JP6723939B2 - Wavelength conversion element, light source device, and image projection device - Google Patents

Wavelength conversion element, light source device, and image projection device Download PDF

Info

Publication number
JP6723939B2
JP6723939B2 JP2017020127A JP2017020127A JP6723939B2 JP 6723939 B2 JP6723939 B2 JP 6723939B2 JP 2017020127 A JP2017020127 A JP 2017020127A JP 2017020127 A JP2017020127 A JP 2017020127A JP 6723939 B2 JP6723939 B2 JP 6723939B2
Authority
JP
Japan
Prior art keywords
particles
diffuser
phosphor
refractive index
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017020127A
Other languages
Japanese (ja)
Other versions
JP2017215568A5 (en
JP2017215568A (en
Inventor
大古場 稔
稔 大古場
雄也 蔵田
雄也 蔵田
亮太 門脇
亮太 門脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to CN201710375972.2A priority Critical patent/CN107450261B/en
Priority to US15/606,065 priority patent/US10775686B2/en
Priority to FR1754666A priority patent/FR3051925A1/fr
Priority to DE102017111712.1A priority patent/DE102017111712B4/en
Priority to GB1708667.9A priority patent/GB2553614B/en
Publication of JP2017215568A publication Critical patent/JP2017215568A/en
Publication of JP2017215568A5 publication Critical patent/JP2017215568A5/ja
Application granted granted Critical
Publication of JP6723939B2 publication Critical patent/JP6723939B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、励起光を波長変換して蛍光光を生成する波長変換素子に関し、特に画像投射装置(プロジェクタ)の光源装置への使用に適するものに関する。 The present invention relates to a wavelength conversion element that converts excitation light into wavelengths to generate fluorescent light, and particularly relates to a wavelength conversion element suitable for use as a light source device of an image projection apparatus (projector).

上記のような波長変換素子または光源装置として、レーザ光等の励起光の一部を該励起光とは波長(色)が異なる蛍光光に変換し、該蛍光光と蛍光体による波長変換がなされなかった、つまりは励起光と同波長を有する非変換光との合成光を生成するものがある。非変換光は、励起光のうち拡散体の粒子によって蛍光体に到達することなく拡散(反射)された光である。 As the wavelength conversion element or the light source device as described above, a part of excitation light such as laser light is converted into fluorescent light having a wavelength (color) different from that of the excitation light, and wavelength conversion is performed by the fluorescent light and the phosphor. There is one that does not exist, that is, it generates synthetic light of unconverted light having the same wavelength as the excitation light. The non-converted light is light of the excitation light that is diffused (reflected) by the particles of the diffuser without reaching the phosphor.

特許文献1には、蛍光体とこれを保持するための樹脂に対して、拡散体として熱伝導率の高いフィラー(微粒子)を加えることにより、蛍光体の放熱をも促進して波長変換効率を向上させるようにした波長変換素子が開示されている。また、特許文献2には、蛍光体粒子に無機酸化物粒子を付着させることにより、蛍光体粒子内からの蛍光光の取り出し効率を向上させるようにした波長変換素子が開示されている。 In Patent Document 1, by adding a filler (fine particles) having a high thermal conductivity as a diffuser to a phosphor and a resin for holding the phosphor, heat dissipation of the phosphor is also promoted to improve wavelength conversion efficiency. A wavelength conversion element improved is disclosed. Further, Patent Document 2 discloses a wavelength conversion element in which inorganic oxide particles are attached to phosphor particles to improve the efficiency of extracting fluorescent light from the inside of the phosphor particles.

特開2011−180353号公報JP, 2011-180353, A 特開2015−089898号公報JP, 2005-089898, A

しかしながら、特許文献1の波長変換素子では、樹脂が高熱伝導率の粒子を包むように配置されており、該素子を単に用いるだけでは熱伝導率を高くして蛍光体を冷却するまでの効果を得ることは難しい。このため、この波長変換素子を用いた光源装置において明るさ向上の効果を期待し難い。 However, in the wavelength conversion element of Patent Document 1, the resin is arranged so as to wrap the particles having high thermal conductivity, and the mere use of the element has the effect of increasing the thermal conductivity and cooling the phosphor. It's difficult. Therefore, it is difficult to expect the effect of improving the brightness in the light source device using this wavelength conversion element.

一方、特許文献2の波長変換素子では、原理的には蛍光体粒子からの光取り出し効率の向上は期待できるが、実際には無機酸化物粒子が付着した蛍光体粒子を樹脂(バインダー)に均一に混ぜ込む撹拌工程において無機酸化物粒子が蛍光体粒子から離れてしまう。また、無機酸化物粒子が蛍光体粒子から離れずとも、それら粒子の間に小さな気泡が嵌まり込む場合がある。これらの場合には明るさ向上の効果は低くなる。 On the other hand, in the wavelength conversion element of Patent Document 2, in principle, improvement of the light extraction efficiency from the phosphor particles can be expected, but in reality, the phosphor particles to which the inorganic oxide particles are attached are uniformly dispersed in the resin (binder). Inorganic oxide particles are separated from the phosphor particles in the stirring step of mixing with. Even if the inorganic oxide particles are not separated from the phosphor particles, small bubbles may be fitted between the particles. In these cases, the effect of improving the brightness is low.

本発明は、簡易な構成によって従来よりも蛍光光の取り出し効率、つまりは蛍光光の発光効率を向上させることができるようにした波長変換素子およびこれを用いた光源装置、さらに該光源装置を用いた画像投射装置を提供する。 The present invention provides a wavelength conversion element and a light source device using the same, which can improve the extraction efficiency of fluorescent light, that is, the emission efficiency of fluorescent light by a simple structure, and a light source device using the same. The image projection device is provided.

本発明の一側面としての波長変換素子は、照射される照射光を波長変換して蛍光光を発生する。該波長変換素子は、複数の蛍光体粒子と、複数の拡散体粒子と、複数の蛍光体粒子と複数の拡散体粒子を含むバインダーとを有する。そして、拡散体粒子の最小粒径が、蛍光光の波長の1/4以上4倍以下であり、バインダーおよび上記複数の拡散体粒子の合計体積に対する該複数の拡散体粒子の体積の割合が25%以上60%未満であり、上記蛍光光の波長における上記蛍光体粒子の屈折率が1.7以上2.0以下であり、該蛍光光の波長における上記バインダーの屈折率が1.4以上1.8以下であり、該蛍光体粒子の屈折率が該バインダーの屈折率より高く、上記拡散体粒子の屈折率が該蛍光体粒子の屈折率と該バインダーの屈折率との間の屈折率であることを特徴とする。 The wavelength conversion element according to one aspect of the present invention wavelength-converts the irradiation light to be irradiated to generate fluorescent light. The wavelength conversion element has a plurality of phosphor particles, a plurality of diffuser particles, and a binder including the plurality of phosphor particles and the plurality of diffuser particles. The minimum particle size of the diffuser particles is 1/4 or more and 4 times or less the wavelength of the fluorescent light, and the ratio of the volume of the plurality of diffuser particles to the total volume of the binder and the plurality of diffuser particles is 25. Ri% to 60% less der, the fluorescent light refractive index of the phosphor particles at a wavelength of 1.7 or more and 2.0 or less, the refractive index of the binder at the wavelength of the fluorescent light is 1.4 or more 1.8 or less, the refractive index of the phosphor particles is higher than the refractive index of the binder, and the refractive index of the diffuser particles is between the refractive index of the phosphor particles and the refractive index of the binder. and wherein the der Rukoto.

