試験、過放電試験、圧壊試験、充放電試験、保存試験、等のいずれであってもよい。 Further, the safety evaluation test of the electricity storage device 11 is not limited to the nail penetration test described above, and may be, for example, an overcharge test, a heating test, an external short circuit test, an overdischarge test, a crush test, a charge/discharge test, a storage test, or the like. It may be either.

具体的に各試験を説明すると、過充電試験は、充電電圧以上の電圧に対する耐久性を評価する試験であり、例えば、UN 38.3.4.7、IEC62660-2 6.3.2、UL2580 8、UL2271 7.2、SAE 2464 4.5.2、QC/T743-2006 6.2.12.2, 6.3.8.2、KMVSS 48.6.2、SBA S1101:2011 8.2.5 等に示される規格の試験が挙げられる。 Explaining each test concretely, the overcharge test is a test for evaluating durability against a voltage equal to or higher than the charging voltage, for example, UN 38.3.4.7, IEC62660-2 6.3.2, UL2580 8, UL2271 7.2, SAE. 2464 4.5.2, QC/T743-2006 6.2.12.2, 6.3.8.2, KMVSS 48.6.2, SBA S1101:2011 8.2.5 and the like.

加熱試験は、蓄電デバイスの単セルに対して、ヒータによる加熱試験を行い、セル表面の温度及び噴出したガスの温度を測定する。例えば、電池を一定速度で昇温させ、所定の温度に達した後、その温度で長時間十分保持し、発煙、発火及び破裂が起きないことを確認する。試験温度については、例えばUL規格〔UnderwritersLaboratories Inc., UL1642(リチウム電池)〕では150℃、リチウム二次電池安全性評価基準ガイドライン(電池工業会)では130℃となっている。 In the heating test, a single cell of the electricity storage device is subjected to a heating test with a heater, and the temperature of the cell surface and the temperature of the gas ejected are measured. For example, the temperature of the battery is raised at a constant rate, and after reaching a predetermined temperature, the temperature is sufficiently maintained for a long time, and it is confirmed that smoking, ignition and rupture do not occur. Regarding the test temperature, for example, the UL standard [Underwriters Laboratories Inc., UL1642 (lithium battery)] is 150° C., and the lithium secondary battery safety evaluation standard guideline (Battery Industry Association) is 130° C.

外部短絡試験は、電池の電極間を小抵抗で短絡させる試験であり、例えば次に示す規格の試験が挙げられる。UN 38.3.4.5、IEC62660-2 6.3.1、UL2580 9、UL2271 7、SAE 2464 4.5.1、QC/T743-2006 6.2.12.3, 6.3.8.3、KMVSS 48.6.5、SBA S1101:2011 8.2.1 The external short-circuit test is a test in which the electrodes of the battery are short-circuited with a small resistance, and examples thereof include tests of the following standards. UN 38.3.4.5, IEC62660-2 6.3.1, UL2580 9, UL2271 7, SAE 2464 4.5.1, QC/T743-2006 6.2.12.3, 6.3.8.3, KMVSS 48.6.5, SBA S1101:2011 8.2.1

圧壊試験は、例えば、IEC62133に規定される安全基準においては、平板で13kNまでの加重を与えても発火等しないものとされている。 In the crush test, for example, according to the safety standard defined in IEC62133, even if a flat plate is applied with a load of up to 13 kN, it does not ignite.

保存試験は、ISO 12405-1、IEC 62660-1、JIS C 8711、QC/T 743等に規定されている。 Storage tests are specified in ISO 12405-1, IEC 62660-1, JIS C 8711, QC/T 743, etc.

また、充放電試験は、充電と放電とを繰り返し実施し、電池の劣化を評価する試験であり、過放電試験は、放電状態で放置した場合の電池の劣化を評価する試験である。 The charge/discharge test is a test for evaluating deterioration of a battery by repeatedly performing charging and discharging, and the over-discharge test is a test for evaluating deterioration of the battery when left in a discharged state.

本構成の分析装置100によれば、蓄電デバイス11の安全性評価試験を行いながら、試験中に蓄電デバイス11から発生するガスを、複数のサンプル容器29に順次、経時的に異なるタイミングで捕集できる。捕集されたガスは、各サンプル容器29にそれぞれ収容されるため、これら複数のサンプル容器29のガスをそれぞれを調べることで、捕集されたガスをその捕集タイミング毎に分析できる。よって、安全性評価試験途中の経時的なガス発生量、発生ガス成分等が把握でき、時間経過に伴う発生ガスの定量分析が可能となる。 According to the analyzer 100 of this configuration, while performing the safety evaluation test of the electricity storage device 11, the gas generated from the electricity storage device 11 during the test is sequentially collected in the plurality of sample containers 29 at different timings with time. it can. Since the collected gas is stored in each sample container 29, the collected gas can be analyzed at each collection timing by examining the gas in each of the plurality of sample containers 29. Therefore, it is possible to grasp the amount of gas generated over time, the components of the generated gas, etc. during the safety evaluation test, and to quantitatively analyze the generated gas over time.

<第2構成例>
次に、蓄電デバイスの発生ガス分析装置の第2構成例を説明する。
図2は第2構成例の分析装置200の模式的な構成図である。以降の説明では、前述の第1構成例の分析装置100と同一の部品や部材に対しては、同一の符号を付与することで、その説明を省略又は簡単化する。
<Second configuration example>
Next, a second configuration example of the generated gas analyzer of the electricity storage device will be described.
FIG. 2 is a schematic configuration diagram of the analysis device 200 of the second configuration example. In the following description, the same parts and members as those of the analyzer 100 of the first configuration example described above will be assigned the same reference numerals, and the description thereof will be omitted or simplified.

