JP6720316B2 - 2色性レフレクタを有する2チャンネル結像光ガイド - Google Patents

2色性レフレクタを有する2チャンネル結像光ガイド Download PDF

Info

Publication number
JP6720316B2
JP6720316B2 JP2018533876A JP2018533876A JP6720316B2 JP 6720316 B2 JP6720316 B2 JP 6720316B2 JP 2018533876 A JP2018533876 A JP 2018533876A JP 2018533876 A JP2018533876 A JP 2018533876A JP 6720316 B2 JP6720316 B2 JP 6720316B2
Authority
JP
Japan
Prior art keywords
waveguide
diffractive optical
optical element
image
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018533876A
Other languages
English (en)
Other versions
JP2019507371A (ja
Inventor
ロバート, ジェイ. シュルツ,
ロバート, ジェイ. シュルツ,
ジェイ. トラバース,ポール,
ジェイ. トラバース,ポール,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vuzix Corp
Original Assignee
Vuzix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vuzix Corp filed Critical Vuzix Corp
Publication of JP2019507371A publication Critical patent/JP2019507371A/ja
Application granted granted Critical
Publication of JP6720316B2 publication Critical patent/JP6720316B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29316Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
    • G02B6/29325Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide of the slab or planar or plate like form, i.e. confinement in a single transverse dimension only
    • G02B6/29328Diffractive elements operating in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4233Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4272Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having plural diffractive elements positioned sequentially along the optical path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00663Production of light guides
    • B29D11/00682Production of light guides with a refractive index gradient
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0112Head-up displays characterised by optical features comprising device for genereting colour display
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0112Head-up displays characterised by optical features comprising device for genereting colour display
    • G02B2027/0114Head-up displays characterised by optical features comprising device for genereting colour display comprising dichroic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • G02B2027/0174Head mounted characterised by optical features holographic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features

