JP6721887B2 - Joining structure and joining method - Google Patents

Joining structure and joining method Download PDF

Info

Publication number
JP6721887B2
JP6721887B2 JP2016040414A JP2016040414A JP6721887B2 JP 6721887 B2 JP6721887 B2 JP 6721887B2 JP 2016040414 A JP2016040414 A JP 2016040414A JP 2016040414 A JP2016040414 A JP 2016040414A JP 6721887 B2 JP6721887 B2 JP 6721887B2
Authority
JP
Japan
Prior art keywords
poly
lactic acid
joining
bonding
polylactic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016040414A
Other languages
Japanese (ja)
Other versions
JP2017155151A (en
JP2017155151A5 (en
Inventor
広治 網代
広治 網代
凱 ▲カン▼
凱 ▲カン▼
真也 藤城
真也 藤城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nara Institute of Science and Technology NUC
Original Assignee
Nara Institute of Science and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nara Institute of Science and Technology NUC filed Critical Nara Institute of Science and Technology NUC
Priority to JP2016040414A priority Critical patent/JP6721887B2/en
Publication of JP2017155151A publication Critical patent/JP2017155151A/en
Publication of JP2017155151A5 publication Critical patent/JP2017155151A5/ja
Application granted granted Critical
Publication of JP6721887B2 publication Critical patent/JP6721887B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、部材と部材を接合するために用いられる接合方法及び部材と部材の接合構造体に関し、特には、生体適合性や生体内分解吸収性を有する部材の接合に用いられる接合方法及びそのような部材の接合構造体に関する。 The present invention relates to a joining method used for joining members and members and a joining structure of the members and members, and more particularly, a joining method used for joining members having biocompatibility and biodegradability and absorbability. The present invention relates to a joined structure of such members.

部材同士を接合したり、欠損した部材を修復したりする方法の一つに接着剤を用いる方法がある。接着剤には、セメント等の無機系接着剤、天然樹脂・合成樹脂等の樹脂を材料とする有機系接着剤等の種類があり、接着しようとする部材(被着材)の材質や接着力に応じたものが採用される。ところが、一般的に、被着材と接着剤とは異なる材料からなる場合が多く、被着材の用途によっては接着剤を用いることができない。 There is a method of using an adhesive as one of the methods of joining members and repairing a defective member. There are several types of adhesives, such as inorganic adhesives such as cement and organic adhesives that use resins such as natural resins and synthetic resins. The material and adhesive strength of the member to be adhered (adhered material) The one according to is adopted. However, in general, the adherend and the adhesive are often made of different materials, and the adhesive cannot be used depending on the application of the adherend.

例えば、骨折した箇所を固定するために用いられるボルトやピン、プレート等の骨治療用具のように、生体内に長期間留置される部材の場合、生体適合性を有する材料が用いられる。また、近年では、生体適合性に加えて生体内分解吸収性を有する例えばポリL−乳酸のような材料を用いることにより、治療後に生体内から取り出す必要のない骨治療用具等も開発されている(特許文献1)。 For example, in the case of a member that is left in a living body for a long period of time, such as a bone treatment tool such as a bolt, a pin, or a plate used to fix a fractured part, a biocompatible material is used. Further, in recent years, by using a material such as poly L-lactic acid which has biodegradability and biodegradability in addition to biocompatibility, a bone treatment tool or the like that does not need to be taken out from the body after treatment has been developed. (Patent Document 1).

特開2009-233257号公報JP 2009-233257

Hongjin Qiu, et al., "PLA-Coated Gold Nanoparticles for the Labeling of PLA Biocarriers", Chem. Mater. 2004, 16, 850-856Hongjin Qiu, et al., "PLA-Coated Gold Nanoparticles for the Labeling of PLA Biocarriers", Chem. Mater. 2004, 16, 850-856

上述した骨治療用具のような部材を従来の接着剤を用いて接合すると、その部材の生体適合性、生体内分解吸収性を阻害することになる。 When a member such as the bone treatment tool described above is joined using a conventional adhesive, the biocompatibility and biodegradability of the member are impaired.

本発明が解決しようとする課題は、生体適合性及び生体内分解吸収性を有する部材の特性を妨げることなく該部材を接合することである。 The problem to be solved by the present invention is to bond members having biocompatibility and biodegradability and absorbability without disturbing the characteristics of the members.

上記課題を解決するために成された本発明に係る接合構造体は、
a)接合面においてポリL−乳酸が付着している第1部材と、
b)前記第1部材の接合面に接合される接合面においてポリD−乳酸が付着している第2部材とを備え、
前記第1部材の接合面と前記第2部材の接合面の間に、前記ポリL−乳酸と前記ポリD−乳酸により形成されたステレオコンプレックス構造を有することを特徴とする。
The joining structure according to the present invention made to solve the above problems,
a) a first member to which poly L-lactic acid is attached at the joint surface,
b) a second member having poly D-lactic acid attached to the bonding surface bonded to the bonding surface of the first member,
A stereocomplex structure formed of the poly(L-lactic acid) and the poly(D-lactic acid) is provided between the bonding surface of the first member and the bonding surface of the second member.

ポリL−乳酸及びポリD−乳酸が接合面に付着している形態としては、前記第1部材の接合面及び前記第2部材の接合面に、前記ポリL−乳酸及び前記ポリD−乳酸がそれぞれ側鎖として結合している形態、又は、前記第1部材の接合面及び前記第2部材の接合面に、前記ポリL−乳酸及び前記ポリD−乳酸が、それぞれ物理吸着している形態が好ましい。第1部材及び第2部材を構成する材料としては、ポリL−乳酸及びポリD−乳酸がグラフト重合あるいは物理吸着するものが用いられ、例としてポリマー、シリカ(酸化シリコン)、金等が挙げられる。また、ポリL−乳酸及びポリD−乳酸を第1部材及び第2部材の材料としても良い。 As a form in which poly L-lactic acid and poly D-lactic acid are attached to the joint surface, the poly L-lactic acid and the poly D-lactic acid are attached to the joint surface of the first member and the joint surface of the second member. There is a form in which the poly L-lactic acid and the poly D-lactic acid are physically adsorbed on the bonding surface of the first member and the bonding surface of the second member, respectively. preferable. As a material forming the first member and the second member, a material in which poly L-lactic acid and poly D-lactic acid are graft-polymerized or physically adsorbed is used, and examples thereof include polymer, silica (silicon oxide), gold and the like. .. Further, poly L-lactic acid and poly D-lactic acid may be used as the material of the first member and the second member.

本発明において、ポリL−乳酸(又はポリD−乳酸)が側鎖として結合している、とは、第1部材(又は第2部材)の接合面にポリL−乳酸(又はポリD−乳酸)が、その片末端が自由端となる状態で結合していること(いわゆる「グラフト重合」)をいい、このような構造は「グラフト構造」と呼ばれている。この接合形態の接合構造体の例を図2(a)に示す。 In the present invention, poly L-lactic acid (or poly D-lactic acid) bound as a side chain means that poly L-lactic acid (or poly D-lactic acid) is bonded to the bonding surface of the first member (or second member). ) Means that one end thereof is bonded in a state of being a free end (so-called “graft polymerization”), and such a structure is called a “graft structure”. An example of the bonded structure in this bonded form is shown in FIG.

生体適合性、生体内分解吸収性に優れたポリマーであるポリ乳酸には鏡像異性体としてL体(ポリL−乳酸)とD体(ポリD−乳酸)が存在し、これらポリL−乳酸とポリD−乳酸はステレオコンプレックスと呼ばれる高分子錯体構造を形成することが知られている。ステレオコンプレックスは、ファン・デル・ワールス相互作用を基にした高分子鎖間の立体的な構造適合により形成される構造であり、L体同士、D体同士の、ファン・デル・ワールス相互作用を基にした結合構造に比べると機械的強度に優れる。本発明に係る接合構造体では、第1部材の接合面と第2部材の接合面にそれぞれポリL−乳酸とポリD−乳酸が付着しているため、これらポリL−乳酸とポリD−乳酸がステレオコンプレックス構造を形成することにより第1部材の接合面と第2部材の接合面とが強固に接合する。この場合、第1部材の接合面と第2部材の接合面の間の接合の強さ、或いは、接合した第1部材の接合面と第2部材の接合面の剥離に必要な力は、両接合面に付着しているポリ乳酸の長さ(ポリ乳酸の分子量)や数によって決まる。 Polylactic acid, which is a polymer excellent in biocompatibility and biodegradability and absorption, has L-form (poly L-lactic acid) and D-form (poly D-lactic acid) as enantiomers. It is known that poly D-lactic acid forms a polymer complex structure called a stereocomplex. A stereocomplex is a structure formed by three-dimensional conformational conformation between polymer chains based on Van der Waals interactions, and the van der Waals interactions between L-forms and D-forms are performed. It has better mechanical strength than the bonded structure based on it. In the joint structure according to the present invention, since poly L-lactic acid and poly D-lactic acid are attached to the joint surface of the first member and the joint surface of the second member, respectively, these poly L-lactic acid and poly D-lactic acid are attached. By forming a stereocomplex structure, the joining surface of the first member and the joining surface of the second member are firmly joined. In this case, the strength of the joint between the joint surface of the first member and the joint surface of the second member, or the force required to separate the joint surface of the jointed first member and the joint surface of the second member are both It is determined by the length (molecular weight of polylactic acid) and the number of polylactic acid attached to the joint surface.

上記接合構造体においては、第1部材の接合面と第2部材の接合面との間に、ポリ乳酸が溶解可能な溶媒から成る接合補助剤を導入するようにすると良い。これにより、接合面に付着しているポリL−乳酸とポリD−乳酸が接合補助剤に溶解し、両者がステレオコンプレックスを形成し易くなる。第1部材の接合面と第2部材の接合面との間に導入される接合補助剤は、ポリL−乳酸とポリD−乳酸がステレオコンプレックス構造を形成した後に蒸発させる。 In the above-mentioned joining structure, it is advisable to introduce a joining aid composed of a solvent capable of dissolving polylactic acid, between the joining surface of the first member and the joining surface of the second member. As a result, the poly L-lactic acid and poly D-lactic acid adhering to the bonding surface are dissolved in the bonding auxiliary agent, and both of them easily form a stereo complex. The joining auxiliary agent introduced between the joining surface of the first member and the joining surface of the second member is evaporated after poly L-lactic acid and poly D-lactic acid form a stereocomplex structure.

