JP6716275B2 - Fluid viscosity measuring device - Google Patents

Fluid viscosity measuring device Download PDF

Info

Publication number
JP6716275B2
JP6716275B2 JP2016023094A JP2016023094A JP6716275B2 JP 6716275 B2 JP6716275 B2 JP 6716275B2 JP 2016023094 A JP2016023094 A JP 2016023094A JP 2016023094 A JP2016023094 A JP 2016023094A JP 6716275 B2 JP6716275 B2 JP 6716275B2
Authority
JP
Japan
Prior art keywords
fluid
viscosity
resistance force
vibration
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016023094A
Other languages
Japanese (ja)
Other versions
JP2017142137A (en
Inventor
誠 羽山
誠 羽山
友祐 佐藤
友祐 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyodo Yushi Co Ltd
Sanwa Tekki Corp
Original Assignee
Kyodo Yushi Co Ltd
Sanwa Tekki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyodo Yushi Co Ltd, Sanwa Tekki Corp filed Critical Kyodo Yushi Co Ltd
Priority to JP2016023094A priority Critical patent/JP6716275B2/en
Publication of JP2017142137A publication Critical patent/JP2017142137A/en
Application granted granted Critical
Publication of JP6716275B2 publication Critical patent/JP6716275B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、流体の粘度を測定する装置に関し、特に流体の流動抵抗から粘性を算出するものである。 The present invention relates to an apparatus for measuring the viscosity of a fluid, and particularly to calculate the viscosity from the flow resistance of the fluid.

従来、流体の粘度を測定する計測機器には、単一円筒型回転粘度計(スピンドルタイプ)や円錐平板型回転粘度計(コーン・プレートタイプ)などがある。 Conventionally, as a measuring instrument for measuring the viscosity of a fluid, there are a single cylinder type rotary viscometer (spindle type) and a conical plate type rotary viscometer (cone/plate type).

出願人は、本件発明に関連する先行技術文献を特に見出せなかった。 The applicant could not find any prior art document related to the present invention.

上記従来の計測器においては、通常のニュートン流体がずり速度に対してせん断力が比例的に変化する特性に基づいて、比例定数から粘度を求めることができる。しかし、グリース等の非ニュートン流体は、ずり速度とせん断力の関係が非線形であるため、従来の計測器で正確な粘度を測定できない。特に、流体を作動油に用いる油圧制振装置を設計するに当たり、流体の粘度を把握する必要がある。
そこで本発明は、非ニュートン流体の粘性を精度高く測定して、油圧制振装置への流体の適合性を評価できる粘性流体の粘度測定装置を提供することを目的としている。
In the above-mentioned conventional measuring instrument, the viscosity can be obtained from the constant of proportionality based on the characteristic that the shear force changes in proportion to the shear rate of a normal Newtonian fluid. However, in a non-Newtonian fluid such as grease, since the relationship between the shear rate and the shear force is non-linear, it is not possible to accurately measure the viscosity with a conventional measuring instrument. In particular, it is necessary to grasp the viscosity of the fluid when designing a hydraulic damping device that uses the fluid as hydraulic oil.
Therefore, an object of the present invention is to provide a viscous fluid viscosity measuring device capable of accurately measuring the viscosity of a non-Newtonian fluid and evaluating the compatibility of the fluid with the hydraulic vibration damping device.

上記課題を解決するため、本発明においては、試験的に振動を加える加振機と、この振動に対して測定対象の流体の流動抵抗を発生する本体4と、この本体4の抵抗力を測定する荷重計3と、加振機の振動の速度を測定する速度計5と、荷重計3により測定された抵抗力と、速度計5により測定された速度と、流体の密度とから流体の粘度を演算する演算装置6とを具備させる。本体4は、荷重計3又は加振機のアクチュエータ2の一方に一端が連結され、内部に測定対象となる流体を充填するシリンダ9と、一端が荷重計3又は加振機のアクチュエータ2の他方に連結され、シリンダ9に出入り自在に挿入されたピストンロッド10と、このピストンロッド10に固定され、シリンダ9内を第1及び第2の圧力室14,15に区画し、シリンダ9内を軸線方向に移動可能なピストン11と、内部に流体を充填して第1及び第2の圧力室14,15に連通し、加振機により入力される振動に伴うピストン11の移動に従って流体に流動抵抗を付与するバイパス管13とを具備させる。
演算装置6は、以下の数式により流体の粘度を算出する。