Description

本発明は、一般に、像担持光を複数のカラーチャンネルで観者に伝達する光ガイドに関し、特に、ビデオアイウェア(video eyewear)、又は拡張現実若しくは仮想現実のニアアイディスプレイ(near-eye display)で使用される。
従来の眼鏡又はサングラスに似た形のニアアイディスプレイを含む頭部装着型ディスプレイ(Head-Mounted Displays)(HMDs)は、軍用、商業用、産業用、消防用、及び娯楽用のアプリケーションを含む様々な用途のために開発されている。これらのアプリケーションの多くで特に価値のあることは、HMDユーザの視野にある実世界の画像上に視覚的に重ね合わせることができる虚像を形成することである。様々なタイプの導波路を組み込んだ光ガイドは、狭小空間で観者に像担持光を中継し、虚像を観者の瞳孔に向け直し、この重ね合わせ機能を可能にする射出瞳拡大器として機能する。
従来の光ガイドでは、コリメートされ、角度的に関連した、画像ソースからの光ビームは、入力結合型回折格子のような入力の光学的結合によって、一般に導波路と呼ばれる光ガイド基板に結合される。入力結合型回折格子を、基板の表面に形成することができ、基板内に埋設することもできる。他のタイプの回折光学素子は、入力結合として使用することができ、ホログラフィック高分子分散液晶(holographic polymer dispersed liquid crystal)(HPDLC)又は体積ホログラム(volume hologram)のような屈折率の変化する代わりの材料で形成された回折構造を含む。回折光学素子は、表面レリーフ回折格子として形成されてもよい。コリメートされた光ビームは、回折光学素子の形態を取ることもできる同様の出力の光学的結合によって、導波路から導出することができる。導波路から射出された、コリメートされた角度的に関連したビームは、画像ソースにより生成された虚像を見ることができる射出瞳を形成する導波路からのアイレリーフ距離で重なり合う。アイレリーフ距離で虚像を見ることができる射出瞳の領域は、「アイボックス」と呼ばれる。
出力結合は、射出瞳を拡大するように構成することもできる。例えば、コリメートされたビームは、第1次元で拡大することが出来る。これは、コリメートされたビームの部分的に反射された部分を、コリメートされたビームが出力結合に沿って伝搬する方向にオフセットすることによるか、又は、異なる角度のコリメートされたビームを導波路に沿った異なる位置から射出し、コリメートされたビームを、導波路からのアイレリーフ距離でより効率的に重なり合わせることによる。
入力結合と出力結合との間の導波路に沿って配置された、いわゆる「転換光学素子」は、第2次元で瞳サイズを拡大するために使用することができる。拡大は、コリメートされたビームの反射された部分をオフセットしてビーム自体の第2次元を拡大することにより、又はコリメートされたビームを出力結合の異なる領域に向けることにより、行うことができる。これにより、異なる角度のコリメートされたビームは、異なる位置から射出され、アイボックス内でより効率的に重なり合う。転換光学素子は、回折光学素子の形態を取ることもでき、特に入力結合の回折格子と出力結合の回折格子の間に位置する場合、中間格子と呼ぶこともできる。
従来の光ガイドの構造により、ディスプレイ光学系の容積、重量及び全体のコストにおける大幅な低減がもたらされてきたが、依然として解決すべき問題が存在する。誤ったカラーチャンネルから色が処理されて表示されるクロストークを防止するために、カラーチャンネルの適切な分離が必要である。クロストークは、カラー画像データと表示される色との間の不一致につながり、画像フィールドにわたって知覚可能な好ましくない色ずれ(color shift)の原因となり得る。この問題を補正しようとする試みには、複数の導波路を任意のフィルタと積み重ねて色が不適切なチャンネルに向かないようにする積み重ね手法が含まれている。しかし、積み重ねにより、装置が厚くなり、重量が増え、明るさが低下し、満足のいく結果が得られない。
したがって、光ガイドの瞳拡大能力を依然として提供しつつも、画質及びカラーバランスを損なうことなく、これらの装置をより薄くかつより軽量にする改良された設計が必要であることが理解されよう。
本開示の目的は、コンパクトな頭部装着型装置及び同様の結像装置を用いる場合に像提示技術を進歩させることである。有利なことに、本開示の実施形態は、基板の単一の厚さ内の2つのカラーチャンネルを取り扱うことができる両面ビーム拡大器を提供する。
本発明のこれらの及び他の、態様、目的、特徴及び利点は、以下の、好ましい実施形態の詳細な説明及び添付の特許請求の範囲を検討し、添付の図面を参照することにより、より明確に理解され、認識されるであろう。
本開示の一態様によれば、虚像を伝達する結像光ガイドは、導波路と、第1の波長範囲の光を導波路に沿ってビューアーアイボックス(a viewer eyebox)に向けるための第1のカラーチャンネルと、第2の波長範囲の光を導波路に沿ってビューアーアイボックスに向けるための第2のカラーチャンネルと、を有する。各カラーチャンネルは、入力結合型回折光学素子と、レフレクターアレイと、出力結合型回折光学素子と、を有する。入力結合型回折光学素子は、像担持光ビームを導波路に回折するように配置される。レフレクターアレイは、少なくとも1つの部分反射面及びこの少なくとも1つの部分反射面と平行な2色性フィルタ面を有する。レフレクターアレイのこれらの面は、入力結合型回折光学素子からのカラーチャンネルのそれぞれの像担持光ビームを第1次元において拡大し、拡大された像担持光ビームを出力結合型回折光学素子に向けるように配置される。出力結合型回折光学素子は、カラーチャンネルの像担持光ビームを第2次元において更に拡大し、カラーチャンネルの更に拡大された像担持光ビームを導波路からビューアーアイボックスに向けるように配置されている。
好ましくは、2色性フィルタ面は、カラーチャンネルの光を少なくとも1つの部分反射面に向けて反射して、その他の光を透過するように形成されている。第1のカラーチャンネルの出力結合型回折光学素子及び第2のカラーチャンネルの出力結合型回折光学素子は、好ましくは、上記導波路の対向する面に形成され、対向する面に共通する法線沿って整列されている。対照的に、第1のカラーチャンネルのレフレクターアレイ及び第2のカラーチャンネルのレフレクターアレイは、好ましくは、導波路における異なる位置に配置されている。
本明細書は、本発明の主題を特に指摘して明確に主張する特許請求の範囲で結論付けられるが、本発明は、添付の図面と合わせて以下の説明からよりよく理解されると考えられる。
単眼式の回折型ビーム拡大器を組み込んだ導波路として構成された光ガイドの1つの可能な構成を簡略化された断面で示す概略図である。
転換格子を含む回折型ビーム拡大器を組み込んだ導波路として構成された光ガイドを示す斜視図である。
本開示の実施形態に係り、入力結合型及び出力結合型の回折光学素子とビーム転換用レフレクタとを用いるハイブリッド1次元(1-D)ビーム拡大器として構成された結像光ガイドの斜視図である。
本開示の実施形態に係り、入力結合型回折光学素子、出力結合型回折光学素子及びビーム転換用レフレクターのアレイを用いるハイブリッド2次元ビーム拡大器として構成された結像光ガイドの斜視図である。
レフレクターアレイを用いるビーム拡大器を提供する結像光ガイドを示す平面図である。
レフレクターアレイを用いるビーム拡大器を提供する結像光ガイドを示す平面図であって、像の領域点の拡大された部分も示す。
勾配レフレクターアレイを使用する結像光ガイドを示す平面図である。
勾配レフレクターアレイがどのように動作するかを示す概略図である。
勾配レフレクタの例示的な領域を示す平面図である。
単一の基板上に形成された、2つのカラーチャンネルを有する結像光ガイドの一実施形態を示す斜視図である。
図7Aの結像光ガイドの個々のカラーチャンネル示す分解図である。
本開示の結像光ガイドを用いた拡張現実視のためのディスプレイシステムを示す斜視図である。
積層結像光ガイドアッセンブリを示す分解側面図である。
組み立てられた積層結像光ガイドアッセンブリを示す側面図である。
発明の詳細な説明
本説明は、特に、本発明による装置の一部を形成する要素、又は本発明による装置とより直接的に協働する要素に関する。特に示されず、記載されていない要素は、当業者に周知のさまざまな形態をとり得ることが理解されるであろう。
本明細書で使用される場合、「第1」、「第2」などの用語は、必ずしも序数的、逐次的、又は優先順位の関係を示すものではなく、別段の定めがない限り、ある要素又は要素の集合を別のものとより明確に区別するために単に用いられる。「上」及び「下」の用語は、必ずしも空間的位置を指定するものではなく、平面的な(平らな)導波路の対向する面を区別するなどの、構造についての相対的な情報を提供する。
本開示の文脈において、「観者」、「オペレータ」、「観察者」及び「ユーザ」という用語は、同等であると見なされ、HMD視覚装置を装着する人を指す。
本明細書で使用される場合、「稼働可能」という用語は、電力を受け取ったときに、及び任意に許可信号(enabling signal)を受け取ったときに、指示された機能を実行する1つの装置又は構成要素の集合に関係している。
「作動可能」という用語は、その従来の意味を有し、例えば、電気信号に応答するように刺激に応答して作用を生じさせることができる1つの装置又は部品に関する。
本明細書で使用される「集合(set)」という用語は、要素の集まり又は集合の元の概念が基本数学において広く理解されているように、空でない集合を指す。特に明記しない限り、「部分集合(subset)」という用語は、空でない適切な部分集合、即ち、1又は複数の元を有する大きな集合の部分集合を指すために本明細書では使用される。集合Sについて、部分集合は完全集合Sを含むことができる。しかし、集合Sの「真部分集合」は、集合Sに厳密に含まれ、集合Sの少なくとも1つの元を除外する。
本開示の文脈において、「斜めの(oblique)」という用語は、90度の整数倍ではない角度を意味する。例えば、2つの、線、線形構造又は平面は、それらが平行から少なくとも約5度以上離れた角度で、又は直交から少なくとも約5度以上離れた角度で、互いに発散する(それる)か又は収束する(近づく)場合には、互いに斜めであると見なされる。
本開示の文脈において、「波長帯域」及び「波長範囲」という用語は、同意義であって、カラー結像の当業者によって使用されるような標準的な意味合いを有し、多色画像において1又は複数の色を形成するために使用される光波長の範囲を指す。異なる波長帯域は、従来のカラー結像用途において赤、緑および青の原色を提供するような、異なるカラーチャンネル中に向けられる。
実像投影の代替として、光学システムは虚像ディスプレイを生成することができる。実像を形成する方法とは異なり、虚像は表示面には形成されない。すなわち、もし表示面が虚像の知覚された位置に配置されれば、その面には画像が形成されないだろう。虚像ディスプレイは拡張現実感ディスプレイにいくつかの固有の利点を有する。例えば、虚像の見かけ上のサイズは、表示面のサイズ又は位置によって限定されない。また、虚像のソースオブジェクトは小さくてもよく、簡単な例として、虫めがねは対象物の虚像を提供する。実像を投影するシステムと比較して、遠くにあるように見える虚像を形成することにより、より現実的な視覚体験を提供することができる。虚像を提供することにより、実像を投影するときに必要とされるスクリーンのような人工物を補う必要はなくなる。
本開示の文脈において、「結合された」という用語は、2つ以上の部品間の物理的な、関連付け、接続、関係、又は連結を指すことを意図しており、その結果、ある部品の配置がその部品が結合される部品の空間的配置に影響を与える。機械的結合の場合、2つの部品は直接接触する必要はなく、1つ又は複数の中間部品を介して連結することができる。光学的結合のための部品は、光エネルギーが光学装置に入力され又は光学装置から出力されることを可能にする。「ビーム拡大器(beam expander)」及び「瞳拡大器(pupil expander)」という用語は、同義語であると見なされ、本明細書では互換的に使用される。
図1は、単眼式の光回折型ビーム拡大器、又は射出瞳拡大器として構成された、光ガイド10の1つの従来構成を簡略化された断面で示す概略図である。光ガイド10は、入力結合型回折光学素子110のような入力結合素子と、出力結合型回折光学素子120のような出力結合素子とを備えている。これら入力結合素子及び出力結合素子は、基板Sを有する透明かつ平坦な導波路22上に構成されている。この例では、入力結合型回折光学素子110は、反射型回折格子として示されている。しかし、入力光波WIが最初に導波路基板Sに作用する限り、入力結合型回折光学素子110は、代わりに、導波路基板Sの下面12に配置されて、入射する像担持光に回折をもたらす、透過性回折格子、体積ホログラム若しくはその他のホログラフィック回折素子、又は他の種類の光学素子でもよい。
仮想ディスプレイシステムの一部として使用される場合、入力結合型回折光学素子110は、適切な前行程の光学素子(図示せず)を経た、プロジェクタ装置のような撮像素子からの複数の角度的に関連した入射像担持光ビームWIの各々を、導波路22の基板Sに結合する。入力光ビームWIは、入力結合型回折光学素子110によって回折される。例えば、一次回折光は、角度的に関連した一連のビームWGとして基板Gに沿って伝搬し、図1のシステムの右方に向かって、出力結合型回折光学素子120に向かって移動する。格子又は他のタイプの回折光学素子の間で、光は、全反射(Total Internal Reflection)(TIR)によって導波路22に沿って導かれるか、又は方向付けされる。出力結合型回折光学素子120は、伝搬する光ビームWGとの多重の回折遭遇によって、その長さに沿った、すなわち図1の視座におけるx軸に沿ったビーム拡大に寄与し、回折された光を各遭遇から観察者の目の意図された位置に向かって外側に向ける。
図2の斜視図は、公知のビーム拡大器として構成された結像光ガイド20を示す。このビーム拡大器20は、中間の転換格子TGを用いて入力結合型回折光学素子110から出力された光(第1の回折モード)を出力結合型回折光学素子120に向け直して、x軸及びy軸の両方に対してビーム拡大を提供している。図2の装置では、周期dの周期的な罫線を有する入力結合型回折光学素子110は、角度的に関連して入射する入力光学ビームWIを、角度的に関連したビームWGの集合として導波路22内に回折し、初期方向における全反射によって中間転換格子TGに向かって伝搬させる。中間格子TGは、「転換格子」と呼ばれる。理由は、その格子ベクトルによりビームWGを導波路22内から出力結合型回折光学素子120に向かう方向に向け直し、これにより、入力結合型回折光学素子110の格子ベクトルと出力結合型回折光学素子120の格子ベクトルの間の角度差を構成するという、光学経路における機能によるからである。中間格子TGは、回折要素の角度方向と間隔周期dで決定される間隔構造を有し、内側で反射されたビームWGの方向を向け直すだけでなく、光ビームWGとの多重の回折遭遇により、伝搬の初期方向に沿った、すなわち図2の視座におけるy軸に沿った、直交するビーム拡大にも寄与する。出力結合型回折光学素子120は、光ビームWGとの多重の回折遭遇により、向け直された伝搬方向に沿った、すなわち図2の視座におけるx軸に沿った、直交するビーム拡大にも寄与する。
格子ベクトルは、一般にkで示され、カラーチャンネル内の光に特有のものである場合には下付き文字で示される。格子ベクトルは、導波路表面の平面に平行に延びるとともに、入力結合型回折光学素子110及び出力結合型回折光学素子120のそれぞれの周期性の方向にある。
結像に使用される光ガイドの設計の考慮において、導波路内を移動する像担持光は、入力結合のメカニズムが格子、ホログラム、プリズム、ミラー又は他の何らかのメカニズムを使用するかどうかにかかわらず、入力結合型光学素子によって効率的にエンコードされるということに留意すべきである。入力で生じる、光のあらゆる反射、屈折及び/又は回折は、観者に提示される虚像を再構成するために出力によって、相応にデコードされなければならない。
転換格子TGは、入力結合型及び出力結合型の回折光学素子110、120のような、入力結合と出力結合との間の中間位置に置かれる。転換格子TGは、エンコードされた光におけるあらゆる変化を最小化するように通常は選択される。そのため、転換格子のピッチは、好ましくは、入力結合型及び出力結合型の回折光学素子110、120のピッチに一致する。また、転換格子の向きを入力結合型及び出力結合型の回折光学素子110、120に対して約60度に合わせて、エンコードされた光線束が転換格子TGの第1次の反射次数の1つによって120度転換されるような方法で、虚像は保たれる。転換格子TGの回折効果は、転換格子の格子ベクトルに平行な入射光のベクトル成分上で最も顕著である。そのように配置された転換格子は、虚像のエンコードされた角度情報へのあらゆる変化を最小限に抑えながら、ガイド基板内で光線束の方向を向け直す。このように設計されたシステムで結果として得られる虚像は、回転されない。このようなシステムが何らかの回転を虚像に導入した場合、回転の効果は異なる視野角及び光の波長にわたって不均一に分布することがあり、結果として得られる虚像に望ましくない歪み又は色収差を引き起こす。
転換格子TGの使用により、光ガイド20の設計に固有の幾何学的精度が保持される。これにより、入力ビーム及び出力ビームは、互いに対称的に方向付けられる。適切な格子TG間隔及び方向性を用いて、格子ベクトルkは、光を入力結合型回折光学素子110から出力結合型回折光学素子120に向ける。留意すべきは、結像光ガイドビューアに形成される像は、無限遠又は少なくとも光ガイド20の正面に焦点が合った虚像であるが、入力像コンテンツに対する出力像コンテンツの相対的な向き(orientation)が保持されている、ということである。x-y平面に対する入射光ビームWIの、z軸まわりの回転又は角度方向、における変化により、出力結合型回折光学素子(ODO)120からの出射光の、回転又は角度方向における対応する対称的な変化を引き起こすことができる。像の向きの観点から、転換格子TGは、一種の光リレーとして機能するように意図されており、入力結合型回折光学素子(IDO)110を介して入力され、出力結合型回折光学素子(ODO)120に方向を向け直される像の、一つの軸に沿う拡大を提供する。転換格子TGは、一般的には、傾斜した若しくは四角形の格子であり、又は、代替として、ブレーズド格子(blazed grating)であってもよい。光を出力結合型回折光学素子120に向けて転換するために反射面を代わりに用いてもよい。
図2の構成を使用する場合、2つの異なる次元のビーム拡大が提供される。転換格子TGは、入力結合型回折光学素子110からの回折されたビームを図示のようにy方向に拡大する。出力結合型回折光学素子120は、図示のように、その回折されたビームをx方向に、すなわちy方向と直交方向にさらに拡大する。
転換格子TG及び出力結合型回折光学素子120の両方によるビーム拡大の組み合わせにより、ビームは導波路基板の平面内にあるx軸とy軸の両方に対して効果的に拡大される。
図2に示す、公知の結像光ガイド20は、観者にイメージコンテンツを提供するための、いくつかの既存の頭部装着型ディスプレイ(HMD)の設計に使用されてきた。このタイプのビーム拡大器は、透明な結像光ガイドを通して見える現実世界の視界にイメージコンテンツを重ね合わせることができる拡張現実アプリケーションに特によく適している。
公知の結像光ガイドビーム拡大器の1つの認識された欠点は、色品質に関する。設計上、回折格子は特定の波長に対して最適化され、波長が特定の波長からさらにずれるにつれ、結像性能が次第に低下する。さらに、性能が波長に応じてシフトするだけでなく、入射角の変化により、波長差によって変化するより顕著な効果が生じる。このため、公知のタイプの回折ビーム拡大器を使用するとき、望ましくない色ずれが画像フィールドにわたって知覚される可能性がある。色ずれの問題は、ソフトウェアでは補正するのが非常に困難であると分かる。なぜなら、色ずれ量は、画像フィールドにわたって大きく変化する可能性があるからである。
色ずれ問題に対処する1つの手法は、異なる波長帯域の光を取り扱うように適切に設計された回折素子を用いて、別個の導波路を使用して異なる原色チャンネルを提供することである。1つの提案された手法は、3つの導波路を積み重ねてビーム拡大を行う。積み重ねは、別個の赤色(R)、青色(B)、及び緑色(G)のカラーチャンネルを個々の導波路に割り当てるために使用することができ、各導波路用の回折素子は異なる波長帯域の光に対して適切に設計される。カラーチャンネル間のクロストークは、別個の回折格子及び任意のカラーフィルタを有する積層導波路を使用して低減される。
積み重ね手法はある程度のチャンネル分離を達成することができるが、積み重ねた導波路による解決策の重量、サイズ、複雑さ、コストの増加が重大になる可能性がある。感知できるカラーチャンネルクロストークなしで、単一の導波路内に別個のカラーチャンネルを提供する解決策は、色ずれを低減し、全体的なカラー品質を改善させるのに役立つであろうことは容易に理解されよう。
転換格子の角度に関する性能は、制限される可能性がある。転換格子は、正しく設計された場合、せいぜい単一の視界角及び単一の波長では、理想的な解決策となり得る。実際に光を方向転換する反射屈折配列の効率曲線は、入力結合型及び出力結合型の回折光学素子の効率曲線と同様の特性を有する。システムを伝搬する、中心視野角にある設計波長の光線は、効率よく入力結合され(回折光学素子110)、効率よく転換され1次元で拡大され(格子TG)、効率よく出力結合され直交する次元で拡大される(回折光学素子120)。同じ波長であるが、末端の視野点からの同様の光線は、逆に、効率的でなく入力結合され、効率的でなく転換され、効率的でなく出力結合される。これにより、画角全体にわたるバランス性能、カラーバランス、及び輝度における困難が生じる。
例えばピコプロジェクタのような従来の携帯型投影装置は、一般的に9:16の高さ幅比でイメージコンテンツを提供する。従来の結像光ガイド設計の角度範囲の制約は、同様にして、プロジェクタ装置の許容される姿勢を抑制し、一般的に、例えばHMDにおけるピコプロジェクタ装置のコンパクトなパッケージングを妨げる。更なる制約として、前に言及したとおり、全体的な光効率が制限される。
本開示の実施形態は、拡大された観察瞳(view pupil)又はアイボックスを有する虚像を形成する光学システムを提供する。この光学システムは、単一の平面導波路の構成要素の形式の結像光ガイドを含む。平面導波路の構成要素は、次のものを有する。(i) 入射する像担持光ビームを受け、少なくとも、入射する光ビームからの一次回折光を、全反射を用いて平坦な構成要素に沿うように向ける入力結合型回折光学素子110のような入力結合要素。(ii) それぞれの像担持光ビームを、第1次元に拡げ、像担持光ビームを外に向けて虚像を形成する出力結合型回折光学素子120のような出力結合要素。(iii) 少なくとも第1及び第2の平行な、反射率を互いに異ならせた反射性の表面を有するレフレクターアレイ。レフレクターアレイは、各像担持光ビームを、第2次元(好ましくは第1次元と直交する)に対して拡大するとともに、入力結合型回折光学素子からの回折光を出力結合型回折光学素子に向ける角度に配置されて虚像を形成する。回折光学素子が使用される場合、入力結合型及び出力結合型の回折光学素子110及び120は、それぞれ好ましくは、同じ回折周期(ピッチ)を有する。
結像光ガイドビーム拡大器の全体的な効率を高めるのを助けるために、本開示の実施形態は、導波路基板の内部に入れられ、導波路基板に取り付けられ、又は導波路基板の一部として形成された1つ又は複数の反射面を使用し、転換及びy軸に関するビーム拡大機能を実行している。第1の例示的な実施形態として、図3は、レフレクタ36を使用して像担持光ビームを転換する、導波路基板S上にビーム拡大器として構成された光ガイド30を示す。レフレクタ36は、光ガイド30の外縁内部に、又は外縁に沿って形成され、入力結合型及び出力結合型の回折光学素子110及び120のそれぞれの周期性の方向の格子ベクトルに適切な角度に配置され、適切な光接続を提供する。本開示の実施形態によれば、レフレクタ36は、入力結合型回折光学素子110の格子ベクトルと名目上平行な光を反射し、反射された光が、同様にして出力結合型回折光学素子120の格子ベクトルと名目上平行になるようにする。破線は、結像光ガイド内の回折一次光の光路を示す。破線が示すように、レフレクタ36は、虚像の向きを変え、この図で文字「R」で示されるように、虚像コンテンツを効率的に反転させ、レフレクタでの中心視野主光線の入射角の2倍で像を回転させる。上述したように、出力結合型回折光学素子120を用いる図3の構成において、瞳拡大は一次元においてのみ行われる。
図4は、図2及び図3を参照して述べたように、入力結合型回折光学素子110及出力結合型回折光学素子120を有するビーム拡大器として構成され、レフレクターアレイ32を用いてビーム拡大の第2の次元を追加する、光ガイド30を示す斜視図である。このタイプの構成は、出力された光ビームをx及びy方向に拡大する。レフレクターアレイ32は、レフレクタ34a,34b,34cとして図4の実施形態に示す、3つの鏡面反射面を有する。アレイにおけるいくつかの鏡面反射面は部分反射性であり、これにより、レフレクタ34aへのある入射光は、レフレクタ34bに伝達し、同様に、レフレクタ34bへのある入射光は、レフレクタ34cに伝達する。アレイにおける連続するレフレクタの反射率は、レフレクタが入力結合型又は出力結合型の回折光学素子110,120からさらに離れるにつれて増加する。一連における一番後の又は最後尾のレフレクタ、図4の例におけるレフレクタ34cは、一般的に所望の光に対する100%の公称反射率を有し、望ましくない光を導波路から透過する。
拡大された瞳における光の均一な分布を提供するために、レフレクターアレイ32の連続したレフレクタ34a,34b,34cは、異なる量の反射率を有することができ、逆に言うと、異なる量の透過率を有することができる。吸収を伴わない5レフレクタの実施形態の例示的な値を以下の表に示す。