また、本発明の他の一側面としての波長変換素子は、照射される照射光を波長変換して蛍光光を発生する。該波長変換素子は、複数の蛍光体粒子と、複数の拡散体粒子と、複数の蛍光体粒子と複数の拡散体粒子を含むバインダーとを有する。そして、上記蛍光光の波長における上記蛍光体粒子の屈折率が1.7以上2.0以下であり、該蛍光光の波長における上記バインダーの屈折率が1.4以上1.8以下であり、上記蛍光体粒子の屈折率が該バインダーの屈折率より高く、上記拡散体粒子の屈折率が該蛍光体粒子の屈折率と該バインダーの屈折率との間の屈折率である。拡散体粒子の最小粒径をDとし、バインダーおよび上記複数の拡散体粒子の合計体積に対する該複数の拡散体粒子の体積の割合をXとし、蛍光体粒子と拡散体粒子との距離dを、 A wavelength conversion element according to another aspect of the present invention wavelength-converts the irradiation light to be irradiated to generate fluorescent light . The wavelength conversion element has a plurality of phosphor particles, a plurality of diffuser particles, and a binder including the plurality of phosphor particles and the plurality of diffuser particles. The refractive index of the phosphor particles at the wavelength of the fluorescent light is 1.7 or more and 2.0 or less, and the refractive index of the binder at the wavelength of the fluorescent light is 1.4 or more and 1.8 or less, The refractive index of the phosphor particles is higher than the refractive index of the binder, and the refractive index of the diffuser particles is a refractive index between the refractive index of the phosphor particles and the binder. The minimum particle size of the diffuser particles is D, the ratio of the volume of the plurality of diffuser particles to the total volume of the binder and the plurality of diffuser particles is X, and the distance d between the phosphor particles and the diffuser particles is

とするとき、距離dが600nm以下であることを特徴とする。 And the distance d is 600 nm or less.

なお、照射光を発する光源と上記波長変換素子とを有する光源装置、さらに該光源装置からの合成光と光変調素子とを用いて画像を投射する光学系を有する画像投射装置も、本発明の他の一側面を構成する。 A light source device having a light source for emitting irradiation light and the wavelength conversion element, and an image projection device having an optical system for projecting an image using the combined light from the light source device and the light modulation element are also included in the present invention. It constitutes another aspect.

本発明によれば、拡散体粒子の最小粒径、バインダーと拡散体粒子の合計体積に対する拡散体粒子の体積の割合、さらには蛍光体と拡散体粒子間の距離等が所定の条件を満たすことで、簡単な構成で蛍光光の発光効率が高い波長変換素子を実現することができる。そして、この波長変換素子を用いることで、従来よりも明るさが向上した光源装置、さらにはより明るい画像を投射可能な画像投射装置を実現することができる。 According to the present invention, the minimum particle size of the diffuser particles, the ratio of the volume of the diffuser particles to the total volume of the binder and the diffuser particles, further, the distance between the phosphor and the diffuser particles, etc. satisfy the predetermined conditions. Thus, it is possible to realize a wavelength conversion element having a high emission efficiency of fluorescent light with a simple configuration. Then, by using this wavelength conversion element, it is possible to realize a light source device having improved brightness as compared with the conventional one and further an image projection device capable of projecting a brighter image.

本発明の実施例である波長変換素子を用いたプロジェクタの構成を示す図。FIG. 1 is a diagram showing a configuration of a projector using a wavelength conversion element that is an embodiment of the present invention. 実施例の波長変換素子における蛍光体層を示す図。The figure which shows the fluorescent substance layer in the wavelength conversion element of an Example. (a)は透過型蛍光体層を示す図であり、(b)は反射型蛍光体層を示す図。(A) is a figure which shows a transmissive fluorescent substance layer, (b) is a figure which shows a reflective fluorescent substance layer. 実施例1における発光効率の向上効果の有無を示す図。FIG. 4 is a diagram showing whether or not there is an effect of improving luminous efficiency in Example 1. 実施例1における光トンネル効果の発生を示す図。FIG. 6 is a diagram showing the occurrence of an optical tunnel effect in the first embodiment. 実施例2における発光効率の向上効果の有無を示す図。FIG. 8 is a diagram showing whether or not there is an effect of improving the luminous efficiency in Example 2.

以下、本発明の実施例について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

前述した特許文献2にて開示された波長変換素子のように、蛍光体内に吸収されていた光を取り出すために蛍光体の表面に無機酸化物等の微小粒子を付着させることは有効である。ただし、このように蛍光体に微小粒子を付着させなくても、つまりは微小粒子(本実施例では拡散体粒子)が蛍光体に対して離間していても、以下のように蛍光光を蛍光体内から取り出すことができる。 As in the wavelength conversion element disclosed in Patent Document 2 described above, it is effective to attach fine particles such as an inorganic oxide to the surface of the phosphor in order to extract the light absorbed in the phosphor. However, even if the fine particles are not attached to the fluorescent material in this manner, that is, even if the fine particles (diffuser particles in this embodiment) are separated from the fluorescent material, the fluorescent light is emitted as follows. It can be removed from the body.

蛍光体内に存在する蛍光光は、該蛍光体の表面で内部全反射する際にその表面の近傍で一旦、エバネッセント光として蛍光体の外部に漏れ出る(染み出す)。このエバネッセント光を、これが蛍光体内に戻る前に取り出せばよい。すなわち、蛍光体の表面の近傍に微小粒子を配置することで、蛍光体内に戻る前のエバネッセント光を捉えてその進行方向を変えることにより、蛍光体の表面での内部全反射によって蛍光体外に出射してこない光を減少させる。これにより、蛍光光の取り出し効率を向上させることができる。 Fluorescent light existing in the fluorescent substance once leaks (exudes) to the outside of the fluorescent substance as evanescent light in the vicinity of the surface when it is totally internally reflected on the surface of the fluorescent substance. This evanescent light may be extracted before it returns to the phosphor. That is, by arranging fine particles in the vicinity of the surface of the phosphor, the evanescent light before returning to the phosphor is caught and the traveling direction is changed, so that it is emitted to the outside of the phosphor by total internal reflection on the surface of the phosphor. Reduce the light that does not come. Thereby, the extraction efficiency of the fluorescent light can be improved.

図1には、後述する本発明の具体的な実施例において説明する波長変換素子を用いた画像投射装置(プロジェクタ)200の構成を示している。101は光源としての青色レーザダイオード(LD)であり、102は波長変換素子である。103はダイクロイックミラーであり、104は色分解合成光学系および光変調素子としての液晶パネルを含むパネル部である。なお、光変調素子として、デジタルマイクロミラーデバイス(DMD)を用いてもよい。105は投射レンズである。 FIG. 1 shows a configuration of an image projection apparatus (projector) 200 using a wavelength conversion element described in a specific embodiment of the present invention described later. Reference numeral 101 is a blue laser diode (LD) as a light source, and 102 is a wavelength conversion element. Reference numeral 103 is a dichroic mirror, and 104 is a panel unit including a color separation/synthesis optical system and a liquid crystal panel as a light modulation element. A digital micromirror device (DMD) may be used as the light modulation element. Reference numeral 105 is a projection lens.

青色LD101から発せられた青色レーザは、ダイクロイックミラー103で反射されて励起光として波長変換素子102に照射される。波長変換素子102は、不図示の基板と該基板上に設けられた蛍光体層とを有する。蛍光体層は、励起光の一部を波長変換して蛍光光としての黄色光を発生させ、該黄色光と励起光と同波長の非変換光である青色光との合成光である白色光を生成し放出する。青色LD101および波長変換素子102(ダイクロイックミラー103を含めてもよい)により光源装置が構成される。 The blue laser emitted from the blue LD 101 is reflected by the dichroic mirror 103 and is applied to the wavelength conversion element 102 as excitation light. The wavelength conversion element 102 has a substrate (not shown) and a phosphor layer provided on the substrate. The phosphor layer is a white light that is a combined light of the yellow light and the blue light that is the unconverted light having the same wavelength as the excitation light by generating a yellow light as the fluorescent light by wavelength-converting a part of the excitation light. Generate and release. The blue LD 101 and the wavelength conversion element 102 (which may include the dichroic mirror 103) constitute a light source device.