Figure 0006716275

バイパス管13は孔径の異なる複数のものから測定対象の流体に応じて選択するようにシリンダ9に着脱可能に構成する。 In order to solve the above-mentioned problems, in the present invention, a vibrating machine for applying vibration on a trial basis, a main body 4 that generates flow resistance of a fluid to be measured against this vibration, and a resistance force of the main body 4 are measured. The viscosity of the fluid is calculated from the load meter 3, the speed meter 5 for measuring the speed of vibration of the vibrator, the resistance force measured by the load meter 3, the speed measured by the speed meter 5, and the density of the fluid. And a computing device 6 for computing. The main body 4 has a cylinder 9 having one end connected to one of the load meter 3 and the actuator 2 of the vibration exciter, and one end of which is filled with a fluid to be measured, and the other end of the load meter 3 or the actuator 2 of the vibration exciter. And a piston rod 10 that is inserted into and out of the cylinder 9 and is fixed to the piston rod 10 to divide the inside of the cylinder 9 into first and second pressure chambers 14 and 15 and Flowable in accordance with the movement of the piston 11 that is movable in the direction and the first and second pressure chambers 14 and 15 that are filled with fluid and that communicate with the first and second pressure chambers 14 and 15 due to the vibration input by the vibration exciter. And a bypass pipe 13 for providing
The arithmetic unit 6 calculates the viscosity of the fluid by the following mathematical formula.
Figure 0006716275

The bypass pipe 13 is attachable to and detachable from the cylinder 9 so as to select from a plurality of bypass pipes having different hole diameters according to the fluid to be measured.

本発明は、非ニュートン流体の粘性を正確に測定することができ、油圧制振装置への流体の適合性を的確に評価できるという効果を有する。 The present invention has an effect that the viscosity of a non-Newtonian fluid can be accurately measured and the suitability of the fluid for the hydraulic vibration damping device can be accurately evaluated.

本発明に係る粘度測定装置の概略的構成図である。It is a schematic block diagram of the viscosity measuring apparatus which concerns on this invention. 図1の粘度測定装置の本体の断面図である。It is sectional drawing of the main body of the viscosity measuring apparatus of FIG. バイパス管の拡大断面図である。It is an expanded sectional view of a bypass pipe. オリフィスユニットの拡大断面図である。It is an expanded sectional view of an orifice unit. 接続管の拡大断面図である。It is an expanded sectional view of a connecting pipe. 粘度測定装置の校正工程を示すフローチャートである。It is a flowchart which shows the calibration process of a viscosity measuring apparatus. 粘度の算出工程を示すフローチャートである。It is a flowchart which shows the calculation process of viscosity.

本発明の実施の一形態を図面を参照して説明する。
図1において、粘度測定装置は、前後方向に長尺の略矩形の枠体1と、枠体1の一端部に貫通する加振機のアクチュエータ2と、枠体1の他端内側に固定された荷重計3と、枠体1内において一端が加振機のアクチュエータ2に結合され、他端が荷重計3に結合された本体4と、アクチュエータ2の作動によって伸縮する本体4の相対速度を測定する速度計5と、荷重計3及び変位計5からのデータを受けて所定の演算処理を行う演算装置であるコンピュータ6とを具備する。
なお、速度計5を変位計に代え、アクチュエータ2と本体4の間の相対変位を測定してからコンピュータ6においてサンプリング周波数等を用いて微分処理を行うことで実質的に速度データを取得することとしてもよい。
An embodiment of the present invention will be described with reference to the drawings.
In FIG. 1, the viscosity measuring device is fixed to a substantially rectangular frame body 1 which is long in the front-rear direction, an actuator 2 of a vibrator that penetrates one end of the frame body 1, and the other end inside the frame body 1. The relative speed of the load meter 3 and the main body 4 of which one end is connected to the actuator 2 of the vibrator and the other end is connected to the load meter 3 in the frame 1 and the main body 4 which expands and contracts by the operation of the actuator 2 It is provided with a speedometer 5 for measurement and a computer 6 which is an arithmetic unit for receiving data from the load meter 3 and the displacement meter 5 and performing a predetermined arithmetic processing.
It should be noted that the speedometer 5 is replaced by a displacement meter, and the relative displacement between the actuator 2 and the main body 4 is measured, and then differential processing is performed in the computer 6 using a sampling frequency or the like to substantially obtain speed data. May be