Figure 0006720316
図5Aは、レフレクターアレイ32を使用する場合に、中心視野点の軸光路を入力結合型回折光学素子110から出力結合型回折光学素子120へトレースするビーム拡大器 として構成された光ガイド40の平面図である。図5Aの例において、レフレクターアレイ32は、レフレクタ34a,34b,34c,34dとして示される4つの反射面を有する。レフレクタ34dは、波長の意図された帯域内にある光のみを反射する。波長の意図された帯域の外にある光は、図5AのQで示すように、面34dを通って導波路の外に透過する。したがって、レフレクタ34dは望ましくない波長を結像チャンネルから除去するための一種のフィルタとして機能する。
図5Aの実施形態によれば、ビーム拡大は、レフレクタ34a,34b,34c,34dに透過された光の反射によってだけでなく、反射光の一部がレフレクタ34a,34b,34c,34dによってさらに反射されることによっても生じる。したがって、同じ光は、透過又は反射の条件下で、同じ個々のレフレクタ34a,34b,34c,34dに複数回遭遇する可能性がある。これらの反射の一部が示されている。図5Aに示すように、レフレクタ34a,34b,34cは、他のリフレクタから反射された光を部分的にも反射するので、平行な反射面の各組み合わせの間で光の減少部分が伝搬する。それぞれの表面の各々について指定された反射率は、これら付加的な反射を構成する。レフレクタ自体を越えた、又は出力結合型回折光学素子120への目標出力を越えた光伝搬によるのと同様に、吸収による若干の不可避の損失が生じることにも注意する必要がある。
レフレクタ34a,34b,34c及び34dの反射面間の間隔は、それぞれの拡大されたビームにわたって所望の強度プロファイルを維持するための別の考慮事項である。例えば、個々の(ピクセル)ビームを、隣接するビームレットとの近接オーバーラップ領域を越えて逸れたビームレットに分割して、アイボックス内で視認可能な像におけるギャップや輝度変動を回避することは、望ましくない。適切な反射率と反射面間の間隔はまた、複数のビームレットからなる拡大された個々の(ピクセル)ビームにわたって所望のエネルギー分布を生成することができる。一般に、レフレクタ表面間の距離は、ガイド基板Sの厚さの約2.5倍を超えてはならない。
図5Bは、ビーム拡大器として構成された光ガイド40の平面図であり、中心視野点から離れた視野点の方向転換を示すように再描画されたものである。レフレクタ34a,34b,34c及び34dのそれぞれには、光の同じ角度の入射が適用される。したがって、像担持光ビーム間の相対的な角度関係は、レフレクタの平行な面間の反射によって保持される。
図6Aは、導波路ガイド22を用いるビーム拡大器として構成される光ガイド50の代替の実施形態を示し、導波路ガイド22は、勾配レフレクターアレイ42によって提供される囲み構成において2つのレフレクタ44a及び44bのみを組み込んでいる。レフレクタ44bは、可視光の所望の波長に対する100%の公称反射率を有する二色性フィルタを備え、望ましくない波長の光Qを透過させる。レフレクタ44aは、その長さに沿って反射率を変化させる勾配コーティングを有し、ビーム拡大を提供するためにレフレクターアレイ42の内部の反射光を分配する。「勾配反射率」という語句は、反射率値が徐々に、好ましくは連続的に増加又は減少するように変化することを指すが、製造又は光学的性能のために好ましいように反射率におけるより漸進的変化を含むこともできる。本開示の実施形態によれば、レフレクタ44aの長さ部分にわたる勾配反射率は、10%未満の反射率から50%より大きい反射率までの範囲にわたって単調に連続的に変化する。それぞれの像担持光ビームの強度プロファイル(intensity profiles)を制御するために他の範囲を提供することもできる。
図6Bは、わかりやすくするために、図6Aの導波路22の詳細の一部を選択的に省略した概略図であって、勾配レフレクターアレイ42が、連続して構成された可変透過領域を有する入力結合型回折光学素子110からの光を繰り返し反射しながら、どのように動作するかを示している。入力結合型回折光学素子110から出力された回折光は、最初に、レフレクタ44aの全透過性領域46aを通過し、レフレクタ44bによって反射される。レフレクタ44bは、光Qのようなあらゆる望ましくない波長を透過させ、適切な光をレフレクタ44aの方に戻すように反射させる。レフレクタ44aの半透過性領域46bは、例として、レフレクタ44aの長さに沿って75%の反射率から50%未満の反射率の範囲の反射勾配を提供するようにコーティングされている。レフレクタ44aを透過する光は、出力結合型回折光学素子120に向かって外側に向けられる。レフレクタ44bは、領域46bから反射された入射光を、半透過性領域46bに向けて戻すように、例えばこの例における66%の反射率のように、反射率の低いレフレクタ44aのセグメントの向こう側に向けて、反射する。66%の反射率であるレフレクタ44aの部分を越えて、約1/3の入射光は、出力結合型回折光学素子120の別の部分に透過される。減少する光量は、レフレクタ44aと44bとの間で往復して繰り返し反射され、入力結合型回折光学素子110からの像担持光の最後の残りが、勾配レフレクタ44aを介して回折光学素子120に伝達されるまで繰り返される。
勾配レフレクタ44aの領域46a及び46bの1つの可能な全体構成を、図6Cの側面図で示す。破線は、勾配レフレクタ44aに沿った反射率の局所値を示す。レフレクタ44bは、例えば、結像光ガイド22の縁に沿って形成することができる。図6Aから図6Cの例に与えられた反射率値は、勾配レフレクタ44aの反射率を変化させる一般的な原理を示しているが、限定的と見なされるべきではないことは、容易に理解できる。あらゆる実施形態で実際に使用される反射率値は、光損失量、コーティング許容値、及び、像担持光ビーム内の所望の光分布を含むその他の性能変数、を含む様々な要因に依存し得る。代わりに、均一な反射率値を有し、レフレクタ44aの長さに沿って変化する小領域を設けることができる。
レフレクターアレイ42の勾配反射率は、傾斜角に影響を受ける付加的な自由度を提供することができる。個々の(ピクセル)ビームを単純に拡大することは、アイボックスを拡大するのに役立つが、拡大されたビームはアイボックスで完全には交差しないので、一般的なアイボックスは、個々の拡大されたビームのサイズよりもずっと小さいままである。アイボックスでより完全に交差するために、異なる方向に伝搬する個々のビームは、出力格子内の異なる位置から出なければならない。一次元における交差(すなわち、重なり)の可能性を改善するために、ある角度のビームは、出力格子の一方の側へ他方の側よりもより向けることができる。これを行うために、勾配反射面を、他の入射角よりも特定の入射角の光に選択的により反射性があるようにすることができる。これにより、異なる角度が、出力格子の異なる側に向けられる。この方法の使用は、個々の(ピクセル)ビームが2次元で角度エンコードされることによって複雑になる。したがって、反射感度は、次元の1つに限定されるべきである。
最良の性能を得るために、上述したようなビーム拡大器光学系は、各個別の(ピクセル)ビームにそれ自身の横方向エネルギー分布を提供することができる。これにより、エネルギーの大部分がアイボックスに到達し、ビームの重なり合わない部分はより少ないエネルギーしか含まない。アレイ32及び42の反射面は、相対的にオフセットされたビームレットの個々の集まりとして、出力個別(ピクセル)ビームを構成し、各ビームレットは、強度及び位置の双方で変化可能である。本開示の実施形態は、反射中間ビーム拡大器が少なくとも90度にわたる角度の範囲を介して光を出力結合型回折光学素子120に向けることを可能にする。この光は、像の直交軸に沿って、又は、図5Aに示すような斜めの角度のような中間のどこかに沿って、出力結合型回折光学素子120に近づくことができる。傾斜角度での方向づけの機能は、部品の位置決め及びパッケージングに有利であり得る。さらに、レフレクターアレイ32,42は、入力結合型及び出力結合型の回折光学素子110及び120の間で中心視野光線を傾斜角度で相互接続することができ、その間に、像
の直交軸x,yの1つとの配列を維持し、特に出力結合型回折光学素子で維持する。