ポリ乳酸が溶解可能な溶媒としては、クロロホルム、アセトニトリル、水、エタノール、ジメチルホルムアルデヒド、ジメチルコハク酸、ジメチルカーボネート、ジメチルマレイン酸、ジメチルアジピン酸、及びジメチルグルタル酸から選ばれる1種又は複数種の混合液を用いることができるが、生体内に留置される部材に用いることを考慮すると、水、ジメチルカーボネート、ジメチルコハク酸、ジメチルマレイン酸、ジメチルアジピン酸、及びジメチルグルタル酸から選ばれる1種又は複数種の混合液を用いることが好ましい。 As a solvent capable of dissolving polylactic acid, a mixture of one or more selected from chloroform, acetonitrile, water, ethanol, dimethylformaldehyde, dimethylsuccinic acid, dimethylcarbonate, dimethylmaleic acid, dimethyladipic acid, and dimethylglutaric acid. Although a liquid can be used, one or more selected from water, dimethyl carbonate, dimethyl succinic acid, dimethyl maleic acid, dimethyl adipic acid, and dimethyl glutaric acid are taken into consideration when used for a member to be left in the living body. It is preferred to use a mixture of seeds.

また、接合補助剤が、表面にポリL−乳酸が側鎖として結合している第1ナノ粒子と、表面にポリD−乳酸が側鎖として結合している第2ナノ粒子とを含むことが好ましい。この場合、直径が10nm〜100nm程度のナノ粒子を用いるとよい。この構成の接合構造体の例を図2(b)に示す。 Further, the conjugation aid may include first nanoparticles having poly L-lactic acid bound as a side chain on the surface and second nanoparticles having poly D-lactic acid bound as a side chain on the surface. preferable. In this case, it is preferable to use nanoparticles having a diameter of about 10 nm to 100 nm. An example of the bonded structure having this structure is shown in FIG.

上記構成によると、第1ナノ粒子の表面のポリD−乳酸の側鎖と第2ナノ粒子の表面のポリL−乳酸の側鎖の間、第1ナノ粒子の表面のポリD−乳酸の側鎖と第1部材の接合面のポリL−乳酸、及び第2ナノ粒子の表面のポリL−乳酸の側鎖と第2部材の接合面のポリD−乳酸との間でそれぞれステレオコンプレックス構造が形成されるため、第1部材と第2部材を強固に接合することができる。この場合、接合補助剤に含まれる第1ナノ粒子及び第2ナノ粒子の数や比率、これらナノ粒子に結合している側鎖の長さ(ポリ乳酸の分子量)、数を調整することにより、第1部材の接合面と第2部材の接合面の接合の強さ、或いは接合した第1部材の接合面と第2部材の接合面の剥離に必要な力を調整することができる。 According to the above configuration, between the side chain of poly D-lactic acid on the surface of the first nanoparticles and the side chain of poly L-lactic acid on the surface of the second nanoparticles, the side of poly D-lactic acid on the surface of the first nanoparticles is provided. A stereocomplex structure is formed between the poly L-lactic acid on the chain and the bonding surface of the first member, and between the side chain of poly L-lactic acid on the surface of the second nanoparticles and the poly D-lactic acid on the bonding surface of the second member, respectively. Since it is formed, the first member and the second member can be firmly joined. In this case, by adjusting the number and ratio of the first nanoparticles and the second nanoparticles contained in the bonding aid, the length of the side chain (molecular weight of polylactic acid) bonded to these nanoparticles, and the number, It is possible to adjust the strength of the joining between the joining surface of the first member and the joining surface of the second member, or the force required for separating the joining surface of the joined first member and the joining surface of the second member.

また、別の態様として本発明に係る接合構造体は、
a)接合面においてポリ乳酸の一方の鏡像異性体が付着している第1部材と、
b)前記第1部材の接合面に接合される接合面においてポリ乳酸の一方の鏡像異性体が付着している第2部材と、
c)前記第1部材の接合面と前記第2部材の接合面との間に導入される、ポリ乳酸の他方の鏡像異性体が側鎖として表面に結合しているナノ粒子を含む、ポリ乳酸が溶解可能な溶媒から成る接合補助剤と
を備えることを特徴とする。
Further, as another aspect, the bonded structure according to the present invention is
a) a first member to which one enantiomer of polylactic acid is attached at the joint surface,
b) a second member to which one enantiomer of polylactic acid is attached at the joint surface to be joined to the joint surface of the first member,
c) Polylactic acid containing nanoparticles introduced between the bonding surface of the first member and the bonding surface of the second member and having the other enantiomer of polylactic acid bound to the surface as a side chain. And a conjugation aid consisting of a soluble solvent.

上記構成において、ポリ乳酸の一方の鏡像異性体が第1部材及び第2部材の接合面に付着している形態としては、該接合面に、前記ポリ乳酸の一方の鏡像異性体がそれぞれ側鎖として結合している形態、又は、該接合面に、前記ポリ乳酸の一方の鏡像異性体が、それぞれ物理吸着している形態が好ましい。従って、上記構成においても、第1部材及び第2部材を構成する材料としては、ポリL−乳酸及びポリD−乳酸がグラフト重合あるいは物理吸着するものが用いられ、例としてポリマー、シリカ(酸化シリコン)、金等が挙げられる。また、ポリL−乳酸及びポリD−乳酸を第1部材及び第2部材の材料としても良い。 In the above configuration, one enantiomer of polylactic acid is attached to the joint surface of the first member and the second member, and one enantiomer of the polylactic acid has side chains on the joint surface. Is preferable, or one of the enantiomers of the polylactic acid is physically adsorbed on the joint surface. Therefore, also in the above configuration, as the material forming the first member and the second member, a material in which poly L-lactic acid and poly D-lactic acid are graft-polymerized or physically adsorbed is used, and examples thereof include polymers and silica (silicon oxide). ), money, etc. Further, poly L-lactic acid and poly D-lactic acid may be used as the material of the first member and the second member.

上記接合構造体では、第1部材の接合面と第2部材の接合面は、各接合面に付着しているポリ乳酸が、接合補助剤に含まれるナノ粒子の表面に結合しているポリ乳酸の側鎖との間でステレオコンプレックス構造を形成することにより、接合される。第1部材の接合面及び第2部材の接合面にポリ乳酸の一方の鏡像異性体が側鎖として結合している場合の接合構造体の例を図2(c)に示す。図2(c)では、第1及び第2部材の接合面にポリL−乳酸を、ナノ粒子の表面にポリD−乳酸を、それぞれ側鎖として結合させたが、逆でも良い。この構成においても、接合補助剤に含まれるナノ粒子の数や該ナノ粒子に結合している側鎖の長さ(ポリ乳酸の分子量)、数を調整することにより、第1部材と第2部材の接合の強さを調整することができる。 In the above-mentioned joining structure, in the joining surface of the first member and the joining surface of the second member, the polylactic acid attached to each joining surface is bound to the surface of the nanoparticles contained in the joining aid. They are joined by forming a stereocomplex structure with the side chains of. FIG. 2C shows an example of a bonded structure in which one enantiomer of polylactic acid is bonded as a side chain to the bonding surface of the first member and the bonding surface of the second member. In FIG. 2(c), poly L-lactic acid is bonded to the bonding surface of the first and second members as a side chain and poly D-lactic acid is bonded to the surface of the nanoparticles as side chains, respectively, but they may be reversed. Also in this configuration, the first member and the second member can be adjusted by adjusting the number of nanoparticles contained in the bonding aid, the length of side chains (molecular weight of polylactic acid) bonded to the nanoparticles, and the number. The joint strength of can be adjusted.

接合補助剤に含まれるナノ粒子は、生体適合性及び生体内分解吸収性を有する材料から構成することが好ましいが、銀ナノ粒子や金ナノ粒子等の金属ナノ粒子を用いることができる。また、シリカゲルを用いても良い。本発明では、ナノ粒子は、その表面がポリ乳酸の側鎖で覆われているため、生体適合性を有する。また、ナノ粒子が金属ナノ粒子の場合は該ナノ粒子は生体内分解吸収性を有しないが、非常に小さいため、第1部材や第2部材の生体内分解吸収性に及ぼす影響を小さくすることができる。 The nanoparticles contained in the bonding aid are preferably composed of a material having biocompatibility and biodegradability and absorption, but metal nanoparticles such as silver nanoparticles and gold nanoparticles can be used. Alternatively, silica gel may be used. In the present invention, the nanoparticles have biocompatibility because their surfaces are covered with the side chains of polylactic acid. Further, when the nanoparticles are metal nanoparticles, the nanoparticles do not have biodegradability and absorbability, but are very small, and therefore the influence on the biodegradability and absorbability of the first member and the second member should be reduced. You can

また、上記課題を解決するために成された本発明に係る接合方法は、
a)第1部材の表面に位置する接合面に、ポリL−乳酸を側鎖として結合させ、
b)第2部材の表面に位置する接合面に、ポリD−乳酸を側鎖として結合させ、
c)前記ポリL−乳酸の側鎖と前記ポリD−乳酸の側鎖との間でステレオコンプレックス構造を形成させることにより、前記第1部材の接合面と前記第2部材の接合面を接合することを特徴とする。
Further, the bonding method according to the present invention made to solve the above problems,
a) Poly L-lactic acid is bonded as a side chain to the joint surface located on the surface of the first member,
b) by bonding poly D-lactic acid as a side chain to the joint surface located on the surface of the second member,
c) Joining the joining surface of the first member and the joining surface of the second member by forming a stereocomplex structure between the side chain of the poly L-lactic acid and the side chain of the poly D-lactic acid. It is characterized by

ポリL−乳酸及びポリD−乳酸(両者をまとめてポリ乳酸という)を側鎖として結合(グラフト重合)させる方法は種々あるが、例えばポリ乳酸の末端をシリル基で化学修飾し、これをシリカ基板に化学結合させることにより、シリカ基板上にポリ乳酸を側鎖として(ポリ乳酸グラフト鎖として)結合(グラフト)することができる。また、ポリ乳酸の末端をチオール(SH基)で化学修飾し、これを金基板に化学結合させることにより、金基板上にポリ乳酸を側鎖として結合することができる。さらに、基板上に水酸基(OH基)が存在していれば、これを開始点としてラクチドを重合させることにより、ポリ乳酸を側鎖として結合させることができる。 There are various methods of binding (grafting polymerization) poly(L-lactic acid) and poly(D-lactic acid) (collectively referred to as poly(lactic acid)) as a side chain. By chemically bonding to the substrate, polylactic acid can be bonded (grafted) on the silica substrate as a side chain (as a polylactic acid graft chain). Further, by chemically modifying the end of polylactic acid with a thiol (SH group) and chemically bonding this to a gold substrate, polylactic acid can be bonded as a side chain on the gold substrate. Furthermore, if a hydroxyl group (OH group) is present on the substrate, polylactic acid can be bonded as a side chain by polymerizing lactide using this as a starting point.