本体4は、図2に示すように、荷重計3に接続部7を介して連結されるシリンダ9と、アクチュエータ2に接続部8を介して連結されシリンダ9に軸線方向へ出入り自在に挿入されたピストンロッド10と、ピストンロッド10上に固定されたピストン11と、ピストン11によってシリンダ9内に仕切られた圧力室14,15に連通するアキュムレータ12と、同じく圧力室14,15に連通する
バイパス管13とを備えている。
As shown in FIG. 2, the main body 4 is connected to the load meter 3 via a connecting portion 7, and a cylinder 9 is connected to the actuator 2 via a connecting portion 8 and is inserted into the cylinder 9 so as to freely move in and out in the axial direction. Piston rod 10, a piston 11 fixed on the piston rod 10, an accumulator 12 communicating with the pressure chambers 14 and 15 partitioned by the piston 11 in the cylinder 9, and a bypass also communicating with the pressure chambers 14 and 15. And a tube 13.

アキュムレータ12は、図2に示すようにシリンダ9及びバイパス管13の内部に充填される測定対象となる流体が温度変化などによる過不足を調整する。アキュムレータ12内には、加圧用のバネ12a及びピストン12bを備える。アキュムレータ12とシリンダ9との間には逆止弁16が介設されている。この逆止弁16は、ばねにより常時開いた状態にあるが、加振機の振動が加わり、圧力室14(15)の圧力が高まった時に閉じて流体をバイパス管13に流し、アキュムレータ12により加えられる圧力によりシリンダ9及びバイパス管13内の圧力が一定に保持される。 As shown in FIG. 2, the accumulator 12 adjusts the excess or deficiency of the fluid to be measured, which is filled in the cylinder 9 and the bypass pipe 13, due to a temperature change or the like. The accumulator 12 includes a pressurizing spring 12a and a piston 12b. A check valve 16 is provided between the accumulator 12 and the cylinder 9. This check valve 16 is always open by a spring, but when the pressure of the pressure chamber 14 (15) increases due to the vibration of the vibration exciter, it is closed to allow the fluid to flow into the bypass pipe 13, and the accumulator 12 The pressure applied keeps the pressure inside the cylinder 9 and the bypass pipe 13 constant.

バイパス管13は、図2に示すように、シリンダ9の両端蓋9a,9bに結合する一対の接続ブロック17の間に渡される。バイパス管13は、図3に示すように、左右両側の接続ブロック17にそれぞれ結合される両端のフランジ18と、左右両側のフランジ18の間に長手方向に並ぶ複数のオリフィスユニット19と、隣り合うオリフィスユニット19を接続する接続管20とで構成される。接続ブロック17、フランジ18及び端蓋9a,9bには、流体の流路がそれぞれ貫通して圧力室14,15に連通する。左右両側のフランジ18は互いにターンバックル21で締め込み結合されることにより、バイパス管13をシリンダ9に対して着脱可能である。オリフィスユニット19は、図4に示すように、略円柱状を成しその中心軸に流体の粘性により流動抵抗を発生させるオリフィス19aが貫通し、フランジ18の流路に連通する。接続管20は、隣り合うオリフィスユニット19,19をその突き合わせた両端部の周りにそれぞれ嵌合し接続する。接続管20の軸方向中央には、両側にオリフィスユニット19の端面が当接し、オリフィス19aを連通させる透孔20bを有するリング片20aを備える。オリフィスユニット19は、オリフィス19aの直径の異なる複数を予め準備し、試験条件に応じて交換する事で、振動機による入力速度と共に、測定対象の流体に適合する様々な条件で試験できる。 As shown in FIG. 2, the bypass pipe 13 is passed between a pair of connection blocks 17 that are connected to both end lids 9 a and 9 b of the cylinder 9. As shown in FIG. 3, the bypass pipe 13 is adjacent to the flanges 18 at both ends, which are respectively coupled to the connection blocks 17 on the left and right sides, and a plurality of orifice units 19 arranged in the longitudinal direction between the flanges 18 on the left and right sides. It is composed of a connecting pipe 20 for connecting the orifice unit 19. Fluid passages pass through the connection block 17, the flange 18, and the end lids 9a and 9b, respectively, and communicate with the pressure chambers 14 and 15. The bypass pipe 13 can be attached to and detached from the cylinder 9 by fastening the flanges 18 on both the left and right sides to each other by tightening them with a turnbuckle 21. As shown in FIG. 4, the orifice unit 19 has a substantially columnar shape, and an orifice 19 a that generates flow resistance due to the viscosity of the fluid penetrates the central axis of the orifice unit 19 and communicates with the flow path of the flange 18. The connecting pipe 20 fits and connects the adjacent orifice units 19 and 19 around their abutting ends. At the center of the connecting pipe 20 in the axial direction, a ring piece 20a having a through hole 20b for contacting the end faces of the orifice unit 19 on both sides and communicating the orifice 19a is provided. In the orifice unit 19, a plurality of orifices 19a having different diameters are prepared in advance and replaced according to the test conditions, so that it is possible to test under various conditions suitable for the fluid to be measured together with the input speed of the vibrator.