2チャンネル結像光ガイド
図7Aは、単一の基板上に形成され、2つのカラーチャンネルC及びCBGを有する結像光ガイド100の実施形態を示す斜視図である。カラーチャンネルC及びCBGは、例えば、少なくとも50nm離れた波長で中心合わせすることができる。結像光ガイド100は、両面ハイブリッドビーム拡大器として形成され、カラーチャンネルクロストークを防止するための積層された導波路による解決策の必要性を排除するよう構成された、回折、反射及びフィルタリングの素子を有する。両方のカラーチャンネルへの像担持光は入力結合型回折光学素子に入射し、この入力結合型回折光学素子は光を2つのカラーチャンネルのうちの1つに分離する。両方のチャンネルからの出力された像担持光はビューアーアイボックスEに向けられる。
図7Bは、単一の基板上に形成され、2つのカラーチャンネルC及びCBGを有する図7Aの結像光ガイド100の一実施形態を示す分解図である。この分解図は、導波路基板の前面F及び後面Bkに形成される構成要素を、視覚的に互いに分離している。各面は、2つのカラーチャンネルのうちの1つに役立つ回折構造及び反射構造を有している。図示の例では、一方のカラーチャンネルCBGが緑色及び青色光(約450〜550nm)に対して設けられ、第2のカラーチャンネルCが赤色光(約610〜780nm)に対して設けられている。カラーチャンネルCBGは、基板Sの前面Fに形成された回折光学素子110BG及び120BGを有するとともに、レフレクターアレイ80BGを有している。カラーチャンネルCは、回折光学素子110、120を有するとともに、導波路基板Sの背面又は後面Bkに形成されたレフレクターアレイ80を有する。入射光は、図7A、図7Bの右から左への単一方向からのものである。出力結合型回折光学素子から出力された両方のカラーチャンネルの光はビューアーアイボックスEに進む。それぞれのカラーチャンネルについて、入力結合型回折光学素子110及び110BGは、平行な前面F及び後面Bkに共通する法線に沿って、互いに整列している。出力結合型回折光学120及び120BGも同様に整列している。しかし、それぞれのレフレクターアレイ80BG及び80は、導波路基板Sを通る異なるカラーチャンネル経路に従って整列していない。レフレクターアレイ80BG及び80は、図4、図5A及び図5Bのレフレクターアレイ32を参照して先に説明したように、異なる反射率を有する複数の面を有することができる。また、レフレクターアレイ80及び80BGの一方又は双方は、図6A及び図6Bのレフレクターアレイ42を参照して先に説明したように、勾配レフレクターアレイであってもよい。最も外側の反射面は、透過によって反対のチャンネルの望ましくない光を廃棄する2色性フィルタであってもよい。これにより、2つのカラーチャンネル間のクロストークの機会が著しく低減される。
カラーチャンネル及びこれらに関する帯域幅範囲のいくつかの代替構成の何れかを使用してもよく、例えば1つのカラーチャンネル内に緑色及び赤色の波長帯域を含み、別のカラーチャンネル内に青色の波長帯域を含むような構成を使用することができることに留意されたい。

