JP6713919B2 - Sintered body manufacturing method - Google Patents

Sintered body manufacturing method Download PDF

Info

Publication number
JP6713919B2
JP6713919B2 JP2016237374A JP2016237374A JP6713919B2 JP 6713919 B2 JP6713919 B2 JP 6713919B2 JP 2016237374 A JP2016237374 A JP 2016237374A JP 2016237374 A JP2016237374 A JP 2016237374A JP 6713919 B2 JP6713919 B2 JP 6713919B2
Authority
JP
Japan
Prior art keywords
ceramic molded
molded body
inclined surface
firing
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016237374A
Other languages
Japanese (ja)
Other versions
JP2018090462A (en
Inventor
佳也 ▲高▼尾
佳也 ▲高▼尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2016237374A priority Critical patent/JP6713919B2/en
Publication of JP2018090462A publication Critical patent/JP2018090462A/en
Application granted granted Critical
Publication of JP6713919B2 publication Critical patent/JP6713919B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spark Plugs (AREA)

Description

本発明は焼結体の製造方法に関し、特に焼成治具に吊り下げた状態でセラミック成形体を焼成する焼結体の製造方法に関するものである。 The present invention relates to a method for manufacturing a sintered body, and more particularly to a method for manufacturing a sintered body in which a ceramic compact is fired while being suspended from a firing jig.

スパークプラグは、アルミナ等のセラミックスで作られた絶縁体が主体金具と電極とを絶縁する。絶縁体は、長尺状のセラミック成形体を焼成して得られる焼結体である。特許文献1には、漏斗状の受け口を備える有底筒状の焼成治具を用いて、セラミック成形体を焼成する方法が開示されている。特許文献1に開示される技術では、テーパ状に拡径するセラミック成形体の端部を受け口で支持した後、受け口が蓋で覆われ、焼成治具が密閉される。セラミック成形体は、炉内に配置された焼成治具に吊り下げられた状態で焼成される。これにより、セラミック成形体を置いて焼成する場合に生じる焼結体の下部の座屈を防止できる。 In the spark plug, an insulator made of ceramics such as alumina insulates the metal shell from the electrode. The insulator is a sintered body obtained by firing a long ceramic molded body. Patent Document 1 discloses a method of firing a ceramic molded body by using a bottomed cylindrical firing jig having a funnel-shaped receiving port. In the technique disclosed in Patent Document 1, after the end of the ceramic molded body that expands in a tapered shape is supported by the receiving port, the receiving port is covered with a lid and the firing jig is sealed. The ceramic molded body is fired while being suspended from a firing jig arranged in the furnace. Accordingly, it is possible to prevent buckling of the lower portion of the sintered body that occurs when the ceramic molded body is placed and fired.

特開平3−88279号公報JP-A-3-88279

しかしながら上記従来の技術では、焼成治具が密閉されているので、炉からセラミック成形体への伝熱は、焼成治具の受け口からセラミック成形体の端部への熱伝導、及び、焼成治具からセラミック成形体への熱放射による。セラミック成形体の端部とそれ以外の部分との間に温度差が生じ易いので、焼成時の収縮率にばらつきが生じ易く、焼結体が変形し易いという問題点がある。 However, in the above-mentioned conventional technique, since the firing jig is sealed, the heat transfer from the furnace to the ceramic molded body is conducted from the receptacle of the firing jig to the end of the ceramic molded body and the firing jig. From the heat radiation to the ceramic compact. Since a temperature difference is likely to occur between the end portion of the ceramic molded body and the other portion, there is a problem that the shrinkage rate during firing is likely to vary and the sintered body is easily deformed.

本発明は上述した問題点を解決するためになされたものであり、焼結時の変形を抑制できる焼結体の製造方法を提供することを目的としている。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a method for manufacturing a sintered body that can suppress deformation during sintering.

この目的を達成するために本発明の焼結体の製造方法は、成形工程により、長尺状の第1部よりも大径の第2部を備えるセラミック成形体が成形される。焼成工程により、焼成治具の鉛直方向に第1部が吊り下げられた状態で、焼成治具が炉内に配置されセラミック成形体が焼成される。焼成治具は、下端側が閉塞した有底筒状の壁部と、上端面が下端側に向かうにつれて窄む傾斜面であり連続的または断続的に環状に形成された傾斜面を有し壁部の内側に固定される支持部と、を備えている。焼成治具は、セラミック成形体の第2部の外周縁を傾斜面に支持する。焼成治具は、焼成工程において第2部の外周縁が傾斜面に接触した状態で、セラミック成形体、壁部および支持部により囲まれる第1空間と、第1空間の外側の炉内の第2空間と、を連通する穴部を備えている。 In order to achieve this object, in the method for producing a sintered body of the present invention, a ceramic molded body including a second portion having a diameter larger than that of the elongated first portion is molded by a molding step. By the firing step, the firing jig is placed in the furnace and the ceramic molded body is fired with the first portion suspended in the vertical direction of the firing jig. The firing jig has a bottomed cylindrical wall portion whose lower end side is closed and an inclined surface whose upper end surface narrows toward the lower end side and which is formed continuously or intermittently in an annular shape. And a support portion fixed to the inside of the. The firing jig supports the outer peripheral edge of the second portion of the ceramic molded body on the inclined surface. In the firing process, the firing jig has a first space surrounded by the ceramic molded body, the wall portion and the support portion in a state where the outer peripheral edge of the second portion is in contact with the inclined surface, and a first space inside the furnace outside the first space. It is provided with a hole that connects the two spaces.