本構成の分析装置200は、蓄電デバイス11が収容される試験容器19と、分析器15と、蓄電デバイス11の筐体内と分析器15とを連通させ、ガス排出流路となる連通流路51と、不活性ガス供給部53と、ガスバッグ55と、データロガー45と、を備える。 The analysis apparatus 200 of this configuration has a test container 19 in which the electricity storage device 11 is housed, an analyzer 15, and a communication passage 51 that serves as a gas discharge passage that connects the inside of the housing of the electricity storage device 11 to the analyzer 15. And an inert gas supply unit 53, a gas bag 55, and a data logger 45.

不活性ガス供給部53は、蓄電デバイス11の筐体内に不活性ガスを供給し、ガス排出駆動部として機能する。ガスバッグ55は、不活性ガスの供給により蓄電デバイス11から排出されるガスを捕集する。 The inert gas supply unit 53 supplies an inert gas into the housing of the electricity storage device 11 and functions as a gas discharge drive unit. The gas bag 55 collects the gas discharged from the electricity storage device 11 by supplying the inert gas.

排出ガスが流れる連通流路51からガスバッグ55に向けて分岐する分岐流路57が設けられる。 A branch channel 57 is provided that branches from the communication channel 51 through which the exhaust gas flows toward the gas bag 55.

データロガー45には、蓄電デバイス11の表面に設けた温度センサ35、及び試験容器19内に配置されて周囲温度を検出する温度センサ37、電極端子41A,41Bに接続される電流電圧検出部43からの各種の出力信号が入力される。 The data logger 45 includes a temperature sensor 35 provided on the surface of the electricity storage device 11, a temperature sensor 37 arranged in the test container 19 to detect an ambient temperature, and a current/voltage detector 43 connected to the electrode terminals 41A and 41B. Various output signals from are input.

次に、上記構成の分析装置200を用いた発生ガス分析方法について説明する。
まず、被試験対象となる蓄電デバイス11を試験容器19にセットし、温度センサ35を蓄電デバイス11の表面に配置して、電流電圧検出部43のプローブを電極端子41A,41Bに接続する。
Next, a method of analyzing generated gas using the analyzer 200 having the above configuration will be described.
First, the power storage device 11 to be tested is set in the test container 19, the temperature sensor 35 is arranged on the surface of the power storage device 11, and the probe of the current/voltage detection unit 43 is connected to the electrode terminals 41A and 41B.

以上の準備工程を完了した後、蓄電デバイス11の安全性評価試験を開始する。蓄電デバイス11の安全性評価試験は、前述同様に、釘刺し試験、過充電試験、加熱試験、外部短絡試験、過放電試験、圧壊試験、充放電試験、保存試験のいずれであってもよい。 After completing the above preparation steps, the safety evaluation test of the electricity storage device 11 is started. The safety evaluation test of the electricity storage device 11 may be any of a nail penetration test, an overcharge test, a heating test, an external short circuit test, an overdischarge test, a crush test, a charge/discharge test, and a storage test, as described above.

この安全性評価試験開始後に、蓄電デバイス11からガスが発生する。発生したガスは、特定のタイミングで不活性ガス供給部53により蓄電デバイス11の筐体内にHeガスが送気されることで、連通流路51に押し出される。押し出されたガスは、ガスバッグ55に捕集されると共に、その一部が分析器15に送られて分析される。 After this safety evaluation test is started, gas is generated from the electricity storage device 11. The generated gas is pushed out into the communication channel 51 by supplying the He gas into the housing of the electricity storage device 11 by the inert gas supply unit 53 at a specific timing. The extruded gas is collected in the gas bag 55, and a part of the gas is sent to the analyzer 15 for analysis.

この場合の分析器15による分析工程は、GC−MS法又はIR法に基づく分析が実施される。 In the analysis step by the analyzer 15 in this case, analysis based on the GC-MS method or the IR method is performed.

不活性ガス供給部53からの送気は、安全性評価試験開始後に、断続的、又は連続的に行うことで、分析器15へ経時的に異なるタイミングで順次発生ガスを送ることができる。これにより、分析器15は、経時的に異なるタイミングで蓄電デバイス11から送気されたガスを、異なるタイミング毎に分析できる。よって、安全性評価試験途中の経時的なガス発生量、発生ガス成分等が把握でき、時間経過に伴う発生ガスの定量分析が可能となる。 By supplying air from the inert gas supply unit 53 intermittently or continuously after the start of the safety evaluation test, the generated gas can be sequentially sent to the analyzer 15 at different timings with time. Thereby, the analyzer 15 can analyze the gas blown from the power storage device 11 at different timings with time at different timings. Therefore, it is possible to grasp the amount of gas generated over time, the components of the generated gas, etc. during the safety evaluation test, and to quantitatively analyze the generated gas over time.

不活性ガス供給部53の送気タイミングは任意に変更でき、所望の時間間隔で分析が行える。また、不活性ガス供給部53から連続的に送気する場合、分析器15の分析工程の繰り返しサイクル時間毎で経時的な分析が可能となる。 The air supply timing of the inert gas supply unit 53 can be arbitrarily changed, and analysis can be performed at desired time intervals. Further, when air is continuously supplied from the inert gas supply unit 53, it is possible to perform a time-dependent analysis at each repeating cycle time of the analysis process of the analyzer 15.

次に、上記した第1構成例の分析装置100と、第2構成例の分析装置200による分析結果と、比較例として安全性評価試験中に捕集し続けたガスを纏めて分析した分析結果とを説明する。 Next, the analysis results obtained by the analysis apparatus 100 having the first configuration example and the analysis apparatus 200 having the second configuration example, and the analysis results obtained by collectively analyzing the gases that have continuously been collected during the safety evaluation test as a comparative example. And explain.

