JP6728282B2 - Ni-based alloy softening material manufacturing method and Ni-based alloy member manufacturing method - Google Patents

Ni-based alloy softening material manufacturing method and Ni-based alloy member manufacturing method Download PDF

Info

Publication number
JP6728282B2
JP6728282B2 JP2018145824A JP2018145824A JP6728282B2 JP 6728282 B2 JP6728282 B2 JP 6728282B2 JP 2018145824 A JP2018145824 A JP 2018145824A JP 2018145824 A JP2018145824 A JP 2018145824A JP 6728282 B2 JP6728282 B2 JP 6728282B2
Authority
JP
Japan
Prior art keywords
phase
based alloy
less
temperature
softening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018145824A
Other languages
Japanese (ja)
Other versions
JP2018188738A (en
Inventor
敦夫 太田
敦夫 太田
今野 晋也
晋也 今野
宏紀 鴨志田
宏紀 鴨志田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2018145824A priority Critical patent/JP6728282B2/en
Publication of JP2018188738A publication Critical patent/JP2018188738A/en
Application granted granted Critical
Publication of JP6728282B2 publication Critical patent/JP6728282B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Forging (AREA)

Description

本発明は、Ni基合金軟化材の製造方法およびNi基合金部材の製造方法に関する。 The present invention relates to a method for manufacturing a Ni-based alloy softening material and a method for manufacturing a Ni-based alloy member.

燃焼温度の高温化によるガスタービンの高効率化を目指して、タービン部品の耐熱温度の向上が求められている。このためガスタービン部品には、高温強度に優れる材料として、Ni基合金がタービンディスクや動静翼、さらには燃焼器まで幅広く用いられている。Ni基合金は、W,Mo,Co等の固溶強化元素添加による固溶強化や、Al,Ti,Nb,Ta等の析出強化元素添加による析出強化により、高い高温強度を実現している。析出強化型のNi基合金では、析出強化相であるγ´相(L12構造)の格子が母相のγ相(FCC構造)の格子と連続性を持って析出し、整合界面を形成することで強化に寄与する。従って、高温強度を向上させるには、γ´相の量を増加させれば良いが、γ´相の量が多いほど加工性が悪化する。このため、高強度材ほど大型鍛造品の作製が困難であったり、鍛造時の欠陥発生率上昇等により、鍛造が出来ないという問題がある。 In order to improve the efficiency of gas turbines by raising the combustion temperature, it is required to improve the heat resistance temperature of turbine parts. For this reason, Ni-based alloys are widely used in gas turbine parts as materials having excellent high-temperature strength, including turbine disks, moving vanes, and combustors. The Ni-based alloy realizes high high-temperature strength by solid solution strengthening by adding solid solution strengthening elements such as W, Mo and Co and precipitation strengthening by adding precipitation strengthening elements such as Al, Ti, Nb and Ta. In a precipitation-strengthened Ni-based alloy, the lattice of the γ'phase (L12 structure), which is the precipitation-strengthening phase, is precipitated with continuity with the lattice of the γ-phase (FCC structure) of the parent phase to form a coherent interface. Contribute to strengthening. Therefore, in order to improve the high temperature strength, the amount of the γ'phase may be increased, but the workability deteriorates as the amount of the γ'phase increases. Therefore, there is a problem in that it is difficult to manufacture a large-sized forged product as the strength of the material is higher, and the forging cannot be performed due to an increase in the defect occurrence rate during forging.

Ni基合金の高温強度と熱間鍛造性とを両立させる技術として、特許文献1(特開2011‐52308号公報)に記載のものがある。特許文献1には、質量基準でC:0.001〜0.1%、Cr:12〜23%、Co:15〜25%、Al:3.5〜5.0%、Mo:4〜12%、W:0.1〜7.0%を含み、Ti、Ta及びNbの含有量の総和が質量基準で0.5%以下であり、式(1)(Ps=−7×(C量)−0.1×(Mo量)+0.5×(Al量))で表されるパラメータPsが0.6〜1.6であることを特徴とするNi基合金が開示されている。 As a technique for achieving both high temperature strength and hot forgeability of a Ni-based alloy, there is one described in Patent Document 1 (JP 2011-52308A). In patent document 1, C: 0.001-0.1%, Cr: 12-23%, Co: 15-25%, Al: 3.5-5.0%, Mo: 4-12 in mass reference. %, W: 0.1 to 7.0%, the total content of Ti, Ta and Nb is 0.5% or less on a mass basis, and the formula (1) (Ps=−7×(C content )−0.1×(Mo amount)+0.5×(Al amount)), the parameter Ps is 0.6 to 1.6, and a Ni-based alloy is disclosed.

特開2011‐052308号公報JP, 2011-052308, A

γ´相の固溶温度が1050℃以上である高強度Ni基合金の熱間鍛造は、通常1000〜1250℃の範囲で行われる。これは、加工温度をγ´相の固溶温度付近またはそれ以上まで上げることで、強化因子であるγ´相の析出量を減らし、変形抵抗を減少させるためである。しかしながら、固溶温度付近またはそれ以上の温度で鍛造する場合、鍛造温度が被加工材の融点と近くなるため、部分溶融等により加工割れが生じやすい。加えて、γ´相の固溶温度が上述のように高い材料では、固溶温度以上で熱間鍛造すると、粒界移動を抑制し結晶粒の微細化に寄与するγ´相が消失するため、γ相の粒径が粗大化し、製品使用時の引張強度や疲労強度が低下する。 Hot forging of a high-strength Ni-based alloy whose solid solution temperature of the γ'phase is 1050°C or higher is usually performed in the range of 1000 to 1250°C. This is because by raising the processing temperature to near the solid solution temperature of the γ'phase or higher, the amount of precipitation of the γ'phase, which is a strengthening factor, is reduced and the deformation resistance is reduced. However, in the case of forging at a temperature near the solid solution temperature or higher, the forging temperature is close to the melting point of the material to be processed, so that work cracking is likely to occur due to partial melting or the like. In addition, in a material in which the solid solution temperature of the γ′ phase is high as described above, when hot forging is performed at the solid solution temperature or higher, the γ′ phase that suppresses grain boundary migration and contributes to the refinement of crystal grains disappears. , The grain size of the γ phase becomes coarse, and the tensile strength and fatigue strength during use of the product decrease.

本発明の目的は、上記事情に鑑み、γ´相を多量に含有する析出強化型のNi基合金部材の製造過程における優れた加工性及びNi基合金部材の優れた高温強度を両立させることができるNi基合金軟化材の製造方法およびNi基合金部材の製造方法を提供することにある。 In view of the above circumstances, an object of the present invention is to achieve both excellent workability in the manufacturing process of a precipitation-strengthened Ni-based alloy member containing a large amount of γ′ phase and excellent high-temperature strength of the Ni-based alloy member. It is an object of the present invention to provide a method for producing a Ni-based alloy softening material and a method for producing a Ni-based alloy member that can be performed.

本発明は、上記目的を達成するため、Ni基合金素材をγ´相の固溶温度未満の温度領域で軟化させて加工性を向上させる軟化処理工程を含み、軟化処理工程は、Ni基合金素材をγ´相の固溶温度未満かつγ相の再結晶が迅速に進む温度以上の温度で熱間鍛造して非整合γ´相を析出させる第1の工程と、γ´相の固溶温度未満でかつ熱間鍛造の完了温度以上の温度から100℃/h以下の冷却速度で徐冷して非整合γ´相を成長させ、非整合γ´相の量を増加させる第2の工程とを含み、Ni基合金素材の組成が、質量%で、10%以上25%以下のCr、30%以下のCo、TiとNbとTaの総和が3%以上9%以下、1%以上6%以下のAl、10%以下のFe、10%以下のMo、8%以下のW、0.03%以下のB、0.1%以下のC、0.08%以下のZr、2.0%以下のHfおよび5.0%以下のReを含有し、残部がNiおよび不可避不純物からなることを特徴とするNi基合金軟化材の製造方法を提供する。 The present invention, in order to achieve the above objects, includes a softening treatment step of softening a Ni-based alloy material in a temperature region below the solid solution temperature of the γ'phase to improve workability, and the softening treatment step is a Ni-based alloy. The first step of hot forging the material at a temperature below the solid solution temperature of the γ'phase and at a temperature above the temperature at which the recrystallization of the γ phase proceeds rapidly to precipitate the unmatched γ'phase, and the solid solution of the γ'phase less than the temperature and then slowly cooled at a cooling rate of completion from the temperature above the temperature below 100 ° C. / h hot forging grown inconsistency γ'-phase, a second step of increasing the amount of non-alignment γ'-phase look including bets, the composition of the Ni-base alloy material, in mass%, 10% or more and 25% or less of Cr, 30% or less of Co, the sum of Ti and Nb and Ta 3% to 9% or less, 1% or more 1. Al less than 6%, Fe less than 10%, Mo less than 10%, W less than 8%, B less than 0.03%, C less than 0.1%, Zr less than 0.08%, 2. Provided is a method for producing a Ni-based alloy softening material, which contains 0% or less Hf and 5.0% or less Re, and the balance is Ni and inevitable impurities .

また、本発明は、上記前記Ni基合金軟化材の製造方法によって得られた前記Ni基合金軟化材を所望の形状に加工する加工工程と、前記加工工程後に、前記Ni基合金素材の母相であるγ相の結晶粒の粒界上に析出した非整合なγ´相を固溶させる溶体化処理および整合γ´相を再析出させる時効処理をしてNi基合金部材を得る溶体化‐時効処理工程とを含むことを特徴とするNi基合金部材の製造方法を提供する。
The present invention also includes a processing step of processing the Ni-based alloy softening material obtained by the method for manufacturing the Ni-based alloy softening material into a desired shape, and a mother phase of the Ni-based alloy material after the processing step. Solution treatment for solid solution of incoherent γ'phase precipitated on grain boundaries of γ-phase crystal grains and aging treatment for reprecipitation of coherent γ'phase to obtain Ni-based alloy members- An aging treatment step is provided, and a method for manufacturing a Ni-based alloy member is provided.