請求項1記載の焼結体の製造方法によれば、穴部は、焼成治具およびセラミック成形体が作る第1空間と焼成治具の外側の炉内の第2空間とを連通する。炉からセラミック成形体への伝熱は、焼成治具の傾斜面からセラミック成形体の第2部の外周縁への熱伝導、及び、焼成治具からセラミック成形体への熱放射(輻射)に加え、穴部で連通する第1空間および第2空間の対流熱伝導によるので、焼成治具に吊り下げられたセラミック成形体に温度差を生じ難くできる。従って、焼成時のセラミック成形体の収縮率にばらつきを生じ難くすることができ、焼結体の焼成時の変形を抑制できる効果がある。 According to the method for producing a sintered body of the first aspect, the hole communicates the first space formed by the firing jig and the ceramic molded body with the second space inside the furnace outside the firing jig . The heat transfer from the furnace to the ceramic molded body is due to heat conduction from the inclined surface of the firing jig to the outer peripheral edge of the second part of the ceramic molded body and heat radiation (radiation) from the firing jig to the ceramic molded body. In addition, due to the convective heat conduction in the first space and the second space communicating with each other through the holes, it is possible to prevent a temperature difference from occurring in the ceramic molded body suspended by the firing jig. Therefore, it is possible to prevent variation in shrinkage rate of the ceramic molded body during firing and to suppress deformation of the sintered body during firing.

請求項2記載の焼結体の製造方法によれば、穴部は壁部に設けられているので、請求項1の効果に加え、対流熱伝導によりセラミック成形体の第1部に伝熱し易くできる効果がある。 According to the method for producing a sintered body of claim 2, since the hole is provided in the wall, in addition to the effect of claim 1, heat can be easily transferred to the first part of the ceramic molded body by convection heat conduction. There is an effect that can be done.

請求項3記載の焼結体の製造方法によれば、穴部は支持部に設けられているので、請求項1又は2の効果に加え、対流熱伝導によりセラミック成形体の第1部に伝熱し易くできる効果がある。 According to the method for producing a sintered body according to claim 3, since the hole is provided in the supporting portion, in addition to the effect of claim 1 or 2, the convection heat conduction is applied to the first portion of the ceramic molded body. There is an effect that it can be easily heated.

請求項4記載の焼結体の製造方法によれば、傾斜面は連続的に設けられているので、セラミック成形体の第1部が吊り下げられると、第2部の外周縁の全周が傾斜面に接触する。その結果、請求項1から3のいずれかの効果に加え、セラミック成形体を安定に支持できる効果がある。 According to the method for producing a sintered body according to claim 4, since the inclined surface is continuously provided, when the first part of the ceramic molded body is suspended, the entire circumference of the outer peripheral edge of the second part is reduced. Contact the inclined surface. As a result, in addition to the effect according to any one of claims 1 to 3, there is an effect that the ceramic molded body can be stably supported.

請求項5記載の焼結体の製造方法によれば、傾斜面は断続的に設けられている。穴部は、断続的な傾斜面に支持されたセラミック成形体と支持部との隙間である。よって、請求項1から3のいずれかの効果に加え、対流熱伝導によりセラミック成形体の第2部に伝熱し易くできる効果がある。 According to the method for producing a sintered body of claim 5, the inclined surface is provided intermittently. The hole portion is a gap between the ceramic molded body supported by the intermittent inclined surface and the support portion. Therefore, in addition to the effect of any one of claims 1 to 3, there is an effect that heat can be easily transferred to the second portion of the ceramic molded body by convective heat conduction.

請求項6記載の焼結体の製造方法によれば、セラミック成形体は、第2部よりも外径が小さく、第2部を挟んで第1部の反対側に設けられた第3部を備えている。第3部は第1部よりも外径が小さいので、第1部が吊り下げられたセラミック成形体の重心の位置を上がり難くできる。よって、請求項1から5のいずれかの効果に加え、セラミック成形体を安定に支持できる効果がある。 According to the method for producing a sintered body according to claim 6, the ceramic molded body has an outer diameter smaller than that of the second portion, and includes a third portion provided on the opposite side of the first portion with the second portion interposed therebetween. I have it. Since the outer diameter of the third part is smaller than that of the first part, it is difficult to raise the position of the center of gravity of the ceramic molded body on which the first part is suspended. Therefore, in addition to the effect according to any one of claims 1 to 5, there is an effect that the ceramic molded body can be stably supported.