<第1構成例の分析装置100による分析結果>
図1に示す分析装置100を用い、蓄電デバイス11である3Ahのリチウムイオン電池に関する安全性評価試験として、釘刺し試験を行った。試験中、リチウムイオン電池の表面温度と試験容器19の雰囲気温度を温度センサ35,37で検出し、データロガー45に記録した。また、電流電圧検出部43により、電池電圧もデータロガー45に記録した。そして、リチウムイオン電池から発生したガスを、試験中4つの時間帯(釘刺し前、釘刺し3秒後、釘刺し6秒後、釘刺し6分後における、各時間帯の上流側流路開閉弁27の開放時間3秒間)で、複数のサンプル容器29を用いて経時的に断続して捕集して、捕集したガスのガス発生量と発生ガス成分を分析した。
<Analysis result by the analyzer 100 of the first configuration example>
Using the analyzer 100 shown in FIG. 1, a nail penetration test was performed as a safety evaluation test on the 3 Ah lithium ion battery which is the electricity storage device 11. During the test, the surface temperature of the lithium ion battery and the ambient temperature of the test container 19 were detected by the temperature sensors 35 and 37 and recorded in the data logger 45. The battery voltage was also recorded in the data logger 45 by the current/voltage detector 43. Then, the gas generated from the lithium-ion battery is supplied to the upstream side channel opening/closing of each time zone during four time zones during the test (before nail penetration, 3 seconds after nail penetration, 6 seconds after nail penetration, and 6 minutes after nail penetration). With the opening time of the valve 27 being 3 seconds), a plurality of sample containers 29 were intermittently collected with time, and the gas generation amount and the generated gas component of the collected gas were analyzed.

データロガーで記録した電池表面温度と雰囲気温度と電圧の時間変化の様子を図3のグラフに示す。試験を開始して1.22分程経過した付近で、リチウムイオン電池に釘刺し部33の釘部33aが刺さり始め、短絡が生じて電圧が大きく降下し始めた。これと同時にリチウムイオン電池の表面温度が上昇し始めた。一度大きく降下した電圧は1.4分程経過した時点で4V付近まで復帰して、その後は4V付近で維持し続けた。リチウムイオン電池の表面温度は最高温度で55℃付近まで上昇した。 FIG. 3 is a graph showing the changes over time in the battery surface temperature, the ambient temperature and the voltage recorded by the data logger. Around 1.22 minutes after the start of the test, the nail portion 33a of the nail piercing portion 33 began to pierce the lithium-ion battery, a short circuit occurred, and the voltage started to largely drop. At the same time, the surface temperature of the lithium ion battery started to rise. The voltage that drastically dropped once returned to around 4V when about 1.4 minutes passed, and continued to be maintained at around 4V after that. The maximum surface temperature of the lithium-ion battery rose to around 55°C.

リチウムイオン電池から発生したガスを、試験中4つの時間帯(釘刺し前、釘刺し3秒後、釘刺し6秒後、釘刺し6分後、各時間帯の弁開放時間3秒間)で経時的に断続して捕集して、分析した結果を表1に示す。発生したガスの主成分は、水素、二酸化炭素、一酸化炭素、メタン、エタン、エチレンであることが判明した。各ガスの濃度は、釘刺し3秒後で高く、釘刺し6秒後では濃度が半減以下となり、釘刺し6分後の濃度と大差がなかった。この結果から、釘刺し直後の3秒間の内にガスが多く発生したことが判明した。 The gas generated from the lithium-ion battery was aged for 4 time periods during the test (before nail penetration, 3 seconds after nail penetration, 6 seconds after nail penetration, 6 minutes after nail penetration, and 3 seconds after valve opening time for 3 seconds). Table 1 shows the results of analysis by intermittently collecting and collecting. It was found that the main components of the generated gas were hydrogen, carbon dioxide, carbon monoxide, methane, ethane and ethylene. The concentration of each gas was high 3 seconds after nail pricking and decreased to half or less 6 seconds after nail pricking, which was not much different from the concentration 6 minutes after nail pricking. From this result, it was found that a large amount of gas was generated within 3 seconds immediately after nail penetration.

<第2構成例の分析装置200による分析結果>
図2に示す分析装置200を用い、安全性評価試験中に発生したガスをガスバッグに捕集すると共に、ガスの一部を分析器に直接送気して分析した。蓄電デバイス11として5Ahの角形リチウムイオン電池を用い、過充電試験を実施した。試験中、リチウムイオン電池の表面温度と試験容器19の雰囲気温度を温度センサ35,37により検出し、データロガー45に記録した。また、電流電圧検出部43により、電池電圧、通電電流を検出してデータロガー45に記録した。試験中にリチウムイオン電池から発生したガスは、不活性ガス供給部53からHeガスをリチウムイオン電池の筐体内に送気して、筐体内から発生ガスを押し出すことによってガスバッグに捕集した。また、押し出された発生ガスの一部を分析器15である質量分析装置に送気し、試験中、連続的に分析した。
<Analysis result by the analyzer 200 of the second configuration example>
Using the analyzer 200 shown in FIG. 2, the gas generated during the safety evaluation test was collected in a gas bag, and part of the gas was sent directly to the analyzer for analysis. An overcharge test was performed using a 5 Ah prismatic lithium ion battery as the electricity storage device 11. During the test, the surface temperature of the lithium ion battery and the ambient temperature of the test container 19 were detected by the temperature sensors 35 and 37 and recorded in the data logger 45. Further, the battery voltage and the energized current were detected by the current/voltage detector 43 and recorded in the data logger 45. The gas generated from the lithium ion battery during the test was collected in the gas bag by sending He gas from the inert gas supply unit 53 into the housing of the lithium ion battery and pushing the generated gas out of the housing. Moreover, a part of the generated gas pushed out was sent to the mass spectrometer which is the analyzer 15, and was continuously analyzed during the test.

データロガー45で記録した電圧、電流、電池温度、雰囲気温度との充電深度に対する変化の様子を図4のグラフに示す。なお、グラフ縦軸の電圧及び電流の目盛りは、共通の値で示してある。図4に示すように、放電状態(充電深度:SOCが0%)から充電を開始した。SOC150%付近からリチウムイオン電池の温度上昇が観測され始め、SOC350%付近で急激な温度上昇とともにリチウムイオン電池から発煙が観察された。 The graph of FIG. 4 shows how the voltage, current, battery temperature, and ambient temperature recorded by the data logger 45 change with respect to the charging depth. The scales of voltage and current on the vertical axis of the graph are shown by common values. As shown in FIG. 4, charging was started from the discharge state (charge depth: SOC 0%). A temperature rise of the lithium ion battery started to be observed from around 150% SOC, and a smoke was observed from the lithium ion battery with a rapid temperature rise around 350% SOC.