クロストークの懸念
カラーチャンネル間のクロストークは、複数の積層された導波路を使用する構成を含むあらゆるタイプの結像システムで問題になる可能性があるが、単一の導波路を使用するあらゆるタイプの設計では特に懸念される。クロストークを克服するために設計者が利用できる手法には、角度及び距離の両方に関して、可能な限り導波路内に光路を別々に設けることが含まれる。図7A及び図7Bに示す例では、クロストークは、青色−緑色光の経路から赤色光の経路を分離することによって低減される。これにより、不適切なカラー経路への光の「漏れ」は生じないか、又は無視できるほどである。
これまでに概説したクロストーク防止戦略に照らして光学系の異なる部分の挙動を調べることは有益である。図7Bの斜視図に少しの間戻ると、赤(R)及び青緑(BG)光は、異なる格子ベクトルk及びkBGによって示されるように、格子の回転に従って、入力結合110から異なる経路をたどることがわかる。光学システムにおけるこの点でいくらかの量のクロストークが生じたとしても、面34d(図5A、図5Bの実施形態)又は面44b(図6A、図6Bの実施形態)によって提供される2色性フィルタは、対応するカラーチャンネルにおけるフィルタ特性を提供するために処理することができる。例えば、赤色チャンネルC用のローパスフィルタを配置してこのチャンネルからあらゆる青色−緑色光BGを除去することができる。この光は反射されるのではなく導波路から透過されるからである。同様に、青色−緑色チャンネルCBG用のハイパスフィルタを配置してこのチャンネルからあらゆる赤色光Rを除去することができる。この光は反射されるのではなく導波路から透過されるからである。
付加的なカラークロストークの低減は、入力結合型回折光学素子110及び110BGの間で格子方向の適切な相対角度を与えることにより、得ることができる。各入力結合110の格子ベクトルk及びkBGに対応する格子方向は、各入力結合によって回折される光の経路を決定する。経路間のピーク分離は、赤(R)光と青緑(BG)光の経路が互いに直交している場合に達成される。例えば、図7Bは、2つのカラーチャンネルの格子回転角が、互いに90度離れた格子ベクトルk、kBGをもたらす。
図8の斜視図は、本開示の結像光ガイドを使用する3次元(3−D)拡張現実視のためのディスプレイシステム60を示す。ディスプレイシステム60は、HMDとして示されており、左眼用光ガイド140lを有する左眼光学システム54lと、対応する、右眼用光ガイド140rを有する右眼光学システム54rと、を備えている。ピコプロジェクタや同様の装置などの画像ソース52が提供可能であり、正立像表示のための像方向を有する虚像として形成される、各眼に別個の像を生成するよう稼働可能である。生成される像は、3−D視のための立体的な対の像であり得る。光学システムによって形成された虚像は、観者によって見られる現実世界のシーンに重ね合わされて又は覆われているように見え得る。拡張現実感視覚化技術の当業者によく知られた追加の構成要素、例えば、シーンコンテンツを観るためにHMDのフレームに搭載された1つ又は複数のカメラや、観者視線追跡なども提供することができる。
本開示の別の実施形態によれば、結像光ガイドには、第1及び第2の波長帯域用の両面ビーム拡大器と、第3の波長帯域用の第2の片面ビーム拡大器とを用いて形成された、3つの別個のカラーチャンネルが設けられている。図9Aの側面図分解図及び図9Bの組立図は、片面結像光ガイド22に結合された両面光ガイド100を有する、積層された結像光ガイドアッセンブリ200を、単純化された形態で示し、実際の尺度を示すこと意図するものではない。光ガイド100及び22は、接着して又は機械的に結合することができる別個の導波路基板S1及びS2上に形成される。これにより、積層された結像光ガイドアッセンブリ200は3つの別個のカラーチャンネルを提供する。図9Aは、1つの代替構成を示している。この構成では、両面光ガイド100は、赤色光R(630〜660nm範囲)用の赤色チャンネルCと、緑色光G(500〜540nm範囲)用の緑色チャンネルCとを有し、結像光ガイド22は、青色光B(440〜470nm範囲)用の単一の青色チャンネルCを有する。図9Aは、この積層された構成のそれぞれのカラーチャンネルにおける光の経路を示している。青色光Bは、入力結合型回折光学素子110及び110の両方を透過し、入力結合型回折光学素子110で回折される。回折された青色光Bは、その後全反射により導波路基板S1中を伝達され、レフレクターアレイ32によって1つの軸に沿って拡大され、出力結合型回折光学素子120に向けられる。赤色光Rもまた、入力結合型回折光学素子110で入力され、入力結合型回折光学素子110で反射的に回折され、レフレクターアレイ32によって1つの軸に沿って拡大され、出力結合型回折光学素子120に進む。緑色光Gもまた、入力結合型回折光学素子110で入力され、そこで回折される。このビームは、全反射により導波路基板S2を通って伝達され、レフレクターアレイ32によって1つの軸に沿って拡大され、出力結合型回折光学素子120に進む。本明細書に記載の2チャンネルの実施形態と同様に、積層された構成で用いられる両面ビーム拡大器上の入力結合型回折光学素子は、それぞれの格子ベクトルが基板S1内で互いに25〜40度になるように、回転される。全反射を可能にするために、十分な空隙Gが基板S1とS2との間に設けられる。
図9A及び図9B示す実施形態は、積層された結像光ガイドアッセンブリ200とそのカラーチャンネルC、C、Cのいくつかの可能な構成のうちの1つであることが理解されるだろう。両面光ガイド100は、片面結像光ガイド22の上又は下に積み重ねることができる。2つの両面光ガイド100の結合が同様の方法で4つのカラーチャンネルを提供することができる。

