JP6727531B2 - Method for producing dry solid of cellulose nanofiber - Google Patents

Method for producing dry solid of cellulose nanofiber Download PDF

Info

Publication number
JP6727531B2
JP6727531B2 JP2015123837A JP2015123837A JP6727531B2 JP 6727531 B2 JP6727531 B2 JP 6727531B2 JP 2015123837 A JP2015123837 A JP 2015123837A JP 2015123837 A JP2015123837 A JP 2015123837A JP 6727531 B2 JP6727531 B2 JP 6727531B2
Authority
JP
Japan
Prior art keywords
cnf
drying
dryer
dry solid
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015123837A
Other languages
Japanese (ja)
Other versions
JP2017008175A (en
Inventor
丈史 中谷
丈史 中谷
木村 浩司
浩司 木村
伸治 佐藤
伸治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Industries Co Ltd
Original Assignee
Nippon Paper Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Industries Co Ltd filed Critical Nippon Paper Industries Co Ltd
Priority to JP2015123837A priority Critical patent/JP6727531B2/en
Publication of JP2017008175A publication Critical patent/JP2017008175A/en
Application granted granted Critical
Publication of JP6727531B2 publication Critical patent/JP6727531B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、セルロースナノファイバーの乾燥固形物の製造方法に関する。 The present invention relates to a method for producing a dry solid product of cellulose nanofibers.

セルロースナノファイバー(CNF)は、水系分散性に優れている約4〜数百nm程度の大きさの微細繊維であり、食品、化粧品、医療品又は塗料等の粘度の保持、食品原料生地の強化、水分の保持、食品安定性向上、低カロリー添加物又は乳化安定化助剤として利用されていることが期待されている。 Cellulose nanofiber (CNF) is a fine fiber having a size of about 4 to several hundreds nm, which is excellent in water-based dispersibility, and retains the viscosity of foods, cosmetics, medical products or paints, and strengthens food material dough. It is expected to be used as a water retention, food stability improvement, low calorie additive or emulsion stabilization aid.

水に分散している状態(湿潤状態)のCNFを乾燥させた固形物は、微細なセルロース繊維間に水素結合が形成されるため、この乾燥固形物に水を加えても、乾燥前(湿潤状態)の溶解性、分散性、沈降度、及び粘度などの諸特性が復元しない。このため、CNFは水に分散している状態(湿潤状態)で製造され、乾燥させずに湿潤状態のままで各種用途に使用されることが通常行われている。 The solid matter obtained by drying CNF in a state of being dispersed in water (wet state) has hydrogen bonds formed between fine cellulose fibers. Various properties such as solubility, dispersibility, sedimentation degree, and viscosity of state) are not restored. Therefore, CNF is usually produced in a state of being dispersed in water (wet state), and is usually used for various purposes in a wet state without being dried.

しかしながら、この湿潤状態のCNFを安定させるためには、CNFに対して数倍〜数百倍の重量の水が必要であり、保存スペースの確保、保存及び輸送コストの増大等、種々の問題点がある。 However, in order to stabilize this CNF in a wet state, several to several hundred times the weight of water is required to the CNF, which causes various problems such as securing storage space, increasing storage and transportation costs. There is.

この問題を解決する手段として、凍結乾燥法や臨界点乾燥法などの他に、有機溶剤で置換処理した後に乾燥する方法(特許文献1)などが提案されている。 As means for solving this problem, in addition to the freeze-drying method, the critical point drying method, and the like, a method of performing substitution treatment with an organic solvent and then drying (Patent Document 1) and the like have been proposed.

特開平6−233691号JP-A-6-233691

しかしながら、CNFを凍結乾燥した場合、膨大なエネルギーが必要になるとともに、条件によってはCNFの微細繊維間の水が凍結される際に、微細なセルロース繊維間の空隙よりも大きな氷晶の成長がおこり、CNFの微細繊維同士の会合が発生するなどの問題が発生する。 However, when CNF is freeze-dried, a huge amount of energy is required, and depending on the conditions, when water between the fine fibers of CNF is frozen, the growth of ice crystals larger than the voids between the fine cellulose fibers is caused. Then, problems such as occurrence of association between fine fibers of CNF occur.