安全性評価試験の開始から終了まで間、ガスバッグ55に捕集した発生ガスの分析結果を表2に示す。雰囲気ガスのHeを除くと、試験中に発生したガスの主要成分は、COとH、CO、エタン、ジエチルカーボネート(DEC)であることが判明した。また、発生ガスの量は、それぞれ0.69L、0.66L、0.15L、0.12L、0.11Lであった。 Table 2 shows the analysis results of the generated gas collected in the gas bag 55 from the start to the end of the safety evaluation test. It was found that the main constituents of the gas generated during the test were CO 2 and H 2 , CO, ethane, and diethyl carbonate (DEC), except for He as the atmospheric gas. The amounts of generated gas were 0.69L, 0.66L, 0.15L, 0.12L and 0.11L, respectively.

試験中に発生したガスの一部を分析器により連続的に分析した結果を図5に示す。SOC150%付近でCOが急激に発生するのが判明し、また、この付近からCO、メタン、エタンも発生量が増えることが判明した。ガスバッグ55に捕集した発生ガスの定量分析結果を用いることにより、測定間隔(220msec)当たりの発生量を算出することができ、COはSOC130%までは発生量が略0であったのが、SOC170%以降では測定間隔当たり20〜25μL量の発生があることが判明した。 The results of continuous analysis of part of the gas generated during the test with an analyzer are shown in FIG. It was found that CO 2 was abruptly generated near the SOC of 150%, and that CO, methane, and ethane were also increased in the amount around this. By using the quantitative analysis result of the generated gas collected in the gas bag 55, the generated amount per measurement interval (220 msec) can be calculated, and the generated amount of CO 2 was almost 0 up to SOC 130%. However, it was found that the amount of 20 to 25 μL was generated per measurement interval after SOC 170%.

<比較例の分析装置の構成>
図6は、比較例としての分析装置の模式的な構成を示す参考図である。
比較例の分析装置300は、釘部33aを有する釘刺し部33が昇降フレーム61に取り付けられたフレーム63と、蓄電デバイス11が容器内部に収容された試験容器19と、試験容器19に配管65を通じて連通されたバッファータンク67と、バッファータンク67に配管69を通じて連通されたガスバッグ71とを備える。試験容器19には、配管73を通じて不活性ガスが供給可能となっている。
<Structure of Analytical Device of Comparative Example>
FIG. 6 is a reference diagram showing a schematic configuration of an analyzer as a comparative example.
The analyzer 300 of the comparative example includes a frame 63 in which the nail piercing part 33 having the nail part 33 a is attached to the elevating frame 61, a test container 19 in which the electricity storage device 11 is housed, and a pipe 65 in the test container 19. And a gas bag 71 connected to the buffer tank 67 through a pipe 69. An inert gas can be supplied to the test container 19 through a pipe 73.

この分析装置300は、釘刺し試験である安全性評価試験中に蓄電デバイス11から発生したガス全量を試験容器19内に蓄積させ、試験後に、試験容器19内のガスを試験容器19から配管65を通じてバッファータンク67に連通したガスバッグ71に移し替える。そして、ガスバッグ71に溜められた蓄電デバイス11からの発生ガスを含むガスを不図示の分析器を用いて分析する。 This analyzer 300 accumulates all the gas generated from the electricity storage device 11 in the test container 19 during the safety evaluation test, which is a nail penetration test, and after the test, the gas in the test container 19 is piped from the test container 19 to the pipe 65. Through to the gas bag 71 communicating with the buffer tank 67. Then, the gas containing the gas generated from the electricity storage device 11 stored in the gas bag 71 is analyzed using an analyzer (not shown).

<比較例の分析装置による分析結果>
上記構成の分析装置300を用い、5Ahのリチウムイオン電池に関する釘刺し試験を実施した。試験中、リチウムイオン電池の表面温度と試験容器19の雰囲気温度を熱電対で計測し、データロガーに記録した。また電池電圧もデータロガーに記録した。試験中に発生したガスは、全てガスバッグ71に捕集し、捕集ガスの分析(ガス発生量と発生ガス成分)を行った。
<Analysis result by analyzer of comparative example>
Using the analyzer 300 having the above structure, a nail penetration test was carried out on a 5 Ah lithium-ion battery. During the test, the surface temperature of the lithium ion battery and the ambient temperature of the test container 19 were measured with a thermocouple and recorded in a data logger. The battery voltage was also recorded on the data logger. All the gas generated during the test was collected in the gas bag 71, and the collected gas was analyzed (gas generation amount and generated gas component).

図7はデータロガーで記録した電圧、釘貫入深さ、電池表面温度、雰囲気温度の時間変化の様子を示すグラフである。なお、グラフ縦軸の釘貫入深さ及び温度の目盛りは、共通の値で示してある。この記録結果によれば、0.13分程経過した付近でリチウムイオン電池に釘が突き刺し始めたと考えられ、それと同時に電池電圧が降下し始め、電池温度と容器内温度の上昇が観測された。約0.3分経過した付近で電圧はゼロとなった。 FIG. 7 is a graph showing changes over time in voltage, nail penetration depth, battery surface temperature, and ambient temperature recorded by a data logger. In addition, the scales of the nail penetration depth and the temperature on the vertical axis of the graph are shown by common values. According to this recording result, it is considered that the nail started to pierce the lithium ion battery in the vicinity of about 0.13 minutes, and at the same time, the battery voltage started to drop and the battery temperature and the temperature inside the container were observed to rise. The voltage became zero when about 0.3 minutes had passed.