請求項7記載の焼結体の製造方法によれば、セラミック成形体は、第2部よりも外径が小さく、第2部を挟んで第1部の反対側に設けられた第3部を備えている。第3部は第1部よりも外径が大きいので、第1部が吊り下げられることにより、第3部が吊り下げられる場合に比べて、鉛直方向に対する傾斜面の角度を設定できる範囲を大きくできる。よって、請求項1から5のいずれかの効果に加え、傾斜面の設計の自由度を大きくできる効果がある。 According to the method for manufacturing a sintered body according to claim 7, the ceramic molded body has an outer diameter smaller than that of the second portion, and includes a third portion provided on the opposite side of the first portion with the second portion interposed therebetween. I have it. Since the outer diameter of the third part is larger than that of the first part, the range in which the angle of the inclined surface with respect to the vertical direction can be set is large by suspending the first part, as compared with the case where the third part is suspended. it can. Therefore, in addition to the effect of any one of claims 1 to 5, there is an effect that the degree of freedom in designing the inclined surface can be increased.

請求項8記載の焼結体の製造方法によれば、傾斜面は上に凸の湾曲面である。セラミック成形体は焼成によって第2部の外周縁の外径が小さくなるので、焼成時の収縮に伴い、傾斜面における第2部の外周縁の接触位置が下降する。セラミック成形体が下降するときには、セラミック成形体の軸が鉛直方向に対して傾いて焼結体が変形する可能性があるが、傾斜面が上に凸の湾曲面であると、傾斜面が下に凸の湾曲面や平面の場合に比べて、焼成時の収縮に伴う第2部の下降量を少なくできる。その結果、軸が傾いた状態に焼結体が変形する可能性を小さくできるので、請求項1から7のいずれかの効果に加え、軸が傾いた不良の焼結体の発生を抑制できる効果がある。 According to the method for producing a sintered body of claim 8, the inclined surface is a curved surface that is convex upward. Since the outer diameter of the outer peripheral edge of the second portion of the ceramic molded body is reduced by firing, the contact position of the outer peripheral edge of the second portion on the inclined surface is lowered due to shrinkage during firing. When the ceramic molded body descends, the axis of the ceramic molded body may be inclined with respect to the vertical direction and the sintered body may be deformed. However, if the inclined surface is a curved surface that is convex upward, the inclined surface is lower. It is possible to reduce the amount of lowering of the second portion due to shrinkage during firing, as compared with the case of a convex curved surface or a flat surface. As a result, it is possible to reduce the possibility that the sintered body is deformed in a state where the shaft is tilted. Therefore, in addition to the effect according to any one of claims 1 to 7, it is possible to suppress the generation of a defective sintered body where the shaft is tilted. There is.

本発明の一実施の形態におけるスパークプラグの片側断面図である。It is one side sectional drawing of the spark plug in one embodiment of the present invention. 第1実施の形態における焼成治具の平面図である。It is a top view of the baking jig in a 1st embodiment. 図2のIII−III線における焼成治具の断面図である。FIG. 3 is a sectional view of the firing jig taken along the line III-III in FIG. 2. 炉内に配置された焼成治具およびセラミック成形体の断面図である。FIG. 3 is a cross-sectional view of a firing jig and a ceramic molded body arranged in a furnace. 図4のVで示す部分を拡大した焼成治具およびセラミック成形体の断面図である。It is sectional drawing of the firing jig and the ceramic molded body which expanded the part shown by V of FIG. 図5のVI−VI線における焼成治具およびセラミック成形体の断面図である。FIG. 6 is a cross-sectional view of a firing jig and a ceramic molded body taken along line VI-VI in FIG. 5. 第2実施の形態における焼成治具およびセラミック成形体の断面図である。It is sectional drawing of the baking jig and ceramic molded object in 2nd Embodiment. 図7のVIII−VIII線における焼成治具およびセラミック成形体の断面図である。FIG. 8 is a sectional view of a firing jig and a ceramic molded body taken along line VIII-VIII of FIG. 7. 第3実施の形態における焼成治具およびセラミック成形体の断面図である。It is sectional drawing of the baking jig and ceramic molded object in 3rd Embodiment.

以下、本発明の好ましい実施形態について添付図面を参照して説明する。図1は本発明の一実施の形態におけるスパークプラグ10の片側断面図である。図1では、紙面下側をスパークプラグ10の先端側、紙面上側をスパークプラグ10の後端側という。スパークプラグ10は絶縁体11を備えている。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a one-sided sectional view of a spark plug 10 according to an embodiment of the present invention. In FIG. 1, the lower side of the paper is referred to as the front end side of the spark plug 10, and the upper side of the paper is referred to as the rear end side of the spark plug 10. The spark plug 10 includes an insulator 11.

絶縁体11は、機械的特性や高温下の絶縁性に優れるアルミナ等のセラミックスにより形成された筒状の部材である。絶縁体11は、軸線Oに沿って貫通する軸孔12が形成されている。絶縁体11は、後端側から先端側へと軸線Oに沿って胴部13、大径部14、中胴部15及び脚長部16が連接されている。 The insulator 11 is a tubular member formed of ceramics such as alumina having excellent mechanical properties and insulating properties at high temperatures. The insulator 11 is formed with a shaft hole 12 penetrating along the axis O. The insulator 11 has a body portion 13, a large-diameter portion 14, a middle body portion 15 and a long leg portion 16 which are connected from the rear end side to the front end side along the axis O.