また、CNFの微細繊維の間の空隙は非常に小さい上に、微細なセルロース繊維の表面には多量の水が水和しているため、溶剤置換によって乾燥させるには、多量の溶剤と時間が必要となる。さらに、溶剤に置換することができない水分が内在してしまうために、溶剤の乾燥過程でCNFの微細なセルロース繊維の表面同士が水素結合によって強固に結合してしまう。このため、もとのCNFの状態に復元することは困難である。 Further, since the voids between the fine fibers of CNF are very small and a large amount of water is hydrated on the surface of the fine cellulose fibers, it is necessary to use a large amount of solvent and time for drying by solvent replacement. Will be needed. Furthermore, since water that cannot be replaced with the solvent is present internally, the surfaces of the fine CNF cellulose fibers are firmly bonded to each other by hydrogen bonds during the drying process of the solvent. Therefore, it is difficult to restore the original CNF state.

そこで、本発明は、安定に分散されているCNF分散液を乾燥させたCNF乾燥固形物を水に再分散したCNF分散液の粘度、透明性などの物性が、乾燥前のCNF分散液と比較して変化が少ない特性(再分散性)を有するCNFの乾燥固形物の製造方法を提供することを目的とする。
Therefore, in the present invention, physical properties such as viscosity and transparency of a CNF dispersion obtained by redispersing a CNF dry solid obtained by drying a stably dispersed CNF dispersion in water are compared with those of a CNF dispersion before drying. It is an object of the present invention to provide a method for producing a dry solid of CNF, which has characteristics (redispersibility) with little change.

本発明は、下記の[1]〜[2]を提供する。
[1] セルロースナノファイバーの水性懸濁液のpHを9〜11に調整した後に、脱水・乾燥させることを特徴とするセルロースナノファイバーの乾燥固形物の製造方法。
[2] [1]に記載の方法により製造されるセルロースナノファイバーの乾燥固形物。
The present invention provides the following [1] to [2].
[1] A method for producing a dry solid of cellulose nanofibers, which comprises dehydrating and drying after adjusting the pH of an aqueous suspension of cellulose nanofibers to 9 to 11.
[2] A dried solid product of cellulose nanofibers produced by the method according to [1].

本発明によれば、安定に分散されているCNF分散液を乾燥させたCNF乾燥固形物を水に再分散したCNF分散液の粘度、透明性などの物性が、乾燥前のCNF分散液と比較して変化が少ない特性(再分散性)を有するCNFの乾燥固形物の製造方法を提供することができる。 According to the present invention, physical properties such as viscosity and transparency of a CNF dispersion obtained by redispersing a CNF dry solid obtained by drying a stably dispersed CNF dispersion in water are compared with those of a CNF dispersion before drying. Thus, it is possible to provide a method for producing a dry solid product of CNF which has a characteristic of little change (redispersibility).

本発明は、セルロースナノファイバーの水性懸濁液のpHを9〜11に調整した後に、脱水・乾燥させることで得られるセルロースナノファイバーの乾燥固形物は、その固形物を水に分散させた湿潤状態のCNFが、乾燥前の湿潤状態のCNFの溶解性、分散性、沈降度、及び粘度などの諸特性の変化が少ない特性(再分散性)のを有する。 According to the present invention, the dry solid matter of cellulose nanofibers obtained by dehydrating and drying after adjusting the pH of the aqueous suspension of cellulose nanofibers to 9 to 11 is a wet solid obtained by dispersing the solid matter in water. The CNF in the state has a characteristic (redispersibility) in which changes in various properties such as solubility, dispersibility, sedimentation degree and viscosity of the CNF in a wet state before drying are small.