あるいは、本発明に係る接合方法は、
a)第1部材の表面に位置する接合面に、ポリL−乳酸を含む溶液をディップコートすることにより該ポリL−乳酸を前記接合面に物理吸着させ、
b)第2部材の表面に位置する接合面に、ポリD−乳酸を含む溶液をディップコートすることにより該ポリD−乳酸を前記接合面に物理吸着させ、
c)前記ポリL−乳酸と前記ポリD−乳酸との間でステレオコンプレックス構造を形成させることにより、前記第1部材の接合面と前記第2部材の接合面を接合することを特徴とする。
Alternatively, the joining method according to the present invention,
a) The bonding surface located on the surface of the first member is dip-coated with a solution containing poly L-lactic acid to physically adsorb the poly L-lactic acid on the bonding surface,
b) The bonding surface located on the surface of the second member is dip-coated with a solution containing poly D-lactic acid to physically adsorb the poly D-lactic acid on the bonding surface.
c) The joining surface of the first member and the joining surface of the second member are joined by forming a stereocomplex structure between the poly L-lactic acid and the poly D-lactic acid.

ディップコートの作製方法としては、プラスチック板やガラス板などの基板を、ポリ乳酸を含むクロロホルムなどの有機溶媒中へ浸しこみ、これを引き上げた後、溶媒を蒸発させ、基板上に残存したポリ乳酸によりディップコートを作製する方法がある。 The dip coat is produced by immersing a substrate such as a plastic plate or a glass plate in an organic solvent such as chloroform containing polylactic acid, pulling it up, and then evaporating the solvent to remove the polylactic acid remaining on the substrate. There is a method of producing a dip coat.

また、本発明の別の態様に係る接合方法は、
a)第1部材の表面に位置する接合面に、ポリ乳酸の一方の鏡像異性体を側鎖として結合させ、
b)第2部材の表面に位置する接合面に、ポリ乳酸の一方の鏡像異性体を側鎖として結合させ、
c)前記第1部材の接合面と前記第2部材の接合面を対向させ、これら接合面の間に、ポリ乳酸の他方の鏡像異性体が側鎖として表面に結合しているナノ粒子を含む、ポリ乳酸が溶解可能な溶媒から成る接合補助剤を導入し、前記第1部材の接合面に結合している側鎖及び前記第2部材の接合面に結合している側鎖と、前記ナノ粒子の表面に結合している側鎖との間でステレオコンプレックス構造を形成させることにより、前記第1部材の接合面と前記第2部材の接合面を接合することを特徴とする。
In addition, the joining method according to another aspect of the present invention,
a) one of the enantiomers of polylactic acid is bonded as a side chain to the joint surface located on the surface of the first member,
b) To the joint surface located on the surface of the second member, one of the enantiomers of polylactic acid is bound as a side chain,
c) The bonding surface of the first member and the bonding surface of the second member are opposed to each other, and between these bonding surfaces, nanoparticles containing the other enantiomer of polylactic acid bound to the surface as a side chain are included. Introducing a joining aid composed of a solvent capable of dissolving polylactic acid, a side chain bonded to the bonding surface of the first member and a side chain bonded to the bonding surface of the second member, and the nano-particle. By forming a stereocomplex structure with the side chain bonded to the surface of the particle, the joining surface of the first member and the joining surface of the second member are joined together.

あるいは、本発明の別の態様に係る接合方法は、
a)第1部材の表面に位置する接合面に、ポリ乳酸の一方の鏡像異性体を含む溶液をディップコートすることにより該ポリ乳酸を前記接合面に物理吸着させ、
b)第2部材の表面に位置する接合面に、ポリ乳酸の一方の鏡像異性体を含む溶液をディップコートすることにより該ポリ乳酸を前記接合面に物理吸着させ、
c)前記第1部材の接合面と前記第2部材の接合面を対向させ、これら接合面の間に、ポリ乳酸の他方の鏡像異性体が側鎖として表面に結合しているナノ粒子を含む、ポリ乳酸が溶解可能な溶媒から成る接合補助剤を導入し、前記第1部材の接合面に物理吸着しているポリ乳酸及び前記第2部材の接合面に物理吸着しているポリ乳酸と、前記ナノ粒子の表面に結合しているポリ乳酸の側鎖との間でステレオコンプレックス構造を形成させることにより、前記第1部材の接合面と前記第2部材の接合面を接合することを特徴とする。
Alternatively, the joining method according to another aspect of the present invention,
a) The joint surface located on the surface of the first member is dip-coated with a solution containing one enantiomer of polylactic acid to physically adsorb the polylactic acid on the joint surface,
b) The bonding surface located on the surface of the second member is dip-coated with a solution containing one enantiomer of polylactic acid to physically adsorb the polylactic acid on the bonding surface.
c) The bonding surface of the first member and the bonding surface of the second member are opposed to each other, and between these bonding surfaces, nanoparticles containing the other enantiomer of polylactic acid bound to the surface as a side chain are included. A polylactic acid that is physically adsorbed on the joint surface of the first member and a polylactic acid that is physically adsorbed on the joint surface of the first member by introducing a joint auxiliary agent composed of a solvent in which polylactic acid is soluble; A bonding surface of the first member and a bonding surface of the second member are bonded to each other by forming a stereocomplex structure with a side chain of polylactic acid bonded to the surface of the nanoparticles. To do.

上述した接合方法において、第1部材及び第2部材を構成する材料としては、ポリL−乳酸及びポリD−乳酸がグラフト重合あるいは物理吸着するものが用いられ、例としてポリマー、シリカ(酸化シリコン)、金等が挙げられる。また、ポリL−乳酸及びポリD−乳酸を第1部材及び第2部材の材料としても良い。 In the above-described joining method, as the material forming the first member and the second member, a material in which poly L-lactic acid and poly D-lactic acid are graft-polymerized or physically adsorbed is used, and examples thereof include polymer and silica (silicon oxide). , Gold, etc. Further, poly L-lactic acid and poly D-lactic acid may be used as the material of the first member and the second member.

さらに、本発明は、
表面にポリ乳酸の一方の鏡像異性体が側鎖として結合している部材を内部に含む、
ポリ乳酸の他方の鏡像異性体を主成分とする樹脂成形品に適用することができる。
Further, the present invention is
Inside, a member in which one enantiomer of polylactic acid is bound as a side chain on the surface,
It can be applied to a resin molded product containing the other enantiomer of polylactic acid as a main component.

上記構成の樹脂成形品は、図3に示すように、内部に含まれる部材との界面において、ポリ乳酸の鏡像異性体によるステレオコンプレックスが形成されるため、別の部材を内部に含むことによる樹脂成形品の強度の低下を抑えることができる。
上記樹脂成形品の例としては、表面にポリD−乳酸が側鎖として結合している金ナノ粒子を含む、ポリL−乳酸を主成分とする樹脂成形品が挙げられる。金ナノ粒子を内部に含むことにより、蓄熱性、導電性、ガスバリア性等の機能性を付与することができる。
As shown in FIG. 3, the resin molded product having the above-described structure forms a stereocomplex of an enantiomer of polylactic acid at an interface with a member contained therein, and thus a resin formed by containing another member inside. It is possible to suppress the decrease in strength of the molded product.
An example of the resin molded product is a resin molded product containing poly L-lactic acid as a main component, which contains gold nanoparticles having poly D-lactic acid bonded as a side chain on the surface. By including gold nanoparticles inside, functionality such as heat storage, conductivity, and gas barrier property can be imparted.

本発明は、部材と部材の接合界面に、生体適合性及び生体内分解吸収性に優れたポリマーであるポリ乳酸の鏡像異性体により形成されるステレオコンプレックス構造を形成し、該ステレオコンプレックス構造によって2つの部材を接合するため、部材の生体適合性や生体内分解吸収性を阻害することがない。 The present invention forms a stereocomplex structure formed by an enantiomer of polylactic acid, which is a polymer having excellent biocompatibility and biodegradability and absorbability, at the joint interface between members, and the stereocomplex structure enables Since the two members are joined together, the biocompatibility and biodegradability of the members are not impaired.

本発明に係る接合構造体の接合の仕組みを説明するための概念図。The conceptual diagram for demonstrating the joining mechanism of the joining structure which concerns on this invention. 本発明に係る接合構造体の例を示す図。The figure which shows the example of the junction structure which concerns on this invention. 本発明に係る樹脂成形品の例を示す図。The figure which shows the example of the resin molded product which concerns on this invention. 引張試験に用いたポリ乳酸基板とポリ乳酸グラフト粒子の構成を示す図。The figure which shows the structure of the polylactic acid board|substrate used for the tension test, and a polylactic acid graft particle. ポリプロピレンフィルム(a)、ポリL−乳酸をポリプロピレンフィルムにディップコートしたもの(a)、ポリL−乳酸とポリD−乳酸をポリプロピレンフィルムに滴下したもの(c)のIRデータ。IR data of a polypropylene film (a), a product obtained by dip-coating a polypropylene film with poly L-lactic acid (a), and a product obtained by dropping poly L-lactic acid and poly D-lactic acid on a polypropylene film (c). 図5Aの一部の波長範囲を横軸方向(波長軸方向)に拡大して示す図。The figure which expands and shows a part of wavelength range of FIG. 5A in a horizontal axis direction (wavelength axis direction). ウンデカンチオール(C11H23SH)(a)、C11H23S-金ナノ粒子(b)、PDLA-SH(c)、ポリD−乳酸が結合した金ナノ粒子のIRデータ。IR data of gold nanoparticles to which undecanethiol (C 11 H 23 SH) (a), C 11 H 23 S-gold nanoparticles (b), PDLA-SH (c) and poly D-lactic acid were bound. 図6Aの一部の波長範囲を横軸方向(波長軸方向)に拡大して示す図。The figure which expands and shows a part of wavelength range of FIG. 6A in a horizontal axis direction (wavelength axis direction). L/Lホモ界面及びL/D界面に溶媒を導入したとき及び導入しなかったときの引張試験の結果(a)、有意差検定の結果(b)を示す図。The figure which shows the result (a) of the tensile test at the time of introduce|transducing a solvent in L/L homo interface, and the L/D interface, and when not introducing, and the result of a significant difference test (b). L/Lホモ界面にポリL−乳酸グラフト粒子又はポリD−乳酸グラフト粒子を含む接合補助剤を導入したときの接合力の実験結果(a)、有意差検定結果(b)。The experimental result (a) and the significant difference test result (b) of the joining force when the joining aid containing the poly L-lactic acid graft particles or the poly D-lactic acid graft particles was introduced into the L/L homo-interface. L/Dヘテロ界面にポリL−乳酸グラフト粒子又はポリD−乳酸グラフト粒子を含む接合補助剤を導入したときの接合力の実験結果(a)、有意差検定結果(b)。The experimental result (a) and the significant difference test result (b) of the bonding force when the bonding aid containing poly L-lactic acid graft particles or poly D-lactic acid graft particles was introduced into the L/D hetero interface. L/Lホモ界面にポリL−乳酸グラフト粒子又はポリD−乳酸グラフト粒子を含む接合補助剤を導入したときの接合力のポリ乳酸グラフト粒子の濃度の効果を調べた実験結果(a)、有意差検定結果(b)。Experimental result (a), which shows the effect of the concentration of the polylactic acid graft particles on the bonding force when the bonding aid containing the poly L-lactic acid graft particles or the poly D-lactic acid graft particles is introduced into the L/L homo-interface, Difference test result (b). L/Lホモ界面にポリL−乳酸グラフト粒子又はポリD−乳酸グラフト粒子を含む接合補助剤を導入したときの接合力のポリ乳酸グラフト粒子の濃度の効果を調べた実験結果(a)、有意差検定結果(b)。Experimental result (a), which shows the effect of the concentration of the polylactic acid graft particles on the bonding force when the bonding aid containing the poly L-lactic acid graft particles or the poly D-lactic acid graft particles is introduced into the L/L homo-interface, Difference test result (b). L/Dヘテロ界面にポリD−乳酸グラフト粒子を含む接合補助剤を導入したときの、ポリ乳酸グラフト粒子の濃度及び側鎖の分子量の効果を調べた実験結果(a)、有意差検定結果(b)。An experimental result (a) in which the effect of the concentration of the polylactic acid graft particles and the molecular weight of the side chain when introducing a bonding aid containing the polyD-lactic acid graft particles into the L/D hetero interface was examined, and a significant difference test result ( b).