胴部13は、絶縁体11の後端の円筒状の部分である。大径部14は、胴部13よりも大径の外周縁をもつ円環状の部分である。中胴部15は、胴部13及び大径部14よりも小径の円筒状の部分である。脚長部16は、中胴部15よりも小径の円筒状の部分である。絶縁体11は、中胴部15と脚長部16との境界に、先端側へ向かうにつれて外周が縮径する縮径部17が形成されている。中胴部15の先端および脚長部16の内側の部分の軸孔12に中心電極20が配置されている。 The body portion 13 is a cylindrical portion at the rear end of the insulator 11. The large diameter portion 14 is an annular portion having an outer peripheral edge having a diameter larger than that of the body portion 13. The middle body portion 15 is a cylindrical portion having a smaller diameter than the body portion 13 and the large diameter portion 14. The leg long portion 16 is a cylindrical portion having a diameter smaller than that of the middle trunk portion 15. The insulator 11 has a reduced diameter portion 17 formed at the boundary between the middle body portion 15 and the long leg portion 16 so that the outer diameter is reduced toward the distal end side. The center electrode 20 is arranged in the shaft hole 12 at the tip of the middle body portion 15 and the inner portion of the long leg portion 16.

中心電極20は、軸線Oに沿って延びる棒状の部材であり、銅または銅を主成分とする芯材がニッケル又はニッケル基合金で覆われている。中心電極20は絶縁体11に保持され、先端が軸孔12から露出する。 The center electrode 20 is a rod-shaped member extending along the axis O, and copper or a core material containing copper as a main component is covered with nickel or a nickel-base alloy. The center electrode 20 is held by the insulator 11 and its tip is exposed from the shaft hole 12.

端子金具21は、高圧ケーブル(図示せず)が接続される棒状の部材であり、導電性を有する金属材料(例えば低炭素鋼等)によって形成されている。端子金具21は、先端側が軸孔12に圧入された状態で、絶縁体11の後端に固定されている。端子金具21は、軸孔12の内部で中心電極20と電気的に接続されている。絶縁体11は、端子金具21と軸線O方向に間隔をあけて、外周の先端側に主体金具30が固定されている。 The terminal fitting 21 is a rod-shaped member to which a high-voltage cable (not shown) is connected, and is made of a conductive metal material (for example, low carbon steel). The terminal fitting 21 is fixed to the rear end of the insulator 11 in a state where the front end side is press-fitted into the shaft hole 12. The terminal fitting 21 is electrically connected to the center electrode 20 inside the shaft hole 12. The metal shell 30 of the insulator 11 is fixed to the distal end side of the outer periphery of the insulator 11 with a space in the axis O direction from the metal terminal 21.

主体金具30は、導電性を有する金属材料(例えば低炭素鋼等)によって形成される略円筒状の部材である。主体金具30は、先端側の外周面にねじ部31が形成されている。エンジン(図示せず)のねじ穴にねじ部31が結合して主体金具30がエンジンに取り付けられる。主体金具30は、ねじ部31の径方向の内側の内周に、径方向の内側へ向かって突出する棚部32が形成されている。 The metal shell 30 is a substantially cylindrical member formed of a conductive metal material (for example, low carbon steel or the like). The metallic shell 30 has a threaded portion 31 formed on the outer peripheral surface on the front end side. The metal shell 30 is attached to the engine by connecting the screw portion 31 to the screw hole of the engine (not shown). The metal shell 30 has a shelf portion 32 formed on the inner circumference of the screw portion 31 in the radial direction and protruding inward in the radial direction.

主体金具30は、ねじ部31よりも後端側に、径方向の外側へ鍔状に張り出す円環状の座部33が設けられている。座部33とねじ部31との間に、エンジンのねじ穴からの燃焼ガスの漏洩を防止するガスケット36が配置される。主体金具30は、座部33よりも後端側にレンチ等の工具が係合する工具係合部34が設けられている。工具係合部34に係合した工具によってねじ部31が回される。 The metallic shell 30 is provided on the rear end side of the screw portion 31 with a ring-shaped seat portion 33 that projects outward in the radial direction in a flange shape. A gasket 36 that prevents leakage of combustion gas from a screw hole of the engine is arranged between the seat portion 33 and the screw portion 31. The metal shell 30 is provided with a tool engagement portion 34, which is engaged with a tool such as a wrench, on the rear end side of the seat portion 33. The screw part 31 is rotated by the tool engaged with the tool engagement part 34.