本発明のCNFの乾燥固形物が優れた再分散性を発現する理由は明らかではないが、乾燥前のCNFの水分散液のアルカリ領域(pH9〜11)に調整することで、乾燥時による酸劣化、CNFの凝集を抑制されていると推測される。ただし、pHが高すぎると、アルカリによる劣化、CNFの結晶構造の変化の恐れがある。 It is not clear why the dried solid product of CNF of the present invention exhibits excellent redispersibility, but by adjusting to the alkaline region (pH 9 to 11) of the aqueous dispersion of CNF before drying, acid by It is presumed that deterioration and aggregation of CNF are suppressed. However, if the pH is too high, there is a risk of deterioration due to alkali and a change in the crystal structure of CNF.

なお、本発明において、セルロースナノファイバーの乾燥固形物とは、水分量が12重量%以下になるように脱水・乾燥したセルロースナノファイバーを意味する。 In the present invention, the dry solid matter of cellulose nanofibers means the cellulose nanofibers dehydrated and dried so that the water content is 12% by weight or less.

(pH調整剤)
本発明において、セルロースナノファイバーの水性懸濁液のpHを9〜11に調整するために用いる薬品は特に限定されるものではなく、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化バリウム、水酸化マグネシウム、アンモニア、水酸化銅、水酸化アルミニウム、水酸化鉄、水酸化アンモニウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウムから選ばれた塩基性無機化合物、あるいはアルギニン、リジン、ヒスチジン及びオルニチンから選ばれた塩基性有機化合物などを例示することができる。
(PH adjuster)
In the present invention, the chemicals used to adjust the pH of the aqueous suspension of cellulose nanofibers to 9 to 11 are not particularly limited, and include sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide, A basic inorganic compound selected from magnesium hydroxide, ammonia, copper hydroxide, aluminum hydroxide, iron hydroxide, ammonium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, calcium carbonate, magnesium carbonate and magnesium oxide, Alternatively, a basic organic compound selected from arginine, lysine, histidine and ornithine can be exemplified.

(セルロースナノファイバー)
本発明において、セルロースナノファイバー(CNF)は、繊維幅が4〜500nm程度、アスペクト比が100以上の微細繊維であり、パルプなどのセルロース原料を解繊することによって得ることができる。
(Cellulose nanofiber)
In the present invention, the cellulose nanofiber (CNF) is a fine fiber having a fiber width of about 4 to 500 nm and an aspect ratio of 100 or more, and can be obtained by defibrating a cellulose raw material such as pulp.

(セルロース原料)
本発明において、セルロース原料としては、植物(例えば、木材、竹、麻、ジュート、ケナフ、農地残廃物、布、パルプ(針葉樹未漂白クラフトパルプ(NUKP)、針葉樹漂
白クラフトパルプ(NBKP)、広葉樹未漂白クラフトパルプ(LUKP)、広葉樹漂白クラフトパルプ(LBKP)、針葉樹未漂白サルファイトパルプ(NUSP)、針葉樹漂白サルファイトパルプ(NBSP)サーモメカニカルパルプ(TMP)、再生パルプ、古紙等)、動物(例えばホヤ類)、藻類、微生物(例えば酢酸菌(アセトバクター))、微生物産生物等を起源とするものが知られており、本発明ではそのいずれも使用できる。好ましくは植物又は微生物由来のセルロース繊維であり、より好ましくは植物由来のセルロース繊維である。
(Cellulose raw material)
In the present invention, as the cellulose raw material, plants (for example, wood, bamboo, hemp, jute, kenaf, agricultural land waste, cloth, pulp (softwood unbleached kraft pulp (NUKP), softwood bleached kraft pulp (NBKP), broadleaf wood) Bleached kraft pulp (LUKP), hardwood bleached kraft pulp (LBKP), softwood unbleached sulfite pulp (NUSP), softwood bleached sulfite pulp (NBSP) thermomechanical pulp (TMP), recycled pulp, waste paper, etc., animals (eg Those originating from ascidians), algae, microorganisms (eg acetic acid bacteria (acetobacter)), microbial products, etc. are known, and any of them can be used in the present invention. And more preferably plant-derived cellulose fibers.