本発明に係る接合方法は、2つの部材の接合面に、ポリ乳酸の2つの鏡像異性体をそれぞれ側鎖として結合させて、これら側鎖の間でステレオコンプレックス構造を形成させること、或いは、2つの部材の接合面のそれぞれにポリ乳酸の一方の鏡像異性体を側鎖として結合させ、その間に、他方の鏡像異性が側鎖として表面に結合しているナノ粒子を介在させて、2つの部材の側鎖とナノ粒子の側鎖の間でステレオコンプレックス構造を形成させることにより、2つの部材の接合させたものである。そして、このような方法により本発明に係る接合構造体が形成される。 The bonding method according to the present invention comprises bonding two enantiomers of polylactic acid as side chains to the bonding surfaces of two members to form a stereocomplex structure between these side chains, or One member of the polylactic acid is bound to each of the joining surfaces of the two members as a side chain, and the other member is inserted into the two members by interposing nanoparticles with the side members of the other enantiomer bound to the surface as side chains. The two members are joined to each other by forming a stereocomplex structure between the side chains of the above and the side chains of the nanoparticles. Then, the bonded structure according to the present invention is formed by such a method.

図1は、本発明に係る接合構造体の例を示す概略図である。図1に示す接合構造体では、2つの部材の間にナノ粒子を介在させている。図1に示すように、2つの部材の接合面にはポリL−乳酸及びポリD−乳酸が側鎖として結合している(図1において、ポリL−乳酸の側鎖を破線で、ポリD−乳酸の側鎖を実線で示す。)。また、各ナノ粒子(金ナノ粒子Au)の表面には、ポリL−乳酸又はポリD−乳酸がそれぞれ側鎖として結合している。このため、2つの部材の接合面、及びナノ粒子の表面のそれぞれに結合しているポリL−乳酸の側鎖及びポリD−乳酸の側鎖の間、或いは、ポリL−乳酸の側鎖同士、ポリD−乳酸の側鎖同士の間で様々な相互作用(ファン・デル・ワールス相互作用)が働く。これらのうち、ポリL−乳酸の側鎖とポリD−乳酸の側鎖の間で働くファン・デル・ワールス相互作用に基づく構造がステレオコンプレックス構造であり、ポリL−乳酸同士、ポリD−乳酸同士の間に作用する力よりも強い力で結合する。 FIG. 1 is a schematic view showing an example of a bonded structure according to the present invention. In the bonded structure shown in FIG. 1, nanoparticles are interposed between two members. As shown in FIG. 1, poly L-lactic acid and poly D-lactic acid are bonded as side chains to the joint surface of the two members (in FIG. 1, the side chain of poly L-lactic acid is indicated by a broken line, poly D-lactic acid). -The side chain of lactic acid is indicated by the solid line). In addition, poly-L-lactic acid or poly-D-lactic acid is bonded as a side chain to the surface of each nanoparticle (gold nanoparticle Au). For this reason, between the side chains of poly L-lactic acid and the side chains of poly D-lactic acid, or the side chains of poly L-lactic acid bonded to the bonding surface of the two members and the surface of the nanoparticles, respectively. , Various interactions (van der Waals interactions) occur between the side chains of poly D-lactic acid. Among these, the structure based on the van der Waals interaction that acts between the side chains of poly L-lactic acid and the side chain of poly D-lactic acid is a stereocomplex structure, and poly L-lactic acid and poly D-lactic acid are combined. Join with a force stronger than the force acting between them.

従って、2つの部材の接合面、及び、ナノ粒子の表面に結合させるポリL−乳酸とポリD−乳酸の長さや数、両者の比率を変化させると、両者間の相互作用が変化し、その結果、2つの部材の接合の強さが変化する。このため、2つの部材の接合面、及び、ナノ粒子の表面に結合させるポリL−乳酸とポリD−乳酸の長さや数、両者の比率を適宜に調節することにより、2つの部材の接合面の間の結合の強さや剥離に必要な力を調整することができる。ここでは、2つの部材やナノ粒子にポリ乳酸を側鎖として結合させた場合を説明したが、2つの部材にポリ乳酸を物理吸着させ、ナノ粒子にポリ乳酸を側鎖として結合させた場合も同様である。 Therefore, when the length and number of poly L-lactic acid and poly D-lactic acid to be bonded to the bonding surface of the two members and the surface of the nanoparticles and the ratio of both are changed, the interaction between the two changes. As a result, the strength of the joint between the two members changes. Therefore, the joint surface of the two members, and the joint surface of the two members by appropriately adjusting the length and number of poly L-lactic acid and poly D-lactic acid to be bonded to the surface of the nanoparticles, and the ratio of both. The strength of the bond between them and the force required for peeling can be adjusted. Here, the case where polylactic acid is bonded as a side chain to the two members or the nanoparticles has been described, but the case where the polylactic acid is physically adsorbed to the two members and the polylactic acid is bonded to the nanoparticles as the side chain is also described. The same is true.

ポリ乳酸は生体適合性、生体内分解吸収性を有するポリマーであるため、本発明に係る接合構造体及び接合方法は、生体内で使用される医用材料や歯科材料の接合に利用することができる。また、接合構造体を構成する一方の部材を固定し、他方の部材に荷重がかかるように構成するとともに、2つの部材の接合の強さ、接合した2つの部材の剥離に必要な力を調節することにより、接合構造体を荷重センサーとしても利用することができる。 Since polylactic acid is a polymer having biocompatibility and biodegradability and absorbability, the joining structure and joining method according to the present invention can be used for joining medical materials and dental materials used in vivo. .. In addition, one member constituting the joint structure is fixed, and a load is applied to the other member, and the strength of the joint between the two members and the force required for separating the joined two members are adjusted. By doing so, the bonded structure can also be used as a load sensor.

以下、本発明に係る接合方法により2つの部材を接合した接合構造体の接合の強さについて調べた実験結果について説明する。 Hereinafter, the experimental results of examining the bonding strength of the bonded structure in which two members are bonded by the bonding method according to the present invention will be described.

(1)ポリ乳酸基板の作製
ポリL−乳酸(分子量Mn=8500)、ポリD−乳酸(分子量Mn=8300)をそれぞれクロロホルムに溶解して、ポリL−乳酸溶液及びポリD−乳酸溶液を作製した(いずれも濃度10mg/mLの溶液)。これらを、それぞれ、図4の(a)に示すポリプロピレン製のフィルム(幅20mm、長さ100mm、厚さ0.2mm)の接合面にディップコートした後、乾燥させて溶媒を蒸発させた。これにより、ポリプロピレン製のフィルムの接合面とポリL−乳酸の相互作用により該ポリL−乳酸が接合面に物理吸着したもの、及びポリD−乳酸が接合面に同様に物理吸着したものが作製された。以下、これをポリL−乳酸基板及びポリD−乳酸基板という(これらをまとめてポリ乳酸基板ということもある。)。
(1) Preparation of polylactic acid substrate Poly L-lactic acid (molecular weight Mn=8500) and poly D-lactic acid (molecular weight Mn=8300) were each dissolved in chloroform to prepare a poly L-lactic acid solution and a poly D-lactic acid solution. (All were solutions with a concentration of 10 mg/mL). Each of these was dip-coated on the joint surface of a polypropylene film (width 20 mm, length 100 mm, thickness 0.2 mm) shown in FIG. 4(a), and then dried to evaporate the solvent. As a result, a product in which the poly L-lactic acid is physically adsorbed on the bonding surface due to the interaction between the bonding surface of the polypropylene film and the poly L-lactic acid, and a product in which poly D-lactic acid is physically adsorbed on the bonding surface are produced. Was done. Hereinafter, this is referred to as a poly L-lactic acid substrate and a poly D-lactic acid substrate (these may be collectively referred to as a polylactic acid substrate).

(2)ポリ乳酸グラフト粒子の作製
非特許文献1を参考に、下記の手順で作製した。すなわち、水に塩化金酸(10mg/mL)を溶解し、これを激しく撹拌しながら、クロロホルムに溶解させたN(C8H17)4Br(0.1M)をゆっくり加えて(N(C8H17)4Br/Au =2.22)、混合溶液を作製した。この混合溶液が二層に分かれ、塩化金酸が有機層に完全に移動したことを確認した後、クロロホルムにポリL−乳酸またはポリD−乳酸(それぞれMn=3000、5000、10000、20000)を溶解してポリL−乳酸またはポリD−乳酸のクロロホルム溶液(0.004M)を調製し、これを前記混合溶液に加えた。さらに、水に溶解させたNaBH4(0.41M)を混合溶液にゆっくり加え(NaBH4/Au=11.0)、4時間激しく撹拌した後、有機層を抽出して濃縮した後、メタノールで再沈殿を行った。そして、混合溶液を -20℃で48時間静置した後、遠心分離し、減圧することで、ポリL−乳酸またはポリD−乳酸が側鎖として表面に結合している金ナノ粒子を作製した。以下、これらをポリL−乳酸グラフト粒子、ポリD−乳酸グラフト粒子という(これらをまとめてポリ乳酸グラフト粒子ということもある。)。
(2) Preparation of polylactic acid graft particles With reference to Non-Patent Document 1, the particles were prepared by the following procedure. That is, chloroauric acid (10 mg/mL) was dissolved in water, and N(C 8 H 17 ) 4 Br (0.1 M) dissolved in chloroform was slowly added to this while vigorously stirring (N(C 8 H 17 ) 4 Br/Au=2.22), to prepare a mixed solution. This mixed solution was divided into two layers, and after confirming that the chloroauric acid had completely transferred to the organic layer, poly L-lactic acid or poly D-lactic acid (Mn=3000, 5000, 10000, 20000, respectively) was added to chloroform. A chloroform solution (0.004M) of poly-L-lactic acid or poly-D-lactic acid was prepared by dissolution and added to the mixed solution. Furthermore, NaBH 4 (0.41M) dissolved in water was slowly added to the mixed solution (NaBH 4 /Au=11.0) and stirred vigorously for 4 hours, then the organic layer was extracted and concentrated, and then reprecipitated with methanol. went. Then, the mixed solution was allowed to stand at -20°C for 48 hours, then centrifuged and depressurized to produce gold nanoparticles in which poly L-lactic acid or poly D-lactic acid was bound to the surface as a side chain. .. Hereinafter, these are referred to as poly L-lactic acid graft particles and poly D-lactic acid graft particles (these may be collectively referred to as polylactic acid graft particles).