本発明によれば、γ´相を多量に含有する析出強化型のNi基合金部材の製造過程における優れた加工性及びNi基合金部材の優れた高温強度を両立させることができるNi基合金軟化材の製造方法およびNi基合金部材の製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the Ni base alloy softening which can make the outstanding workability in the manufacturing process of the precipitation strengthening type Ni base alloy member containing a large amount of (gamma)' phase, and the excellent high temperature strength of a Ni base alloy member compatible. It is possible to provide a method for manufacturing a material and a method for manufacturing a Ni-based alloy member.

本発明に係るNi基合金部材の製造方法の一実施形態を示すフロー図である。It is a flow figure showing one embodiment of the manufacturing method of the Ni basis alloy member concerning the present invention. 図1の軟化処理工程の温度プロファイル及び結晶組織を模式的に示す図である。It is a figure which shows typically the temperature profile and crystal structure of the softening process process of FIG. γ相とγ´相の整合界面を示す模式図である。It is a schematic diagram which shows the matching interface of (gamma) phase and (gamma)' phase. γ相とγ´相の非整合界面を示す模式図である。It is a schematic diagram which shows the non-coherent interface of (gamma) phase and (gamma)' phase. 図1の溶体化‐時効処理工程の温度プロファイル及び結晶組織を模式的に示す図である。It is a figure which shows typically the temperature profile and crystal structure of the solution-aging treatment process of FIG. 本発明に係るNi基合金の製造方法を用いて製造された鍛造用Ni基合金素材の一例を示す模式図である。It is a schematic diagram which shows an example of the Ni-based alloy raw material for forging manufactured using the manufacturing method of the Ni-based alloy which concerns on this invention. 本発明に係るNi基合金部材の製造方法により製造されたNi基合金製薄板の一例を示す模式図である。It is a schematic diagram which shows an example of the Ni-based alloy thin plate manufactured by the manufacturing method of the Ni-based alloy member which concerns on this invention. 本発明に係るNi基合金部材の製造方法により製造されたNi基合金部材を摩擦撹拌接合して得られたNi基合金構造物の一例を示す模式図である。It is a schematic diagram which shows an example of the Ni base alloy structure obtained by friction-stir welding the Ni base alloy member manufactured by the manufacturing method of the Ni base alloy member which concerns on this invention. 本発明に係るNi基合金構造物を用いたことを特徴とするボイラーチューブの一例を示す模式図である。It is a schematic diagram which shows an example of the boiler tube characterized by using the Ni-based alloy structure which concerns on this invention. 本発明に係るNi基合金構造物を用いたことを特徴とする燃焼器ライナーの一例を示す模式図である。It is a schematic diagram which shows an example of the combustor liner characterized by using the Ni-based alloy structure which concerns on this invention. 本発明に係るNi基合金構造物を用いたことを特徴とするガスタービン動翼の一例を示す模式図である。It is a schematic diagram which shows an example of the gas turbine moving blade characterized by using the Ni base alloy structure which concerns on this invention. 本発明に係るNi基合金構造物を用いたことを特徴とするガスタービンディスクの一例を示す模式図である。It is a schematic diagram which shows an example of the gas turbine disk characterized by using the Ni base alloy structure which concerns on this invention. 本発明に係るNi基合金部材の製造方法の基本思想を説明する模式図である。It is a schematic diagram explaining the basic idea of the manufacturing method of the Ni-based alloy member which concerns on this invention.

以下、本発明に係る実施形態について、詳細に説明する。ただし、本発明はここで取り上げた実施形態に限定されることはなく、要旨を変更しない範囲で適宜組み合わせや改良が可能である。 Hereinafter, embodiments according to the present invention will be described in detail. However, the present invention is not limited to the embodiments described here, and various combinations and improvements can be made without departing from the scope of the invention.

[本発明の基本思想]
本発明者らは、上記目的を達成することが可能なNi基合金軟化材及びNi基合金部材の製造方法について、鋭意検討を行った。その結果、母相であるγ相に対して非整合に析出したγ´相(以下、非整合γ´相と称する)は強化に寄与しないことに着目し、鍛造時には非整合γ´相の量を増加させることで、γ相に対して整合に析出したγ´相(以下、整合γ´相と称する)の析出量を減少させると同時に、主にγ相と非整合γ´相とからなる微細な二相組織とすることで、鍛造時の加工性を大幅に向上させることができることを見出した。さらに、この状態で所望の形状に加工を行った後に、溶体化‐時効処理を行うことによって、非整合γ´相を減少させ整合γ´相を再度析出させることで、製品使用時の優れた高温強度を実現できることを見出した。本発明は、該知見に基づくものである。
[Basic idea of the present invention]
The inventors diligently studied a method for manufacturing a Ni-based alloy softening material and a Ni-based alloy member that can achieve the above object. As a result, paying attention to the fact that the γ'phase precipitated in a non-coherent manner with respect to the matrix γ phase (hereinafter referred to as "non-coherent γ'phase") does not contribute to strengthening, and the amount of the non-coherent γ'phase at the forging is Is increased to decrease the precipitation amount of the γ'phase (hereinafter referred to as the matched γ'phase) which is precipitated in a consistent manner with respect to the γ phase, and at the same time mainly consists of the γ phase and the unmatched γ'phase. It has been found that the workability during forging can be significantly improved by using a fine two-phase structure. Furthermore, after processing into the desired shape in this state, solution-aging treatment is performed to reduce the non-coherent γ′ phase and precipitate the coherent γ′ phase again, which is excellent for product use. It was found that high temperature strength can be realized. The present invention is based on this finding.

以下に、本発明の基本思想についてより詳細に説明する。図6は本発明に係るNi基合金部材の製造方法の基本思想を説明する模式図である。図6では本発明に係るNi基合金部材の製造工程について、材料組織に着目して説明する。 Hereinafter, the basic idea of the present invention will be described in more detail. FIG. 6 is a schematic diagram for explaining the basic idea of the method for manufacturing a Ni-based alloy member according to the present invention. In FIG. 6, the manufacturing process of the Ni-based alloy member according to the present invention will be described focusing on the material structure.

図6の(I)に示すように、鋳造工程後又は鍛造工程後のNi基合金は、母相であるγ相と、γ相に対して整合に析出した整合γ´相とを含む。このNi基合金に対して、γ´相の固溶温度未満かつγ相の再結晶が迅速に進む温度以上の温度で熱間鍛造し、(II)に示すように非整合γ´相を析出させる(第1の軟化処理工程)。次に、γ´相の固溶温度未満でかつ上記熱間鍛造の完了温度以上の温度から徐冷し、(III)に示すように非整合γ´相を成長させ、非整合γ´相の量を増加させる(第2の軟化処理工程)。このとき、非整合γ´相は強化に寄与せず、また主にγ相と非整合γ´相からなる微細な二相組織を形成しているため靱性も高いことから、非常に加工しやすい状態(軟化状態)となっている。この軟化状態で、γ´相の固溶温度未満の温度でNi基合金を所望の形状に成形する加工工程を行う。上記加工工程後、溶体化処理を行うことで非整合γ´相を再固溶させ、その後時効処理を行うことで(IV)に示すように整合γ´相を析出させる(溶体化‐時効処理工程)。このとき、強化に寄与する整合γ´相が多量に析出しているため、高強度状態となっている。 As shown in (I) of FIG. 6, the Ni-based alloy after the casting step or after the forging step includes a γ phase which is a mother phase and a matched γ′ phase which is precipitated in a consistent manner with respect to the γ phase. This Ni-based alloy is hot forged at a temperature below the solid solution temperature of the γ'phase and above the temperature at which recrystallization of the γ phase rapidly proceeds, and as shown in (II), precipitates the unmatched γ'phase. (First softening process step). Next, the temperature is lower than the solid solution temperature of the γ′ phase and is equal to or higher than the completion temperature of the hot forging, and the unmatched γ′ phase is grown as shown in (III) to obtain the unmatched γ′ phase. Increase the amount (second softening process step). At this time, the incoherent γ'phase does not contribute to strengthening, and since a fine two-phase structure mainly composed of the γ phase and the incoherent γ'phase is formed, the toughness is also high, which makes it very easy to process. It is in a state (softened state). In this softened state, a processing step of forming the Ni-based alloy into a desired shape is performed at a temperature lower than the solid solution temperature of the γ'phase. After the above processing steps, solution treatment is performed to re-dissolve the unmatched γ′ phase, and then aging treatment is performed to precipitate the matched γ′ phase (solution-aging treatment). Process). At this time, a large amount of the matched γ′ phase contributing to strengthening is precipitated, so that it is in a high strength state.

上述したように、本発明は、γ´相を減少または消失させた状態で加工するのではなく、γ´相の強化機能をなくすことで加工性を向上させるものである。上記製造工程によれば、加工時には材料を軟化させて加工性を大幅に向上することができ、使用時(製品完成時)には従来と同等以上の高温強度を有するNi基合金部材を得ることができるNi基合金軟化材及びNi基合金部材を得ることができる。 As described above, the present invention improves the workability by eliminating the strengthening function of the γ'phase, rather than processing in the state where the γ'phase is reduced or eliminated. According to the above manufacturing process, it is possible to obtain a Ni-based alloy member having a high temperature strength equal to or higher than that of the conventional one when used (when the product is completed), by softening the material at the time of processing and greatly improving the workability. It is possible to obtain a Ni-based alloy softening material and a Ni-based alloy member that can be obtained.