(解繊)
本発明において、解繊する装置は特に限定されないが、高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式などの装置を用いて前記水分散体に強力なせん断力を印加することが好ましい。特に、効率よく解繊するには、前記水分散体に50MPa以上の圧力を印加し、かつ強力なせん断力を印加できる湿式の高圧または超高圧ホモジナイザを用いることが好ましい。前記圧力は、より好ましくは100MPa以上であり、さらに好ましくは140MPa以上である。また、高圧ホモジナイザでの解繊・分散処理に先立って、必要に応じて、高速せん断ミキサーなどの公知の混合、攪拌、乳化、分散装置を用いて、上記のCNFに予備処理を施すことも可能である。
(Defibration)
In the present invention, the device for defibration is not particularly limited, but a strong shearing force is applied to the water dispersion using a device such as a high-speed rotation type, colloid mill type, high pressure type, roll mill type, or ultrasonic type. Is preferred. In particular, for efficient defibration, it is preferable to use a wet high-pressure or ultra-high-pressure homogenizer that can apply a pressure of 50 MPa or more and a strong shearing force to the water dispersion. The pressure is more preferably 100 MPa or more, further preferably 140 MPa or more. If necessary, prior to the defibration/dispersion treatment with a high-pressure homogenizer, the above CNF can be pretreated by using a known mixing, stirring, emulsifying, or dispersing device such as a high-speed shear mixer. Is.

(乾燥方法)
本発明方法において、脱水・乾燥方法としては、従来公知のものであれば良く、例えば、スプレイドライ、圧搾、風乾、熱風乾燥、及び真空乾燥を挙げることができる。本発明方法で具体的に用いる乾燥装置の例としては、以下のようなものである。すなわち、連続式のトンネル乾燥装置、バンド乾燥装置、縦型乾燥装置、垂直ターボ乾燥装置、多重段円板乾燥装置、通気乾燥装置、回転乾燥装置、気流乾燥装置、スプレードライヤ乾燥装置、噴霧乾燥装置、円筒乾燥装置、ドラム乾燥装置、スクリューコンベア乾燥装置、加熱管付回転乾燥装置、振動輸送乾燥装置等、回分式の箱型乾燥装置、通気乾燥装置、真空箱型乾燥装置、及び撹拌乾燥装置等の乾燥装置を単独で又は2つ以上組み合わせて用いることができる。
(Drying method)
In the method of the present invention, the dehydration/drying method may be any conventionally known method, and examples thereof include spray drying, pressing, air drying, hot air drying, and vacuum drying. Examples of the drying device specifically used in the method of the present invention are as follows. That is, a continuous tunnel dryer, a band dryer, a vertical dryer, a vertical turbo dryer, a multi-stage disc dryer, an aeration dryer, a rotary dryer, an air flow dryer, a spray dryer dryer, a spray dryer. , Cylindrical dryer, drum dryer, screw conveyor dryer, rotary dryer with heating tube, vibration transport dryer, batch-type box dryer, aeration dryer, vacuum box dryer, stirring dryer, etc. These drying devices can be used alone or in combination of two or more.

これらの中でも、ドラム乾燥装置を用いることが、均一に被乾燥物に熱エネルギーを直接供給するためエネルギー効率の点から好ましい。また、乾燥前の水を含んだセルロースナノファイバーに於いて、乾燥処理効率を上げるために、水分をできるだけ少なくする前濃縮処理を行うことが通常行われるが、この際液粘度の上昇が乾燥処理の障害となる。これに対して、ドラムにブレードやダイ等により薄膜を形成させて乾燥させる事により、乾燥処理をより効率的に、均一に短時間で行うことができる。更に、ドラム乾燥装置は必要以上に熱を加えずに、直ちに乾燥物を回収できる点からも好ましい。 Among these, it is preferable to use the drum dryer from the viewpoint of energy efficiency because the heat energy is directly supplied directly to the material to be dried. In addition, in the case of water-containing cellulose nanofibers before drying, in order to improve the efficiency of the drying process, a pre-concentration process is usually performed to reduce the water content as much as possible. Becomes an obstacle. On the other hand, by forming a thin film on the drum with a blade, a die or the like and drying the film, the drying process can be performed more efficiently and uniformly in a short time. Furthermore, the drum dryer is preferable in that the dried product can be immediately recovered without applying excessive heat.