白色光は、ダイクロイックミラー103を透過またはダイクロイックミラー103の周辺を通過してパネル部104に入射する。パネル部104の色分解合成光学系は白色光をRGBの3つの色光に分離して色光ごとに設けられた液晶パネルに導く。液晶パネルで画像変調された3つの色光は色分解合成光学系で合成され、投射レンズ105によって外部に設けられた不図示のスクリーン等の投射面に投射される。これにより、投射画像としてのカラー画像が表示される。 White light passes through the dichroic mirror 103 or passes around the dichroic mirror 103 and is incident on the panel unit 104. The color separation/combination optical system of the panel unit 104 separates white light into three color lights of RGB and guides them to a liquid crystal panel provided for each color light. The three color lights image-modulated by the liquid crystal panel are combined by a color separation/combination optical system and projected by a projection lens 105 onto a projection surface such as a screen (not shown) provided outside. As a result, a color image as a projection image is displayed.

図2(a)には、本実施例の波長変換素子102に設けられた蛍光体層の構成を示している。図2(b)には本実施例に対する比較例としての蛍光体層の構成を示している。1は複数の蛍光体粒子であり、2は複数の拡散体粒子である。図では拡散体粒子2を蛍光体粒子1に比べて小さい粒子として示している。3はこれら複数の蛍光体粒子1および拡散体粒子2を含有するバインダーである。4,5,6は蛍光光の光路を示している。 FIG. 2A shows the structure of the phosphor layer provided in the wavelength conversion element 102 of this embodiment. FIG. 2B shows the structure of a phosphor layer as a comparative example with respect to this example. Reference numeral 1 is a plurality of phosphor particles, and 2 is a plurality of diffuser particles. In the figure, the diffuser particles 2 are shown as particles smaller than the phosphor particles 1. 3 is a binder containing the plurality of phosphor particles 1 and the plurality of diffuser particles 2. Reference numerals 4, 5 and 6 denote the optical paths of fluorescent light.

まず、本実施例において蛍光体粒子1内から蛍光光を取り出す原理について説明する。図2(b)の比較例は、図2(b)に示す本実施例に比べてバインダー3内における拡散体粒子2の濃度が低い場合を示す。この場合、蛍光体粒子1内で発生した蛍光光は、光路4に示すように蛍光体粒子1の表面(粒子界面)に直角近くの角度で入射して蛍光体粒子1外に出射する光と、光路6に示すように粒子界面で内部全反射して蛍光体粒子1内に留まる(吸収される)光とに分かれる。蛍光体粒子1内で光路4での角度と光路6での角度との間の角度で粒子界面に到達した蛍光光は、その角度に応じた透過率と反射率で一部が外部に出射し、残りが蛍光体粒子1に吸収される。蛍光体粒子1により吸収された蛍光光がそのまま熱に変換されることで、蛍光光のロスが発生する。つまり、蛍光光の取り出し効率が低下する。 First, the principle of extracting fluorescent light from the inside of the phosphor particles 1 in this embodiment will be described. The comparative example of FIG. 2B shows a case where the concentration of the diffuser particles 2 in the binder 3 is lower than that of the present example shown in FIG. 2B. In this case, the fluorescent light generated in the phosphor particles 1 is incident on the surface (particle interface) of the phosphor particles 1 at an angle near a right angle and is emitted to the outside of the phosphor particles 1 as shown in the optical path 4. , Light that is totally internally reflected at the particle interface and stays (is absorbed) in the phosphor particles 1 as shown in the optical path 6. The fluorescent light that reaches the particle interface within the phosphor particles 1 at an angle between the angle in the optical path 4 and the angle in the optical path 6 is partially emitted to the outside with the transmittance and the reflectance according to the angle. , The rest is absorbed by the phosphor particles 1. The fluorescent light absorbed by the phosphor particles 1 is converted into heat as it is, so that a loss of fluorescent light occurs. That is, the extraction efficiency of the fluorescent light decreases.

図2(a)に示す本実施例では、拡散体粒子2の濃度を後述する条件を満足するように高めることで、蛍光体粒子1の近傍に平均的に拡散体粒子2を配置する。これにより、光路5に示すように蛍光体粒子1内において内部全反射する角度で粒子界面に到達した蛍光光も、光トンネル効果によって該蛍光体粒子1の近傍に存在する拡散体粒子2に伝搬する。こうして蛍光体粒子1からその近傍に存在する拡散体粒子2を介して蛍光光を取り出すことにより、蛍光光の取り出し効率、つまりは波長変換素子102における蛍光光の発光効率を向上させることができる。 In the present example shown in FIG. 2A, the concentration of the diffuser particles 2 is increased so as to satisfy the conditions described later, so that the diffuser particles 2 are arranged in the vicinity of the phosphor particles 1 on average. As a result, the fluorescent light that reaches the particle interface at the angle of total internal reflection within the phosphor particles 1 as shown in the optical path 5 also propagates to the diffuser particles 2 existing in the vicinity of the phosphor particles 1 due to the light tunnel effect. To do. By thus extracting the fluorescent light from the phosphor particles 1 via the diffuser particles 2 existing in the vicinity thereof, the extraction efficiency of the fluorescent light, that is, the emission efficiency of the fluorescent light in the wavelength conversion element 102 can be improved.

以下、本実施例の波長変換素子102における蛍光体粒子(以下、蛍光体という)、拡散体粒子(以下、拡散体という)、バインダーおよび基板(図3(a),(b)参照)について説明する。
<蛍光体>
蛍光体としては、励起光の波長を変換して蛍光光を発生させる特性を有する材料であれば、特に制限はない。一般には、波長が約440nmから約470nmの青色光により励起される無機材料が多く用いられ、本実施例でもこれを用いることができる。例えば、図1に示した波長変換素子102のように黄色蛍光光を発生させる蛍光体としては、Y3Al5O12:Ce3+、(Sr,Ba)2SiO4:Eu2+およびCax(Si,Al)12(O,N)16:Eu2+等が用いられる。なお、Cax(Si,Al)12(O,N)16:Eu2+は、一般に、αサイアロン蛍光体と称され、発光色は黄色〜橙色である。
Hereinafter, the phosphor particles (hereinafter, referred to as phosphor), the diffuser particles (hereinafter, referred to as diffuser), the binder and the substrate (see FIGS. 3A and 3B) in the wavelength conversion element 102 of the present embodiment will be described. To do.
<Phosphor>
The phosphor is not particularly limited as long as it is a material having a characteristic of converting the wavelength of excitation light to generate fluorescent light. In general, many inorganic materials that are excited by blue light having a wavelength of about 440 nm to about 470 nm are used, and this can be used in this embodiment as well. For example, as the phosphor that emits yellow fluorescent light like the wavelength conversion element 102 shown in FIG. 1, Y3Al5O12:Ce3+, (Sr,Ba)2SiO4:Eu2+ and Cax(Si,Al)12(O,N). 16: Eu2+ or the like is used. Note that Cax(Si,Al)12(O,N)16:Eu2+ is generally referred to as an α-sialon phosphor, and its emission color is yellow to orange.

また、赤色蛍光光を発生させる蛍光体としては、CaAlSiN3:Eu2+、(Ca,Sr)AlSiN3:Eu2+、Ca2Si5N8:Eu2+、(Ca,Sr)2Si5N8:Eu2+、KSiF6:Mn4+およびKTiF6:Mn4+等が用いられる。 Further, as a phosphor for generating red fluorescent light, CaAlSiN3:Eu2+, (Ca,Sr)AlSiN3:Eu2+, Ca2Si5N8:Eu2+, (Ca,Sr)2Si5N8:Eu2+, KSiF6:Mn4+, KTiF6:Mn4+ and the like are used. ..