この粘度測定装置は、枠体1に本体4を加振機、荷重計3及び速度計5と共に組み付けられ、アクチュエータ2を介して加振機の振動が加わると、ピストンロッド10がシリンダ9内に押し込まれ、あるいはそれから引き出される。これに伴いシリンダ9内をピストン11が移動すると圧力室14,15の容積が変化して、その内部の流体が流動する。例えば図2においてピストン11が左行すると、流体がピストン11に圧力室14から押し出されてバイパス管13内を流通し、圧力室15へ移動する。このとき、バイパス管13のオリフィス19aにより流体の流れが絞られて流動抵抗が生じることにより振動に対する抵抗力が生じる。 In this viscosity measuring apparatus, the main body 4 is assembled to the frame body 1 together with the vibration exciter, the load meter 3 and the speedometer 5, and when vibration of the vibration exciter is applied via the actuator 2, the piston rod 10 is moved into the cylinder 9. Pushed in or pulled out. When the piston 11 moves in the cylinder 9 accordingly, the volumes of the pressure chambers 14 and 15 change, and the fluid inside the pressure chambers 14 and 15 flows. For example, when the piston 11 moves to the left in FIG. 2, the fluid is pushed out of the pressure chamber 14 by the piston 11, flows through the bypass pipe 13, and moves to the pressure chamber 15. At this time, the orifice 19a of the bypass pipe 13 restricts the flow of the fluid to generate flow resistance, and thus a resistance force against vibration is generated.