なお、本発明における「整合γ´相」及び「非整合γ´相」について説明する。図3Aはγ相とγ´相の整合界面を示す模式図であり、図3Bはγ相とγ´相の非整合界面を示す模式図である。図3Aに示すように、γ相を構成する原子7とγ´相を構成する原子8とが整合界面9を構成(格子整合)する場合、このγ´相を「整合γ´相」と称する。また、図3Bに示すように、γ相を構成する原子7とγ´相を構成する原子8とが非整合界面10を構成(格子不整合)する場合、このγ´相を「非整合γ´相」と称する。 The “matched γ′ phase” and the “non-matched γ′ phase” in the present invention will be described. FIG. 3A is a schematic diagram showing a matching interface between the γ phase and the γ′ phase, and FIG. 3B is a schematic diagram showing a non-matching interface between the γ phase and the γ′ phase. As shown in FIG. 3A, when the atoms 7 forming the γ phase and the atoms 8 forming the γ′ phase form a matching interface 9 (lattice matching), this γ′ phase is referred to as a “matching γ′ phase”. .. Further, as shown in FIG. 3B, when the atoms 7 forming the γ phase and the atoms 8 forming the γ′ phase form a non-matching interface 10 (lattice mismatch), this γ′ phase is referred to as “non-matching γ”. This is referred to as "phase".

[Ni基合金軟化材の製造方法およびNi基合金部材の製造方法]
次に、本発明に係るNi基合金軟化材の製造方法およびNi基合金部材の製造方法について説明する。図1は本発明に係るNi基合金部材の製造方法の一実施形態を示すフロー図である。図1に示すように、本発明に係るNi基合金部材の製造方法は、素材であるNi基鋳造合金又は鋳造後に鍛造することで得られるNi基鍛造合金のいずれかを得るための素材準備工程(S1)と、Ni基合金素材を軟化処理してNi基合金軟化材を得る軟化処理工程(S2)と、Ni基合金軟化材を所望の形状に加工する加工工程(S4)と、加工工程後に溶体化処理及び時効処理してNi基合金部材を得る溶体化‐時効処理工程(S5)とを含む。また、軟化処理工程(S2)は、第1の軟化処理工程(S21)と第2の軟化処理工程(S22)とを含む。さらに、加工工程(S4)は、最終形状にするまでに、軟化処理工程(S2)および複数の塑性加工法を繰り返し含んで良く、最終加工のみに限定するものではない。
[Manufacturing method of Ni-based alloy softening material and Ni-based alloy member]
Next, a method for manufacturing a Ni-based alloy softening material and a method for manufacturing a Ni-based alloy member according to the present invention will be described. FIG. 1 is a flow chart showing an embodiment of a method for manufacturing a Ni-based alloy member according to the present invention. As shown in FIG. 1, the method for manufacturing a Ni-based alloy member according to the present invention is a raw material preparation step for obtaining a Ni-based cast alloy as a raw material or a Ni-based forged alloy obtained by forging after casting. (S1), a softening treatment step (S2) for softening the Ni-based alloy material to obtain a Ni-based alloy softening material, a processing step (S4) for processing the Ni-based alloy softening material into a desired shape, and a processing step. And a solution treatment-aging treatment step (S5) for obtaining a Ni-based alloy member by solution treatment and aging treatment. The softening treatment step (S2) includes a first softening treatment step (S21) and a second softening treatment step (S22). Further, the processing step (S4) may repeatedly include the softening processing step (S2) and a plurality of plastic working methods until the final shape is obtained, and is not limited to the final processing.

なお、本発明において、素材準備工程(S1)を行って得られるものを「Ni基合金素材」と称し、軟化処理工程(S2)を行って得られる物を「Ni基合金軟化材」と称し、溶体化‐時効処理工程(S5)を行って得られるものを「Ni基合金部材」と称する。また、Ni基合金軟化材を、摩擦撹拌接合等を用いて接合した後に、溶体化‐時効処理工程(S5)を行って得られるものを「Ni基合金構造物(Ni基合金溶接構造物)」と称する。また、本発明において、「Ni基合金」は、上記「Ni基合金素材」及び「Ni基合金軟化材」を含み、「Ni基合金軟化材」に対して、加工工程(S4)を1回又は複数回施したものも含むものとする。 In the present invention, the material obtained by performing the material preparing step (S1) is referred to as “Ni-based alloy material”, and the material obtained by performing the softening treatment step (S2) is referred to as “Ni-based alloy softening material”. The one obtained by performing the solution treatment-aging treatment step (S5) is referred to as "Ni-based alloy member". In addition, after joining the Ni-based alloy softening material using friction stir welding or the like, the solution obtained by performing the solution treatment-aging treatment step (S5) is referred to as "Ni-based alloy structure (Ni-based alloy welded structure)". ". Further, in the present invention, the “Ni-based alloy” includes the above-mentioned “Ni-based alloy material” and “Ni-based alloy softening material”, and the processing step (S4) is performed once for the “Ni-based alloy softening material”. Or, it includes those applied multiple times.

以下、上記S1〜S5の工程について詳細に説明する。 Hereinafter, the steps S1 to S5 will be described in detail.

(S1:素材準備工程)
Ni基合金の素材準備方法については特に限定はなく、従前の方法を用いることができる。具体的には、既製の鋳造後の合金や鍛造後の合金を用いて、次に説明する軟化処理工程以降の工程を行う。なお、Ni基合金素材の組成としては、γ´相の固溶温度が1050℃以上のものを用いる。この根拠については、追って詳述する。
(S1: Material preparation process)
The method for preparing the Ni-based alloy material is not particularly limited, and a conventional method can be used. Specifically, using a ready-made alloy after casting or an alloy after forging, the steps after the softening treatment step described below are performed. As the composition of the Ni-based alloy material, one having a solid solution temperature of γ′ phase of 1050° C. or higher is used. The reason for this will be described later in detail.

(S2:軟化処理工程)
加工工程時の加工性を向上させる本発明のNi基合金軟化材の製造方法は、γ´相の固溶温度未満の温度で熱間鍛造する第1の軟化処理工程(S21)と、第1の軟化処理工程後のNi基合金をγ´相の固溶温度未満かつ上記熱間鍛造完了温度以上の温度から徐冷して非整合γ´相を増加させる第2の工程(S22)とを含む。
(S2: Softening process step)
A method for manufacturing a Ni-based alloy softening material of the present invention for improving workability during a working step includes a first softening treatment step (S21) of hot forging at a temperature lower than a solution temperature of a γ'phase, and a first softening treatment step. And a second step (S22) of gradually cooling the Ni-based alloy after the softening treatment step from a temperature lower than the solid solution temperature of the γ'phase and equal to or higher than the hot forging completion temperature to increase the unmatched γ'phase. Including.

(S21:第1の軟化処理工程)
図2は図1の軟化処理工程の温度プロファイル及び材料組織を模式的に示す図である。上述したように、第1の軟化処理工程では、Ni基合金素材を、γ´相の固溶温度未満の温度(T)で熱間鍛造する。この熱間鍛造の後に冷却すると、図2の(I)に示すように、γ相(符号4)の粒界上に非整合γ´相(符号6)が析出する。符号5で示した析出物は、第1の軟化処理工程後の冷却中にγ相粒内に析出した整合γ´相である。なお、本発明において「γ相の粒界上」とは、「隣り合うγ結晶粒の境界」を意味するものとする。
(S21: First softening process step)
FIG. 2 is a diagram schematically showing a temperature profile and a material structure in the softening treatment step of FIG. As described above, in the first softening treatment step, the Ni-based alloy material is hot forged at a temperature (T 1 ) lower than the solid solution temperature of the γ'phase. When cooled after this hot forging, as shown in (I) of FIG. 2, the incoherent γ′ phase (reference numeral 6) is precipitated on the grain boundaries of the γ phase (reference numeral 4). The precipitate indicated by reference numeral 5 is a coherent γ'phase precipitated in the γ phase grains during cooling after the first softening treatment step. In the present invention, “on the grain boundary of the γ phase” means “the boundary between adjacent γ crystal grains”.

前述の通り、析出強化型のNi基合金の強化機構は、γ相とγ´相が整合界面(図3Aの符号9)を形成することで強化に寄与するというもので、非整合界面(図3Bの符号10)は強化に寄与しない。すなわち、非整合γ´相の量を増加させ、整合γ´相の量を減少させることで、加工工程時に優れた加工性を確保することが可能となる。従って、本発明の効果を得るためには、第1の軟化処理工程での熱間鍛造により非整合γ´相を析出させることが必須であることから、γ´相の固溶温度未満で、かつγ相の再結晶が迅速に進む温度以上での熱間鍛造加工が実施可能なNi基合金でなければならない。従って、本発明に係るNi基合金素材のγ´相の固溶温度は、1050℃以上が最も好ましい。γ´相の固溶温度が1000〜1050℃でも本発明の効果は得られるが、1000℃以下では非整合γ´相が析出しにくく、950℃以下では非整合γ´相を析出させることができないため、本発明の効果は得られない。さらに、γ´相の固溶温度がNi基合金素材の融点に近づくと、部分溶融等により加工中に割れが生じるため、γ´相の固溶温度は1250℃未満が望ましい。 As described above, the strengthening mechanism of the precipitation-strengthened Ni-based alloy is that the γ phase and the γ′ phase contribute to strengthening by forming a coherent interface (reference numeral 9 in FIG. 3A). The sign 10) of 3B does not contribute to the strengthening. That is, by increasing the amount of the unmatched γ′ phase and decreasing the amount of the matched γ′ phase, it becomes possible to secure excellent workability during the working process. Therefore, in order to obtain the effect of the present invention, it is essential to precipitate the incoherent γ′ phase by hot forging in the first softening treatment step, and therefore, below the solid solution temperature of the γ′ phase, In addition, the Ni-based alloy must be capable of hot forging at a temperature above the temperature at which γ-phase recrystallization rapidly proceeds. Therefore, the solution temperature of the γ'phase of the Ni-based alloy material according to the present invention is most preferably 1050°C or higher. Although the effect of the present invention can be obtained even when the solid solution temperature of the γ'phase is 1000 to 1050°C, the unmatched γ'phase is hard to precipitate at 1000°C or lower, and the unmatched γ'phase can be precipitated at 950°C or lower. Therefore, the effect of the present invention cannot be obtained. Further, when the solid solution temperature of the γ'phase approaches the melting point of the Ni-based alloy material, cracking occurs during processing due to partial melting or the like. Therefore, the solid solution temperature of the γ'phase is preferably less than 1250°C.