さらに、緑色蛍光光を発生する蛍光体として、Lu3Al5O12:Ce3+、(Lu,Y)3Al5O12:Ce3+、Y3(Ga,Al)5O12:Ce3+、Ca3Sc2Si3O12:Ce3+、CaSc2O4:Eu2+、(Ba,Sr)2SiO4:Eu2+、Ba3Si6O12N2:Eu2+、(Si,Al)6(O,N)8:Eu2+およびSr4Al14O25:Eu2+等を用いることができる。 Further, as phosphors that emit green fluorescent light, Lu3Al5O12:Ce3+, (Lu,Y)3Al5O12:Ce3+, Y3(Ga,Al)5O12:Ce3+, Ca3Sc2Si3O12:Ce3+, CaSc2O4:Eu2+, (Ba,Sr)2SiO4: Eu2+, Ba3Si6O12N2:Eu2+, (Si,Al)6(O,N)8:Eu2+ and Sr4Al14O25:Eu2+ can be used.

粒子としての蛍光体は、その粒径が1μm以上100μm以下のものよく用いられており、本実施例でもこのようなサイズの蛍光体粒子を用いることが可能である。また、粒径が1μm以下のナノ蛍光体粒子を用いてもよく、このようなナノ蛍光体粒子を用いた場合でも蛍光光の発光効率向上の効果が得られる。ただし、蛍光体の平均粒径は、次に説明する拡散体の平均粒径よりも大きいことが望ましい。 A phosphor having a particle size of 1 μm or more and 100 μm or less is often used as a particle, and a phosphor particle having such a size can also be used in this embodiment. Further, nanophosphor particles having a particle diameter of 1 μm or less may be used, and even when such nanophosphor particles are used, the effect of improving the emission efficiency of fluorescent light can be obtained. However, it is desirable that the average particle size of the phosphor is larger than the average particle size of the diffuser described below.

なお、実施例では、粒子のサイズを説明する上で「粒径」、「平均粒径」および「最小粒径」を用いる。「粒径」とは、同一体積で球に換算したときの直径である。平均粒径は、全粒子の最小粒径と最大粒径の平均値である。なお、最小粒径を全粒子の粒径のばらつき(標準偏差)がσであるときの「平均粒径−3σ」とし、最大粒径を「平均粒径+3σ」としてもよい。「最小粒径」、「最大粒径」および「平均粒径」は、全粒子の粒径を測定しなくても、統計的に推定することができる。 In the examples, "particle size", "average particle size" and "minimum particle size" are used to describe the size of particles. "Particle size" is the diameter of the same volume converted into spheres. The average particle size is an average value of the minimum particle size and the maximum particle size of all particles. The minimum particle size may be “average particle size−3σ” when the particle size variation (standard deviation) of all particles is σ, and the maximum particle size may be “average particle size+3σ”. The “minimum particle size”, “maximum particle size” and “average particle size” can be statistically estimated without measuring the particle size of all particles.

蛍光体の屈折率は、蛍光光の波長において、1.7以上2.0以下であることが望ましい。
<拡散体>
拡散体は、光学ガラス、硫酸バリウム、TiO2、Al2O3、ダイヤモンド等の可視光の吸収率が低い透光性を有する粒子(粉体)が用いられ、本実施例でも、これらを用いることができる。屈折率を考慮して光学ガラスの粒子を用いてもよい。例えば、FS5(屈折率=1.675)やFS15(屈折率=1.698)等、蛍光体の屈折率とバインダーの屈折率との間の屈折率を有する光学ガラスの粒子を用いたり、同様な屈折率を有する硫酸バリウムを用いたりするとよい。
The refractive index of the phosphor is preferably 1.7 or more and 2.0 or less at the wavelength of fluorescent light.
<Diffuser>
As the diffuser, translucent particles (powder) having a low absorption rate of visible light such as optical glass, barium sulfate, TiO2, Al2O3, and diamond are used, and these can also be used in this embodiment. Particles of optical glass may be used in consideration of the refractive index. For example, FS5 (refractive index=1.675), FS15 (refractive index=1.698), or other optical glass particles having a refractive index between that of the phosphor and that of the binder may be used. It is preferable to use barium sulfate having a high refractive index.

拡散体の粒径については、その最小粒径が蛍光光の波長の1/4以上4倍以下であることが望ましい。この範囲から外れる最小粒径の拡散体を用いても、蛍光体から蛍光光をうまく取り出すことができず、蛍光光の発光効率を向上させることができない。例えば、蛍光光が黄色光である場合には、拡散体の最小粒径は2μm以下であることが望ましく、拡散体の平均粒径は0.1μm以上5μm以下であることが望ましい。
<バインダー>
バインダーは、蛍光体と拡散体を固定するために用いられ、有機系バインダーと無機系バインダーに大別される。いずれも蛍光体を塊として扱うための繋ぎ材として用い、基板を用いる場合には基板上への固定材となる。基板を用いない場合は、蛍光体層を固化するための繋ぎ材となる。有機系バインダーとしては、耐熱性の観点から、シリコーン樹脂やエポキシ樹脂が多く用いられる。また、無機系バインダーとしては、低融点硝子フリットや東亜合成株式会社製のアロンセラミック(登録商標)等の耐熱性セラミック接着材等がある。気泡が入り難く体積収縮も少ない低融点硝子フリットが多く用いられる。本実施例でも、これらのバインダーを用いることができる。
With regard to the particle size of the diffuser, it is desirable that the minimum particle size is ¼ or more and 4 times or less the wavelength of the fluorescent light. Even if a diffuser having a minimum particle diameter outside this range is used, fluorescent light cannot be extracted well from the fluorescent material, and the luminous efficiency of fluorescent light cannot be improved. For example, when the fluorescent light is yellow light, the minimum particle size of the diffuser is preferably 2 μm or less, and the average particle size of the diffuser is preferably 0.1 μm or more and 5 μm or less.
<Binder>
The binder is used to fix the phosphor and the diffuser, and is roughly classified into an organic binder and an inorganic binder. Each of them is used as a connecting material for treating the phosphor as a lump, and when a substrate is used, it serves as a fixing material on the substrate. When the substrate is not used, it serves as a connecting material for solidifying the phosphor layer. From the viewpoint of heat resistance, silicone resins and epoxy resins are often used as organic binders. Examples of the inorganic binder include a low-melting glass frit and a heat-resistant ceramic adhesive such as Aaron Ceramic (registered trademark) manufactured by Toagosei Co., Ltd. Low melting point glass frit is often used because it is difficult for air bubbles to enter and has a small volume shrinkage. Also in this embodiment, these binders can be used.

バインダーの屈折率は、蛍光光の波長において、1.4以上1.6以下であることが望ましい。また、拡散体粒子の屈折率は、蛍光体の屈折率とバインダーの屈折率との間の屈折率であることが望ましい。この際、蛍光光の波長における蛍光体と拡散体との屈折率差は0.3以下であることが望ましく、またバインダーと拡散体との屈折率差は0.1以上であることが望ましい。さらに、蛍光体および拡散体を含むバインダーの合計厚みは、50μm以上200μm以下であることが望ましい。
<基板>
本実施例では、蛍光体層を固定保持する基板を用いてもよい。図3(a),(b)には、蛍光体層10と基板8との関係を示す。12は励起光であり、14は蛍光光である。図3(a)には、励起光12を、透光性を有する基板8の裏面側から入射させて該基板8を透過させ、表面側に設けられた蛍光体層10に照射することで蛍光光14を取り出す透過タイプを示している。この透過タイプでは、蛍光体で発生した熱を放熱する観点から、熱伝導率が高い透光性材料であるダイヤモンドやサファイアで作られた基板を用いるとよい。
The refractive index of the binder is preferably 1.4 or more and 1.6 or less at the wavelength of fluorescent light. Further, it is desirable that the refractive index of the diffuser particles be a refractive index between that of the phosphor and that of the binder. At this time, the difference in refractive index between the phosphor and the diffuser at the wavelength of the fluorescent light is preferably 0.3 or less, and the difference in refractive index between the binder and the diffuser is preferably 0.1 or more. Furthermore, the total thickness of the binder including the phosphor and the diffuser is preferably 50 μm or more and 200 μm or less.
<Substrate>
In this embodiment, a substrate that holds the phosphor layer fixed may be used. 3A and 3B show the relationship between the phosphor layer 10 and the substrate 8. 12 is excitation light, and 14 is fluorescent light. In FIG. 3A, the excitation light 12 is incident from the back surface side of the transparent substrate 8 to pass through the substrate 8 and irradiate the phosphor layer 10 provided on the front surface side to generate fluorescence. A transmission type for extracting the light 14 is shown. In this transmissive type, from the viewpoint of radiating the heat generated by the phosphor, it is preferable to use a substrate made of diamond or sapphire, which is a translucent material having high thermal conductivity.