(3)ポリ乳酸の吸着の確認
ポリ乳酸基板の接合面にポリ乳酸が吸着していることを確認するため、赤外吸光分析(IR)を行った。その結果を図5A及び図5Bに示す。図5A及び図5Bの(a)はポリプロピレンフィルム、(b)はポリL−乳酸基板のIRデータを示す。また、図5A及び図5Bの(c)は、上述した方法とは別の方法で作製したポリ乳酸基板のIRデータを示す。具体的には、このポリ乳酸基板は、Mn=8000のポリL−乳酸及びポリD−乳酸をクロロホルムに溶解したポリ乳酸溶液(10mg/mL)をポリプロピレンフィルムの接合面に滴下することにより作製した(以下、これを「ポリ乳酸滴下基板」という)。図5A、図5Bに示すスペクトル中、波長1750nm付近のピークがポリ乳酸を示す。図5A及び図5Bから分かるように、ポリ乳酸基板(ポリ乳酸溶液をディップコートしたもの)、ポリ乳酸滴下基板のいずれにおいても、ポリプロピレンフィルムの表面にポリ乳酸が付着していることが確認された。
(3) Confirmation of Adsorption of Polylactic Acid In order to confirm that polylactic acid is adsorbed on the bonding surface of the polylactic acid substrate, infrared absorption spectrometry (IR) was performed. The results are shown in FIGS. 5A and 5B. 5A and 5B, (a) shows a polypropylene film, and (b) shows IR data of a poly L-lactic acid substrate. Further, FIG. 5A and FIG. 5B (c) show IR data of a polylactic acid substrate prepared by a method different from the above-mentioned method. Specifically, this polylactic acid substrate was prepared by dropping a polylactic acid solution (10 mg/mL) prepared by dissolving poly L-lactic acid and poly D-lactic acid with Mn=8000 in chloroform on the bonding surface of the polypropylene film. (Hereinafter, this is referred to as "polylactic acid dropping substrate"). In the spectra shown in FIGS. 5A and 5B, the peak near the wavelength of 1750 nm indicates polylactic acid. As can be seen from FIGS. 5A and 5B, it was confirmed that polylactic acid adhered to the surface of the polypropylene film in both the polylactic acid substrate (dip-coated with the polylactic acid solution) and the polylactic acid dropping substrate. ..

同様に、ポリ乳グラフト粒子の表面にポリ乳酸が結合していることを確認するため、赤外吸光分析(IR)を行った。その結果を図6A及び図6Bに示す。図6A及び図6Bの(a)〜(c)は比較のための試料であり、(a)はウンデカンチオール(C11H23SH) 、(b)はC11H23S-金ナノ粒子、(c)はポリD−乳酸(PDLA-SH)のIRデータを示す。また、(d)はポリD−乳酸を結合させた金ナノ粒子のIRデータを示す。図6A、図6Bの(d)から分かるように、金ナノ粒子の表面にポリ乳酸が結合していることが確認された。 Similarly, to confirm that the polylactic acid is bonded to the surface of the polylactic acid grafted particles was performed infrared absorption analysis of the (IR). The results are shown in FIGS. 6A and 6B. 6A and 6B, (a) to (c) are samples for comparison, (a) is undecanethiol (C 11 H 23 SH), (b) is C 11 H 23 S-gold nanoparticles, (C) shows IR data of poly D-lactic acid (PDLA-SH). Further, (d) shows IR data of gold nanoparticles to which poly D-lactic acid is bound. As can be seen from FIG. 6A and FIG. 6B (d), it was confirmed that polylactic acid was bound to the surface of the gold nanoparticles.

(3−1)引張試験(溶媒の作用)
上述したポリ乳酸基板(ポリ乳酸溶液をディップコートした基板)2枚を、接合面同士を対向させて接合した後、試験機(小型卓上試験機、商品名「EZ-test」、株式会社島津製作所製)を用いて引張試験を行った。引張試験では、2枚のポリ乳酸基板を接合させた後、図4の(b)に白抜き矢印で示す方向に力を加えて、2枚のポリ乳酸基板が剥離したときの力(試験力(N))を測定した。その結果を図7に示す。図7中、サンプルa〜hの内容は次の通りである。
a:ポリL−乳酸基板の上に溶媒A(CH3CN/H2O(3:7))を塗布した後、ポリL−乳酸基板を接合
b:ポリD−乳酸基板の上に溶媒Aを塗布した後、ポリD−乳酸基板を接合
c:ポリL−乳酸基板の上に溶媒Aを塗布した後、ポリD−乳酸基板を接合
d:ポリL−乳酸基板の上にポリL−乳酸基板を接合(溶媒なし)
e:ポリD−乳酸基板の上にポリD−乳酸基板を接合(溶媒なし)
f:ポリL−乳酸基板の上にポリD−乳酸基板を接合(溶媒なし)
g:ポリL−乳酸基板の上に溶媒B(CHCl3)を塗布した後、ポリL−乳酸基板を接合
h:ポリL−乳酸基板の上に溶媒Bを塗布した後、ポリD−乳酸基板を接合
(3-1) Tensile test (action of solvent)
After joining the above-mentioned two polylactic acid substrates (substrates dip-coated with a polylactic acid solution) with their bonding surfaces facing each other, a testing machine (small tabletop testing machine, trade name "EZ-test", Shimadzu Corporation) Manufactured) was used to conduct a tensile test. In the tensile test, after joining the two polylactic acid substrates, a force is applied in the direction indicated by the white arrow in FIG. (N)) was measured. The result is shown in FIG. 7. In FIG. 7, the contents of samples a to h are as follows.
a: After coating the solvent A (CH 3 CN/H 2 O(3:7)) on the poly L-lactic acid substrate, the poly L-lactic acid substrate is bonded. b: The solvent A on the poly D-lactic acid substrate. After coating, the poly D-lactic acid substrate is bonded. c: The solvent A is coated on the poly L-lactic acid substrate, and then the poly D-lactic acid substrate is bonded. d: The poly L-lactic acid substrate is bonded on the poly L-lactic acid substrate. Bonding substrates (no solvent)
e: Join the poly D-lactic acid substrate on the poly D-lactic acid substrate (without solvent)
f: Joined poly D-lactic acid substrate on poly L-lactic acid substrate (no solvent)
g: After applying solvent B (CHCl 3 ) on the poly L-lactic acid substrate, joining the poly L-lactic acid substrate h: After applying solvent B on the poly L-lactic acid substrate, poly D-lactic acid substrate Join

図7(a)から明らかなように、ポリL−乳酸基板とポリD−乳酸基板を、その間に溶媒A、Bを介在させて接合したとき(サンプルc、h)に、大きい試験力が必要であった(つまり、2枚のポリ乳酸基板が強く接合していた。)。また、溶媒Aよりも溶媒Bの方が、試験力が大きかった。 As is apparent from FIG. 7A, a large test force is required when the poly L-lactic acid substrate and the poly D-lactic acid substrate are bonded with the solvents A and B interposed therebetween (samples c and h). (That is, the two polylactic acid substrates were strongly bonded.) Further, the test force of the solvent B was larger than that of the solvent A.

図7(a)に示す結果につき有意差検定を行ったところ、ヘテロ界面(ポリL−乳酸基板/ポリD−乳酸基板(L/D))において、溶媒の有無の間(サンプルcとf、サンプルfとh)で有意差(有意水準1%、5%)がみられた。また、溶媒を介在させたサンプルにおいては、溶媒A、Bのいずれにおいても、ホモ界面(ポリD−乳酸基板/ポリD−乳酸基板(D/D)、ポリL−乳酸基板/ポリL−乳酸基板(L/L))とヘテロ界面(L/D)の間(サンプルaとc、サンプルbとc、サンプルgとh)で有意差(有意水準1%)がみられた(図7(b)参照)。 When a significant difference test was performed on the results shown in FIG. 7(a), at the hetero interface (poly L-lactic acid substrate/poly D-lactic acid substrate (L/D)), the presence or absence of the solvent (samples c and f, Significant differences (significance level 1%, 5%) were found between samples f and h). Further, in the sample in which the solvent is interposed, the homo interfaces (poly D-lactic acid substrate/poly D-lactic acid substrate (D/D), poly L-lactic acid substrate/poly L-lactic acid) are obtained in both solvents A and B. A significant difference (significance level 1%) was observed between the substrate (L/L)) and the hetero interface (L/D) (Samples a and c, Samples b and c, Samples g and h) (Fig. 7 ( See b)).

(3−2)ポリ乳酸の分子量と相互作用の関係
分子量がMn=3000, 5000, 10000 及び20000のポリ乳酸を側鎖として結合させたポリ乳酸グラフト粒子を溶媒(クロロホルム)に添加して接合補助剤(濃度1mg/mL)を作製し、これを、分子量Mn=8000のポリ乳酸が付着したポリ乳酸基板の所定の2箇所にそれぞれ10μLずつ滴下した。図4(d)に示すように、滴下した箇所はポリ乳酸基板の接合面(ポリプロピレンフィルム上のポリ乳酸が付着した面)の両端からそれぞれ20mmの箇所である。そして、接合面に接合補助剤を滴下した2枚のポリ乳酸基板を、接合面同士貼り合わせて引張試験を行った。引張試験に用いた試験機、及び試験方法は(3−1)に示した通りである。その結果を図8(a)及び図9(a)に示す。また、その有意差検定の結果を図8(b)及び図9(b)に示す。
(3-2) Relationship between molecular weight of polylactic acid and interaction Polylactic acid graft particles having polylactic acid having a molecular weight of Mn=3000, 5000, 10000 and 20000 bonded as a side chain are added to a solvent (chloroform) to assist bonding. An agent (concentration: 1 mg/mL) was prepared, and 10 μL of each of the agents was added dropwise to two predetermined places on a polylactic acid substrate to which polylactic acid having a molecular weight of Mn=8000 was attached. As shown in FIG. 4D, the dropped portions are 20 mm from both ends of the joining surface of the polylactic acid substrate (the surface on which the polylactic acid is attached on the polypropylene film). Then, the two polylactic acid substrates with the bonding aid dropped on the bonding surfaces were bonded to each other to perform a tensile test. The tester used for the tensile test and the test method are as shown in (3-1). The results are shown in FIGS. 8(a) and 9(a). The results of the significant difference test are shown in FIGS. 8(b) and 9(b).