第1の軟化処理工程での鍛造温度Tは、前述の通りγ相の再結晶が迅速に進む温度以上である必要がある。より具体的には、1000℃以上が好ましく、1050℃以上がより好ましい。Tが950℃未満では、非整合γ´相を析出させることができなく、本発明の効果は得られない。なお、Tの上限温度については、前述の通りγ´相の固溶温度未満である。 The forging temperature T 1 in the first softening treatment step needs to be equal to or higher than the temperature at which the recrystallization of the γ phase rapidly proceeds as described above. More specifically, 1000° C. or higher is preferable, and 1050° C. or higher is more preferable. If T 1 is less than 950° C., the incoherent γ′ phase cannot be precipitated and the effect of the present invention cannot be obtained. The upper limit temperature of T 1 is lower than the solid solution temperature of the γ'phase as described above.

(S22:第2の軟化処理工程)
第2の軟化処理工程では、γ´相の固溶温度未満でかつ前述の第1の軟化処理工程における熱間鍛造完了温度以上の温度(T)まで昇温し、γ相中に析出した整合γ´相を固溶させることで、主にγ相と非整合γ´相からなる2相組織とし(図2(II))、その後、温度Tまで徐冷を行い、非整合γ´相を成長させることで、主に徐冷終了時の温度から室温までの冷却過程で析出する整合γ´相を減少させられるため、加工性を向上させることが出来る(図2(III))。このとき、徐冷速度(T/t)が遅いほど非整合γ´相を成長させることが可能で、50℃/h以下が好ましく、10℃/h以下がより好ましい。100℃/hより早いと、非整合γ´相を十分に成長させられず、冷却過程で整合γ´相が析出して、本発明の効果が得られない。ここで熱間鍛造完了温度とは、鍛造の最終段階で被鍛造材を保持した温度を示す。
(S22: Second softening process step)
In the second softening treatment step, the temperature was raised to a temperature (T 3 ) that was lower than the solid solution temperature of the γ′ phase and was equal to or higher than the hot forging completion temperature in the above-mentioned first softening treatment step, and precipitated in the γ phase. By making the matched γ′ phase a solid solution, a two-phase structure mainly composed of the γ phase and the unmatched γ′ phase is formed (FIG. 2(II)), and then gradually cooled to the temperature T 2 to obtain the unmatched γ′ phase. By growing the phase, it is possible to reduce the matched γ′ phase which is mainly precipitated in the cooling process from the temperature at the end of slow cooling to room temperature, so that the workability can be improved (FIG. 2 (III)). At this time, it can slow cooling rate (T A / t) is growing slowly that non-aligned γ'-phase, preferably not more than 50 ° C. / h, more preferably at most 10 ° C. / h. If it is faster than 100° C./h, the non-coherent γ′ phase cannot be sufficiently grown, and the coherent γ′ phase is precipitated during the cooling process, and the effect of the present invention cannot be obtained. Here, the hot forging completion temperature refers to the temperature at which the material to be forged is held at the final stage of forging.

第2の軟化処理工程の徐冷開始温度Tは、主にγ相と非整合γ´相からなる2相組織とするために、γ´相の固溶温度未満でかつ前記第1の軟化処理工程における熱間鍛造完了温度以上の温度で行うことが好ましい。これは、第1の軟化処理工程の鍛造温度T1より低い場合、γ相粒内に整合γ´相が残存するからであり、γ´相の固溶温度以上では非整合γ´相が消失してしまうからである。ただし、徐冷開始温度T3が前述した第1の軟化処理工程における熱間鍛造完了温度より100℃低くても本発明の効果は得られる。 The gradual cooling start temperature T 3 of the second softening treatment step is lower than the solid solution temperature of the γ′ phase and the first softening temperature in order to have a two-phase structure mainly composed of the γ phase and the inconsistent γ′ phase. It is preferable to carry out at a temperature equal to or higher than the hot forging completion temperature in the treatment step. This is because when the temperature is lower than the forging temperature T1 in the first softening treatment step, the matched γ′ phase remains in the γ phase grains, and the unmatched γ′ phase disappears at the solid solution temperature of the γ′ phase or higher. Because it will be. However, the effect of the present invention can be obtained even when the slow cooling start temperature T3 is 100° C. lower than the hot forging completion temperature in the first softening treatment step described above.

上記第2の軟化処理工程において、前述の通り非整合γ´相を増加させるほど、加工性を向上させることが可能となるので、非整合γ´相の量は20体積%以上が好ましく、より好ましくは30体積%以上である。ここで、非整合γ´相の含有量の割合(体積%)は、母相と他の析出物を含む合金全体に対する割合(絶対量)である。本発明の効果を得るための非整合γ´相の量について、析出可能なγ´相の全総量に対して非整合γ´相の割合をどこまで増加させられかの相対量で決定するというもので、好ましくは全γ´相量の50体積%以上であり、より好ましくは全γ´相量の60体積%以上である。また、上記徐冷終了時の温度(T)は、非整合γ´相が上記の量析出する温度まで下げる必要があり、好ましくは1000℃以下で、より好ましくは900℃以下である。また、徐冷終了温度Tから室温までの冷却方法は、冷却中の整合γ´相の析出を抑えるために冷却速度は速いほど良く、空冷が好ましい。より好ましくは水冷である。 In the second softening treatment step, as the unmatched γ'phase is increased as described above, the workability can be improved, so that the amount of the unmatched γ'phase is preferably 20% by volume or more, It is preferably at least 30% by volume. Here, the ratio (volume %) of the content of the incoherent γ′ phase is the ratio (absolute amount) to the entire alloy containing the parent phase and other precipitates. Regarding the amount of the non-matching γ'phase for obtaining the effect of the present invention, it is determined by the relative amount to which the ratio of the non-matching γ'phase can be increased with respect to the total amount of precipitable γ'phases. It is preferably 50% by volume or more of the total γ'phase amount, and more preferably 60% by volume or more of the total γ'phase amount. Further, the temperature (T 2 ) at the end of the gradual cooling needs to be lowered to a temperature at which the amount of the unmatched γ′ phase is precipitated, and is preferably 1000° C. or lower, more preferably 900° C. or lower. Further, the cooling method from the slow cooling end temperature T 2 to room temperature is better as the cooling rate is faster in order to suppress precipitation of the matched γ′ phase during cooling, and air cooling is preferable. More preferably, it is water cooled.

良好な加工性を得るためには、室温におけるビッカース硬さ(Hv)は400以下が好ましく、より好ましくは370以下であり、900℃における0.2%耐力は300MPa以下が好ましく、250MPa以下がより好ましく、200MPaが最も好ましい。 In order to obtain good workability, the Vickers hardness (Hv) at room temperature is preferably 400 or less, more preferably 370 or less, and the 0.2% proof stress at 900° C. is preferably 300 MPa or less, more preferably 250 MPa or less. 200 MPa is the most preferable.

上記第2の軟化処理工程を行うことで、第2の軟化処理工程後に得られるNi基合金軟化材は、室温におけるビッカース硬さ(Hv)が400以下であり、900℃における0.2%耐力の値は250MPa以下のものを得ることができる。上述した軟化処理工程により、熱間加工時に問題となる加工温度下限を引き下げることができ、後述する加工工程において、γ´相の固溶温度より100℃以上低い温度で加工可能となる。 By performing the second softening treatment step, the Ni-based alloy softening material obtained after the second softening treatment step has a Vickers hardness (Hv) at room temperature of 400 or less and a 0.2% proof stress at 900°C. It is possible to obtain a value of 250 MPa or less. By the above-mentioned softening treatment step, the lower limit of the processing temperature, which is a problem during hot working, can be lowered, and in the processing step described later, processing can be performed at a temperature lower than the solid solution temperature of the γ'phase by 100°C or more.

図2では、第1の軟化処理工程後に冷却し、第2の軟化処理工程を行っているが、第1の軟化処理工程後に冷却せず、第2の軟化処理工程を行ってもよい。 In FIG. 2, cooling is performed after the first softening treatment step and the second softening treatment step is performed, but the second softening treatment step may be performed without cooling after the first softening treatment step.

(S4:加工工程)
上記した軟化処理工程で軟化状態となったNi基軟化材について、加工を行う。このときの加工方法については、特に限定は無く、鍛造加工のみならず、他の塑性加工法や接合方法にも適用可能であり、上記軟化処理と組み合わせることで繰り返し加工を行うことができる。具体的には、プレス加工、圧延加工、引抜き加工、押出し加工、切削加工及び摩擦攪拌接合等が適用できる。さらに、上述した軟化処理工程と塑性加工法等を組み合わせることで、本発明に係る高強度Ni基合金を用いたボイラーチューブや燃焼器ライナー、さらにはガスタービン動翼やディスク等の火力発電プラント用部材の提供も可能となる。本発明で提供できるNi基合金部材又はNi基合金構造物の具体例については、追って詳述する。
(S4: processing step)
The Ni-based softened material that has been softened in the softening process described above is processed. The processing method at this time is not particularly limited and can be applied to not only forging processing but also other plastic processing methods and joining methods, and repeated processing can be performed by combining with the above-mentioned softening treatment. Specifically, press work, rolling work, drawing work, extrusion work, cutting work, friction stir welding and the like can be applied. Furthermore, by combining the above-mentioned softening process and plastic working method, etc., for a boiler tube and a combustor liner using the high-strength Ni-based alloy according to the present invention, and for a thermal power plant such as a gas turbine rotor blade or a disk. It is also possible to provide members. Specific examples of the Ni-based alloy member or the Ni-based alloy structure that can be provided by the present invention will be described later in detail.

(S5:溶体化‐時効処理工程)
図4は図1の溶体化‐時効処理工程の温度プロファイル及び材料組織を模式的に示す図である。所定形状に加工を施した後、非整合γ´相を固溶させ整合γ´相を再析出させる溶体化時効処理を施すことで、高温強度を回復させることが可能で、整合γ´相を700℃において30体積%以上析出させることが望ましい。
(S5: solution treatment-aging treatment process)
FIG. 4 is a diagram schematically showing a temperature profile and a material structure in the solution treatment-aging treatment process of FIG. After processing into a predetermined shape, it is possible to recover the high-temperature strength by subjecting the unmatched γ'phase to a solid solution and re-precipitating the matched γ'phase to recover high-temperature strength. It is desirable to deposit 30% by volume or more at 700°C.