図3(b)には、励起光12を基板8とは反対側から蛍光体層10に照射して、励起光照射側に直接放出される蛍光光14と基板8での反射を経て励起光照射側に放出される蛍光光14とを取り出す反射タイプを示している。この反射タイプでは、基板8は可視光を透過せずに反射する金属等により作ることが好ましく、特にAl、Cu、グラファイト等の熱伝導率が高い基板を用いるとよい。
<拡散体の濃度と粒径>
前述した蛍光光の取り出し効率(発光効率)向上の効果を得るためには、拡散体を蛍光体に対して特定の距離まで近づける必要がある。立方体において蛍光体が配置された空間を差し引いた残りの空間をバインダーと拡散体で満たすとする。拡散体(粒子)の最小粒径をDとし、拡散体間の距離をdとする。ここで、蛍光体と拡散体との間の距離は、この拡散体間の距離dに等しいとみなすことができる。すなわち、蛍光体と拡散体との間の距離dは以下のように表すことができる。
In FIG. 3B, the phosphor layer 10 is irradiated with the excitation light 12 from the side opposite to the substrate 8, and the fluorescence light 14 emitted directly to the excitation light irradiation side is reflected by the substrate 8 to generate the excitation light. A reflection type that extracts the fluorescent light 14 emitted to the irradiation side is shown. In this reflection type, the substrate 8 is preferably made of a metal or the like that reflects visible light without transmitting it, and particularly, a substrate having a high thermal conductivity such as Al, Cu or graphite is preferably used.
<Diffuser concentration and particle size>
In order to obtain the effect of improving the extraction efficiency (emission efficiency) of the fluorescent light described above, it is necessary to bring the diffuser closer to the phosphor to a specific distance. It is assumed that the remaining space of the cube minus the space in which the phosphors are arranged is filled with the binder and the diffuser. Let D be the minimum particle size of the diffusers (particles), and d be the distance between the diffusers. Here, the distance between the phosphor and the diffuser can be regarded as equal to the distance d between the diffusers. That is, the distance d between the phosphor and the diffuser can be expressed as follows.

上記残りの空間の体積(単位体積)は、
V=(D+d)
と表せる。また、全拡散体(複数の拡散体粒子)の体積は、
The volume (unit volume) of the remaining space is
V=(D+d) 3
Can be expressed as Also, the volume of all diffusers (plural diffuser particles) is

と表せる。 Can be expressed as

このため、全拡散体とバインダーの合計体積に対する全拡散体の体積の割合、すなわち拡散体の濃度Xは、 Therefore, the ratio of the volume of all the diffusers to the total volume of all the diffusers and the binder, that is, the concentration X of the diffuser is

と表せる。
これより、距離dは、
Can be expressed as
From this, the distance d is

というように、濃度Xと拡散体の最小粒径Dを用いて表せる。 In this way, it can be expressed using the concentration X and the minimum particle size D of the diffuser.

蛍光光の取り出し効率向上の効果が得られる距離dは拡散体の濃度と密接に関連し、励起光が青色光で蛍光光が黄色である場合には該距離dが600nm以下となることで上記効果が得られる。例えば、後述する実施例1,2で説明する拡散体A,Cを用いる場合には、濃度Xがパーセント表記で25%以上であると距離dが600nm以下になる。 The distance d at which the effect of improving the extraction efficiency of the fluorescent light is obtained is closely related to the concentration of the diffuser, and when the excitation light is blue light and the fluorescent light is yellow, the distance d becomes 600 nm or less, The effect is obtained. For example, when using the diffusers A and C described in Examples 1 and 2 described later, the distance d is 600 nm or less when the concentration X is 25% or more in percent notation.

なお、距離dが500nm以下であればより蛍光光の取り出し効率が向上し、距離dが300nm以下であればさらに蛍光光の取り出し効率が高まる。 If the distance d is 500 nm or less, the extraction efficiency of fluorescent light is further improved, and if the distance d is 300 nm or less, the extraction efficiency of fluorescent light is further enhanced.

以下、具体的な実施例(実験例)について説明する。なお、以下の説明では濃度Xを×100によりパーセント表記する。 Specific examples (experimental examples) will be described below. In the following description, the density X will be expressed as a percentage by x100.

図4には、実施例1における拡散体の濃度X(%)と蛍光光の発光効率との関係を示す。実施例1では、蛍光体としてYAG:Eu蛍光体を用いた。蛍光体の平均粒径は10μmであり、最小粒径5μmであった。基板として1mm厚のAl基板を用いた。また、拡散体の材料として硫酸バリウムを用いた。拡散体として、平均粒径が2μmで最小粒径が1μmの拡散体Aと、平均粒径が6μmで最小粒径が3μmの拡散体Bの2種類を用いた。拡散体の濃度は、20%、30%、40%および60%とした。 FIG. 4 shows the relationship between the concentration X (%) of the diffuser and the emission efficiency of fluorescent light in Example 1. In Example 1, a YAG:Eu phosphor was used as the phosphor. The average particle size of the phosphor was 10 μm, and the minimum particle size was 5 μm. A 1 mm thick Al substrate was used as the substrate. In addition, barium sulfate was used as the material of the diffuser. Two types of diffusers were used: a diffuser A having an average particle size of 2 μm and a minimum particle size of 1 μm, and a diffuser B having an average particle size of 6 μm and a minimum particle size of 3 μm. The diffuser concentrations were 20%, 30%, 40% and 60%.

バインダーの材料としては、信越化学工業株式会社製のエポキシ樹脂を用いた。拡散体とバインダーに、これらの合計体積1に対して0.5の体積比の蛍光体を混合したペーストを作成し、撹拌、脱泡した後、Al基板上に印刷して、200℃のオーブンで硬化させた。こうして作成した蛍光体層のサンプルの評価を、455nmの青色レーザを励起光として用いて行った。 An epoxy resin manufactured by Shin-Etsu Chemical Co., Ltd. was used as the binder material. A paste is prepared by mixing a phosphor and a binder in a volume ratio of 0.5 with respect to a total volume of 1 of these, and after stirring and defoaming, printing is performed on an Al substrate, and an oven at 200° C. is used. Cured. The phosphor layer sample thus prepared was evaluated using a blue laser of 455 nm as excitation light.

光源としては、日亜化学工業株式会社製の青色LDを用い、30W/mmの照射強度で蛍光体層に照射した際の黄色蛍光光の発光効率を確認したところ、図4に示す結果が得られた。 As a light source, a blue LD manufactured by Nichia Corporation was used, and the luminous efficiency of yellow fluorescent light when the phosphor layer was irradiated with an irradiation intensity of 30 W/mm 2 was confirmed. Was obtained.