図8は、2枚のポリL−乳酸基板の間(L/Lホモ界面)に、ポリL−乳酸グラフト粒子を含む接合補助剤を介在させたとき(図8(a)のサンプルa、c、e、g)、及びポリD−乳酸グラフト粒子を含む接合補助剤をそれぞれ介在させたとき(図8(a)のサンプルb、d、f、h)の結果を示している。また、図9は、ポリL−乳酸基板とポリD−乳酸基板の間(L/Dヘテロ界面)の間にポリL−乳酸グラフト粒子を含む接合補助剤を介在させたとき(図9(a)のサンプルa、c、e、g)、及びポリD−乳酸グラフト粒子を含む接合補助剤をそれぞれ介在させたとき(図9(a)のサンプルb、d、f、h)の結果を示す。なお、図8及び図9では、接合させた2枚のポリ乳酸基板を「左膜」及び「右膜」と表し、該基板に付着しているポリ乳酸の種類(L体、D体)を表中に示している、また、接合補助剤を「中間粒子」と表し、それに含まれるポリ乳酸グラフト粒子の種類(L体、D体)を表中に示している。 FIG. 8 shows a case where a bonding aid containing poly L-lactic acid graft particles is interposed between two poly L-lactic acid substrates (L/L homo interface) (samples a and c in FIG. 8A). , E, g) and a bonding aid containing poly D-lactic acid graft particles are interposed (samples b, d, f, h in FIG. 8A). Further, FIG. 9 shows a case where a bonding aid containing poly L-lactic acid graft particles is interposed between the poly L-lactic acid substrate and the poly D-lactic acid substrate (L/D hetero interface) (FIG. 9(a The results of (a), (c), (e), (g)) and (B), (d), (f) and (h) in FIG. 9A are shown when the bonding aid containing poly D-lactic acid graft particles is interposed. .. In FIGS. 8 and 9, the two bonded polylactic acid substrates are referred to as “left film” and “right film”, and the types of polylactic acid attached to the substrates (L-body and D-body) are shown. In the table, the joining aid is referred to as “intermediate particles”, and the types of polylactic acid graft particles contained therein (L form and D form) are shown in the table.

ポリ乳酸基板の間にポリ乳酸グラフト粒子を介在させずに行った試験結果である図7(a)との比較から分かるように、L/Lホモ界面に、同じ鏡像異性体であるポリL−乳酸が側鎖として結合しているグラフト粒子を介在させても試験力は増加しなかったが、異なる鏡像異性体であるポリD−乳酸が側鎖として結合しているグラフト粒子を介在させると試験力が増加した。また、分子量Mn=5000のポリD−乳酸が側鎖として結合しているグラフト粒子を用いたときの試験力が最も大きかった。この結果は、2枚のポリL−乳酸基板の接合面に付着しているポリL−乳酸とポリD−乳酸グラフト粒子の表面に側鎖として結合しているポリD−乳酸との間でステレオコンプレックス構造が形成され、接合力が向上したことを裏付けるものであった。
一方、L/Dヘテロ界面の場合は、L体、D体いずれのポリ乳酸グラフト粒子を介在させても接合力はそれほど増加しなかった(図9参照)。
As can be seen from the comparison with FIG. 7A, which is the result of the test performed without interposing the polylactic acid graft particles between the polylactic acid substrates, the same enantiomer poly L-, which is the same enantiomer, is present at the L/L homo interface. Although the test force was not increased by interposing the graft particles having lactic acid bonded as a side chain, it was tested by interposing the graft particles having poly D-lactic acid, which is a different enantiomer, as a side chain. Power increased. Further, the test force was the largest when the graft particles in which poly D-lactic acid having a molecular weight of Mn=5000 was bonded as a side chain were used. This result shows that the stereo between the poly L-lactic acid attached to the bonding surface of the two poly L-lactic acid substrates and the poly D-lactic acid bonded as a side chain to the surface of the poly D-lactic acid graft particles. This proved that the complex structure was formed and the bonding strength was improved.
On the other hand, in the case of the L/D hetero interface, the bonding force did not increase so much when the L- or D-form polylactic acid graft particles were interposed (see FIG. 9).

(3−3)ポリ乳酸グラフト粒子の濃度と相互作用の関係
分子量がMn=5000及びMn=10000のポリ乳酸(L体、D体)を側鎖として結合させた4種類のポリ乳酸グラフト粒子をそれぞれ溶媒(クロロホルム)に添加して接合補助剤を作製した。このとき、接合補助剤中のポリ乳酸グラフト粒子の濃度を0.1mg/mL、1mg/mL、10mg/mLとした。これらの接合補助剤を、分子量がMn=8000のポリ乳酸(L体、D体)を接合面に付着させたポリ乳酸基板の間(ホモ界面(L/L)、ヘテロ界面(L/D))に(3−2)と同じ方法で介在させて引張試験を行った。その結果を図10(a)、図11(a)、図12(a)に示す。また、その有意差検定の結果を図10(b)、図11(b)、図12(b)に示す。
図10及び図11は、ホモ界面(L/L)にポリL−乳酸グラフト粒子、ポリD−乳酸グラフト粒子をそれぞれ介在させたとき、図12は、ヘテロ界面(L/D)にポリD−乳酸グラフト粒子を介在させたときの結果を示す。これらの図の見方は図8及び図9と同様である。
(3-3) Relationship between Concentration of Polylactic Acid Graft Particles and Interaction Four types of polylactic acid graft particles in which polylactic acid (L-form, D-form) having a molecular weight of Mn=5000 and Mn=10000 are bound as side chains are prepared. Each was added to a solvent (chloroform) to prepare a joining aid. At this time, the concentrations of the polylactic acid graft particles in the bonding aid were 0.1 mg/mL, 1 mg/mL, and 10 mg/mL. These bonding aids are attached between polylactic acid substrates having a molecular weight of Mn=8000 attached to the bonding surfaces (homo-interface (L/L), hetero-interface (L/D)). ) In the same manner as in (3-2), and a tensile test was performed. The results are shown in FIGS. 10(a), 11(a) and 12(a). The results of the significant difference test are shown in FIGS. 10(b), 11(b) and 12(b).
10 and 11 show poly L-lactic acid graft particles and poly D-lactic acid graft particles interposed at the homo interface (L/L), respectively, and FIG. 12 shows poly D-lactic acid at the hetero interface (L/D). The result when interposing lactic acid graft particles is shown. How to read these figures is the same as in FIGS. 8 and 9.

図10(a)及び図11(a)に示すように、ホモ界面(L/L)にポリL−乳酸グラフト粒子を含む接合補助剤を介在させたときは、ポリ乳酸グラフト粒子の濃度による試験力の変化はみられなかった。一方、ホモ界面(L/L)にポリD−乳酸グラフト粒子を含む接合補助剤を介在させたときの試験力は、ポリL−乳酸グラフト粒子を含む接合補助剤を介在させたときと比べて増加し、特に、分子量Mn=5000のポリD−乳酸グラフト粒子をその濃度が1.0mg/mLとなるように調整した接合補助剤、分子量Mn=10000のポリD−乳酸グラフト粒子をその濃度が0.1mg/mLとなるように調整した接合補助剤を介在させたときに、試験力が大きく増加した。 As shown in FIGS. 10( a) and 11 (a ), when a bonding aid containing poly L-lactic acid graft particles was interposed at the homo-interface (L/L), the test was performed by the concentration of polylactic acid graft particles. There was no change in power. On the other hand, the test force when the bonding aid containing the poly D-lactic acid graft particles was interposed at the homo interface (L/L) was higher than that when the bonding aid containing the poly L-lactic acid graft particles was interposed. In particular, a poly-D-lactic acid graft particle having a molecular weight of Mn=5000 is adjusted to have a concentration of 1.0 mg/mL, and a poly-D-lactic acid graft particle having a molecular weight of Mn=10000 has a concentration of 0.1. The test force was significantly increased when the conjugation aid adjusted to be mg/mL was interposed.

これに対して、ヘテロ界面(L/D)の間にポリD−乳酸グラフト粒子を含む接合補助剤を介在させた場合は、そのグラフト粒子に結合しているポリD−乳酸の分子量の違いによる試験力の変化、ポリD−乳酸グラフト粒子の濃度による試験力の変化はみられなかった(図12(a)参照)。ただし、ヘテロ界面(L/D)の間にポリD−乳酸グラフト粒子を含む接合補助剤を介在させた場合の試験力は、ホモ界面(L/L)にポリL−乳酸グラフト粒子を含む接合補助剤及びポリD−乳酸グラフト粒子を含む接合補助剤を介在させたときの試験力よりも大きかった(図10(a)、図11(a)参照)。このことから、接合界面を構成する2枚のポリ乳酸基板の接合面にそれぞれ付着しているポリL−乳酸とポリD−乳酸の間で形成されるステレオコンプレックス構造が、2枚のポリ乳酸基板の接合力に大きく寄与しており、ポリ乳酸基板のポリL−乳酸とポリ乳酸グラフト粒子のポリD−乳酸、及びポリ乳酸基板のポリD−乳酸とポリ乳酸グラフト粒子のポリL−乳酸との間で形成されるステレオコンプレックス構造の寄与分は小さいことが推測された。 On the other hand, when the bonding aid containing the poly D-lactic acid graft particles is interposed between the hetero interfaces (L/D), it depends on the difference in the molecular weight of the poly D-lactic acid bonded to the graft particles. No change in test force and no change in test force depending on the concentration of poly D-lactic acid graft particles were observed (see FIG. 12(a)). However, the test force when a joining aid containing poly D-lactic acid graft particles was interposed between the hetero interfaces (L/D) was the same as the bonding force containing poly L-lactic acid graft particles at the homo interface (L/L). It was larger than the test force when the auxiliary agent and the joining auxiliary agent containing poly D-lactic acid graft particles were interposed (see FIGS. 10(a) and 11(a)). From this, the stereocomplex structure formed between the poly-L-lactic acid and the poly-D-lactic acid adhering to the bonding surfaces of the two polylactic acid substrates constituting the bonding interface has two polylactic acid substrates. Of poly(L-lactic acid) on the poly(lactic acid) substrate and poly(D-lactic acid) on the poly(lactic acid) graft particles, and between poly(D-lactic acid) on the poly(lactic acid) substrate and poly(L-lactic acid) on the poly(lactic acid) graft particles. It was speculated that the contribution of the stereocomplex structure formed between the two was small.