本発明において溶体化処理及び時効処理の条件については特に限定は無く、一般的に用いられている条件を適用することができる。 In the present invention, the conditions of solution treatment and aging treatment are not particularly limited, and commonly used conditions can be applied.

(Ni基合金部材の組成)
次に、本発明に係るNi基合金素材の組成について説明する。
(Composition of Ni-based alloy member)
Next, the composition of the Ni-based alloy material according to the present invention will be described.

本発明に係るNi基合金素材は、質量%で、10%以上25%以下のCr、0%以上30%以下のCo、TiとNbとTaの総和が3%以上9%以下、1%以上6%以下のAl、10%以下のFe、10%以下のMo、8%以下のW、0.03%以下のB、0.1%以下のC、0.08%以下のZr、2.0%以下のHf及び5.0%以下のReを含有し、残部がNi及び不可避不純物であるものが好ましい。 The Ni-based alloy material according to the present invention contains, in mass%, 10% or more and 25% or less of Cr, 0% or more and 30% or less of Co, and the sum of Ti, Nb, and Ta is 3% or more and 9% or less, 1% or more. 1. Al less than 6%, Fe less than 10%, Mo less than 10%, W less than 8%, B less than 0.03%, C less than 0.1%, Zr less than 0.08%, 2. It is preferable to contain 0% or less of Hf and 5.0% or less of Re, with the balance being Ni and inevitable impurities.

より好ましい形態の1つは、質量%で、12.5%以上14.5%以下のCr、24%以上26%以下のCo、5.5%以上7%以下のTi、1.5%以上3%以下のAl、3.5%以下のMo、2%以下のW、0.03%以下のB、0.1%以下のC及び0.08%以下のZrを含有し、残部がNi及び不可避不純物であるものである。 One of the more preferable forms is, in mass %, 12.5% or more and 14.5% or less Cr, 24% or more and 26% or less Co, 5.5% or more and 7% or less Ti, and 1.5% or more. 3% or less of Al, 3.5% or less of Mo, 2% or less of W, 0.03% or less of B, 0.1% or less of C and 0.08% or less of Zr are contained, and the balance is Ni. And unavoidable impurities.

また、その他のより好ましい形態の1つは、質量%で、15%以上17%以下のCr、14%以上16%以下のCo、4%以上6%以下のTi、1.5%以上3.5%以下のAl、0.5%以下のFe、4%以下のMo、2%以下のW、0.03%以下のB、0.1%以下のC及び0.08%以下のZrを含有し、残部がNi及び不可避不純物であるものである。 Further, one of other more preferable forms is, in mass %, 15% or more and 17% or less of Cr, 14% or more and 16% or less of Co, 4% or more and 6% or less of Ti, and 1.5% or more of 3. 5% or less Al, 0.5% or less Fe, 4% or less Mo, 2% or less W, 0.03% or less B, 0.1% or less C and 0.08% or less Zr. It is contained and the balance is Ni and inevitable impurities.

また、その他のより好ましい形態の1つは、質量%で15%以上17%以下のCr、7.5%以上9.5%以下のCo、2.5%以上4.5%以下のTi、NbとTaの総和が0.5%以上2.5%以下、1.5%以上3.5%以下のAl、3%以上5%以下のFe、4%以下のMo、4%以下のW、0.03%以下のB、0.1%以下のC及び0.08%以下のZrを含有し、残部がNi及び不可避不純物であるものである。 In addition, one of other more preferable forms is, in mass%, 15% or more and 17% or less of Cr, 7.5% or more and 9.5% or less of Co, 2.5% or more and 4.5% or less of Ti, The sum of Nb and Ta is 0.5% or more and 2.5% or less, 1.5% or more and 3.5% or less Al, 3% or more and 5% or less Fe, 4% or less Mo, and 4% or less W. , B of 0.03% or less, C of 0.1% or less and Zr of 0.08% or less, and the balance being Ni and inevitable impurities.

以下に、添加元素の量比及び選択の根拠を示す。 Below, the ratio of addition elements and the basis for selection are shown.

Crは、耐酸化性や高温耐食性を向上させる元素である。高温部材へ適用するためには、少なくとも10質量%以上の添加は必須である。しかし、過剰な添加は有害相の生成を助長するため、25質量%以下とする。 Cr is an element that improves oxidation resistance and high temperature corrosion resistance. In order to apply it to a high temperature member, addition of at least 10 mass% or more is essential. However, excessive addition promotes the formation of a harmful phase, so the content is made 25 mass% or less.

Coは、添加により母相を強化する効果がある固溶強化元素である。さらに、γ´相の固溶温度を下げる効果もあり、高温延性を向上する。過剰な添加は有害相の生成を助長するため、30質量%以下とする。 Co is a solid solution strengthening element that has the effect of strengthening the parent phase by addition. Further, it also has the effect of lowering the solid solution temperature of the γ'phase, and improves the high temperature ductility. Excessive addition promotes the formation of a harmful phase, so the content is made 30 mass% or less.

Alは、析出強化相であるγ´相を形成させる必須の元素である。また、耐酸化性を向上させる効果もある。目的とするγ´相の析出量により、添加量の調整がなされるが、過剰な添加はγ´相の固溶温度を上昇させることから加工性を悪化させる。従って、1質量%以上6質量%以下とする。 Al is an essential element that forms a γ′ phase that is a precipitation strengthening phase. It also has the effect of improving oxidation resistance. The addition amount is adjusted depending on the target precipitation amount of the γ'phase, but excessive addition deteriorates the workability because it raises the solid solution temperature of the γ'phase. Therefore, the amount is 1% by mass or more and 6% by mass or less.

Ti、Nb及びTaもAl同様にγ´相を安定化させる重要な元素である。ただし、過剰な添加は有害相を含む他の金属間化合物の形成を引き起こしたり、γ´相の固溶温度を上昇することによる加工性の悪化を招く。従って、Ti、Nb及びTaの総和が3質量%以上9質量%以下とする。 Ti, Nb, and Ta are also important elements that stabilize the γ'phase like Al. However, excessive addition causes the formation of other intermetallic compounds containing a harmful phase, or causes the deterioration of workability due to an increase in the solid solution temperature of the γ'phase. Therefore, the sum of Ti, Nb, and Ta is set to 3% by mass or more and 9% by mass or less.

Feは、CoやNiといった高価な元素と置き換えることが可能で、合金のコストを低減する。しかし、過剰な添加は有害相の生成を助長するため、10質量%以下とする。 Fe can be replaced by expensive elements such as Co and Ni, reducing the cost of the alloy. However, excessive addition promotes the formation of a harmful phase, so the content is made 10 mass% or less.

Mo及びWは、マトリックス中に固溶し、マトリックスを強化する重要な元素である。ただし、これらは密度が大きな元素であるため、過剰な添加をすると密度の増加を引き起こす。また、延性も低下するため加工性も悪化する。従って、Moは10質量%以下、Wは8質量%以下とする。 Mo and W are important elements that form a solid solution in the matrix and strengthen the matrix. However, since these are elements having a high density, excessive addition causes an increase in density. In addition, the ductility also decreases, and the workability also deteriorates. Therefore, Mo is 10 mass% or less and W is 8 mass% or less.

C,B,Zrは、結晶粒界を強化し、高温延性やクリープ強度を向上するのに有効な元素である。ただし、過剰な添加は加工性を悪化させるため、Cは0.1質量%以下、Bは0.03質量%以下、Zrは0.08質量%以下とする。 C, B, and Zr are effective elements for strengthening the crystal grain boundaries and improving high temperature ductility and creep strength. However, since excessive addition deteriorates workability, C is 0.1 mass% or less, B is 0.03 mass% or less, and Zr is 0.08 mass% or less.

Hfは、耐酸化性を向上させるのに有効な元素である。ただし、過剰な添加は有害相の生成を助長するため、Hfは、2.0%以下が好ましい。 Hf is an element effective in improving the oxidation resistance. However, since excessive addition promotes the formation of a harmful phase, Hf is preferably 2.0% or less.

Reは、マトリックス中に固溶し、マトリックスを強化する元素である。さらに、耐食性を向上させる効果もある。ただし、過剰な添加は有害相の生成を助長する。また、Reは高価な元素であるため、添加量の増加は合金のコスト増加を伴う。従って、Reは5.0質量%以下が好ましい。 Re is an element that forms a solid solution in the matrix and strengthens the matrix. Further, it also has an effect of improving corrosion resistance. However, excessive addition promotes the formation of harmful phases. Moreover, since Re is an expensive element, an increase in the amount of addition causes an increase in the cost of the alloy. Therefore, Re is preferably 5.0 mass% or less.

[実施例]
以下に、本発明の実施例を説明する。
[Example]
Examples of the present invention will be described below.

[熱間加工性の評価]
表1に供試材の組成を示す。
[Evaluation of hot workability]
Table 1 shows the composition of the test material.

Figure 0006728282
Figure 0006728282

表1に示した組成のNi基合金素材について、異なる製造条件のもとで供試材を作製し、各供試材について加工性の評価および高温強度の評価を行った。各供試材の製作においては、真空誘導加熱溶解法にて10kgずつ溶解し、均質化処理を施した後に、1150〜1250℃で熱間鍛造することでφ15mmの丸棒を作製し、上述した第1の軟化処理工程及び第2の軟化処理工程を施した。第1の軟化処理工程の条件を表2に示す。また、γ´相の固溶温度及び第1の軟化処理工程後のγ´相の存在の有無を評価した。γ´相の固溶温度は、熱力学計算に基づいたシミュレーションによって算出した。また、γ´相の存在の有無は、供試材について電子顕微鏡による組織観察を行うことで評価した。結果を表2に併記する。 With respect to the Ni-based alloy materials having the compositions shown in Table 1, test materials were produced under different manufacturing conditions, and the workability and high temperature strength of each test material were evaluated. In the production of each test material, 10 kg of each was melted by the vacuum induction heating melting method, subjected to homogenization treatment, and then hot forged at 1150 to 1250° C. to produce a round bar of φ15 mm, and the above-mentioned was performed. The first softening treatment step and the second softening treatment step were performed. Table 2 shows the conditions of the first softening treatment step. Further, the solid solution temperature of the γ'phase and the presence or absence of the γ'phase after the first softening treatment step were evaluated. The solid solution temperature of the γ'phase was calculated by a simulation based on thermodynamic calculation. Further, the presence or absence of the γ'phase was evaluated by observing the structure of the test material with an electron microscope. The results are also shown in Table 2.