拡散体Aを用いた場合には、その濃度が30%と40%の場合で発光効率向上の効果が得られ、20%および60%では効果は得られなかった。また、濃度60%の場合は、固体の比率が高いため、製造プロセスの段階で単層塗布をするのが困難であり、表面の凹凸性をレベリング等で平坦化することができず、表面反射が増加したことで効率低下につながった。 When the diffuser A was used, the effect of improving the luminous efficiency was obtained when the concentration was 30% and 40%, and the effect was not obtained when the concentration was 20% and 60%. Also, when the concentration is 60%, it is difficult to apply a single layer at the stage of the manufacturing process because the ratio of solids is high, and the unevenness of the surface cannot be flattened by leveling, etc. Increased, which led to lower efficiency.

拡散体Aの最小粒径1μmは、黄色蛍光光の波長の1/4以上4倍以下である。一方、最小粒径が蛍光光の波長の4倍より大きい3μmである拡散体Bを用いた場合には、その濃度にかかわらず発光効率向上の効果は得られなかった。これらのことから、拡散体の最小粒径が蛍光光の波長の1/4以上4倍以下であり、かつバインダーおよび全拡散体の合計体積に対する全拡散体の体積の割合(濃度)が25%以上60%未満であるときに、発光効率向上の効果が得られると考えられる。 The minimum particle size of 1 μm of the diffuser A is 1/4 or more and 4 times or less of the wavelength of the yellow fluorescent light. On the other hand, when the diffuser B having a minimum particle diameter of 3 μm, which is larger than four times the wavelength of the fluorescent light, is used, the effect of improving the luminous efficiency cannot be obtained regardless of the concentration. From these facts, the minimum particle size of the diffuser is 1/4 or more and 4 times or less of the wavelength of the fluorescent light, and the ratio (concentration) of the volume of all the diffusers to the total volume of the binder and all the diffusers is 25%. When it is at least 60%, it is considered that the effect of improving the luminous efficiency can be obtained.

なお、拡散体の最小粒径が蛍光光の波長の1/4以上4倍以下であり、かつバインダーおよび全拡散体の合計体積に対する全拡散体の体積の割合が25%以上60%未満であるという条件は、励起光が青色光で蛍光光が黄色光である場合以外の場合にも適用され得る。 The minimum particle size of the diffuser is 1/4 or more and 4 times or less of the wavelength of the fluorescent light, and the ratio of the volume of all the diffusers to the total volume of the binder and all the diffusers is 25% or more and less than 60%. The condition can be applied to cases other than the case where the excitation light is blue light and the fluorescence light is yellow light.

拡散体Aの最小粒径1μmで平均粒径が2μmと濃度30%とから上記式1を用いて距離d(=d0)を求めると、d0=407nmとなる。本実施例における、代表的な光トンネル効果による光の透過率の変化を図5に示す。この図から、光トンネル効果が有意に現れるのがd/λ=0.5のときである。蛍光光の波長(あるいは主波長)は550nm程度であるので、d/λ=0.5ではd=275nm程度となる。 If the distance d (=d0) is calculated from the minimum particle size of the diffuser A of 1 μm and the average particle size of 2 μm and the concentration of 30% by using the above formula 1, then d0=407 nm. FIG. 5 shows a change in light transmittance due to a typical light tunnel effect in this embodiment. From this figure, the light tunnel effect appears significantly when d/λ=0.5. Since the wavelength (or main wavelength) of the fluorescent light is about 550 nm, when d/λ=0.5, it is about d=275 nm.

実際に蛍光体層サンプルの断面SEM像を観察すると、隣接する拡散体粒子がすべて同じ間隔で並んでいるわけではなく、d0/2から2・d0までの間の距離でばらついて配置されている。このことから、d0/2≒dとみなすことができ、d0/2≒d=204nmであるため、式1で与えられる距離dによって発光効率向上の効果が得られることが分かる。 When actually observing the cross-sectional SEM image of the phosphor layer sample, not all the adjacent diffuser particles are arranged at the same intervals, but they are arranged at a distance of d0/2 to 2·d0. .. From this, it can be considered that d0/2≈d, and d0/2≈d=204 nm. Therefore, it is understood that the effect of improving the light emission efficiency can be obtained by the distance d given by Expression 1.

図6の左図には、実施例2における拡散体の濃度X(%)と蛍光光の発光効率との関係を示す。ここでは、実施例1にて説明した拡散体A,Bに加えて、平均粒径が1μmで最小粒径が0.5μmの拡散体Cも用いた。発光効率が1%(0.01)以上向上した範囲を太字で示す。この範囲は、右図に示すように、式1で計算した距離dが300nm以下となる範囲である。 The left diagram of FIG. 6 shows the relationship between the concentration X (%) of the diffuser and the emission efficiency of fluorescent light in Example 2. Here, in addition to the diffusers A and B described in Example 1, a diffuser C having an average particle size of 1 μm and a minimum particle size of 0.5 μm was also used. The range in which the luminous efficiency is improved by 1% (0.01) or more is shown in bold type. This range is a range in which the distance d calculated by Equation 1 is 300 nm or less, as shown in the right figure.

実施例3では、全蛍光体と全拡散体の合計体積1に対して、全蛍光体の体積比を0.5以上1.5以下の間で、0.5、0.75、1、1.25、1.5と変えることにより、蛍光体層から発せられる励起光と蛍光光の発光量比を調整することができる。これにより、良好な白色の色度を得ることができた。 In Example 3, with respect to the total volume 1 of all phosphors and all diffusers, the volume ratio of all phosphors was 0.5 or more and 1.5 or less. It is possible to adjust the emission amount ratio of the excitation light and the fluorescent light emitted from the phosphor layer by changing the ratio to .25 or 1.5. Thereby, good white chromaticity could be obtained.

実施例4では、バインダーの材料として、低融点硝子を用いた。この場合、シリコーン樹脂やエポキシ樹脂と異なり、低粘度状態を経ることがないため、蛍光体および拡散体の粒子の均一な分散性を容易に得ることができ、高い発光効率の蛍光体層を作成することができた。 In Example 4, low melting point glass was used as the binder material. In this case, unlike a silicone resin or an epoxy resin, since it does not go through a low-viscosity state, it is possible to easily obtain uniform dispersibility of the particles of the phosphor and the diffuser, and create a phosphor layer with high luminous efficiency. We were able to.

実施例5では、拡散体として、平均粒径が0.1μm以上5μmのものを用いた。この場合、良好な光拡散性と発光効率の向上効果がともに得られた。 In Example 5, a diffuser having an average particle size of 0.1 μm or more and 5 μm was used. In this case, both good light diffusivity and the effect of improving the luminous efficiency were obtained.

実施例6では、蛍光体の材料として屈折率が1.82のYAG−Ceを用い、バインダーの材料として屈折率1.43のシリコーン樹脂を用いた。また、拡散体の材料として屈折率1.64の硫酸バリウムを用いた。このような材料を選定することで、実施例1に比べて、明るさの絶対値において20%明るい光を放出する蛍光体層を作成することができた。 In Example 6, YAG-Ce having a refractive index of 1.82 was used as the phosphor material, and silicone resin having a refractive index of 1.43 was used as the binder material. Further, barium sulfate having a refractive index of 1.64 was used as the material of the diffuser. By selecting such a material, it was possible to form a phosphor layer that emits light that is 20% brighter in absolute value of brightness than in Example 1.