なお、上述した実験では、接合補助剤がポリL−乳酸グラフト粒子及びポリD−乳酸グラフト粒子の一方のみを含むようにしたが、ポリL−乳酸グラフト粒子及びポリD−乳酸グラフト粒子の両方を含むようにしても良い。この場合は、ポリL−乳酸基板とポリD−乳酸基板の間、ポリL−乳酸基板とポリD−乳酸グラフト粒子の間、ポリD−乳酸基板とポリL−乳酸グラフト粒子の間、ポリL−乳酸グラフト粒子とポリD−乳酸グラフト粒子の間で、それぞれ、ポリL−乳酸とポリD−乳酸によるステレオコンプレックス構造が形成されることになる。 In addition, in the above-mentioned experiment, the bonding aid was made to include only one of the poly L-lactic acid graft particles and the poly D-lactic acid graft particles, but both the poly L-lactic acid graft particles and the poly D-lactic acid graft particles were used. It may be included. In this case, between the poly L-lactic acid substrate and the poly D-lactic acid substrate, between the poly L-lactic acid substrate and the poly D-lactic acid graft particles, between the poly D-lactic acid substrate and the poly L-lactic acid graft particles, -A stereocomplex structure of poly L-lactic acid and poly D-lactic acid is formed between the lactic acid graft particles and the poly D-lactic acid graft particles, respectively.

また、上述した実験では、ポリプロピレンフィルムの接合面にポリ乳酸溶液をディップコートして該接合面にポリ乳酸を付着(物理吸着)させたが、ポリ乳酸を側鎖として結合、つまり、グラフト重合させても良い。ポリプロピレンフィルムに対するポリ乳酸のグラフト重合は、ポリ乳酸グラフト粒子と同様の手順で行うことができる。また、ポリ乳酸溶液をポリプロピレンフィルムの上に滴下して、該基板の表面にポリ乳酸を付着させても良い。
さらに、上述した実験では、ポリ乳酸基板の材料(つまり、本発明の第1部材及び第2部材の材料)としてポリプロピレンフィルムを用いたが、これに代えて金やシリカを用いても良い。
Further, in the above-mentioned experiment, the bonding surface of the polypropylene film was dip-coated with polylactic acid to adhere (physically adsorb) the bonding surface, but polylactic acid was bonded as a side chain, that is, graft polymerization was performed. May be. Graft polymerization of polylactic acid on a polypropylene film can be carried out by the same procedure as for polylactic acid graft particles. Alternatively, the polylactic acid solution may be dropped on the polypropylene film to adhere the polylactic acid to the surface of the substrate.
Furthermore, in the above-mentioned experiment, the polypropylene film was used as the material of the polylactic acid substrate (that is, the material of the first member and the second member of the present invention), but gold or silica may be used instead.

接合補助剤に用いる溶媒としては、クロロホルムに限らず、水、ジメチルカーボネート、ジメチルコハク酸、ジメチルマレイン酸、ジメチルアジピン酸、及びジメチルグルタル酸から選ばれる1種又は複数種を混合して用いることができる。 The solvent used for the bonding aid is not limited to chloroform, but one or more selected from water, dimethyl carbonate, dimethyl succinic acid, dimethyl maleic acid, dimethyl adipic acid, and dimethyl glutaric acid may be mixed and used. it can.

Claims (25)

a)接合面においてポリL−乳酸が付着している第1部材と、
b)前記第1部材の接合面に接合される接合面においてポリD−乳酸が付着している第2部材とを備え、
前記第1部材の接合面及び前記第2部材の接合面に、前記ポリL−乳酸及び前記ポリD−乳酸が、それぞれ物理吸着しており、
前記第1部材の接合面と前記第2部材の接合面の間に、前記ポリL−乳酸と前記ポリD−乳酸により形成されたステレオコンプレックス構造を有することを特徴とする接合構造体。
a) a first member to which poly L-lactic acid is attached at the joint surface,
b) a second member having poly D-lactic acid attached to the bonding surface bonded to the bonding surface of the first member,
The poly L-lactic acid and the poly D-lactic acid are physically adsorbed on the joint surface of the first member and the joint surface of the second member, respectively,
A joint structure comprising a stereocomplex structure formed of the poly(L-lactic acid) and the poly(D-lactic acid) between the joint surface of the first member and the joint surface of the second member.
a)接合面においてポリL−乳酸が付着している第1部材と、
b)前記第1部材の接合面に接合される接合面においてポリD−乳酸が付着している第2部材とを備え、
前記第1部材の接合面と前記第2部材の接合面の間に、前記ポリL−乳酸と前記ポリD−乳酸により形成されたステレオコンプレックス構造を有しており、
前記第1部材の接合面と前記第2部材の接合面との間に導入される、ポリ乳酸が溶解可能な溶媒から成る接合補助剤を更に備えることを特徴とする接合構造体。
a) a first member to which poly L-lactic acid is attached at the joint surface,
b) a second member having poly D-lactic acid attached to the bonding surface bonded to the bonding surface of the first member,
Between the joint surface of the first member and the joint surface of the second member, it has a stereocomplex structure formed by the poly L-lactic acid and the poly D-lactic acid ,
The joining structure , further comprising a joining auxiliary agent, which is introduced between the joining surface of the first member and the joining surface of the second member, and which comprises a solvent capable of dissolving polylactic acid .
前記第1部材の接合面及び前記第2部材の接合面に、前記ポリL−乳酸及び前記ポリD−乳酸がそれぞれ側鎖として結合していることを特徴とする請求項に記載の接合構造体。 The bonding structure according to claim 2 , wherein the poly L-lactic acid and the poly D-lactic acid are bonded as side chains to the bonding surface of the first member and the bonding surface of the second member, respectively. body. 前記第1部材の接合面と前記第2部材の接合面との間に導入される、ポリ乳酸が溶解可能な溶媒から成る接合補助剤を更に備えることを特徴とする請求項1に記載の接合構造体。 The bonding according to claim 1, further comprising a bonding aid, which is introduced between the bonding surface of the first member and the bonding surface of the second member, and which comprises a solvent capable of dissolving polylactic acid. Structure. 前記接合補助剤が、表面にポリL−乳酸が側鎖として結合している第1ナノ粒子と、表面にポリD−乳酸が側鎖として結合している第2ナノ粒子を含むことを特徴とする請求項2〜4のいずれかに記載の接合構造体。 The conjugation aid includes first nanoparticles having poly-L-lactic acid bound as a side chain on the surface and second nanoparticles having poly-D-lactic acid bound as a side chain on the surface. The joined structure according to any one of claims 2 to 4 . a)接合面においてポリ乳酸の一方の鏡像異性体が付着している第1部材と、
b)前記第1部材の接合面に接合される接合面においてポリ乳酸の一方の鏡像異性体が付着している第2部材と、
c)前記第1部材の接合面と前記第2部材の接合面との間に導入される、ポリ乳酸の他方の鏡像異性体が側鎖として表面に結合しているナノ粒子を含む、ポリ乳酸が溶解可能な溶媒から成る接合補助剤と
を備えることを特徴とする接合構造体。
a) a first member to which one enantiomer of polylactic acid is attached at the joint surface,
b) a second member to which one enantiomer of polylactic acid is attached at the joint surface to be joined to the joint surface of the first member,
c) Polylactic acid containing nanoparticles introduced between the bonding surface of the first member and the bonding surface of the second member and having the other enantiomer of polylactic acid bound to the surface as a side chain. And a joining aid comprising a solvent capable of dissolving the above.
前記第1部材の接合面及び前記第2部材の接合面に、前記ポリ乳酸の一方の鏡像異性体が側鎖として結合していることを特徴とする請求項6に記載の接合構造体。 The bonded structure according to claim 6, wherein one enantiomer of the polylactic acid is bonded as a side chain to the bonding surface of the first member and the bonding surface of the second member. 前記第1部材の接合面及び前記第2部材の接合面に、前記ポリ乳酸の一方の鏡像異性体が物理吸着していることを特徴とする請求項6に記載の接合構造体。 The bonded structure according to claim 6, wherein one enantiomer of the polylactic acid is physically adsorbed on the bonded surface of the first member and the bonded surface of the second member. 前記ナノ粒子が金属ナノ粒子であることを特徴とする請求項5〜8のいずれかに記載の接合構造体。 The said nanoparticle is a metal nanoparticle, The junction structure in any one of Claims 5-8 characterized by the above-mentioned. 前記金属ナノ粒子が、直径が10nm〜100nmの金ナノ粒子であることを特徴とする請求項9に記載の接合構造体。 The bonded structure according to claim 9, wherein the metal nanoparticles are gold nanoparticles having a diameter of 10 nm to 100 nm. 前記接合補助剤の溶媒が、水、ジメチルカーボネート、ジメチルコハク酸、ジメチルマレイン酸、ジメチルアジピン酸、及びジメチルグルタル酸から選ばれる1種又は複数種から成ることを特徴とする請求項2〜10のいずれかに記載の接合構造体。 The solvent of the bonding aid comprises one or more selected from water, dimethyl carbonate, dimethyl succinic acid, dimethyl maleic acid, dimethyl adipic acid, and dimethyl glutaric acid. The joined structure according to any one of the claims. 前記第1部材及び前記第2部材の少なくとも一方が、ポリマーから構成されていることを特徴とする請求項1〜11のいずれかに記載の接合構造体。 At least one of the said 1st member and the said 2nd member is comprised from the polymer, The joining structure in any one of Claims 1-11 characterized by the above-mentioned. a)第1部材の表面に位置する接合面に、ポリL−乳酸を側鎖として結合させ、
b)第2部材の表面に位置する接合面に、ポリD−乳酸を側鎖として結合させ、
c)前記ポリL−乳酸の側鎖と前記ポリD−乳酸の側鎖との間でステレオコンプレックス構造を形成させるとともに、
前記第1部材の接合面と、前記第2部材の接合面との間に、ポリ乳酸が溶解可能な溶媒から成る接合補助剤を導入することにより、前記第1部材の接合面と前記第2部材の接合面を接合する接合方法。
a) Poly L-lactic acid is bonded as a side chain to the joint surface located on the surface of the first member,
b) by bonding poly D-lactic acid as a side chain to the joint surface located on the surface of the second member,
c) while forming a stereocomplex structure between the side chain of the poly L-lactic acid and the side chain of the poly D-lactic acid ,
By introducing a joining auxiliary agent composed of a solvent capable of dissolving polylactic acid between the joining surface of the first member and the joining surface of the second member, the joining surface of the first member and the second member are joined together. A joining method for joining joining surfaces of members.
a)第1部材の表面に位置する接合面に、ポリL−乳酸を含む溶液をディップコートすることにより該ポリL−乳酸を前記接合面に物理吸着させ、
b)第2部材の表面に位置する接合面に、ポリD−乳酸を含む溶液をディップコートすることにより該ポリD−乳酸を前記接合面に物理吸着させ、
c)前記ポリL−乳酸と前記ポリD−乳酸との間でステレオコンプレックス構造を形成させることにより、前記第1部材の接合面と前記第2部材の接合面を接合する接合方法。
a) The joint surface located on the surface of the first member is dip-coated with a solution containing poly L-lactic acid to physically adsorb the poly L-lactic acid on the joint surface,
b) The bonding surface located on the surface of the second member is dip-coated with a solution containing poly D-lactic acid to physically adsorb the poly D-lactic acid on the bonding surface.
c) A joining method for joining the joining surface of the first member and the joining surface of the second member by forming a stereocomplex structure between the poly L-lactic acid and the poly D-lactic acid.
前記第1部材の接合面と、前記第2部材の接合面との間に、ポリ乳酸が溶解可能な溶媒から成る接合補助剤を導入することを特徴とする請求項14に記載の接合方法。 The joining method according to claim 14 , wherein a joining auxiliary agent composed of a solvent capable of dissolving polylactic acid is introduced between the joining surface of the first member and the joining surface of the second member. 前記接合補助剤が、表面にポリL−乳酸が側鎖として結合している第1ナノ粒子と、表面にポリD−乳酸が側鎖として結合している第2ナノ粒子とを含むことを特徴とする請求項13又は15に記載の接合方法。 The conjugation aid includes first nanoparticles having poly-L-lactic acid bound as a side chain on the surface, and second nanoparticles having poly-D-lactic acid bound as a side chain on the surface. The joining method according to claim 13 or 15. a)第1部材の表面に位置する接合面に、ポリ乳酸の一方の鏡像異性体を側鎖として結合させ、
b)第2部材の表面に位置する接合面に、ポリ乳酸の一方の鏡像異性体を側鎖として結合させ、
c)前記第1部材の接合面と前記第2部材の接合面を対向させ、これら接合面の間に、ポリ乳酸の他方の鏡像異性体が側鎖として表面に結合しているナノ粒子を含む、ポリ乳酸が溶解可能な溶媒から成る接合補助剤を導入し、前記第1部材の接合面に結合している側鎖及び前記第2部材の接合面に結合している側鎖と、前記ナノ粒子の表面に結合している側鎖との間でステレオコンプレックス構造を形成させることにより、前記第1部材の接合面と前記第2部材の接合面を接合する接合方法。
a) one of the enantiomers of polylactic acid is bonded as a side chain to the joint surface located on the surface of the first member,
b) To the joint surface located on the surface of the second member, one of the enantiomers of polylactic acid is bound as a side chain,
c) The bonding surface of the first member and the bonding surface of the second member are opposed to each other, and between these bonding surfaces, nanoparticles containing the other enantiomer of polylactic acid bound to the surface as a side chain are included. Introducing a joining aid composed of a solvent capable of dissolving polylactic acid, a side chain bonded to the bonding surface of the first member and a side chain bonded to the bonding surface of the second member, and the nano-particle. A joining method for joining a joining surface of the first member and a joining surface of the second member by forming a stereocomplex structure with a side chain bound to the surface of the particle.
a)第1部材の表面に位置する接合面に、ポリ乳酸の一方の鏡像異性体を含む溶液をディップコートすることにより該ポリ乳酸を前記接合面に物理吸着させ、
b)第2部材の表面に位置する接合面に、ポリ乳酸の一方の鏡像異性体を含む溶液をディップコートすることにより該ポリ乳酸を前記接合面に物理吸着させ、
c)前記第1部材の接合面と前記第2部材の接合面を対向させ、これら接合面の間に、ポリ乳酸の他方の鏡像異性体が側鎖として表面に結合しているナノ粒子を含む、ポリ乳酸が溶解可能な溶媒から成る接合補助剤を導入し、前記第1部材の接合面に物理吸着しているポリ乳酸及び前記第2部材の接合面に物理吸着しているポリ乳酸と、前記ナノ粒子の表面に結合しているポリ乳酸の側鎖との間でステレオコンプレックス構造を形成させることにより、前記第1部材の接合面と前記第2部材の接合面を接合する接合方法。
a) The joint surface located on the surface of the first member is dip-coated with a solution containing one enantiomer of polylactic acid to physically adsorb the polylactic acid on the joint surface,
b) The bonding surface located on the surface of the second member is dip-coated with a solution containing one enantiomer of polylactic acid to physically adsorb the polylactic acid on the bonding surface.
c) The bonding surface of the first member and the bonding surface of the second member are opposed to each other, and between these bonding surfaces, nanoparticles containing the other enantiomer of polylactic acid bound to the surface as a side chain are included. A polylactic acid that is physically adsorbed on the joint surface of the first member and a polylactic acid that is physically adsorbed on the joint surface of the first member by introducing a joint auxiliary agent composed of a solvent in which polylactic acid is soluble; A bonding method for bonding the bonding surface of the first member and the bonding surface of the second member by forming a stereocomplex structure with the side chain of polylactic acid bonded to the surface of the nanoparticles.
前記ナノ粒子が金属ナノ粒子であることを特徴とする請求項16〜18のいずれかに記載の接合方法。 The said nanoparticle is a metal nanoparticle, The joining method in any one of Claims 16-18 characterized by the above-mentioned. 前記金属ナノ粒子が、直径が10nm〜100nmの金ナノ粒子であることを特徴とする請求項19に記載の接合方法。 The bonding method according to claim 19, wherein the metal nanoparticles are gold nanoparticles having a diameter of 10 nm to 100 nm. 前記接合補助剤の溶媒が、水、ジメチルカーボネート、ジメチルコハク酸、ジメチルマレイン酸、ジメチルアジピン酸、及びジメチルグルタル酸から選ばれる1種又は複数種から成ることを特徴とする請求項15〜20のいずれかに記載の接合方法。 21. The solvent of the conjugation aid comprises one or more selected from water, dimethyl carbonate, dimethyl succinic acid, dimethyl maleic acid, dimethyl adipic acid, and dimethyl glutaric acid. The joining method according to any one. 前記第1部材及び前記第2部材の少なくとも一方が、ポリマーから構成されていることを特徴とする請求項13〜21のいずれかに記載の接合方法。 At least one of the said 1st member and the said 2nd member is comprised from the polymer, The joining method in any one of the Claims 13-21 characterized by the above-mentioned. 表面にポリ乳酸の一方の鏡像異性体が側鎖として結合している部材を内部に含み、
前記部材が、ナノ粒子である、
ポリ乳酸の他方の鏡像異性体を主成分とする樹脂成形品。
Look including a member one enantiomer of the surface polylactic acid is bonded as a side chain to the inside,
The member is a nanoparticle,
A resin molded product whose main component is the other enantiomer of polylactic acid.
前記ナノ粒子が金属ナノ粒子であることを特徴とする、請求項23に記載の樹脂成形品。 The resin molded article according to claim 23 , wherein the nanoparticles are metal nanoparticles. 前記金属ナノ粒子が、直径が10nm〜100nmの金ナノ粒子であることを特徴とする請求項24に記載の樹脂成形品。 The resin molded article according to claim 24 , wherein the metal nanoparticles are gold nanoparticles having a diameter of 10 nm to 100 nm.
JP2016040414A 2016-03-02 2016-03-02 Joining structure and joining method Active JP6721887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016040414A JP6721887B2 (en) 2016-03-02 2016-03-02 Joining structure and joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016040414A JP6721887B2 (en) 2016-03-02 2016-03-02 Joining structure and joining method