ビーム拡大器製造
入力結合型回折光学素子110及び出力結合型回折光学素子120は、例えば、回折格子であってもよく、体積ホログラムとして形成されてもよく、ホログラフィック高分子分散液晶で形成されてもよい。結像光ガイド100の導波路基板Sは、一般的には、入力結合型回折光学素子110と出力結合型回折光学素子120との間の全反射透過をサポートする十分な屈折率を有するガラス又はその他の光学材料である。
入力結合型回折光学素子110及び出力結合型回折光学素子120は、それぞれのカラーチャンネルに適した異なる格子周期を有している。一般的には、格子ピッチ又は格子周期は、カラーチャンネルの中心波長の75〜約90パーセントの値である。例えば、例示的な実施形態における赤色チャンネル(620〜670nm)用の入力結合型回折光学素子110は、510nmの周期、205nmの深さ、50/50のフィル(fill)、及び45度の傾斜を有する。
ガラス基板ブランクの適切な表面処理の後、例えば、ナノインプリント法を使用して、回折素子を結像光ガイドの一方又は双方の外面上に形成することができる。
入力結合及び出力結合のうちの少なくとも1つは、表面レリーフ回折格子であってもよい。
2色性フィルタは、一種の薄膜干渉フィルタであって、異なる屈折率を有する材料の交互配置層の間の境界で、入射波と反射波との間で生じる干渉効果の結果として波長選択フィルタ特性を提供するように処理又は形成される。干渉フィルタは、従来、異なる屈折率を有する2つ以上の誘電体材料の複数の交互層からなる誘電体スタックを含む。従来の薄膜干渉フィルタでは、基板上に重ねられたフィルタスタックのそれぞれ交互配置された層の各々はとても薄く、例えば、光の約1/4の波長の光学的厚さ(物理的厚さと層の屈折率との積)を有している。少なくとも1つの波長帯域の反射と、この第1の帯域に直接隣接する少なくとも第2の波長帯域の透過のフィルタ特性を有するフィルタは、反射された帯域の方向を変えることにより2つの波長帯域を分離できるので、従来「2色性の(dichroic)」フィルタと呼ばれる。
本開示の実施形態に従って形成又は構成された光学フィルタは、一般に、薄膜干渉フィルタの基本構造を用いる。この基本的な構造において、材料の複数の非常に薄い別個の層は、基板の表面上に、何らかの交互の又は他の交互的な様式でフィルタスタックとして重ねられ、このフィルタスタックにおける個々の層の間の光学指数は、連続的又は段階的にではなく急激に変化する。複数の層は、少なくとも多数の、第1の屈折率nを有する第1の層を、第1の屈折率よりも大きい第2の屈折率nを有する多数の第2の層と交互に配置して含んでいる。n又はnに等しくない屈折率を有する1つ又は複数の追加の層をフィルスタック内に設けることもできる。従来の薄膜設計では、2つの別個の層は、交互に形成され、ある基本波長の1/4波長の厚さに非常に近い厚さで形成される。薄膜スタック内に第3の材料又は他の追加の材料を加えることは、フィルタ応答を微調整するのに役立つ。高屈折率材料及び低屈折率材料における屈折率間の数値の差は、特定の透過率特性を有するフィルタを形成するのに必要な薄膜層の数に影響する。高屈折率材料と低屈折率材料の屈折率の差が十分大きい場合、同じ透過率(密度)値を達成するために必要な交互の層はより少なくなる。
広範囲の材料を使用して、フィルタスタック内に複数の別個の材料層を形成することができる。このような材料の中では、金属、金属及び非金属酸化物、透明ポリマー材料、並びに、フッ化アルミニウムナトリウム(NaAlF)及び硫化亜鉛(ZnS)のようないわゆる「ソフト」コーティングが挙げられるが、これらに限定されない。さらに、二酸化ケイ素(SiO)、五酸化タンタル(Ta)、五酸化ニオブ(Nb)、二酸化ハフニウム(HfO)、二酸化チタン(TiO)及び五酸化アルミニウム(Al)から選択される金属酸化物が挙げられるが、これらに限定されない。交互配置された材料層は、少なくとも2つの異なる材料を含むことができる。非限定的な例として、フィルタは、複数の別個の交互する五酸化ニオブ(Nb)と二酸化ケイ素(SiO)の層を含むことができ、五酸化ニオブ(Nb)と二酸化ケイ素(SiO)は、それぞれ2.3及び1.5の屈折率を有する。また、本開示によるフィルタは、別個の、五酸化ニオブ(Nb)層、二酸化ケイ素(SiO)層及び五酸化タンタル(Ta)層のような、各層が特徴的な屈折率を有する、少なくとも3つの異なる材料を備える交互的様式を使用してもよい。勿論、3つを超える材料及び他の材料の組み合わせを、交互的な層の様式のなかで用いてもよい。
一般に、本開示によるフィルタは、光学コーティング分野の当業者に周知の堆積方法及び技術を使用して製造することができる。例えば、これらのフィルタは、複数の異なる交互材料層を堆積することができるコンピュータ制御のイオンビームスパッタリングシステムで製造することができ、各層の厚さを精密に制御することができる。
本発明は、現在の好ましい実施形態を特に参照して詳細に説明されているが、本発明の精神及び範囲内で変形及び修正が可能であることは理解されるであろう。したがって、ここに開示された実施形態は、すべての点で例示的であり、限定的でないと見なされる。本発明の範囲は、添付の特許請求の範囲に示され、その等価物の意味及び範囲内に入るすべての変更は、その中に包含されることが意図される。

Claims (9)