この粘度測定装置においては、振動に対する抵抗力を測定して流体の粘度を逆算するため、抵抗力の決定要素となる特性を予め取得しておく校正工程を行う。この校正工程においては、粘度・密度が既知である水・油などのニュートン流体を用いて、粘度測定装置が発生する抵抗力を測定し、粘度・密度と抵抗力との相関関係を求める。この校正工程は、下記表1及び表2の数式及び記号を用いて図6に示す手順に沿ってコンピュータ6の演算処理により行う。先ず、抵抗力の発生源であるバイパス管13の流路(オリフィス19a)の直径と、加振機の振動に対して速度計5により測定された入力速度とを変更可能な試験条件とし、これらと流体の粘度・密度とから、表1の式(6)に従ってバイパス管13内を流れる流体のレイノルズ(Re)数を演算する(ステップS1からS4)。Re数は、バイパス管13内の流体の流れが渦を伴う乱流の状態か層状の層流の状態かを確認する基準となる。Re数が2000を超える場合には、試験条件である加振機の振動を変えることにより入力速度を適宜変更して2000以下となる層流の状態にする。流体の粘度・密度、バイパス管13の流路直径及び入力速度から、表1の式(7),(8)に従って、バイパス管13内の流体について助走区間における層流の状態の抵抗力F1及び助走区間を通して十分に発達した流れである放物状の流速分布を伴う流れでの流体の粘性により生じる粘性抵抗力F2を算出する(ステップS6)。次に、バイパス管13の流路内で発生する抵抗力のうち、流路の断面積が拡大する位置で生じる流体の抵抗力である管内動圧抵抗力F31及び管出口動圧抵抗力F32を式(9),(10)に従って算出する(ステップS7)。管内動圧抵抗力には補正係数αを乗算して、評価用の管内動圧抵抗力F31とする(ステップS8,S9)。バイパス管13の流路内で発生するその他の抵抗力Fetc及び装置内の流体を密封する為に用いられているシール材の摺動抵抗Fsを補正値として加え、入力した振動に対する抵抗力Fev=F1+F2+F31+F32+Fs+Fetcを算出する(ステップS11)。抵抗力についての荷重計3による実測値Fallと算出値Fevとの誤差=(実測値−算出値)/実測値×100を求める(ステップS5,S12)。この誤差が10%を超える場合には、管内動圧抵抗力F31の補正係数α、その他の抵抗力Fetc、シール材の摺動抵抗Fsを見直して適宜変更する。誤差が10%以内である場合には、バイパス管13の流路直径・入力速度に対応する管内動圧抵抗力F31の補正係数、その他の抵抗力Fetc、シール材の摺動抵抗Fsを決定する。 In this viscosity measuring device, since the resistance force against vibration is measured and the viscosity of the fluid is calculated backward, a calibration step is performed in which the characteristic that is the determining factor of the resistance force is acquired in advance. In this calibration step, a Newtonian fluid such as water or oil having a known viscosity/density is used to measure the resistance force generated by the viscosity measuring device, and the correlation between the viscosity/density and the resistance force is obtained. This calibration process is performed by the arithmetic processing of the computer 6 according to the procedure shown in FIG. 6 using the mathematical expressions and symbols in Tables 1 and 2 below. First, the diameter of the flow path (orifice 19a) of the bypass pipe 13 that is the source of the resistance force and the input speed measured by the speedometer 5 with respect to the vibration of the vibrator are set as test conditions that can be changed. And the viscosity/density of the fluid, the Reynolds (Re) number of the fluid flowing in the bypass pipe 13 is calculated according to the equation (6) in Table 1 (steps S1 to S4). The Re number is a reference for confirming whether the fluid flow in the bypass pipe 13 is in a turbulent state accompanied by vortices or in a laminar laminar flow state. When the Re number exceeds 2000, the input speed is appropriately changed by changing the vibration of the vibration exciter, which is a test condition, to obtain a laminar flow state of 2000 or less. From the viscosity/density of the fluid, the flow path diameter of the bypass pipe 13, and the input velocity, the resistance force F1 of the fluid in the bypass pipe 13 in the laminar flow state in the run-up section according to the equations (7) and (8) in Table 1 and The viscous drag force F2 generated by the viscosity of the fluid in a flow with a parabolic flow velocity distribution, which is a fully developed flow, is calculated (step S6). Next, among the resistance forces generated in the flow path of the bypass pipe 13, the in-pipe dynamic pressure resistance force F31 and the pipe outlet dynamic pressure resistance force F32, which are the resistance forces of the fluid generated at the position where the cross-sectional area of the flow path increases. It is calculated according to equations (9) and (10) (step S7). The in-pipe dynamic pressure resistance force is multiplied by the correction coefficient α to obtain the in-pipe dynamic pressure resistance force F31 for evaluation (steps S8 and S9). The other resistance force Fetc generated in the flow path of the bypass pipe 13 and the sliding resistance Fs of the seal material used to seal the fluid in the device are added as correction values, and the resistance force Fev= to the input vibration F1+F2+F31+F32+Fs+Fetc is calculated (step S11). An error between the measured value Fall and the calculated value Fev of the resistance force by the load cell 3=(measured value−calculated value)/measured value×100 is obtained (steps S5 and S12). If this error exceeds 10%, the correction coefficient α of the in-pipe dynamic pressure resistance force F31, the other resistance force Fetc, and the sliding resistance Fs of the seal material are reviewed and appropriately changed. When the error is within 10%, the correction coefficient of the in-pipe dynamic pressure resistance force F31 corresponding to the flow path diameter/input speed of the bypass pipe 13, other resistance force Fetc, and the sliding resistance Fs of the seal material are determined. ..