Publications (3)

Publication Number Publication Date
JP2017155151A JP2017155151A (en) 2017-09-07
JP2017155151A5 JP2017155151A5 (en) 2019-03-22
JP6721887B2 true JP6721887B2 (en) 2020-07-15

Family

ID=59808074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016040414A Active JP6721887B2 (en) 2016-03-02 2016-03-02 Joining structure and joining method

Country Status (1)

Country Link
JP (1) JP6721887B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020011410A (en) * 2018-07-17 2020-01-23 株式会社デンソー Joint structure and method for manufacturing the same, and heat exchanger

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5102200B2 (en) * 2006-03-30 2012-12-19 テルモ株式会社 In vivo indwelling
JP4650339B2 (en) * 2006-05-16 2011-03-16 トヨタ自動車株式会社 Method of joining biodegradable resin members
JP4650338B2 (en) * 2006-05-16 2011-03-16 トヨタ自動車株式会社 Method of reinforcing biodegradable resin member
JP5218951B2 (en) * 2006-05-25 2013-06-26 株式会社ビーエムジー High strength and high modulus biodegradable bone anchoring material

Also Published As

Publication number Publication date
JP2017155151A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
Gu et al. Multiplex binding of amyloid-like protein nanofilm to different material surfaces
Guo et al. Photoluminescent hybrids of cellulose nanocrystals and carbon quantum dots as cytocompatible probes for in vitro bioimaging
Zhang et al. Quantum dot based biotracking and biodetection
Kumar et al. Chemical functionalization of graphene to augment stem cell osteogenesis and inhibit biofilm formation on polymer composites for orthopedic applications
Liu et al. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields
Zhang et al. Effective reduction of nonspecific binding by surface engineering of quantum dots with bovine serum albumin for cell-targeted imaging
Sattler Handbook of nanophysics: nanomedicine and nanorobotics
Ma et al. Quinone/hydroquinone-functionalized biointerfaces for biological applications from the macro-to nano-scale
Varjonen et al. Self-assembly of cellulose nanofibrils by genetically engineered fusion proteins
JP2009513798A5 (en)
Li et al. Carboxymethylated dextran-modified n-heterocyclic carbene self-assembled monolayers on gold for use in surface plasmon resonance biosensing
Mertz et al. Protein capsules assembled via isobutyramide grafts: sequential growth, biofunctionalization, and cellular uptake
Nielsen et al. Mussel inspired surface functionalization of electrospun nanofibers for bio-applications
Ag et al. From invisible structures of SWCNTs toward fluorescent and targeting architectures for cell imaging
Kalaoglu-Altan et al. “Clickable” polymeric nanofibers through hydrophilic–hydrophobic balance: fabrication of robust biomolecular immobilization platforms
Yuksel et al. Nonionic, water self-dispersible “hairy-rod” poly (p-phenylene)-g-poly (ethylene glycol) copolymer/carbon nanotube conjugates for targeted cell imaging
Kim et al. Green synthesis and nanotopography of heparin-reduced gold nanoparticles with enhanced anticoagulant activity
JP6721887B2 (en) Joining structure and joining method
Yan et al. Stable and biocompatible cellulose-based CaCO3 microspheres for tunable pH-responsive drug delivery
Schönwälder et al. Interaction of human plasma proteins with thin gelatin-based hydrogel films: A QCM-D and ToF-SIMS study
Shen et al. Fabrication of a photocontrolled surface with switchable wettability based on host–guest inclusion complexation and protein resistance
Dam et al. Modular click assembly of degradable capsules using polyrotaxanes
Tousian et al. Targeted chitosan nanoparticles embedded into graphene oxide functionalized with caffeic acid as a potential drug delivery system: new insight into cancer therapy
Heichel et al. Enhancing the carboxylation efficiency of silk fibroin through the disruption of noncovalent interactions
JP5545985B2 (en) Polylactic acid adhesive and method for producing the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20160314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200605

R150 Certificate of patent or registration of utility model

Ref document number: 6721887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250