ガスバッグ71に捕集されたガスを分析器で分析した結果、捕集ガスの主成分はH、CO、CO、CH、Cであることが判明した。また、その量はそれぞれH:0.10L、CO:1.3L、CO:4.0L、CH:0.28L、C:1.1Lであること、及び発生したガスの全量が約8Lであることが判明した。しかし、各ガス成分及びガス発生量の経時的な変化については不明である。 As a result of analyzing the gas collected in the gas bag 71 with an analyzer, it was found that the main components of the collected gas were H 2 , CO, CO 2 , CH 4 , and C 2 H 4 . Further, the amount each of H 2: 0.10L, CO: 1.3L , CO 2: 4.0L, CH 4: 0.28L, C 2 H 4: it is 1.1 L, and the gas generating The total volume was found to be about 8L. However, it is unclear about changes over time in each gas component and gas generation amount.

本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせることや、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。 The present invention is not limited to the above-described embodiments, and the configurations of the embodiments may be combined with each other, or may be modified and applied by those skilled in the art based on the description of the specification and well-known techniques. The invention is planned and is included in the scope of protection required.

以上の通り、本明細書には次の事項が開示されている。
(1) 蓄電デバイスから発生するガスを捕集して分析する蓄電デバイスの発生ガス分析方法であって、
前記蓄電デバイスを容器内部に収容し、前記容器内部が不活性ガスで満たされる試験容器と、前記試験容器よりも低い内圧に保持される複数のサンプル容器と、前記試験容器と複数の前記サンプル容器とを連通させる複数の連通流路と、複数の前記連通流路の前記試験容器と前記サンプル容器との間にそれぞれ設けられた流路開閉弁と、を備えるガス捕集器を用い、前記流路開閉弁を閉じて前記蓄電デバイスの安全性評価試験を開始した後、複数の前記連通流路に設けられた前記流路開閉弁を、前記連通流路毎に順次異なるタイミングで開閉動作させ、開閉動作させた前記流路開閉弁に連通する前記サンプル容器に、当該流路開閉弁が開閉動作したタイミングで前記試験容器の内部ガスを吸引して捕集する工程と、
複数の前記サンプル容器にそれぞれ異なるタイミングで捕集された前記内部ガスを、前記サンプル容器毎に分析する工程と、
を有する蓄電デバイスの発生ガス分析方法。
この蓄電デバイスの発生ガス分析方法によれば、試験容器の内部ガスを、経時的に異なるタイミングで吸引してサンプル容器内に捕集し、これらのサンプル容器に捕集されたガスを、分析器によりサンプル容器毎に分析する。これにより、発生ガスの経時変化の分析が可能となる。
As described above, the following items are disclosed in this specification.
(1) A method for analyzing generated gas of an electric storage device, which collects and analyzes gas generated from the electric storage device,
A test container containing the electricity storage device inside the container, the inside of the container being filled with an inert gas, a plurality of sample containers held at an internal pressure lower than that of the test container, the test container and the plurality of sample containers Using a gas collector provided with a plurality of communication channels for communicating with each other, and a channel opening/closing valve respectively provided between the test container and the sample container of the plurality of communication channels, After starting the safety evaluation test of the electricity storage device by closing the passage opening/closing valve, the passage opening/closing valves provided in the plurality of the communication passages are sequentially opened/closed at different timings for each of the communication passages, A step of sucking and collecting the internal gas of the test container at the timing when the flow path opening/closing valve is opened/closed, in the sample container communicating with the flow path opening/closing valve that has been opened/closed;
A step of analyzing the internal gas collected in each of the plurality of sample containers at different timings, for each sample container;
And a method for analyzing generated gas of an electricity storage device.
According to the method for analyzing the generated gas of the electricity storage device, the gas inside the test container is sucked at different timings with time to be collected in the sample container, and the gas collected in these sample containers is analyzed by the analyzer. Analyze each sample container according to. As a result, it becomes possible to analyze the change with time of the generated gas.

(2) 前記内部ガスを分析する工程は、GC−MS法、GC法、IC法、ICP−AES法、ICP−MS法、吸光光度法、IR法の少なくとも一つに基づいて分析する工程である(1)の蓄電デバイスの発生ガス分析方法。
この蓄電デバイスの発生ガス分析方法によれば、各種の分析方法が選択的に実施されることで、発生ガスの所望の分析が可能となる。
(2) The step of analyzing the internal gas is a step of analyzing based on at least one of GC-MS method, GC method, IC method, ICP-AES method, ICP-MS method, absorptiometry method, and IR method. (1) The method for analyzing generated gas of an electricity storage device according to (1).
According to the method of analyzing the generated gas of the electricity storage device, various analysis methods are selectively carried out, so that the desired analysis of the generated gas becomes possible.

(3) 蓄電デバイスから発生するガスを捕集して分析する蓄電デバイスの発生ガス分析方法であって、
前記蓄電デバイスを容器内部に収容する試験容器と、前記蓄電デバイスの筐体内に不活性ガスを供給する不活性ガス供給部と、前記蓄電デバイスの筐体内の内部ガスを排出するガス排出流路と、を備えるガス捕集器を用い、前記蓄電デバイスの安全性評価試験の開始後、前記不活性ガス供給部から不活性ガスを特定のタイミングで前記蓄電デバイスの筐体内に供給する工程と、
前記不活性ガスの供給タイミングで、前記蓄電デバイスの筐体内から排出される前記内部ガスを、前記特定のタイミング毎に分析する工程と、
を有する蓄電デバイスの発生ガス分析方法。
この蓄電デバイスの発生ガス分析方法によれば、蓄電デバイスの筐体内の内部ガスを、経時的に異なるタイミングで押し出して分析器により分析する。これにより、発生ガスの経時変化の分析が可能となる。
(3) A method for analyzing generated gas of an electricity storage device, which collects and analyzes gas generated from the electricity storage device,
A test container that accommodates the power storage device inside a container, an inert gas supply unit that supplies an inert gas into the housing of the power storage device, and a gas discharge channel that discharges the internal gas in the housing of the power storage device. Using a gas collector comprising, after starting the safety evaluation test of the electricity storage device, a step of supplying an inert gas from the inert gas supply unit into the housing of the electricity storage device at a specific timing,
A step of analyzing the internal gas discharged from the inside of the housing of the electricity storage device at each of the specific timings at the supply timing of the inert gas;
And a method for analyzing generated gas of an electricity storage device.
According to the method for analyzing the generated gas of the electricity storage device, the internal gas in the housing of the electricity storage device is pushed out at different timings with time and analyzed by the analyzer. As a result, it becomes possible to analyze the change with time of the generated gas.