粘度測定装置による流体の粘度の算出方法は、図7に示すような手順に沿ってコンピュータ6による演算処理により行う。先ず、バイパス管13の流路直径と流体の密度を測定条件とし、測定された抵抗力と加振機の入力速度、及び先の校正工程により測定条件に対応して決定した管内動圧抵抗力F31の補正係数α、その他の抵抗力Fetc、シール材の摺動抵抗Fsから、式(3)によりバイパス管13の流路内を流れる流体の管壁面から管中心軸までのせん断速度γを算出する(ステップS14からS17)。さらに、バイパス管13の流路直径、入力速度及び流体の密度から、式(7),(9),(10)により、層流の状態の流体の抵抗力F1、管内動圧抵抗力F31及び管出口動圧抵抗力F32を算出する。式(1)により、抵抗力Fallから、層流の状態の流体の抵抗力F1、管内動圧抵抗力F31、管出口動圧抵抗力F32、その他の抵抗力Fetc及びシール材の摺動抵抗Fsを減じ、粘性抵抗力F2を算出する(ステップS19)。この粘性抵抗力F2から、式(2)によりバイパス管13の流路内を流れる流体のせん断速度に対する流体の見かけ粘度を算出する(ステップS20)。 The calculation method of the viscosity of the fluid by the viscosity measuring device is performed by the arithmetic processing by the computer 6 according to the procedure as shown in FIG. First, the flow path diameter of the bypass pipe 13 and the fluid density are used as the measurement conditions, and the measured resistance force and the input speed of the vibration exciter, and the in-pipe dynamic pressure resistance force determined according to the measurement conditions by the previous calibration process. From the correction coefficient α of F31, the other resistance force Fetc, and the sliding resistance Fs of the seal material, the shear rate γ from the pipe wall surface of the fluid flowing in the flow passage of the bypass pipe 13 to the pipe central axis is calculated by the formula (3). (Steps S14 to S17). Furthermore, from the flow path diameter of the bypass pipe 13, the input velocity, and the density of the fluid, the resistance force F1 of the fluid in the laminar flow state, the dynamic pressure resistance force F31 in the pipe, and the equation (7), (9), and (10) The pipe outlet dynamic pressure resistance force F32 is calculated. According to the equation (1), from the resistance force Fall, the resistance force F1 of the fluid in the laminar flow state, the pipe dynamic pressure resistance force F31, the pipe outlet dynamic pressure resistance force F32, the other resistance force Fetc and the sliding resistance Fs of the sealing material. And the viscous resistance force F2 is calculated (step S19). From this viscous resistance force F2, the apparent viscosity of the fluid with respect to the shear rate of the fluid flowing in the flow path of the bypass pipe 13 is calculated by the equation (2) (step S20).

このように流路部で生じる流体の抵抗力は表1に示される式により求められ、加振機により確認された抵抗力から逆算する事で、ダンパの設計に必要な作動油の粘度を算出できる。
なお、確認次第では、流路の角部、断面積が縮小する部分及び流路長が短い流路接続部で生じる抵抗力については小さいものとして省略するか、補正係数等を用いて補正を行う。

Figure 0006716275

Figure 0006716275
Thus, the resistance force of the fluid generated in the flow path is calculated by the formula shown in Table 1, and the viscosity of the hydraulic oil necessary for the damper design is calculated by back-calculating from the resistance force confirmed by the vibration exciter. it can.
Depending on the confirmation, the resistance force generated at the corners of the flow path, the part where the cross-sectional area is reduced, and the flow path connection part where the flow path is short is omitted as a small value or is corrected using a correction coefficient or the like. ..
Figure 0006716275