主体金具30は、工具係合部34の後端に被係合部35が連接されている。被係合部35は、主体金具30の後端縁が内側に折り曲げられた部分である。絶縁体11は、胴部13の外周に軸線O方向に間隔をあけて2つのリング部材37が配置されている。リング部材37は主体金具30の工具係合部34の径方向の内側に配置され、リング部材37、胴部13及び工具係合部34に囲まれた空間にタルク等の粉末38が充填されている。被係合部35は、リング部材37及び粉末38を介して絶縁体11の大径部14の後端部と係合する。 The metal shell 30 has an engaged portion 35 connected to the rear end of the tool engaging portion 34. The engaged portion 35 is a portion in which the rear end edge of the metal shell 30 is bent inward. In the insulator 11, two ring members 37 are arranged on the outer periphery of the body 13 at intervals in the axis O direction. The ring member 37 is arranged inside the tool engaging portion 34 of the metal shell 30 in the radial direction, and the space surrounded by the ring member 37, the body portion 13 and the tool engaging portion 34 is filled with powder 38 such as talc. There is. The engaged portion 35 engages with the rear end portion of the large diameter portion 14 of the insulator 11 via the ring member 37 and the powder 38.

主体金具30は、絶縁体11の縮径部17に棚部32が係合した状態で、被係合部35が内側に折り曲げられ、被係合部35が絶縁体11の大径部14と係合する。被係合部35の屈曲により、主体金具30が絶縁体11に加締め固定される。絶縁体11は、軸線O方向の両側から被係合部35及び棚部32に大径部14及び縮径部17が挟まれて、主体金具30に保持される。 In the metallic shell 30, the engaged portion 35 is bent inward with the reduced diameter portion 17 of the insulator 11 engaged with the shelf portion 32, and the engaged portion 35 is connected to the large diameter portion 14 of the insulator 11. Engage. Due to the bending of the engaged portion 35, the metal shell 30 is crimped and fixed to the insulator 11. The insulator 11 is held by the metal shell 30 with the large-diameter portion 14 and the reduced-diameter portion 17 sandwiched by the engaged portion 35 and the shelf portion 32 from both sides in the axis O direction.

接地電極39は、主体金具30の先端に接合される金属製(例えばニッケル基合金製)の部材である。本実施の形態では、接地電極39は棒状に形成されており、先端側が屈曲し中心電極20と対向する。接地電極39は、中心電極20との間に火花ギャップを形成する。 The ground electrode 39 is a metal member (for example, a nickel-based alloy) that is joined to the tip of the metal shell 30. In the present embodiment, the ground electrode 39 is formed in a rod shape, and the tip side is bent and faces the center electrode 20. The ground electrode 39 forms a spark gap with the center electrode 20.

スパークプラグ10は、例えば、以下のような方法によって製造される。絶縁体11は、原料粉末から成形された成形体を焼成することにより作成される。まず、主成分であるアルミナと、焼結助剤として機能するSi,Mg,Ca,Ba等の元素の化合物と、を配合して原料粉末を準備する。ポリビニルアルコール等の親水性結合剤と水等の溶媒とを原料粉末に加え、混合してスラリーを調製する。スラリーをスプレードライ法等により乾燥し、造粒物を調製する。成形工程において、得られた造粒物を加圧成形または射出成形することによりセラミック成形体60(後述する)を得る。焼成工程において、セラミック成形体60を焼成して絶縁体11が得られる。 The spark plug 10 is manufactured by the following method, for example. The insulator 11 is created by firing a compact formed from raw material powder. First, a raw material powder is prepared by mixing alumina as a main component and a compound of an element such as Si, Mg, Ca, or Ba that functions as a sintering aid. A hydrophilic binder such as polyvinyl alcohol and a solvent such as water are added to the raw material powder and mixed to prepare a slurry. The slurry is dried by a spray drying method or the like to prepare a granulated product. In the molding step, the obtained granulated product is pressure-molded or injection-molded to obtain a ceramic molded body 60 (described later). In the firing step, the ceramic molded body 60 is fired to obtain the insulator 11.

次いで、中心電極20を絶縁体11の軸孔12に挿入する。中心電極20は先端が軸孔12から外部に露出するように配置される。軸孔12に端子金具21を挿入し、端子金具21と中心電極20との導通を確保した後、予め接地電極39が接合された主体金具30を絶縁体11の外周に組み付ける。接地電極39が中心電極20と対向するように接地電極39を屈曲して、スパークプラグ10を得る。 Next, the center electrode 20 is inserted into the shaft hole 12 of the insulator 11. The center electrode 20 is arranged so that its tip is exposed from the shaft hole 12 to the outside. After the terminal fitting 21 is inserted into the shaft hole 12 to secure the continuity between the terminal fitting 21 and the center electrode 20, the metal shell 30 to which the ground electrode 39 is joined in advance is attached to the outer circumference of the insulator 11. The spark plug 10 is obtained by bending the ground electrode 39 so that the ground electrode 39 faces the center electrode 20.

図2から図6を参照して、絶縁体11(焼結体)の製造方法について説明する。図2は第1実施の形態における焼成治具40の平面図であり、図3は図2のIII−III線における焼成治具40の断面図である。焼成治具40は、アルミナ、マグネシア、スピネル等の耐火材により形成されている。 A method for manufacturing the insulator 11 (sintered body) will be described with reference to FIGS. 2 to 6. 2 is a plan view of the firing jig 40 in the first embodiment, and FIG. 3 is a sectional view of the firing jig 40 taken along the line III-III in FIG. The firing jig 40 is made of a refractory material such as alumina, magnesia, and spinel.