以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定される
ものではない。
<CNFの製造>
針葉樹由来の漂白済み未叩解クラフトパルプ(白色度85%)を水で1.0%(w/v)に調整し、超高圧ホモジナイザー(20℃、150Mpa)で50回処理して、セルロースナノファイバー分散液を得た。得られた繊維は、平均繊維径が60nm、アスペクト比が110であった。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.
<Manufacture of CNF>
Bleached unbeaten kraft pulp from softwood (85% whiteness) is adjusted to 1.0% (w/v) with water and treated with an ultra-high pressure homogenizer (20°C, 150Mpa) 50 times to give cellulose nanofibers. A dispersion was obtained. The obtained fiber had an average fiber diameter of 60 nm and an aspect ratio of 110.

(平均繊維径、アスペクト比の測定方法)
セルロース繊維の平均繊維径および平均繊維長は、電界放出型走査電子顕微鏡(FE−SEM)を用いて、ランダムに選んだ200本の繊維について解析した。なおアスペクト比は下記の式により算出した:
アスペクト比=平均繊維長/平均繊維径
(Measuring method of average fiber diameter and aspect ratio)
The average fiber diameter and the average fiber length of the cellulose fibers were analyzed for 200 randomly selected fibers by using a field emission scanning electron microscope (FE-SEM). The aspect ratio was calculated by the following formula:
Aspect ratio = average fiber length / average fiber diameter

<実施例1>
上記CNF(平均繊維径:60nm、アスペクト比:110)の0.7質量%水性懸濁液をTKホモミキサー(12,000rpm)で60分間攪拌した。この水性懸濁液に、水酸化ナトリウム水溶液0.5%を加え、pHを9に調整した後、蒸気圧力0.5MPa.G、ドラム回転数2rpmのドラム乾燥機D0303(カツラギ工業)で乾燥し、水分量5重量%のCNFの乾燥固形物を得た。
<Example 1>
A 0.7 mass% aqueous suspension of the above CNF (average fiber diameter: 60 nm, aspect ratio: 110) was stirred for 60 minutes with a TK homomixer (12,000 rpm). To this aqueous suspension, 0.5% aqueous sodium hydroxide solution was added to adjust the pH to 9, and then the vapor pressure was 0.5 MPa. G was dried with a drum dryer D0303 (Katsuragi Industry Co., Ltd.) having a drum rotation speed of 2 rpm to obtain a dry solid of CNF having a water content of 5% by weight.

次に、上記で得られた乾燥固形物に0.7質量%水性懸濁液になるように水を添加し、TKホモミキサー(12,000rpm)を用いて60分間攪拌し、CNFを再分散した水性懸濁液を得た。 Next, water was added to the dry solid obtained above so as to form a 0.7 mass% aqueous suspension, and the mixture was stirred for 60 minutes using a TK homomixer (12,000 rpm) to redisperse CNF. An aqueous suspension was obtained.

(B型粘度の測定)
CNF(固形分0.7%、25℃)のB型粘度を測定した。なおB型粘度の測定条件は、回転数30rpm、3分とした。
(透明度の測定)
CNF分散液(固形分0.1%)の透明度(660nm 光の透過率)をUV分光光度計 U−3000(日立ハイテク)を用いて測定した。
(B-type viscosity measurement)
The B type viscosity of CNF (solid content 0.7%, 25° C.) was measured. The measurement conditions for the B-type viscosity were a rotation speed of 30 rpm and 3 minutes.
(Measurement of transparency)
The transparency (transmittance of 660 nm light) of the CNF dispersion liquid (solid content 0.1%) was measured using a UV spectrophotometer U-3000 (Hitachi High-Tech).