Figure 0006728282
Figure 0006728282

表2において、第1の軟化処理工程の温度T(熱間鍛造温度)については、上記の供試材作製における熱間鍛造時に大きな割れが発生した場合は後段の軟化処理工程を行わずに「−」と表記し、第1の軟化処理工程の熱間鍛造を実施していない場合は「実施せず」と表記し、熱間鍛造後に割れが確認されなかった場合は熱間鍛造時の温度を表記している。 In Table 2, regarding the temperature T 1 (hot forging temperature) of the first softening treatment step, if a large crack occurs during hot forging in the above-described sample material production, the latter softening treatment step is not performed. It is described as "-", and when the hot forging of the first softening treatment step is not carried out, it is described as "not carried out", and when no crack is confirmed after the hot forging, it is The temperature is indicated.

表2に示すように、比較例1及び2は、供試材作製における熱間鍛造時に大きな割れが発生した。熱間鍛造後の組織観察により、非整合γ´相の存在が確認できたので、本発明の効果を得ることができるが、最も望ましくはγ´相の固溶温度は1250℃以下である。比較例3は、供試材作製直後の状態であり軟化処理第1の工程における熱間鍛造は施していないが、供試材作製時の熱間鍛造温度がγ´相の固溶温度未満であったため、非整合γ´相が存在している。また、比較例4は、γ´相の固溶温度以上で熱間鍛造を実施しているため、鍛造終了後に非整合γ´相が析出しなかった。これに対して、比較例5ではγ´相の固溶温度以上で熱間鍛造を実施しているが、鍛造中の温度低下により非整合γ´相が析出した。比較例6、8及び実施例1〜9は、いずれの供試材においてもγ´相の固溶温度未満で熱間鍛造を実施しているため、軟化処理第1の工程終了後にγ相の粒界上に非整合γ´相の存在を確認できた。比較例7では、γ´相の固溶温度未満で熱間鍛造を実施しているが、γ相の再結晶が迅速に進む温度(1000℃以上)よりも低い温度で鍛造しているため、非整合γ´相が析出しなかった。 As shown in Table 2, in Comparative Examples 1 and 2, large cracks occurred during hot forging in the production of the test material. The presence of the incoherent γ'phase was confirmed by observing the structure after hot forging, and therefore the effect of the present invention can be obtained, but most preferably, the solid solution temperature of the γ'phase is 1250°C or lower. Comparative Example 3 is a state immediately after the preparation of the test material and is not subjected to the hot forging in the softening treatment first step, but the hot forging temperature during the preparation of the test material is less than the solid solution temperature of the γ′ phase. Therefore, there is a non-matching γ′ phase. Further, in Comparative Example 4, since the hot forging was performed at the solid solution temperature of the γ'phase or higher, the non-matching γ'phase did not precipitate after the forging was completed. On the other hand, in Comparative Example 5, the hot forging was carried out at the solid solution temperature of the γ'phase or higher, but the unmatched γ'phase was precipitated due to the temperature decrease during the forging. In Comparative Examples 6 and 8 and Examples 1 to 9, since hot forging was performed at a temperature lower than the solid solution temperature of the γ'phase in any of the test materials, the γ phase of the softening treatment after the first step was finished. The existence of a non-coherent γ'phase was confirmed on the grain boundaries. In Comparative Example 7, the hot forging is performed at a temperature lower than the solid solution temperature of the γ′ phase, but since the forging is performed at a temperature lower than the temperature at which recrystallization of the γ phase rapidly proceeds (1000° C. or higher), No unmatched γ'phase was precipitated.

以上の結果から、非整合γ´相を析出させるための第1の軟化処理工程での鍛造温度Tは、γ´相の固溶温度未満でかつγ相の再結晶が迅速に進む温度以上が好ましいことが示された。より、具体的には、1000℃以上での鍛造が好ましく、950℃以下では非整合γ´相を析出させることができない。従って、γ´相の固溶温度は再結晶が迅速に進む温度以上である必要があり、1050℃以上が好ましい。 From the above results, the forging temperature T 1 in the first softening treatment step for precipitating the incoherent γ′ phase is less than the solid solution temperature of the γ′ phase and the temperature at which the recrystallization of the γ phase rapidly proceeds. Has been shown to be preferred. More specifically, forging at 1000° C. or higher is preferable, and at 950° C. or lower, the inconsistent γ′ phase cannot be precipitated. Therefore, the solid solution temperature of the γ'phase needs to be higher than the temperature at which recrystallization rapidly proceeds, and is preferably 1050°C or higher.

次に、供試材をそれぞれの第1の軟化処理工程の熱間鍛造温度Tから、徐冷終了温度Tまで冷却速度T(℃/h)で徐冷後に、水冷により室温まで冷却後した。第2の軟化処理工程の条件を表3に示す。また、冷却後の室温における非整合γ´相量及びビッカース硬さを評価した。非整合γ´相量は、鋳造後や熱間鍛造後または軟化処理後に組織観察を行うことで非整合γ´相の含有割合を決定した。具体的には、電子顕微鏡で得られた観察写真から非整合γ´相の面積比を算出し、この面積比を体積比に換算することによって非整合γ´相の含有割合を算出した。さらに、軟化処理後の熱間加工性を評価するために、各供試材を950℃において熱間鍛造を行い、問題が無かったものは「○」、軽微な割れが発生したものは「△」、大きな割れが発生し鍛造が困難だったものは「×」と評価した。 Next, the test material is gradually cooled from the hot forging temperature T 1 of each first softening process to the slow cooling end temperature T 2 at a cooling rate T A (° C./h), and then cooled to room temperature by water cooling. I did it later. Table 3 shows the conditions of the second softening treatment step. In addition, the amount of unmatched γ'phase and Vickers hardness at room temperature after cooling were evaluated. As for the amount of unmatched γ′ phase, the content ratio of unmatched γ′ phase was determined by observing the structure after casting, after hot forging, or after softening treatment. Specifically, the area ratio of the non-matching γ'phase was calculated from the observation photograph obtained with the electron microscope, and the content ratio of the non-matching γ'phase was calculated by converting the area ratio into the volume ratio. Further, in order to evaluate the hot workability after the softening treatment, each of the test materials was hot forged at 950° C., there were no problems with “○”, and those with slight cracks showed “△”. "For those with large cracks that were difficult to forge, we evaluated it as "x".

Figure 0006728282
Figure 0006728282

表3に示すように、実施例1〜9では、いずれの供試材も軟化処理工程後の非整合γ´相の量が20体積%を超え、かつ硬さも400Hv以下を満たし、950℃の熱間鍛造が問題なく行えたことから、加工性の向上を確認できた。 As shown in Table 3, in each of Examples 1 to 9, the amount of the non-matching γ′ phase after the softening treatment step exceeded 20% by volume in all the test materials, and the hardness also satisfied 400 Hv or less, and 950° C. Since hot forging could be performed without problems, improvement in workability was confirmed.

これに対して、非整合γ´相の量が20体積%未満で硬さが400Hvより大きい比較例3〜6では、いずれも鍛造中または鍛造後に割れを確認した。比較例5及び6では、軟化処理工程後に非整合γ´相が存在しているが、鍛造時の整合γ´相の析出量を抑制するのに十分な量ではなかった。比較例7では、非整合γ´相は析出していないが、硬さが400Hvより小さく、950℃での熱間鍛造が行えている。しかし、比較例7のγ´相の固溶温度は950℃より低く、かつ熱力学計算に基づいたシミュレーションによって算出した700℃におけるγ´相の平衡析出量(熱力学的な平衡状態において安定なγ´相の析出量)は22体積%と、本発明のターゲットとなる高強度Ni基合金にはあてはまらない。従って、本発明の効果を十分に得るためには、軟化処理工程後の非整合γ´相の量は20体積%以上必要であることが確認された。 On the other hand, in Comparative Examples 3 to 6 in which the amount of the unmatched γ′ phase was less than 20% by volume and the hardness was more than 400 Hv, cracks were confirmed during or after forging. In Comparative Examples 5 and 6, the unmatched γ'phase was present after the softening treatment step, but the amount was not sufficient to suppress the amount of precipitation of the matched γ'phase during forging. In Comparative Example 7, the inconsistent γ′ phase was not precipitated, but the hardness was less than 400 Hv, and hot forging at 950° C. could be performed. However, the solid solution temperature of the γ′ phase of Comparative Example 7 is lower than 950° C., and the equilibrium precipitation amount of the γ′ phase at 700° C. calculated by a simulation based on thermodynamic calculation (stable in the thermodynamic equilibrium state is stable). The amount of precipitation of the γ'phase) is 22% by volume, which does not apply to the high-strength Ni-based alloy that is the target of the present invention. Therefore, in order to obtain the effect of the present invention sufficiently, it was confirmed that the amount of the unmatched γ′ phase after the softening treatment step was required to be 20% by volume or more.