(4) 前記内部ガスを分析する工程は、GC−MS法又はIR法に基づいて分析する工程である(3)の蓄電デバイスの発生ガス分析方法。
この蓄電デバイスの発生ガス分析方法によれば、各種の分析方法が選択的に実施されることで、発生ガスの所望の分析が可能となる。
(4) The method of analyzing the generated gas of the electricity storage device according to (3), wherein the step of analyzing the internal gas is a step of analyzing based on a GC-MS method or an IR method.
According to the method of analyzing the generated gas of the electricity storage device, various analysis methods are selectively carried out, so that the desired analysis of the generated gas becomes possible.

(5) 前記安全性評価試験は、釘刺し試験、過充電試験、加熱試験、外部短絡試験、過放電試験、圧壊試験、充放電試験、保存試験の少なくとも一つの試験である(1)乃至(4)のいずれか一つの蓄電デバイスの発生ガス分析方法。
この蓄電デバイスの発生ガス分析方法によれば、各種の安全性評価試験において発生するガスの経時変化の分析が可能となる。
(5) The safety evaluation test is at least one of a nail penetration test, an overcharge test, a heating test, an external short circuit test, an overdischarge test, a crush test, a charge/discharge test, and a storage test (1) to ( 4) A method for analyzing generated gas of any one of the electric storage devices.
According to the method of analyzing the generated gas of the electricity storage device, it is possible to analyze the change with time of the gas generated in various safety evaluation tests.

(6) 前記内部ガスを分析する工程は、発生ガス量、ガス成分の少なくとも一方を求める工程である(1)乃至(5)のいずれか一つの蓄電デバイスの発生ガス分析方法。
この蓄電デバイスの発生ガス分析方法によれば、発生ガスのガス量の経時変化、ガス成分の経時変化が求められる。
(6) The method for analyzing the generated gas of the electricity storage device according to any one of (1) to (5), wherein the step of analyzing the internal gas is a step of determining at least one of a generated gas amount and a gas component.
According to the method for analyzing the evolved gas of the electricity storage device, the change in the amount of the evolved gas over time and the change in the gas component over time are required.

(7) 蓄電デバイスから発生するガスを捕集して分析する蓄電デバイスの発生ガス分析装置であって、
前記蓄電デバイスを容器内部に収容し、前記容器内部が不活性ガスで満たされる試験容器と、
前記試験容器よりも低い内圧に保持される複数のサンプル容器と、
前記試験容器と複数の前記サンプル容器とを連通させる複数の連通流路と、
複数の前記連通流路の前記試験容器と前記サンプル容器との間にそれぞれ設けられた流路開閉弁と、
複数の前記連通流路の前記流路開閉弁を、前記連通流路毎に順次異なるタイミングで開閉動作させ、開閉動作された前記流路開閉弁に連通する前記サンプル容器に、当該流路開閉弁が開閉動作されたタイミングで前記試験容器の内部ガスを吸引して捕集させるガス捕集駆動部と、
複数の前記サンプル容器にそれぞれ異なるタイミングで捕集された前記内部ガスを、前記サンプル容器毎に分析する分析器と、
を具備する蓄電デバイスの発生ガス分析装置。
(7) A generated gas analyzer for an electricity storage device, which collects and analyzes gas generated from the electricity storage device,
A test container in which the electricity storage device is housed inside a container and the inside of the container is filled with an inert gas,
A plurality of sample containers held at a lower internal pressure than the test container,
A plurality of communication channels for communicating the test container and the plurality of sample containers,
A flow path opening/closing valve respectively provided between the test container and the sample container of the plurality of communication flow paths,
The flow passage opening/closing valves of the plurality of communication passages are sequentially opened/closed at different timings for each of the communication passages, and the flow passage opening/closing valves are connected to the sample container communicating with the opened/closed flow passage opening/closing valves. A gas collection drive unit that sucks and collects the internal gas of the test container at a timing when the opening and closing operation is performed,
The internal gas collected at a different timing in each of the plurality of sample containers, an analyzer for analyzing each sample container,
A generated gas analyzer for an electricity storage device, comprising:

(8) 蓄電デバイスから発生するガスを捕集して分析する蓄電デバイスの発生ガス分析装置であって、
前記蓄電デバイスを容器内部に収容する試験容器と、
前記蓄電デバイスの筐体内に不活性ガスを供給する不活性ガス供給部と、
前記蓄電デバイスの筐体内の内部ガスが排出されるガス排出流路と、
前記不活性ガス供給部から不活性ガスを特定のタイミングで前記蓄電デバイスの筐体内に供給させ、前記内部ガスを前記ガス排出流路に排出させるガス排出駆動部と、
前記ガス排出流路に前記特定のタイミングで排出された前記内部ガスを、前記特定のタイミング毎に分析する分析器と、
を備える蓄電デバイスの発生ガス分析装置。
(8) A generated gas analyzer for an electric storage device, which collects and analyzes gas generated from the electric storage device,
A test container for housing the electricity storage device inside the container,
An inert gas supply unit that supplies an inert gas into the housing of the electricity storage device,
A gas exhaust flow path through which the internal gas in the housing of the electricity storage device is exhausted;
A gas discharge driving unit configured to supply an inert gas from the inert gas supply unit into the housing of the electricity storage device at a specific timing, and discharge the internal gas to the gas discharge flow path,
The internal gas discharged at the specific timing to the gas discharge channel, an analyzer for analyzing each specific timing,
An apparatus for analyzing generated gas of an electricity storage device, comprising:

11 蓄電デバイス
13 ガス捕集器
15 分析器
17 容器内部
19 試験容器
21 ガス捕集ライン
23 連通流路
27 上流側流路開閉弁(流路開閉弁)
29 サンプル容器
31 下流側流路開閉弁
33 釘差し部
33a 釘部
35,37 温度センサ
41A,41B 電極端子
43 電流電圧検出部
45 データロガー
51 連通流路(ガス排出流路)
53 不活性ガス供給部(ガス排出駆動部)
55 ガスバッグ
57 分岐流路
100,200 分析装置(蓄電デバイスの発生ガス分析装置)
11 Electric Storage Device 13 Gas Collector 15 Analyzer 17 Inside Container 19 Test Container 21 Gas Collection Line 23 Communication Channel 27 Upstream Channel Open/Close Valve (Channel Open/Close Valve)
29 Sample container 31 Downstream flow path opening/closing valve 33 Nail insertion part 33a Nail part 35, 37 Temperature sensor 41A, 41B Electrode terminal 43 Current voltage detection part 45 Data logger 51 Communication flow path (gas discharge flow path)
53 Inert gas supply unit (gas discharge drive unit)
55 gas bag 57 branched flow channels 100, 200 analyzer (gas generator for storage device)

Claims (4)

蓄電デバイスから発生するガスを捕集して分析する蓄電デバイスの発生ガス分析方法であって、
筐体を有する前記蓄電デバイスを前記筐体ごと容器内部に収容し、前記容器内部が不活性ガスで満たされる試験容器と、前記試験容器よりも低い内圧に保持される複数のサンプル容器と、前記試験容器と複数の前記サンプル容器とを連通させる複数の連通流路と、複数の前記連通流路の前記試験容器と前記サンプル容器との間にそれぞれ設けられた流路開閉弁と、を備えるガス捕集器を用い、前記流路開閉弁を閉じて前記蓄電デバイスの安全性評価試験を開始した後、複数の前記連通流路に設けられた前記流路開閉弁を、前記連通流路毎に順次異なるタイミングで開閉動作させ、開閉動作させた前記流路開閉弁に連通する前記サンプル容器に、当該流路開閉弁が開閉動作したタイミングで前記試験容器の内部ガスを吸引して捕集する工程と、
複数の前記サンプル容器にそれぞれ異なるタイミングで捕集された前記内部ガスを、前記サンプル容器毎に分析する工程と、
を有する蓄電デバイスの発生ガス分析方法。
A method for analyzing generated gas of an electricity storage device, which collects and analyzes gas generated from the electricity storage device, the method comprising:
A test container in which the power storage device having a housing is housed inside the container together with the housing, and the inside of the container is filled with an inert gas; a plurality of sample containers held at an internal pressure lower than that of the test container; A gas including a plurality of communication flow paths for communicating a test container and a plurality of the sample containers, and a flow path opening/closing valve provided between the test container and the sample container of the plurality of communication flow paths, respectively. Using a collector, after closing the flow passage opening/closing valve and starting a safety evaluation test of the electricity storage device, the flow passage opening/closing valves provided in the plurality of communication passages are provided for each of the communication passages. Opening and closing operations at different timings sequentially, and sucking and collecting the internal gas of the test container at the timing when the flow path opening and closing valve opens and closes in the sample container communicating with the opened and closed flow path opening and closing valve. When,
A step of analyzing the internal gas collected in each of the plurality of sample containers at different timings, for each sample container;
And a method for analyzing generated gas of an electricity storage device.
前記内部ガスを分析する工程は、GC−MS法、GC法、IC法、ICP−AES法、ICP−MS法、吸光光度法、IR法の少なくとも一つに基づいて分析する工程である請求項1に記載の蓄電デバイスの発生ガス分析方法。 The step of analyzing the internal gas is a step of analyzing based on at least one of a GC-MS method, a GC method, an IC method, an ICP-AES method, an ICP-MS method, an absorptiometric method, and an IR method. 2. The method for analyzing generated gas of the electricity storage device according to 1. 前記安全性評価試験は、釘刺し試験、過充電試験、加熱試験、外部短絡試験、過放電試験、圧壊試験、充放電試験、保存試験の少なくとも一つの試験である請求項1又は2に記載の蓄電デバイスの発生ガス分析方法。 The safety evaluation tests, the nail penetration test, overcharge test, heating test, the external short circuit test, the over-discharge test, crush test, a charge and discharge test, according to claim 1 or 2 is at least one test of storage test Method for analyzing generated gas of power storage device. 前記内部ガスを分析する工程は、発生ガス量、ガス成分の少なくとも一方を求める工程である請求項1乃至請求項のいずれか一項に記載の蓄電デバイスの発生ガス分析方法。 Process, the amount of generated gas, generated gas analysis method of the electric storage device according to any one of claims 1 to 3 is a step of obtaining at least one gas component of analyzing the internal gas.
JP2016066849A 2016-03-29 2016-03-29 Method and apparatus for analyzing generated gas of power storage device Active JP6730056B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016066849A JP6730056B2 (en) 2016-03-29 2016-03-29 Method and apparatus for analyzing generated gas of power storage device
KR1020187026859A KR102254111B1 (en) 2016-03-29 2016-12-14 Method and apparatus for analyzing generated gas in power storage device
CN201680084115.0A CN109073514A (en) 2016-03-29 2016-12-14 The generation analysis method for gases and device of electric energy storage device
PCT/JP2016/087176 WO2017168864A1 (en) 2016-03-29 2016-12-14 Method and device for analyzing gas generated by power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016066849A JP6730056B2 (en) 2016-03-29 2016-03-29 Method and apparatus for analyzing generated gas of power storage device

Publications (2)

Publication Number Publication Date
JP2017181212A JP2017181212A (en) 2017-10-05
JP6730056B2 true JP6730056B2 (en) 2020-07-29

Family

ID=59963877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016066849A Active JP6730056B2 (en) 2016-03-29 2016-03-29 Method and apparatus for analyzing generated gas of power storage device