図2及び図3に示すように焼成治具40は、底板41と、底板41に載置された筒状の壁部42と、壁部42に載置された板状の支持部43と、を備えている。底板41に壁部42が載置されることにより、壁部42は下端側が閉塞した有底筒状に形成される。また、壁部42に支持部43が載置されることにより、支持部43は壁部42の内側に固定される。支持部43は、平面視が円形の開口44が形成されている。開口44は、支持部43を板厚方向(図3上下方向)に貫通する、
支持部43は、開口44から内側へ向けて突出し鉛直方向へ直線状に延びる複数(本実施の形態では4つ)の突条45を備えている。複数の突条45により、開口44の上端側から下端側へ向かうにつれて窄む環状の傾斜面46が、支持部43に断続的に形成される。本実施の形態では、傾斜面46は鉛直方向に対して直線状に傾斜している。
As shown in FIGS. 2 and 3, the firing jig 40 includes a bottom plate 41, a cylindrical wall portion 42 mounted on the bottom plate 41, and a plate-shaped support portion 43 mounted on the wall portion 42. Equipped with. By mounting the wall portion 42 on the bottom plate 41, the wall portion 42 is formed in a bottomed tubular shape having a closed lower end. Further, by mounting the support portion 43 on the wall portion 42, the support portion 43 is fixed inside the wall portion 42. The support portion 43 has an opening 44 that is circular in a plan view. The opening 44 penetrates the support portion 43 in the plate thickness direction (vertical direction in FIG. 3 ),
The support portion 43 includes a plurality of (four in the present embodiment) ridges 45 that protrude inward from the opening 44 and extend linearly in the vertical direction. An annular inclined surface 46 that narrows from the upper end side of the opening 44 toward the lower end side is intermittently formed in the support portion 43 by the plurality of protrusions 45. In this embodiment, the inclined surface 46 is linearly inclined with respect to the vertical direction.

支持部43は板厚方向(図3上下方向)に貫通する穴部47が形成されている。壁部42は板厚方向(図3紙面垂直方向)に貫通する穴部48が形成されている。穴部47の大きさや数は、支持部43の機械的強度を維持できる範囲内で適宜設定される。同様に穴部48の大きさや数は、壁部42の機械的強度を維持できる範囲内で適宜設定される。穴部47,48の形状は任意に設定できる。 The support portion 43 is formed with a hole portion 47 penetrating in the plate thickness direction (vertical direction in FIG. 3). The wall portion 42 is formed with a hole portion 48 penetrating in the plate thickness direction (direction perpendicular to the plane of FIG. 3). The size and number of the holes 47 are appropriately set within a range in which the mechanical strength of the support 43 can be maintained. Similarly, the size and number of the holes 48 are appropriately set within a range in which the mechanical strength of the wall 42 can be maintained. The shapes of the holes 47 and 48 can be set arbitrarily.

本実施の形態では便宜のため、断続的に形成された環状の傾斜面46が支持部43に1つ設けられる場合、即ち支持部43にセラミック成形体60が1つ支持される場合について説明するが、必ずしもこれに限られるものではない。支持部43の強度を確保できる範囲内で、支持部43に傾斜面46を複数形成すること、即ち支持部43にセラミック成形体60が複数支持されるようにすることは当然可能である。 In the present embodiment, for the sake of convenience, a case where one intermittently formed annular inclined surface 46 is provided on the support portion 43, that is, a case where one ceramic molded body 60 is supported on the support portion 43 will be described. However, it is not necessarily limited to this. It is naturally possible to form a plurality of inclined surfaces 46 on the support portion 43, that is, to support a plurality of ceramic molded bodies 60 on the support portion 43, within a range in which the strength of the support portion 43 can be secured.

図4は炉50の内部に配置された焼成治具40及びセラミック成形体60の断面図であり、図5は図4のVで示す部分を拡大した焼成治具40及びセラミック成形体60の断面図であり、図6は図5のVI−VI線における焼成治具40及びセラミック成形体60の断面図である。図5において、焼成前のセラミック成形体60は実線で図示され、セラミック成形体60を焼成して得られた絶縁体11(焼結体)は想像線(二点鎖線)で図示されている。 4 is a cross-sectional view of the firing jig 40 and the ceramic molded body 60 arranged inside the furnace 50, and FIG. 5 is a cross-sectional view of the firing jig 40 and the ceramic molded body 60 in which a portion indicated by V in FIG. 4 is enlarged. 6 is a cross-sectional view of the firing jig 40 and the ceramic molded body 60 taken along the line VI-VI of FIG. In FIG. 5, the ceramic molded body 60 before firing is shown by a solid line, and the insulator 11 (sintered body) obtained by firing the ceramic molded body 60 is shown by an imaginary line (two-dot chain line).