さらに、実施例1及び2又は、実施例3及び4を比較すると、700℃における平衡γ´相の平衡析出量が同程度かつ軟化処理第2の工程における徐冷温度域が同じ条件では、徐冷速度をより遅くするほど非整合γ´相量が増加し、硬さを低下することができる。これは、非整合γ´相をより大きく成長させることで、主に徐冷終了時温度から室温まで冷却する間に析出する整合γ´相の量を減少できたためと考えられる。これに対して、比較例8では第1の軟化処理工程後に非整合γ´相を析出させ、第2の軟化処理工程を施しているが、徐冷速度が速く、非整合γ´相が成長しなかったため、本発明の効果を十分に得ることが出来なかった。 Further, comparing Examples 1 and 2 or Examples 3 and 4, when the equilibrium precipitation amount of the equilibrium γ′ phase at 700° C. is the same and the annealing temperature range in the second softening treatment step is the same, The slower the cooling rate, the more the amount of unmatched γ'phase increases, and the hardness can be lowered. It is considered that this is because the larger amount of the unmatched γ′ phase was able to reduce the amount of the matched γ′ phase that was precipitated mainly during the cooling from the temperature at the end of slow cooling to room temperature. On the other hand, in Comparative Example 8, the incoherent γ′ phase is precipitated after the first softening treatment step and the second softening treatment step is performed, but the slow cooling rate is fast and the incoherent γ′ phase grows. Therefore, the effect of the present invention could not be sufficiently obtained.

以上の結果から、軟化処理第2の工程の徐冷速度は50℃/hより遅くすることが好ましく、より好ましくは10℃/h以下であり、100℃/hより早いと本発明の効果が得られないことが示された。 From the above results, the slow cooling rate in the second step of softening treatment is preferably slower than 50° C./h, more preferably 10° C./h or less, and if faster than 100° C./h, the effect of the present invention is obtained. It was shown that it could not be obtained.

実施例1〜9では、いずれも900℃における0.2%耐力が250MPa以下であり、一例として実施例7では900℃における0.2%耐力が200MPaであり、非常に優れた熱間加工性を示した。 In each of Examples 1 to 9, the 0.2% proof stress at 900° C. is 250 MPa or less, and as an example, the 0.2% proof stress at 900° C. is 200 MPa in Example 7, which is an extremely excellent hot workability. showed that.

従って、Ni基合金の熱間鍛造前に本発明を適用することで、鍛造温度を従来の鍛造温度より100℃以上低くでき、熱間鍛造を容易に行うことが可能となる。なお、上述した優れた熱間鍛造性を見れば、本発明に係る軟化処理したNi基合金の加工工程は、熱間鍛造に限定されるものではなく、プレス加工、圧延加工、引抜き加工、押出し加工及び切削加工等であっても、優れた加工性を示すことは言うまでもない。 Therefore, by applying the present invention before hot forging of the Ni-based alloy, the forging temperature can be lowered by 100° C. or more than the conventional forging temperature, and the hot forging can be easily performed. In addition, if the above-mentioned excellent hot forgeability is seen, the processing step of the softened Ni-based alloy according to the present invention is not limited to hot forging, and pressing, rolling, drawing and extruding are performed. Needless to say, it exhibits excellent workability even in processing and cutting.

実施例1〜9では、950℃における熱間鍛造後に溶体化時効処理を施すことで、いずれも図4(III)に示すような非整合γ´相がほぼ消失し、かつ整合γ´相が多く析出した組織を有しており、700℃における整合γ´相の量が30体積%以上を含有しており、一例として実施例7では、500℃における引張強さ1518MPaと、従来の高強度Ni基合金と同等の強度を示した。 In Examples 1 to 9, by performing the solution aging treatment after hot forging at 950° C., the unmatched γ′ phase as shown in FIG. It has a large amount of precipitated structure, and the amount of the matched γ′ phase at 700° C. is 30% by volume or more. As an example, in Example 7, the tensile strength at 500° C. is 1518 MPa and the conventional high strength. It showed the same strength as the Ni-based alloy.

以上の結果から、本発明に係るNi基合金部材の製造方法を適用することで、難加工性である高強度Ni基合金の熱間加工性を大幅に向上できることが示された。 From the above results, it was shown that the hot workability of the high-strength Ni-based alloy, which is difficult to work, can be significantly improved by applying the Ni-based alloy member manufacturing method according to the present invention.

本発明に係るNi基合金部材の製造方法を用いて作製したNi基合金部材の例を以下に示す。 An example of a Ni-based alloy member manufactured by using the method for manufacturing a Ni-based alloy member according to the present invention is shown below.

図5Aは本発明に係るNi基合金の製造方法を用いて製造された鍛造用Ni基合金素材の一例を示す模式図である。この鍛造用Ni基合金素材は、上述した軟化処理工程S2後に得られる。従来は、高強度Ni基鋳造合金から構造物まで成形するには、強化相であるγ´相の量を減少させ強度を低下させるために、1000〜1250℃の高い温度域において最終加工まで行う必要があった。本発明に係るNi基合金の製造方法を用いて作製された鍛造用Ni基合金素材11とすることで、加工時に極めて高い成形性を示すことが可能となる。 FIG. 5A is a schematic view showing an example of a Ni-based alloy material for forging manufactured by using the method for manufacturing a Ni-based alloy according to the present invention. This Ni-based alloy material for forging is obtained after the above-described softening treatment step S2. Conventionally, in order to form a structure from a high-strength Ni-based casting alloy to a structure, in order to reduce the amount of the γ'phase which is a strengthening phase and reduce the strength, the final processing is performed in a high temperature range of 1000 to 1250°C. There was a need. By using the Ni-based alloy material 11 for forging produced by using the method for producing a Ni-based alloy according to the present invention, it becomes possible to exhibit extremely high formability during processing.

上記鍛造用Ni基合金素材11を用いることで、図5Bに示すような高強度Ni基合金を用いた薄板12(厚さ3mm以下)を冷間または熱間圧延により製造することが可能となる。 By using the above Ni-based alloy material 11 for forging, it becomes possible to manufacture a thin plate 12 (thickness of 3 mm or less) using a high-strength Ni-based alloy as shown in FIG. 5B by cold or hot rolling. ..

また、摩擦攪拌接合において、加工中の部材の温度は900℃程度まで上昇することから、本発明を適用することで加工温度における0.2%耐力を250MPa以下にできることから、摩擦攪拌接合も可能となる。これにより、図5Cに示すような、摩擦攪拌接合により接合されたNi基合金構造物を得ることが可能となる。 Further, in the friction stir welding, the temperature of the member during processing rises to about 900° C. Therefore, by applying the present invention, the 0.2% proof stress at the processing temperature can be set to 250 MPa or less, and thus the friction stir welding is also possible. Becomes This makes it possible to obtain a Ni-based alloy structure joined by friction stir welding as shown in FIG. 5C.

また、また、加工性の高い本発明に係るNi基合金を用いることで、容易に図5Dに示すようなボイラーチューブ15を製造することが可能となる。 Further, by using the Ni-based alloy according to the present invention having high workability, it is possible to easily manufacture the boiler tube 15 as shown in FIG. 5D.

また、前述した薄板12は容易に曲げ加工が可能となることから、摩擦攪拌接合を組み合わせることで、図5Eに示すような、より信頼性に優れ、耐用温度を向上させた燃焼器ライナー16を製造することが可能となる。 Further, since the thin plate 12 described above can be easily bent, by combining the friction stir welding, a combustor liner 16 having more excellent reliability and improved service temperature as shown in FIG. 5E can be obtained. It becomes possible to manufacture.

また、上記鍛造用Ni基合金素材11を用いることで、容易に型鍛造を行うことが可能であることから、切削加工を組み合わせることで、図5Fに示すような高温強度に優れたガスタービン動翼17の製造が可能となる。また、これらのガスタービン部材を適用した高効率火力発電プラントを実現することが可能となる。 Further, since it is possible to easily perform die forging by using the Ni-based alloy material 11 for forging described above, by combining cutting work, the gas turbine dynamics excellent in high temperature strength as shown in FIG. 5F can be obtained. The wing 17 can be manufactured. In addition, it becomes possible to realize a high-efficiency thermal power plant using these gas turbine members.

また、上記鍛造用Ni基合金素材11を用いることで、容易に図5Gに示すようなガスタービンディスク18を製造することが可能となる。 Moreover, by using the Ni-based alloy material 11 for forging, it becomes possible to easily manufacture the gas turbine disk 18 as shown in FIG. 5G.

以上、説明したように、本発明によれば、γ´相を多量に含有する析出強化型のNi基合金部材の製造過程における優れた加工性及びNi基合金部材の優れた高温強度を両立させたNi基合金軟化材及びNi基合金部材の製造方法を提供できることが証明された。また、本発明に係るNi基合金軟化材の製造方法を用いることにより、様々な形状を有するNi基合金部材、Ni基合金部品及びNi基合金構造物を簡便に製造可能であることが証明された。 As described above, according to the present invention, both excellent workability in the production process of a precipitation-strengthened Ni-based alloy member containing a large amount of γ'phase and excellent high-temperature strength of the Ni-based alloy member are achieved. It was proved that a Ni-based alloy softening material and a method for manufacturing a Ni-based alloy member can be provided. Further, it has been proved that the Ni-based alloy softening material manufacturing method according to the present invention can be used to easily manufacture Ni-based alloy members, Ni-based alloy parts and Ni-based alloy structures having various shapes. It was

なお、上記した実施例は、本発明の理解を助けるために具体的に説明したものであり、本発明は、説明した全ての構成を備えることに限定されるものではない。例えば、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。さらに、各実施例の構成の一部について、削除・他の構成に置換・他の構成の追加をすることが可能である。 It should be noted that the above-described embodiments are specifically described to help understanding of the present invention, and the present invention is not limited to having all the configurations described. For example, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Furthermore, a part of the configuration of each embodiment can be deleted, replaced with another configuration, or added with another configuration.