Figure 0006716275

1 枠体
2 アクチュエータ
3 荷重計
4 本体
5 速度計
6 コンピュータ(演算装置)
7 接続部
8 接続部
9 シリンダ
9a 端蓋
9b 端蓋
10 ピストンロッド
11 ピストン
12 アキュムレータ
12a 加圧用バネ
12b 加圧用ピストン
13 バイパス管
14 圧力室
15 圧力室
16 逆止弁
17 接続ブロック
18 フランジ
19 オリフィスユニット
19a オリフィス
20 接続管
20b 透孔
20a リング片
21 ターンバックル
1 Frame 2 Actuator 3 Load meter 4 Main body 5 Speedometer 6 Computer (calculator)
7 connection part 8 connection part 9 cylinder 9a end cover 9b end cover 10 piston rod 11 piston 12 accumulator 12a pressurizing spring 12b pressurizing piston 13 bypass pipe 14 pressure chamber 15 pressure chamber 16 check valve 17 connection block 18 flange 19 orifice unit 19a Orifice 20 Connection pipe 20b Through hole 20a Ring piece 21 Turnbuckle

Claims (3)

試験的に振動を加える加振機と、この振動に対して測定対象の流体の流動抵抗を発生する本体と、この本体の抵抗力を測定する荷重計と、前記加振機の振動の速度を測定する速度計と、前記荷重計により測定された抵抗力と、前記速度計により測定された速度と、流体の密度とから流体の粘度を演算する演算装置とを具備し、
前記本体は、前記荷重計又は加振機のアクチュエータの一方に一端が連結され、内部に前記流体を充填するシリンダと、
一端が前記荷重計又は加振機のアクチュエータの他方に連結され、前記シリンダに出入り自在に挿入されるピストンロッドと、
このピストンロッドに固定され、前記シリンダ内を第1及び第2の圧力室に区画し、シリンダ内を軸線方向に移動可能なピストンと、
内部に流体を充填して第1及び第2の圧力室に連通し、前記加振機により入力される振動によるピストンの往復移動に伴って流動する流体に流動抵抗を付与するバイパス管とを具備し、
前記バイパス管内の流体の双方向の流動に対する流動抵抗による連続的なせん断に起因する粘性変化を測定可能であることを特徴とする粘性流体の粘度測定装置。
A shaker that applies vibration on a trial basis, a body that generates flow resistance of the fluid to be measured against this vibration, a load meter that measures the resistance force of this body, and the speed of vibration of the shaker A speedometer for measuring, a resistance force measured by the load meter, a speed measured by the speedometer, and a calculation device for calculating the viscosity of the fluid from the density of the fluid,
The main body has a cylinder, one end of which is connected to one of the load cell or the actuator of the vibration exciter, and the inside of which is filled with the fluid;
A piston rod, one end of which is connected to the other of the load cell or the actuator of the vibration exciter, and which is inserted into the cylinder so that the piston rod can freely move in and out,
A piston that is fixed to the piston rod, divides the inside of the cylinder into first and second pressure chambers, and is movable in the cylinder in the axial direction;
A bypass pipe that is filled with fluid and communicates with the first and second pressure chambers, and that imparts flow resistance to the fluid that flows as the piston reciprocates due to the vibration input by the vibration exciter. Then
A viscous fluid viscosity measuring device capable of measuring a viscosity change due to continuous shearing due to flow resistance against bidirectional flow of fluid in the bypass pipe .
前記演算装置は、流体の粘度を以下の数式により算出することを特徴とする請求項1に記載の粘性流体の粘度測定装置。
Figure 0006716275
但し、μ:粘度,F2:粘性抵抗力,F1:流体の抵抗力,A:有効受圧面積,V:ピストンの速度,L:流路長,a:流路断面積,k:バイパス管内の流路, n:バイパス管内の流路の個数とする。
The viscous fluid viscosity measuring apparatus according to claim 1, wherein the arithmetic unit calculates the viscosity of the fluid by the following mathematical formula.
Figure 0006716275
However, μ: viscosity, F 2 : viscous resistance force, F 1 : fluid resistance force, A p : effective pressure receiving area, V: piston speed, L: flow passage length, a: flow passage cross-sectional area , k: bypass Flow paths in the pipe, n: Number of flow paths in the bypass pipe .
前記バイパス管は、孔径の異なる複数のものから測定対象の流体に応じて選択して前記シリンダに着脱可能であることを特徴とする請求項1又は2に記載の粘性流体の粘度測定装置。 The viscosity measuring apparatus for viscous fluid according to claim 1 or 2, wherein the bypass pipe is detachably attached to the cylinder by selecting from a plurality of bypass pipes having different hole diameters according to a fluid to be measured.
JP2016023094A 2016-02-09 2016-02-09 Fluid viscosity measuring device Active JP6716275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016023094A JP6716275B2 (en) 2016-02-09 2016-02-09 Fluid viscosity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016023094A JP6716275B2 (en) 2016-02-09 2016-02-09 Fluid viscosity measuring device