図4に示すように炉50は、炉壁および天井を作る断熱材51と、炉壁に沿って配置された発熱体52と、断熱材51に囲まれた炉内空間を移動する台車、ベルト、ローラ等の移動部材53とを備えている。炉50は、長手方向(図4紙面垂直方向)に連続する連続炉である。焼成治具40が配置された移動部材53が移動することにより、焼成治具40は炉50の予熱帯、加熱帯、冷却帯を通過する。焼成治具40に支持されたセラミック成形体60は、加熱帯において約1600℃の最高温度で焼成される。 As shown in FIG. 4, the furnace 50 includes a heat insulating material 51 for forming a furnace wall and a ceiling, a heating element 52 arranged along the furnace wall, a carriage and a belt that move in a furnace space surrounded by the heat insulating material 51. And a moving member 53 such as a roller. The furnace 50 is a continuous furnace that is continuous in the longitudinal direction (direction perpendicular to the plane of FIG. 4). By moving the moving member 53 on which the firing jig 40 is arranged, the firing jig 40 passes through the pre-heat zone, the heating zone, and the cooling zone of the furnace 50. The ceramic molded body 60 supported by the firing jig 40 is fired at a maximum temperature of about 1600° C. in the heating zone.

図5に示すようにセラミック成形体60は、長尺状の第1部61と、第1部61よりも大径の第2部62と、第2部62よりも外径が小さく、第2部62を挟んで第1部61の反対側に設けられた第3部63とを備えている。第3部63は、第1部61よりも外径が大きい。なお、長尺状とは、物体の太さよりも物体の長さの方が長い棒状や筒状のことをいう。 As shown in FIG. 5, the ceramic molded body 60 has an elongated first portion 61, a second portion 62 having a larger diameter than the first portion 61, and an outer diameter smaller than that of the second portion 62. The third portion 63 is provided on the opposite side of the first portion 61 with the portion 62 interposed therebetween. The outer diameter of the third portion 63 is larger than that of the first portion 61. The elongated shape means a rod shape or a cylindrical shape in which the length of the object is longer than the thickness of the object.

焼成治具40は、セラミック成形体60の第2部62の外周縁64(角の部分)を傾斜面46に支持し、第1部61を鉛直方向に吊り下げる。セラミック成形体60の第3部63は、支持部43に対して鉛直方向の上側に突出する。第1部61は、焼成後は絶縁体11の中胴部15、脚長部16及び棚部32を構成する。セラミック成形体60の第2部62は、焼成後は絶縁体11の大径部14を構成する。セラミック成形体60の第3部63は、焼成後は絶縁体11の胴部13を構成する。 The firing jig 40 supports the outer peripheral edge 64 (corner portion) of the second portion 62 of the ceramic molded body 60 on the inclined surface 46, and suspends the first portion 61 in the vertical direction. The third portion 63 of the ceramic molded body 60 projects upward in the vertical direction with respect to the support portion 43. The first portion 61 constitutes the middle body portion 15, the leg portion 16 and the shelf portion 32 after the firing. The second portion 62 of the ceramic molded body 60 constitutes the large diameter portion 14 of the insulator 11 after firing. The third portion 63 of the ceramic molded body 60 constitutes the body portion 13 of the insulator 11 after firing.

セラミック成形体60は、第1部61が支持部43に吊り下げられた状態で焼成され、焼成時の収縮に伴い自重によって下降する。セラミック成形体60は、焼成により第2部62の外径が小さくなるので、傾斜面46における外周縁64(角の部分)の接触位置が下降する。 The ceramic molded body 60 is fired in a state where the first portion 61 is suspended by the support portion 43, and is lowered by its own weight due to contraction during firing. In the ceramic molded body 60, the outer diameter of the second portion 62 is reduced by firing, so that the contact position of the outer peripheral edge 64 (corner portion) on the inclined surface 46 is lowered.

図6に示すように、突条45は複数が互いに間隔をあけて開口44の内側へ突出しているので、傾斜面46は断続的に形成される。その結果、セラミック成形体60の第2部62と支持部43との隙間(隣り合う突条45の隙間)からなる穴部49が形成される。 As shown in FIG. 6, a plurality of protrusions 45 are spaced apart from each other and protrude toward the inside of the opening 44, so that the inclined surface 46 is formed intermittently. As a result, the hole portion 49 formed by the gap between the second portion 62 of the ceramic molded body 60 and the support portion 43 (the gap between the adjacent protrusions 45) is formed.

図4に戻って説明する。焼成治具40は、第2部62が傾斜面46に接触してセラミック成形体60が吊り下げられた状態で、セラミック成形体60、底板41、壁部42及び支持部43により囲まれる第1空間65と、第1空間65の外側の炉50の内部の第2空間66と、に区画される。支持部43に形成された穴部47、壁部42に形成された穴部48、セラミック成形体60の第2部62と支持部43との隙間(穴部49)は、第1空間65と第2空間66とを連通する。 Returning to FIG. 4, description will be made. In the firing jig 40, the first portion surrounded by the ceramic molded body 60, the bottom plate 41, the wall portion 42 and the support portion 43 in a state where the second portion 62 contacts the inclined surface 46 and the ceramic molded body 60 is suspended. It is partitioned into a space 65 and a second space 66 inside the furnace 50 outside the first space 65. The hole 47 formed in the support portion 43, the hole portion 48 formed in the wall portion 42, the gap (the hole portion 49) between the second portion 62 of the ceramic molded body 60 and the support portion 43 is the same as the first space 65. It communicates with the second space 66.