(復元率の評価)
B型粘度、透明度の復元率は以下の式で算出した。
復元率(%)=(乾燥前の粘度あるいは透明度)/(再分散後の粘度あるいは透明度)×100
(Evaluation of restoration rate)
The B-type viscosity and the restoration rate of transparency were calculated by the following formulas.
Recovery rate (%)=(viscosity or transparency before drying)/(viscosity or transparency after redispersion)×100

<実施例2>
pHを11に調整以外は実施例1と同様にして行った。
<Example 2>
The same procedure as in Example 1 was carried out except that the pH was adjusted to 11.

<比較例1>
pH調整を行わなかった以外は実施例1と同様にして行ったが、水性懸濁液にCNFの凝集物の沈降物が著しく発生したため、評価することができなかった。
<Comparative Example 1>
The procedure was performed in the same manner as in Example 1 except that the pH was not adjusted, but it was not possible to evaluate because the precipitation of CNF aggregates remarkably occurred in the aqueous suspension.

<比較例2>
pHを8に調整以外は実施例1と同様にして行ったが、水性懸濁液にCNFの凝集物の沈降物が著しく発生したため、評価することができなかった。
<Comparative example 2>
The procedure was performed in the same manner as in Example 1 except that the pH was adjusted to 8. However, it was not possible to evaluate because the precipitation of aggregates of CNFs significantly occurred in the aqueous suspension.

Figure 0006727531
Figure 0006727531

Claims (1)

繊維幅が4〜500nm、アスペクト比が100以上のセルロースナノファイバー(アニオン変性セルロースナノファイバーを除く)の水性懸濁液のpHを9〜11に調整した後に、洗浄することなく、脱水及び乾燥させることを特徴とするセルロースナノファイバーの乾燥固形物の製造方法。 After adjusting the pH of an aqueous suspension of cellulose nanofibers (excluding anion-modified cellulose nanofibers) having a fiber width of 4 to 500 nm and an aspect ratio of 100 or more to 9 to 11, dehydration and drying are performed without washing. A method for producing a dry solid product of cellulose nanofibers, comprising:
JP2015123837A 2015-06-19 2015-06-19 Method for producing dry solid of cellulose nanofiber Active JP6727531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015123837A JP6727531B2 (en) 2015-06-19 2015-06-19 Method for producing dry solid of cellulose nanofiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015123837A JP6727531B2 (en) 2015-06-19 2015-06-19 Method for producing dry solid of cellulose nanofiber

Publications (2)

Publication Number Publication Date
JP2017008175A JP2017008175A (en) 2017-01-12
JP6727531B2 true JP6727531B2 (en) 2020-07-22

Family

ID=57760941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015123837A Active JP6727531B2 (en) 2015-06-19 2015-06-19 Method for producing dry solid of cellulose nanofiber

Country Status (1)

Country Link
JP (1) JP6727531B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6933056B2 (en) * 2017-08-29 2021-09-08 東亞合成株式会社 Manufacturing method of cellulose nanofiber powder