実施例7では、蛍光体、拡散体およびバインダーが同一体積比で混合された蛍光体層をホイール状(円環状または円盤状)に配置した。この蛍光体層を周方向に回転させ、その周方向の一部に励起光を照射した。これにより、熱による明るさや色の変化を抑えて蛍光体層から光を放出させることができた。具体的には、厚み100μmで直径10cmの蛍光体ホイールにおいて、明るさの変動を3%程度に抑えることができた。これに対して、拡散材体を含まない蛍光体層を用いた場合や、バインダーに蛍光体粒子を混合したと層とバインダーに拡散体粒子を混合した層とを2層に分けた場合は、明るさの変動が12%程度となった。 In Example 7, the phosphor layer in which the phosphor, the diffuser, and the binder were mixed in the same volume ratio was arranged in a wheel shape (annular shape or disk shape). This phosphor layer was rotated in the circumferential direction and a part of the circumferential direction was irradiated with excitation light. As a result, light could be emitted from the phosphor layer while suppressing changes in brightness and color due to heat. Specifically, in a phosphor wheel having a thickness of 100 μm and a diameter of 10 cm, the fluctuation in brightness could be suppressed to about 3%. On the other hand, when a phosphor layer containing no diffusing material is used, or when a layer in which the binder is mixed with the phosphor particles and a layer in which the binder is mixed with the diffuser particles are divided into two layers, The fluctuation in brightness was about 12%.

実施例8では、バインダーに蛍光体粒子と拡散体粒子を混合したものを印刷により基板上に配置(塗布)することで蛍光体層を形成した。これにより、バインダーに蛍光体粒子を混合したものとバインダーに拡散体粒子を混合したものとを2回に分けて塗布する場合に比べて印刷プロセスが1回で済み、ローコスト化ができる。 In Example 8, a phosphor layer was formed by arranging (coating) a mixture of the binder with phosphor particles and diffuser particles on a substrate by printing. As a result, the printing process can be performed only once compared with the case where the binder mixed with the phosphor particles and the binder mixed with the diffuser particles are applied twice, and the cost can be reduced.

実施例9では、透光性を有する多結晶蛍光体(プレート状の蛍光体)上に、実施例1,2で説明した拡散体の濃度を有する拡散体層(シリコーン樹脂バインダーに拡散体粒子を混合したもの)を形成した。この場合、多結晶蛍光体の上に拡散体を含まないシリコーン樹脂バインダーを塗布した場合に比べて、蛍光光の取り出し効率が4%向上した。同様の結果が、多結晶蛍光体だけでなく、単結晶蛍光体を用いた場合にも得られた。 In Example 9, a diffuser layer having the concentration of the diffuser described in Examples 1 and 2 (a diffuser particle in a silicone resin binder is coated with the diffuser particles is provided on the translucent polycrystalline phosphor (plate-like phosphor)). Mixed). In this case, the extraction efficiency of the fluorescent light was improved by 4% as compared with the case where the diffuser-free silicone resin binder was applied onto the polycrystalline phosphor. Similar results were obtained not only when using a polycrystalline phosphor but also when using a single crystal phosphor.

以上説明したように、上記実施例によれば、簡単な構成で蛍光光の発光効率が高い波長変換素子を実現することができる。そして、この波長変換素子を用いることで、従来よりも明るさが向上した光源装置、さらにはより明るい画像を投射可能なプロジェクタを実現することができる。 As described above, according to the above-described embodiment, it is possible to realize a wavelength conversion element having a high fluorescent light emission efficiency with a simple configuration. Then, by using this wavelength conversion element, it is possible to realize a light source device having improved brightness as compared with a conventional one and further a projector capable of projecting a brighter image.

以上説明した各実施例は代表的な例にすぎず、本発明の実施に際しては、各実施例に対して種々の変形や変更が可能である。 The embodiments described above are merely representative examples, and various modifications and changes can be made to the embodiments when implementing the present invention.

1 蛍光体(粒子)
2 拡散体(粒子)
3 バインダー
8 基板
10 蛍光体層
1 Phosphor (particle)
2 Diffuser (particle)
3 Binder 8 Substrate 10 Phosphor layer

Claims (13)

照射される照射光を波長変換して蛍光光を発生する波長変換素子であって、
複数の蛍光体粒子と、
複数の拡散体粒子と、
前記複数の蛍光体粒子と前記複数の拡散体粒子を含むバインダーと、を有し、
前記拡散体粒子の最小粒径が、前記蛍光光の波長の1/4以上4倍以下であり、
前記バインダーおよび前記複数の拡散体粒子の合計体積に対する前記複数の拡散体粒子の体積の割合が、25%以上60%未満であり、
前記蛍光光の波長における前記蛍光体粒子の屈折率が1.7以上2.0以下であり、
前記蛍光光の波長における前記バインダーの屈折率が1.4以上1.8以下であり、
前記蛍光体粒子の屈折率が前記バインダーの屈折率より高く、前記拡散体粒子の屈折率が前記蛍光体粒子の屈折率と前記バインダーの屈折率との間の屈折率であることを特徴とする波長変換素子。
A wavelength conversion element that converts the wavelength of the emitted irradiation light to generate fluorescent light,
A plurality of phosphor particles,
A plurality of diffuser particles,
A binder containing the plurality of phosphor particles and the plurality of diffuser particles,
The minimum particle size of the diffuser particles is 1/4 or more and 4 times or less of the wavelength of the fluorescent light,
Ratio of the volume of the plurality of diffuser particles to the total volume of the binder and the plurality of diffuser particles, Ri less than 60% der 25% or more,
The refractive index of the phosphor particles at the wavelength of the fluorescent light is 1.7 or more and 2.0 or less,
The refractive index of the binder at the wavelength of the fluorescent light is 1.4 or more and 1.8 or less,
The refractive index of the phosphor particles is higher than the refractive index of the binder, and wherein the refractive index der Rukoto between the refractive index and the refractive index of the binder of the refractive index of the diffusion particles is the phosphor particles Wavelength conversion element.
照射される照射光を波長変換して蛍光光を発生する波長変換素子であって、
複数の蛍光体粒子と、
複数の拡散体粒子と、
前記複数の蛍光体粒子と前記複数の拡散体粒子を含むバインダーと、を有し、
前記蛍光光の波長における前記蛍光体粒子の屈折率が1.7以上2.0以下であり、
前記蛍光光の波長における前記バインダーの屈折率が1.4以上1.8以下であり、
前記蛍光体粒子の屈折率が前記バインダーの屈折率より高く、前記拡散体粒子の屈折率が前記蛍光体粒子の屈折率と前記バインダーの屈折率との間の屈折率であり、
前記拡散体粒子の最小粒径をDとし、前記バインダーおよび前記複数の拡散体粒子の合計体積に対する前記複数の拡散体粒子の体積の割合をXとし、前記蛍光体粒子と前記拡散体粒子との距離dを、

とするとき、距離dが600nm以下であることを特徴とする波長変換素子。
A wavelength conversion element that converts the wavelength of the emitted irradiation light to generate fluorescent light ,
A plurality of phosphor particles,
A plurality of diffuser particles,
A binder containing the plurality of phosphor particles and the plurality of diffuser particles,
The refractive index of the phosphor particles at the wavelength of the fluorescent light is 1.7 or more and 2.0 or less,
The refractive index of the binder at the wavelength of the fluorescent light is 1.4 or more and 1.8 or less,
The refractive index of the phosphor particles is higher than the refractive index of the binder, the refractive index of the diffuser particles is a refractive index between the refractive index of the phosphor particles and the binder,
The minimum particle size of the diffuser particles is D, the ratio of the volume of the plurality of diffuser particles to the total volume of the binder and the plurality of diffuser particles is X, and the phosphor particles and the diffuser particles are Distance d