4…γ相、5…整合γ´相、6…非整合γ´相、7…γ相を構成する原子、8…γ´相を構成する原子、9…γ相とγ´相との整合界面、10…γ相とγ´相との非整合界面、11…本発明を用いて製造された鍛造用Ni基合金素材、12…本発明を用いて製造された薄板、13…摩擦攪拌接合のツール、14…摩擦攪拌接合による接合部、15…本発明を用いて製造されたボイラーチューブ、16…本発明を用いて製造された燃焼器ライナー、17…本発明を用いて製造されたガスタービン後段動翼、18…本発明を用いて製造されたガスタービンディスク。 4... γ phase, 5... Matched γ'phase, 6... Non-matched γ'phase, 7... Atoms that make up the γ phase, 8... Atoms that make up the γ'phase, 9... Matched between the γ phase and the γ'phase Interface, 10... Incoherent interface between γ phase and γ'phase, 11... Ni-based alloy material for forging manufactured by using the present invention, 12... Thin plate manufactured by using the present invention, 13... Friction stir welding Tool, 14... Joined part by friction stir welding, 15... Boiler tube produced by using the present invention, 16... Combustor liner produced by using the present invention, 17... Gas produced by using the present invention Turbine rear stage rotor blade, 18... Gas turbine disk manufactured by using the present invention.

Claims (4)

Ni基合金素材をγ´相の固溶温度未満の温度領域で軟化させて加工性を向上させる軟化処理工程を含み、
前記軟化処理工程は、前記Ni基合金素材を前記γ´相の固溶温度未満かつγ相の再結晶が迅速に進む温度以上の温度で熱間鍛造して非整合γ´相を析出させる第1の工程と、前記γ´相の固溶温度未満でかつ前記熱間鍛造の完了温度以上の温度から100℃/h以下の冷却速度で徐冷して非整合γ´相を成長させ、非整合γ´相の量を増加させる第2の工程とを含み、
前記Ni基合金素材の組成が、質量%で、10%以上25%以下のCr、30%以下のCo、TiとNbとTaの総和が3%以上9%以下、1%以上6%以下のAl、10%以下のFe、10%以下のMo、8%以下のW、0.03%以下のB、0.1%以下のC、0.08%以下のZr、2.0%以下のHfおよび5.0%以下のReを含有し、残部がNiおよび不可避不純物からなることを特徴とするNi基合金軟化材の製造方法。
Including a softening treatment step of softening the Ni-based alloy material in a temperature range below the solid solution temperature of the γ'phase to improve workability,
In the softening treatment step, the Ni-based alloy material is hot forged at a temperature lower than the solid solution temperature of the γ′ phase and at a temperature equal to or higher than a temperature at which recrystallization of the γ phase rapidly proceeds to precipitate a non-matching γ′ phase . a first step, gradual cooling to grow a non-aligned γ'-phase in the γ'-phase is less than solid solution temperature and the hot 100 ° C. from completion temperature above the temperature of the forged / h following cooling rate, non a second step of increasing the amount of matching γ'-phase seen including,
The composition of the Ni-based alloy material is, in mass %, 10% or more and 25% or less of Cr, 30% or less of Co, and the sum of Ti, Nb, and Ta is 3% or more and 9% or less, 1% or more and 6% or less. Al, 10% or less Fe, 10% or less Mo, 8% or less W, 0.03% or less B, 0.1% or less C, 0.08% or less Zr, 2.0% or less A method for producing a Ni-based alloy softening material, which contains Hf and Re of 5.0% or less, and the balance is Ni and inevitable impurities .
前記軟化処理工程によって得られた前記Ni基合金軟化材が、前記Ni基合金素材の母相であるγ相の結晶粒の粒界上に析出した非整合なγ´相の結晶粒が20体積%以上であることを特徴とする請求項1に記載のNi基合金軟化材の製造方法。 The Ni-based alloy softening material obtained by the softening treatment step has 20 volumes of unmatched γ′-phase crystal grains precipitated on the grain boundaries of the γ-phase crystal grains that are the parent phase of the Ni-based alloy material. % Or more, the method for manufacturing a Ni-based alloy softening material according to claim 1. 前記徐冷の冷却速度が50℃/h以下であることを特徴とする請求項1または2に記載のNi基合金軟化材の製造方法。 The method for producing a Ni-based alloy softening material according to claim 1 or 2 , wherein the cooling rate of the slow cooling is 50°C/h or less. 請求項1からのいずれか1項に記載の前記Ni基合金軟化材の製造方法によって得られた前記Ni基合金軟化材を所望の形状に加工する加工工程と、前記加工工程後に、前記Ni基合金素材の母相であるγ相の結晶粒の粒界上に析出した非整合なγ´相を固溶させる溶体化処理および整合γ´相を再析出させる時効処理をしてNi基合金部材を得る溶体化‐時効処理工程とを含むことを特徴とするNi基合金部材の製造方法。 A processing step of processing the Ni-based alloy softening material obtained by the method for manufacturing the Ni-based alloy softening material according to any one of claims 1 to 3 into a desired shape, and the Ni after the processing step. The Ni-base alloy is subjected to solution treatment to form a solid solution of the incoherent γ'phase precipitated on the grain boundaries of the crystal grains of the γ-phase, which is the parent phase of the base alloy material, and aging treatment to reprecipitate the coherent γ'phase. A method for producing a Ni-based alloy member, which comprises a solution treatment for obtaining the member and an aging treatment step.
JP2018145824A 2018-08-02 2018-08-02 Ni-based alloy softening material manufacturing method and Ni-based alloy member manufacturing method Active JP6728282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018145824A JP6728282B2 (en) 2018-08-02 2018-08-02 Ni-based alloy softening material manufacturing method and Ni-based alloy member manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018145824A JP6728282B2 (en) 2018-08-02 2018-08-02 Ni-based alloy softening material manufacturing method and Ni-based alloy member manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016001409A Division JP6382860B2 (en) 2016-01-07 2016-01-07 Ni base alloy softening material, Ni base alloy member, boiler tube, combustor liner, gas turbine rotor blade, gas turbine disk, and Ni base alloy structure using the same

Publications (2)

Publication Number Publication Date
JP2018188738A JP2018188738A (en) 2018-11-29
JP6728282B2 true JP6728282B2 (en) 2020-07-22

Family

ID=64479661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018145824A Active JP6728282B2 (en) 2018-08-02 2018-08-02 Ni-based alloy softening material manufacturing method and Ni-based alloy member manufacturing method

Country Status (1)

Country Link
JP (1) JP6728282B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3104613B1 (en) * 2019-12-11 2021-12-10 Safran NICKEL-BASED SUPERALLY
CN111235434B (en) * 2020-03-02 2021-07-30 北京钢研高纳科技股份有限公司 Preparation method of nickel-based deformed superalloy wheel disc forging used at high temperature
CN114836655B (en) 2022-05-05 2023-07-18 兰州理工大学 High-aluminum Inconel 625 alloy and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4820353A (en) * 1986-09-15 1989-04-11 General Electric Company Method of forming fatigue crack resistant nickel base superalloys and product formed
JP2778705B2 (en) * 1988-09-30 1998-07-23 日立金属株式会社 Ni-based super heat-resistant alloy and method for producing the same
JP4449337B2 (en) * 2003-05-09 2010-04-14 株式会社日立製作所 High oxidation resistance Ni-base superalloy castings and gas turbine parts
JP3977847B2 (en) * 2004-05-26 2007-09-19 日立金属株式会社 Heat resistant alloy for engine valves
CN102171373B (en) * 2008-10-02 2013-06-19 新日铁住金株式会社 Ni-based heat-resistant alloy
EP2591135B1 (en) * 2010-07-09 2015-09-09 General Electric Company Nickel-base alloy, processing therefor, and components formed thereof
JP2013052441A (en) * 2011-08-10 2013-03-21 Hitachi Metals Ltd Anvil for hot forging and hot forging method
GB201114606D0 (en) * 2011-08-24 2011-10-05 Rolls Royce Plc A nickel alloy
JP5891463B2 (en) * 2011-09-01 2016-03-23 国立研究開発法人物質・材料研究機構 Method for evaluating oxidation resistance of Ni-base superalloy

Also Published As

Publication number Publication date
JP2018188738A (en) 2018-11-29

Similar Documents

Publication Publication Date Title
JP5869624B2 (en) Ni-base alloy softening material and method for manufacturing Ni-base alloy member
JP6793689B2 (en) Manufacturing method of Ni-based alloy member
JP6422045B1 (en) Ni-base superalloy and manufacturing method thereof
US11085104B2 (en) Method for manufacturing Ni-based heat-resistant superalloy wire, and Ni-based heat-resistant super alloy wire
JP6727323B2 (en) Method for manufacturing nickel-base alloy high temperature member
JP6728282B2 (en) Ni-based alloy softening material manufacturing method and Ni-based alloy member manufacturing method
JP2778705B2 (en) Ni-based super heat-resistant alloy and method for producing the same
JP6150192B2 (en) Method for producing Ni-base superalloy
JP6889418B2 (en) Manufacturing method of Ni-based super heat-resistant alloy and Ni-based super heat-resistant alloy
WO2020203460A1 (en) Ni-BASED SUPER-HEAT-RESISTANT ALLOY AND METHOD FOR MANUFACTURING Ni-BASED SUPER-HEAT-RESISTANT ALLOY
KR20200142119A (en) Method for manufacturing ni-based wrought alloy material
JP6826235B2 (en) Ni-based alloy softened powder and method for producing the softened powder
JP6826766B1 (en) Manufacturing method of Ni-based super heat-resistant alloy and Ni-based super heat-resistant alloy
JP6315320B2 (en) Method for producing Fe-Ni base superalloy
JP5645054B2 (en) Nickel-base heat-resistant superalloys and heat-resistant superalloy components containing annealing twins
JP4906611B2 (en) Ni-based alloy
JP6382860B2 (en) Ni base alloy softening material, Ni base alloy member, boiler tube, combustor liner, gas turbine rotor blade, gas turbine disk, and Ni base alloy structure using the same
JP6485692B2 (en) Heat resistant alloy with excellent high temperature strength, method for producing the same and heat resistant alloy spring
JP7112317B2 (en) Austenitic steel sintered materials and turbine components
JP7237222B1 (en) Cobalt-based alloy shaped article and method for manufacturing cobalt-based alloy product
JP6931112B2 (en) Nickel-based alloy mold and repair method for the mold
US20230094413A1 (en) Cobalt-based alloy product and method for producing cobalt-based alloy product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200701

R150 Certificate of patent or registration of utility model

Ref document number: 6728282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350