  1. 導波路と、
    上記導波路を介して第1の波長帯域の光を向ける第1のカラーチャンネルと、
    上記導波路を介して第2の波長帯域の光を向ける第2のカラーチャンネルと、を備えた虚像伝達用結像光ガイドであって、
    上記第1のカラーチャンネルは、
    (i) 上記第1の波長帯域の像担持光ビームを第1方向に沿って上記導波路内に回折するように配置された第1の入力結合型回折光学素子と、
    (ii) 少なくとも1つの部分反射面及び上記少なくとも1つの部分反射面と平行に向けられた2色性フィルタ面を有し、これらの面が上記第1の入力結合型回折光学素子からの上記各像担持光ビームを第1次元に拡大して上記拡大された像担持光ビームを第1の出力結合型回折光学素子に向けるように配置された、第1のレフレクターアレイと、
    を有し、
    上記2色性フィルタ面は上記第1のレフレクターアレイの最も外側の面であり、上記2色性フィルタ面は、上記第2の波長帯域の光を上記導波路から透過させるとともに上記第1の波長帯域の光を上記少なくとも1つの部分反射面に向けて反射させるように形成されており、
    (iii) 上記第1の出力結合型回折光学素子は、上記第1の波長帯域の上記像担持光ビームを第2次元に更に拡大して上記第1の波長帯域の上記更に拡大された像担持光ビームを上記導波路からビューアーアイボックスに向けるように配置されており、
    上記第2のカラーチャンネルは、
    (i) 上記第2の波長帯域の像担持光ビームを第2方向に沿って上記導波路内に回折するように配置された第2の入力結合型回折光学素子と、
    (ii) 少なくとも1つの部分反射面及び上記少なくとも1つの部分反射面と平行な2色性フィルタ面を有し、これらの面が上記第2の入力結合型回折光学素子からの上記各像担持光ビームを第1次元に拡大して上記拡大された像担持光ビームを第2の出力結合型回折光学素子に向けるように配置された、第2のレフレクターアレイと、
    を有し、
    上記第2のレフレクターアレイの上記2色性フィルタ面は上記第2のレフレクターアレイの最も外側の面であり、この2色性フィルタ面は、上記第1の波長帯域の光を上記導波路から透過させるとともに上記第2の波長帯域の光を上記第2のレフレクターアレイの上記少なくとも1つの部分反射面に向けて反射させるように形成されており、
    (iii) 上記第2の出力結合型回折光学素子は、上記第2の波長帯域の上記像担持光ビームを第2次元に更に拡大して上記第2の波長帯域の上記更に拡大された像担持光ビームを上記導波路から上記ビューアーアイボックスに向けるように配置されている、
    ことを特徴とする虚像伝達用結像光ガイド。
  2. 上記第1の入力結合型回折光学素子及び上記第2の入力結合型回折光学素子は、上記導波路の対向する面に形成されるとともに、上記対向する面に共通する法線に沿って整列されており、
    上記第1のレフレクターアレイ及び上記第2のレフレクターアレイは、上記導波路の異なる位置に配置されていることを特徴とする請求項1に記載の虚像伝達用結像光ガイド。
  3. 上記第1の出力結合型回折光学素子及び上記第2の出力結合型回折光学素子は、上記導波路の上記対向する面に形成されるとともに上記対向する面に共通する法線に沿って整列されていることを特徴とする請求項に記載の虚像伝達用結像光ガイド。
  4. 上記第1の入力結合型回折光学素子は、体積ホログラムであることを特徴とする請求項1に記載の虚像伝達用結像光ガイド。
  5. 上記第1の入力結合型回折光学素子は、回折格子であることを特徴とする請求項1に記載の虚像伝達用結像光ガイド。
  6. 上記導波路は、平行に向けられた対向する側面を有する平坦な導波路であることを特徴とする請求項1に記載の虚像伝達用結像光ガイド。
  7. 導波路を備えるとともに、第1の波長帯域の光を上記導波路に沿ってビューアーアイボックスに向ける第1のカラーチャンネルと、第2の波長帯域の光を上記導波路に沿って上記ビューアーアイボックスに向ける第2のカラーチャンネルとを有する虚像伝達用結像光ガイドであって、
    上記各カラーチャンネルは、
    (i) 像担持光ビームを上記導波路内に回折するように配置された入力結合型回折光学素子と、
    (ii) 少なくとも1つの部分反射面及び上記少なくとも1つの部分反射面と平行な2色性フィルタ面を有し、これらの面が上記入力結合型回折光学素子からの上記カラーチャンネルの上記各像担持光ビームを第1次元に拡大して上記拡大された像担持光ビームを出力結合型回折光学素子に向けるように配置された、レフレクターアレイと、
    を有し、
    上記2色性フィルタ面は上記レフレクターアレイの最も外側の面であり、上記2色性フィルタ面は、上記カラーチャネルの波長帯域外の光を上記導波路から透過させるとともに上記カラーチャネルの波長帯域の光を上記少なくとも1つの部分反射面に向けて反射させるように形成されており、
    (iii) 上記出力結合型回折光学素子は、上記カラーチャンネルの上記像担持光ビームを第2次元に更に拡大して上記カラーチャンネルの上記更に拡大された像担持光ビームを上記導波路から上記ビューアーアイボックスに向けるように配置されている、
    ことを特徴とする虚像伝達用結像光ガイド。
  8. 上記導波路は複数の導波路のうちの第1の導波路であって、第2の導波路が、上記第1の導波路に結合され、第3の波長帯域の光を上記第2の導波路中に伝達するための第3のカラーチャンネルを提供しており、
    上記第2の導波路は、
    (i) 上記第3の波長帯域の像担持光ビームを上記第2の導波路内に回折するように配置された第3の入力結合型回折光学素子と、
    (ii) 少なくとも1つの部分反射面及び上記少なくとも1つの部分反射面と平行な2色性フィルタ面を有し、これらの面が上記第3の入力結合型回折光学素子からの上記各像担持光ビームを拡大して上記拡大された像担持光ビームを第3の出力結合型回折光学素子に向けるように配置された、第3のレフレクターアレイと、
    を有し、
    (iii) 上記第3の出力結合型回折光学素子は、上記第3の波長帯域の上記像担持光ビームを更に拡大して上記第3の波長帯域の上記更に拡大された像担持光ビームを上記第2の導波路から上記ビューアーアイボックスに向けるように配置されている、
    ことを特徴とする請求項に記載の虚像伝達用結像光ガイド。
  9. 上記第3のレフレクターアレイの上記2色性フィルタ面は、上記第3の波長帯域の光を上記第3のレフレクターアレイの上記少なくとも1つの部分反射面に向けて反射し、その他の光を透過させるように形成されていることを特徴とする請求項8に記載の虚像伝達用
    結像光ガイド。
JP2018533876A 2016-01-06 2017-01-05 2色性レフレクタを有する2チャンネル結像光ガイド Active JP6720316B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662275549P 2016-01-06 2016-01-06
US62/275,549 2016-01-06
PCT/US2017/012311 WO2017120320A1 (en) 2016-01-06 2017-01-05 Two channel imaging light guide with dichroic reflectors

Publications (2)

Publication Number Publication Date
JP2019507371A JP2019507371A (ja) 2019-03-14
JP6720316B2 true JP6720316B2 (ja) 2020-07-08

Family

ID=59274485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018533876A Active JP6720316B2 (ja) 2016-01-06 2017-01-05 2色性レフレクタを有する2チャンネル結像光ガイド

Country Status (5)