The wavelength conversion element is characterized in that the distance d is 600 nm or less.
前記距離dが300nm以下であることを特徴とする請求項2に記載の波長変換素子。 The wavelength conversion element according to claim 2, wherein the distance d is 300 nm or less. 前記複数の拡散体粒子の体積を1としたときの前記複数の蛍光体粒子の体積が0.5以上1.5以下であることを特徴とする請求項1から3のいずれか一項に記載の波長変換素子。 4. The volume of the plurality of phosphor particles when the volume of the plurality of diffuser particles is 1, is 0.5 or more and 1.5 or less. Wavelength conversion element. 粒子の最大粒径と最小粒径との平均値を平均粒径というとき、
前記蛍光体粒子の平均粒径が、前記拡散体粒子の平均粒径よりも大きいことを特徴とする請求項1から4のいずれか一項に記載の波長変換素子。
When the average value of the maximum particle size and the minimum particle size of the particles is called the average particle size,
The wavelength conversion element according to any one of claims 1 to 4, wherein an average particle diameter of the phosphor particles is larger than an average particle diameter of the diffuser particles.
前記拡散体粒子の最小粒径が2μm以下であることを特徴とする請求項1から5のいずれか一項に記載の波長変換素子。 6. The wavelength conversion element according to claim 1, wherein the minimum particle size of the diffuser particles is 2 μm or less. 粒子の最大粒径と最小粒径との平均値を平均粒径というとき、
前記拡散体粒子の平均粒径が、0.1μm以上10μm以下であることを特徴とする請求項1から6のいずれか一項に記載の波長変換素子。
When the average value of the maximum particle size and the minimum particle size of the particles is called the average particle size,
The wavelength conversion element according to claim 1, wherein an average particle diameter of the diffuser particles is 0.1 μm or more and 10 μm or less.
前記蛍光光の波長における前記蛍光体粒子と前記拡散体粒子との屈折率差が0.3以下であることを特徴とする請求項からのいずれか一項に記載の波長変換素子。 The wavelength conversion element according to any one of claims 1 to 7 , wherein a difference in refractive index between the phosphor particles and the diffuser particles at a wavelength of the fluorescent light is 0.3 or less. 前記蛍光光の波長における前記バインダーと前記拡散体粒子との屈折率差が0.1以上であることを特徴とする請求項からのいずれか一項に記載の波長変換素子。 The wavelength conversion element according to any one of claims 1 to 8 , wherein a difference in refractive index between the binder and the diffuser particles at the wavelength of the fluorescent light is 0.1 or more. 前記蛍光体粒子および前記拡散体粒子を含む前記バインダーの合計厚みが、50μm以上500μm以下であることを特徴とする請求項1からのいずれか一項に記載の波長変換素子。 The phosphor particles and the diffuser total thickness of the binder containing the particles, the wavelength conversion device as claimed in any one of claims 1 to 9, characterized in that at 50μm or 500μm or less. 前記蛍光体粒子および前記拡散体粒子を含む前記バインダーが円環状または円盤状に配置されていることを特徴とする請求項1から10のいずれか一項に記載の波長変換素子。 The phosphor particles and the wavelength conversion element according to claim 1, any one of 10 the binder is characterized in that it is arranged in an annular or disk shape including the diffuser particles. 前記照射光を発する光源と、
請求項1から11のいずれか一項に記載の波長変換素子とを有することを特徴とする光源装置。
A light source that emits the irradiation light,
A light source device comprising the wavelength conversion element according to any one of claims 1 to 11 .
請求項12に記載の光源装置と、
該光源装置からの前記蛍光光と光変調素子とを用いて画像を投射する光学系とを有することを特徴とする画像投射装置。
A light source device according to claim 12 ;
An image projection apparatus comprising: an optical system for projecting an image using the fluorescent light from the light source device and a light modulation element.
JP2017020127A 2016-05-31 2017-02-07 Wavelength conversion element, light source device, and image projection device Active JP6723939B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201710375972.2A CN107450261B (en) 2016-05-31 2017-05-25 Wavelength conversion element, light source device, and image projection device
US15/606,065 US10775686B2 (en) 2016-05-31 2017-05-26 Wavelength conversion element, light source apparatus and image projection apparatus
FR1754666A FR3051925A1 (en) 2016-05-31 2017-05-29
DE102017111712.1A DE102017111712B4 (en) 2016-05-31 2017-05-30 Wavelength conversion device, light source device and image projection device
GB1708667.9A GB2553614B (en) 2016-05-31 2017-05-31 Wavelength conversion element, light source apparatus and image projection apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016108050 2016-05-31
JP2016108050 2016-05-31

Publications (3)

Publication Number Publication Date
JP2017215568A JP2017215568A (en) 2017-12-07
JP2017215568A5 JP2017215568A5 (en) 2019-03-07
JP6723939B2 true JP6723939B2 (en) 2020-07-15

Family

ID=60575603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017020127A Active JP6723939B2 (en) 2016-05-31 2017-02-07 Wavelength conversion element, light source device, and image projection device

Country Status (1)

Country Link
JP (1) JP6723939B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098057A1 (en) * 2017-11-16 2019-05-23 パナソニックIpマネジメント株式会社 Wavelength conversion element
JP7040072B2 (en) * 2018-02-02 2022-03-23 Dic株式会社 Ink composition, light conversion layer and color filter
JPWO2020162357A1 (en) * 2019-02-06 2021-12-09 シャープ株式会社 Wavelength conversion element, light source device, vehicle headlight, transmissive lighting device, display device and lighting device
JP7458799B2 (en) 2020-01-28 2024-04-01 株式会社アドマテックス Luminescent material and its manufacturing method, and transparent resin composition
US20230365856A1 (en) * 2020-10-06 2023-11-16 Sharp Kabushiki Kaisha Wavelength conversion element, optical apparatus, and method of manufacturing wavelength conversion element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012108435A (en) * 2010-11-19 2012-06-07 Minebea Co Ltd Color wheel and manufacturing method of the same
US20150171372A1 (en) * 2012-07-04 2015-06-18 Sharp Kabushiki Kaisha Fluorescent material, fluorescent coating material, phosphor substrate, electronic apparatus, and led package
JPWO2016121855A1 (en) * 2015-01-30 2017-11-09 コニカミノルタ株式会社 Color wheel for projection display device, method for manufacturing the same, and projection display device including the same

Also Published As

Publication number Publication date
JP2017215568A (en) 2017-12-07

Similar Documents

Publication Publication Date Title
JP6723939B2 (en) Wavelength conversion element, light source device, and image projection device
CN107450261B (en) Wavelength conversion element, light source device, and image projection device
JP6246622B2 (en) Light source device and lighting device
TWI753889B (en) Wavelength converting member, method for manufacturing the same, and light-emitting device
CN107304984B (en) Wavelength conversion member and projector
US20160147136A1 (en) Wavelength conversion element, light source device, projector, and method for manufacturing wavelength conversion element
WO2017038164A1 (en) Light-emitting device
WO2017148344A1 (en) Wavelength conversion device and light source system
JP6544677B2 (en) Phosphor wheel, light source device using the same, and projection type display device
CN106195925A (en) A kind of Wavelength converter, light-emitting device and projection arrangement
JP6644081B2 (en) Light-emitting device, lighting device, and method for manufacturing light-emitting body included in light-emitting device
TW201232094A (en) Solid-state light emitting devices and signage with photoluminescence wavelength conversion
JP5919968B2 (en) Wavelength conversion member and light emitting device
US10865950B2 (en) Light source unit and projection-type display
JP2010529612A (en) Lighting system, collimator and spotlight
JP2016092271A (en) Phosphor sheet and lighting system
US20190032866A1 (en) Light emitting device and illuminating apparatus
JP2019045778A (en) Wavelength conversion element, light source device, and projector
JP2015192096A (en) Light emitting device
TW200836379A (en) Light emitting semiconductor device
TWI618946B (en) Phosphor device and manufacturing method thereof
JP2018072442A (en) Wavelength conversion device, light source device, illumination apparatus, and, projection-type image display device
JP2018036457A (en) Wavelength conversion element, light source device, and projector
JP2013172084A (en) Luminaire
JP6583400B2 (en) Method for manufacturing wavelength conversion member

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200624

R151 Written notification of patent or utility model registration

Ref document number: 6723939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151