Publications (2)

Publication Number Publication Date
JP2017142137A JP2017142137A (en) 2017-08-17
JP6716275B2 true JP6716275B2 (en) 2020-07-01

Family

ID=59628501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016023094A Active JP6716275B2 (en) 2016-02-09 2016-02-09 Fluid viscosity measuring device

Country Status (1)

Country Link
JP (1) JP6716275B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5217069A (en) * 1975-07-29 1977-02-08 Ici Ltd Instrument for measuring flowrate characteristics of fluid under high pressure
JPS5915836A (en) * 1982-07-19 1984-01-26 Keisebun:Kk Viscometer
JPS6196441A (en) * 1984-10-17 1986-05-15 Idemitsu Kosan Co Ltd Apparent viscosity measuring instrument
JPS62205814A (en) * 1986-03-06 1987-09-10 Toyota Motor Corp Suspension control method
JPH063248A (en) * 1992-06-18 1994-01-11 Japan Steel Works Ltd:The Method and device for measuring viscosity
JPH063246A (en) * 1992-06-18 1994-01-11 Japan Steel Works Ltd:The Method and device for measuring viscosity
US6898963B2 (en) * 2003-10-24 2005-05-31 Halliburton Energy Services, Inc. Apparatus and method for measuring viscosity
JP2010274446A (en) * 2009-05-26 2010-12-09 Panasonic Corp Inkjet head, inkjet device, and ejection method of ink

Also Published As

Publication number Publication date
JP2017142137A (en) 2017-08-17

Similar Documents

Publication Publication Date Title
Dai et al. Effect of surface roughness on liquid friction and transition characteristics in micro-and mini-channels
Talon et al. On the determination of a generalized Darcy equation for yield-stress fluid in porous media using a Lattice-Boltzmann TRT scheme
DE112004001119T5 (en) Viscosity-corrected flowmeter
JP2010521001A (en) Vibrating flow meter and method for determining the viscosity of a flowing material
DE102005014058A1 (en) Method for operating a mass flowmeter
US20160334316A1 (en) Slurry process meter
DE102015122225A1 (en) Method for Reynolds number correction of a flow measurement of a Coriolis flowmeter
Mazzanti et al. Pressure dependent wall slip of wood flour filled polymer melts
JP2004163378A (en) Calculation method of leak flow rate of leak tester
Johnston et al. Shear stress characteristics of microtextured surfaces in gap-controlled hydrodynamic lubrication
JP6716275B2 (en) Fluid viscosity measuring device
Afonso et al. Viscoelastic flows in mixing-separating cells
WO2021079833A1 (en) Gas flow rate estimation method, hole diameter estimation method, gas flow rate estimation device, and hole diameter estimation device
Kashaninejad et al. Analytical modeling of slip flow in parallel-plate microchannels
JP5727890B2 (en) Impulse tube clogging diagnosis possibility determination system
Pitakarnnop et al. Rarefied gas flow in pressure and vacuum measurements
Sáo et al. Obtaining flow curve for viscoplastic fluids through inclined open-channel apparatus
Hatcher et al. Comparing unsteady modeling approaches of surges caused by sudden air pocket compression
JP6759372B2 (en) Methods and equipment for obtaining rheological characteristic values of non-Newtonian fluids
Bandalusena et al. Creeping flow analysis of an integrated microfluidic device for rheometry
KR102200829B1 (en) Method for measuring fluid characteristic
Chhantyal et al. Estimating viscosity of non-Newtonian fluids using support vector regression method: Rheological parameters of drilling fluids using data fusion
Mackley et al. Capillary rheometry
KR101967820B1 (en) Micro flow device for differential pressure viscometer on a chip and its design method and method for measuring tensile viscosity using the same
JP2024018787A (en) Device, method and program to obtain rheology characteristic value of non-newtonian fluid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200610

R150 Certificate of patent or registration of utility model

Ref document number: 6716275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250