Country Status (4)

Country Link
JP (1) JP6730056B2 (en)
KR (1) KR102254111B1 (en)
CN (1) CN109073514A (en)
WO (1) WO2017168864A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3703176A4 (en) * 2017-10-26 2020-11-04 LG Chem, Ltd. Apparatus, system, and method for collecting gas generated in secondary battery
KR102180627B1 (en) * 2017-12-04 2020-11-18 주식회사 엘지화학 An apparatus for automated pyrolysis of a sample
KR20190139122A (en) 2018-06-07 2019-12-17 주식회사 엘지화학 A chamber for real-time analysis of the generated gas in the secondary battery and a system thereof
KR102385711B1 (en) 2018-06-07 2022-04-12 주식회사 엘지에너지솔루션 An apparatus for Real-time analyzing gas generated inside secondary cell
KR20200004745A (en) * 2018-07-04 2020-01-14 주식회사 엘지화학 An automated apparatus for collecting gas generated inside secondary battery and a method thereof
WO2020009451A1 (en) * 2018-07-04 2020-01-09 주식회사 엘지화학 Apparatus and method for collecting gas
JP6919630B2 (en) * 2018-07-30 2021-08-18 三菱電機株式会社 Gas analyzer and gas analysis method
KR102439598B1 (en) 2018-10-25 2022-09-05 주식회사 엘지에너지솔루션 A method for judging the gas generation acceleration section of a secondary battery
KR102455848B1 (en) * 2018-12-03 2022-10-18 주식회사 엘지에너지솔루션 Jig for measuring internal pressure of cylindrical battery cell
CN114502963A (en) 2019-10-02 2022-05-13 基础科学公司 Remote automated chemical exchange system for use with an automatic sampling device
CN113390981A (en) * 2021-05-24 2021-09-14 超威电源集团有限公司 Storage battery gassing test equipment and method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5050845B2 (en) * 2005-02-15 2012-10-17 三菱化学株式会社 Test equipment and use thereof
JP2008026187A (en) * 2006-07-21 2008-02-07 National Institute Of Advanced Industrial & Technology Gas sampling apparatus
CA2594988C (en) * 2006-07-27 2010-11-16 Lg Chem, Ltd. Electrochemical device with high safety at over-voltage and high temperature
JP2010086753A (en) * 2008-09-30 2010-04-15 Fdk Corp Power storage device
JP2011003513A (en) * 2009-06-22 2011-01-06 Kobelco Kaken:Kk Safety evaluation testing method and testing device for the same
JP2011085415A (en) * 2009-10-13 2011-04-28 Kobelco Kaken:Kk Device for safety evaluation test
KR101583373B1 (en) * 2010-11-11 2016-01-07 주식회사 엘지화학 Apparatus for real time analyzing inner gas in secondary electric cell
WO2012111547A1 (en) * 2011-02-18 2012-08-23 株式会社 東芝 Non-aqueous electrolyte secondary battery and method for producing same
WO2013176275A1 (en) * 2012-05-25 2013-11-28 日本電気株式会社 Electricity storage device
EP3024085B1 (en) * 2013-07-19 2019-01-09 NGK Insulators, Ltd. Secondary battery abnormality warning system
JP6245468B2 (en) * 2013-09-12 2017-12-13 住友金属鉱山株式会社 Nonaqueous electrolyte secondary battery laminate cell and laminate cell holder for evolved gas evaluation

Also Published As

Publication number Publication date
WO2017168864A1 (en) 2017-10-05
KR102254111B1 (en) 2021-05-20
KR20180113212A (en) 2018-10-15
CN109073514A (en) 2018-12-21
JP2017181212A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP6730056B2 (en) Method and apparatus for analyzing generated gas of power storage device
Rowden et al. A review of gas evolution in lithium ion batteries
Kumai et al. Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell
US9658146B2 (en) Analysis of rechargeable batteries
CN111406342B (en) Gas collection device and method
KR20120111080A (en) Gas analyzer for cell and gas analyzing method using the same
Abd‐El‐Latif et al. Insights into thermal runaway of Li–ion cells by accelerating rate calorimetry coupled with external sensors and online gas analysis
KR101989909B1 (en) A device for collecting inner gas in secondary battery and charging/discharging in secondary battery
Rappsilber et al. Meta-analysis of heat release and smoke gas emission during thermal runaway of lithium-ion batteries
CN102590157A (en) Element spectrum analysis method and laser element exploration equipment adopting same
Black et al. Determination of cooling rates in a quadrupole ion trap
Abbott et al. Comprehensive gas analysis of a 21700 Li (Ni0. 8Co0. 1Mn0. 1O2) cell using mass spectrometry
Diaz et al. Chemical Characterization Using Laser-Induced Breakdown Spectroscopy of Products Released from Lithium-Ion Battery Cells at Thermal Runaway Conditions
CN216117504U (en) Battery thermal runaway gas analysis device
KR102207519B1 (en) The gas analysis device in secondary battery and analysis method by using the same
JP5982663B2 (en) Infrared spectrometer for measuring electrolyte of lithium ion secondary battery and measuring method thereof
CN114636724A (en) Lithium ion battery thermal runaway gas collection system and calculation method
KR101843631B1 (en) Gas analysis device comprising raman monochromator and the method thereof
Kwon et al. Fire Characterization and Gas Analysis of Lithium-Ion Batteries During Thermal Runaway
CN115372337A (en) Rapid quantitative prediction method for static sensitivity of explosives and powders based on statistical spectroscopy
US5178837A (en) Rock analyzer
CN216926553U (en) A device for lithium ion battery lithium salt analysis
Ciorba et al. Overcharged li-polymer batteries: A post-mortem analysis
Essl et al. Comparing Different Thermal Runway Triggers for Automotive Lithium-Ion Batteries
Richardet et al. Thermal Runaway Characterization in an Optically Accessible Vessel: Effect of Battery Cell Chemistry and State of Charge

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200702

R150 Certificate of patent or registration of utility model

Ref document number: 6730056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150