Country Link
US (1) US10908360B2 (ja)
EP (1) EP3380878B1 (ja)
JP (1) JP6720316B2 (ja)
CN (1) CN108885310B (ja)
WO (1) WO2017120320A1 (ja)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0718706D0 (en) 2007-09-25 2007-11-07 Creative Physics Ltd Method and apparatus for reducing laser speckle
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
US9335604B2 (en) 2013-12-11 2016-05-10 Milan Momcilo Popovich Holographic waveguide display
WO2012136970A1 (en) 2011-04-07 2012-10-11 Milan Momcilo Popovich Laser despeckler based on angular diversity
WO2016020630A2 (en) 2014-08-08 2016-02-11 Milan Momcilo Popovich Waveguide laser illuminator incorporating a despeckler
US9933684B2 (en) 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
US10241330B2 (en) 2014-09-19 2019-03-26 Digilens, Inc. Method and apparatus for generating input images for holographic waveguide displays
EP3245444B1 (en) 2015-01-12 2021-09-08 DigiLens Inc. Environmentally isolated waveguide display
US9632226B2 (en) 2015-02-12 2017-04-25 Digilens Inc. Waveguide grating device
US10690916B2 (en) 2015-10-05 2020-06-23 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
WO2017120320A1 (en) * 2016-01-06 2017-07-13 Vuzix Corporation Two channel imaging light guide with dichroic reflectors
JP6895451B2 (ja) 2016-03-24 2021-06-30 ディジレンズ インコーポレイテッド 偏光選択ホログラフィー導波管デバイスを提供するための方法および装置
US10371896B2 (en) * 2016-12-22 2019-08-06 Magic Leap, Inc. Color separation in planar waveguides using dichroic filters
WO2018129398A1 (en) 2017-01-05 2018-07-12 Digilens, Inc. Wearable heads up displays
US11009662B2 (en) * 2017-09-05 2021-05-18 Facebook Technologies, Llc Manufacturing a graded index profile for waveguide display applications
US11372245B2 (en) * 2017-10-06 2022-06-28 Vuzix Corporation Multi-channel waveguide with reduced crosstalk having offset input gratings
DE102017130344A1 (de) 2017-12-18 2019-06-19 Carl Zeiss Ag Optisches System zum Übertragen eines Quellbildes
FI128028B (en) 2017-12-22 2019-08-15 Dispelix Oy Monikerrosaaltojohdenäyttöelementti
CN111566571B (zh) 2018-01-08 2022-05-13 迪吉伦斯公司 波导单元格中全息光栅高吞吐量记录的系统和方法
EP3740735A4 (en) 2018-01-16 2021-11-24 Pacific Light&Hologram, Inc. THREE DIMENSIONAL DISPLAYS USING ELECTROMAGNETIC FIELDS CALCULATIONS
CN112236708B (zh) * 2018-06-15 2023-07-14 大陆汽车科技有限公司 用于显示设备的光波导
GB2567037A (en) * 2018-07-24 2019-04-03 Wave Optics Ltd Device for augmented reality or virtual reality display
US11022799B2 (en) 2018-08-23 2021-06-01 Facebook Technologies, Llc Projector-combiner display with beam replication
US20200096771A1 (en) * 2018-09-24 2020-03-26 Apple Inc. Optical Systems with Interleaved Light Redirectors
JP7100567B2 (ja) 2018-11-14 2022-07-13 株式会社日立エルジーデータストレージ 導光板および画像表示装置
CN113678053A (zh) 2019-01-14 2021-11-19 伊奎蒂公司 大衍射光栅图案的数字写入
WO2020149956A1 (en) * 2019-01-14 2020-07-23 Digilens Inc. Holographic waveguide display with light control layer
JP2020112746A (ja) * 2019-01-16 2020-07-27 ソニー株式会社 光学装置、画像表示装置及び表示装置
US11302248B2 (en) 2019-01-29 2022-04-12 Osram Opto Semiconductors Gmbh U-led, u-led device, display and method for the same
US11610868B2 (en) 2019-01-29 2023-03-21 Osram Opto Semiconductors Gmbh μ-LED, μ-LED device, display and method for the same
US11156759B2 (en) 2019-01-29 2021-10-26 Osram Opto Semiconductors Gmbh μ-LED, μ-LED device, display and method for the same
US11271143B2 (en) 2019-01-29 2022-03-08 Osram Opto Semiconductors Gmbh μ-LED, μ-LED device, display and method for the same
DE102019102586A1 (de) * 2019-02-01 2020-08-06 tooz technologies GmbH Lichtleitanordnung, Abbildungsoptik, Head Mounted Display und Verfahren zum Verbessern der Abbildungsqualität einer Abbildungsoptik
JP2022520472A (ja) 2019-02-15 2022-03-30 ディジレンズ インコーポレイテッド 統合された格子を使用してホログラフィック導波管ディスプレイを提供するための方法および装置
EP3914942A4 (en) * 2019-02-22 2022-10-26 Vuzix Corporation PARALLEL PLATE WAVEGUIDES
KR102227050B1 (ko) 2019-02-28 2021-03-12 고려대학교 세종산학협력단 Ftir 기반 회절 광학 구조체 및 그를 갖는 웨이브 가이드 장치와 증강현실 디스플레이
US11538852B2 (en) 2019-04-23 2022-12-27 Osram Opto Semiconductors Gmbh μ-LED, μ-LED device, display and method for the same
JP2022535460A (ja) 2019-06-07 2022-08-08 ディジレンズ インコーポレイテッド 透過格子および反射格子を組み込んだ導波路、ならびに関連する製造方法
JP2022543571A (ja) 2019-07-29 2022-10-13 ディジレンズ インコーポレイテッド 画素化されたディスプレイの画像解像度および視野を乗算するための方法および装置
US11442222B2 (en) 2019-08-29 2022-09-13 Digilens Inc. Evacuated gratings and methods of manufacturing
GB2589575B (en) * 2019-12-02 2022-01-12 Envisics Ltd Pupil expander
WO2022060733A1 (en) * 2020-09-17 2022-03-24 Pacific Light & Hologram, Inc. Displaying three-dimensional objects
US11360430B2 (en) 2020-09-17 2022-06-14 Pacific Light & Hologram, Inc. Reconstructing objects with display zero order light suppression
US11886022B2 (en) 2020-11-06 2024-01-30 Samsung Electronics Co., Ltd. Beam expander and beam expansion method
RU2757071C1 (ru) * 2020-11-06 2021-10-11 Самсунг Электроникс Ко., Лтд. Устройство для расширения пучка оптического излучения для когерентной подсветки с набором световодов с дихроичными покрытиями
US11747621B2 (en) 2020-11-07 2023-09-05 Microsoft Technology Licensing, Llc Dichroic coatings to improve display uniformity and light security in an optical combiner
WO2023022909A1 (en) * 2021-08-20 2023-02-23 Google Llc Single waveguide red-green-blue (rgb) architecture using low index mediums
US20230133231A1 (en) * 2021-10-29 2023-05-04 Lightspace Technologies, SIA Optical element for expanding and uniforming beam of light
CN114637116B (zh) * 2022-03-15 2023-02-10 嘉兴驭光光电科技有限公司 衍射光波导以及具有其的显示设备
WO2023192650A1 (en) * 2022-03-31 2023-10-05 Vuzix Corporation Multiple wavelength range imaging light guide system
US11900842B1 (en) 2023-05-12 2024-02-13 Pacific Light & Hologram, Inc. Irregular devices

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL209571B1 (pl) 2000-06-05 2011-09-30 Lumus Ltd Urządzenie optyczne z materiałem o całkowitym wewnętrznym odbiciu światła
US7710655B2 (en) 2005-11-21 2010-05-04 Microvision, Inc. Display with image-guiding substrate
EP2153266B1 (en) 2007-06-04 2020-03-11 Magic Leap, Inc. A diffractive beam expander and a virtual display based on a diffractive beam expander
JP5151518B2 (ja) 2008-02-07 2013-02-27 ソニー株式会社 光学装置及び画像表示装置
EP2196729A1 (en) * 2008-12-12 2010-06-16 BAE Systems PLC Improvements in or relating to waveguides
US8649099B2 (en) * 2010-09-13 2014-02-11 Vuzix Corporation Prismatic multiple waveguide for near-eye display
GB201114149D0 (en) 2011-08-17 2011-10-05 Bae Systems Plc Projection display
US8548290B2 (en) * 2011-08-23 2013-10-01 Vuzix Corporation Dynamic apertured waveguide for near-eye display
EP2751611B1 (en) * 2011-08-29 2018-01-10 Vuzix Corporation Controllable waveguide for near-eye display applications
US20160155873A1 (en) * 2011-11-14 2016-06-02 Prism Solar Technologies Incorporated Flexible photovoltaic module
US9671566B2 (en) * 2012-06-11 2017-06-06 Magic Leap, Inc. Planar waveguide apparatus with diffraction element(s) and system employing same
JP6232863B2 (ja) 2013-09-06 2017-11-22 セイコーエプソン株式会社 光学デバイス及び画像表示装置
JP2015145973A (ja) 2014-02-03 2015-08-13 セイコーエプソン株式会社 虚像表示装置および光学素子
EP3968085A1 (en) * 2014-09-29 2022-03-16 Magic Leap, Inc. Architectures and methods for outputting different wavelength light out of wave guides
US10359632B2 (en) 2015-01-06 2019-07-23 Vuzix Corporation Head mounted imaging apparatus with optical coupling
WO2017120320A1 (en) * 2016-01-06 2017-07-13 Vuzix Corporation Two channel imaging light guide with dichroic reflectors
CN110300912B (zh) * 2017-02-15 2022-09-02 奇跃公司 包括伪影抑制的投影仪架构

Also Published As

Publication number Publication date
US10908360B2 (en) 2021-02-02
US20200278498A1 (en) 2020-09-03
EP3380878A4 (en) 2019-07-31
WO2017120320A1 (en) 2017-07-13
CN108885310A (zh) 2018-11-23
CN108885310B (zh) 2020-10-23
JP2019507371A (ja) 2019-03-14
EP3380878A1 (en) 2018-10-03
EP3380878B1 (en) 2023-03-08

Similar Documents

Publication Publication Date Title
JP6720316B2 (ja) 2色性レフレクタを有する2チャンネル結像光ガイド
JP6608065B2 (ja) ダイクロイックフィルタを埋め込んだ両面型のイメージング光ガイド
JP6714704B2 (ja) 両面型のイメージング光ガイド
JP6720315B2 (ja) 反射型転換アレイを有する結像光ガイド
EP3347761B1 (en) Imaging light guide with reflective turning array
US20190310482A1 (en) Light guide with beam separator for dual images
CN117706769A (zh) 具有圆筒状波导的光学系统
WO2023220133A1 (en) Dual index waveguide stack
US20240094456A1 (en) Image light guide with compound in-coupling diffractive optic
WO2023028093A1 (en) Double-sided waveguide
WO2024006638A1 (en) Multiplexing image light guide with split input and optical power

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180928

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191023

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200617

R150 Certificate of patent or registration of utility model

Ref document number: 6720316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250