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4481076A (en) * 1983-03-28 1984-11-06 International Telephone And Telegraph Corporation Redispersible microfibrillated cellulose
JP3205632B2 (en) * 1993-02-09 2001-09-04 株式会社興人 Preparation of bacterial cellulose derivatives
JPH11255806A (en) * 1998-03-13 1999-09-21 Bio Polymer Reserch:Kk Freeze-drying method of concentrated fine fibrous cellulose
JP2011122014A (en) * 2009-12-09 2011-06-23 Konica Minolta Opto Inc Resin composite, method for producing the same, and method for producing cellulose nanofiber used in the same
WO2011111612A1 (en) * 2010-03-09 2011-09-15 凸版印刷株式会社 Fine cellulose fiber dispersion liquid and manufacturing method thereof, cellulose film and laminate body
JP5855337B2 (en) * 2010-10-07 2016-02-09 北越紀州製紙株式会社 Porous material and method for producing the same
WO2013031601A1 (en) * 2011-08-26 2013-03-07 コニカミノルタホールディングス株式会社 Optical film, method for producing same, and element substrate using optical film
JP2013087132A (en) * 2011-10-13 2013-05-13 Oji Holdings Corp Method for producing fine fibrous cellulose
FI125941B (en) * 2012-02-13 2016-04-15 Upm Kymmene Corp Method and apparatus for treating fibril pulp and a fibril pulp product
CN107630385B (en) * 2012-08-10 2020-12-11 王子控股株式会社 Microfibrous cellulose aggregate, process for producing same, and process for remanufacturing microfibrous cellulose dispersion
JP6095355B2 (en) * 2012-12-18 2017-03-15 花王株式会社 Method for producing cellulose nanofiber dispersion
JP6286909B2 (en) * 2013-07-23 2018-03-07 王子ホールディングス株式会社 Method for producing porous sheet
JP6237251B2 (en) * 2014-01-17 2017-11-29 日本製紙株式会社 Method for producing a dry solid of anion-modified cellulose nanofiber

Also Published As

Publication number Publication date
JP2017008175A (en) 2017-01-12

Similar Documents

Publication Publication Date Title
JP6237251B2 (en) Method for producing a dry solid of anion-modified cellulose nanofiber
JP6536120B2 (en) Concentrate of anion-modified cellulose nanofiber, method for producing the same and dispersion thereof
JP2017008176A (en) Dry solid article of cellulose nanofiber and manufacturing method thereof
WO2015107995A1 (en) Dry solid of anion-modified cellulose nanofiber and method for producing same
JP5827178B2 (en) Cellulose porous body and method for producing the same
JP6876619B2 (en) Method for producing dry cellulose nanofiber
CN109642051B (en) Fibrous cellulose-containing material and method for producing fibrous cellulose-containing material
CA2931765C (en) Process for producing fibrillated cellulose material
KR20150082523A (en) Dry cellulose filaments and the method of making the same
JP6754885B2 (en) Dry solid containing fine cellulose fibers, fine cellulose fiber redispersion liquid
SK3499A3 (en) Additivation of essentially amorphous cellulose nanofibrils with carboxyl cellulose with a high degree of substitution
SK3599A3 (en) Composition containing cellulose nanofibrils, the preparation method thereof, an aqueous suspension containing cellulose nanofibrils and the use of this composition and suspension
CN111465620B (en) Carboxymethylated cellulose nanofibers
JP2020097733A (en) Fine cellulose fiber-containing dry solid, and fine cellulose fiber re-dispersion liquid
BR112019000110B1 (en) METHOD FOR MANUFACTURING INTERMEDIATE PRODUCT FOR CONVERSION TO MICROFIBRILLATED CELLULOSE
JP6727531B2 (en) Method for producing dry solid of cellulose nanofiber
JP2016196534A (en) Manufacturing method of cellulose porous body
JP2023013443A (en) Method for producing chemically modified microfibril cellulose fiber
JP6671935B2 (en) Method for producing dry solid material of cellulose nanofiber
JP2017002135A (en) Cellulose nano-fiber dry solid material and production method therefor, and dry solid material re-dispersion
JP6968311B1 (en) Cellulose nanofiber concentrated / dried product manufacturing method and pressure reducing belt dryer
TW202108115A (en) Emulsifier including carboxymethyl cellulose nanofibers and water-soluble polymer, and method for manufacturing emulsion using said emulsifier
JP2020182903A (en) Emulsifier including carboxymethylated cellulose nanofiber and water-soluble polymer
WO2019189318A1 (en) Method for producing cellulose nanofiber dry solid
WO2020129855A1 (en) Production method for dry solid containing fine cellulose fibers, dry solid containing fine cellulose fibers, redispersion of fine cellulose fibers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180409

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190326

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200614

R150 Certificate of patent or registration of utility model

Ref document number: 6727531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150