その結果、炉50からセラミック成形体60への伝熱は、焼成治具40の傾斜面46からセラミック成形体60の第2部62への熱伝導、焼成治具40からセラミック成形体60の第1部61への熱放射(輻射)、及び、炉50からセラミック成形体60の第3部63への対流熱伝導に加え、穴部47,48,49で連通する第1空間65及び第2空間66の対流熱伝導による。よって、焼成治具40に吊り下げられたセラミック成形体60に温度差を生じ難くできる。従って、焼成時のセラミック成形体60の収縮率にばらつきを生じ難くすることができ、焼結体(絶縁体11)の焼成時の変形を抑制できる。 As a result, the heat transfer from the furnace 50 to the ceramic molded body 60 is conducted from the inclined surface 46 of the firing jig 40 to the second portion 62 of the ceramic molded body 60, and the heat transfer from the firing jig 40 to the ceramic molded body 60 is performed. In addition to heat radiation (radiation) to the part 61 and convective heat conduction from the furnace 50 to the third part 63 of the ceramic molded body 60, the first space 65 and the second space 65 communicating with the holes 47, 48, 49 are provided. Due to convective heat conduction in the space 66. Therefore, it is possible to prevent the temperature difference from occurring in the ceramic molded body 60 suspended by the firing jig 40. Therefore, it is possible to prevent variation in shrinkage rate of the ceramic molded body 60 during firing, and it is possible to suppress deformation of the sintered body (insulator 11) during firing.

セラミック成形体60の第2部62の外周縁64は焼成治具40の傾斜面46に線状に接触するので、接触面積を小さくできる。そのため、焼成治具40の傾斜面46からセラミック成形体60の第2部62への熱伝導の影響を小さくできる一方、熱放射や対流熱伝導の影響を相対的に大きくできる。その結果、セラミック成形体60の第1部61及び第3部63と第2部62との温度差をさらに小さくすることができ、焼結体の密度が不均一にならないようにできる。 Since the outer peripheral edge 64 of the second portion 62 of the ceramic molded body 60 linearly contacts the inclined surface 46 of the firing jig 40, the contact area can be reduced. Therefore, the influence of heat conduction from the inclined surface 46 of the firing jig 40 to the second portion 62 of the ceramic molded body 60 can be reduced, while the influences of heat radiation and convection heat conduction can be relatively increased. As a result, the temperature difference between the first portion 61, the third portion 63, and the second portion 62 of the ceramic molded body 60 can be further reduced, and the density of the sintered body can be prevented from becoming nonuniform.

セラミック成形体60は、焼成時の収縮により、傾斜面46における外周縁64(角の部分)の接触位置が下降するので、傾斜面46に擦れる部分は、第2部62の外周縁64(角の部分)だけである。その結果、傾斜面46に擦れて絶縁体11の大径部14に生じる可能性のある擦り傷(角の丸み等)を小さくできる。また、傾斜面46は断続的に形成されているので、傾斜面が連続する場合に比べて、接触面積を小さくできる。よって、絶縁体11に生じる擦り傷を小さくできる。 In the ceramic molded body 60, the contact position of the outer peripheral edge 64 (corner portion) on the inclined surface 46 is lowered due to contraction during firing, so that the portion rubbed by the inclined surface 46 is the outer peripheral edge 64 (corner portion) of the second portion 62. Part)) only. As a result, it is possible to reduce scratches (rounded corners, etc.) that may occur on the large diameter portion 14 of the insulator 11 by rubbing against the inclined surface 46. Moreover, since the inclined surface 46 is formed intermittently, the contact area can be reduced as compared with the case where the inclined surface is continuous. Therefore, the scratches generated on the insulator 11 can be reduced.

断続的に形成された傾斜面46に支持されたセラミック成形体60の第2部62と支持部43とに隙間(穴部49)があるので、穴部49は第1空間65と第2空間66とを連通する。その結果、穴部49による第1空間65と第2空間66との対流熱伝導によりセラミック成形体60の第2部62に伝熱し易くできる。 Since there is a gap (hole 49) between the second portion 62 and the support portion 43 of the ceramic molded body 60 supported by the inclined surface 46 which is intermittently formed, the hole portion 49 has the first space 65 and the second space. It communicates with 66. As a result, the heat can be easily transferred to the second portion 62 of the ceramic molded body 60 by the convective heat conduction between the first space 65 and the second space 66 by the hole portion 49.

焼成治具40のうち、炉壁に配置された発熱体52と対向する壁部42に穴部48が設けられているので、発熱体52に熱せられた流体による対流熱伝導により、セラミック成形体60の第1部61に伝熱し易くできる。 Since the hole portion 48 is provided in the wall portion 42 of the firing jig 40 that faces the heating element 52 arranged on the furnace wall, the ceramic molded body is formed by convective heat conduction by the fluid heated by the heating element 52. The heat can be easily transferred to the first portion 61 of 60.

焼成治具40のうち支持部43に穴部47が設けられているので、対流熱伝導によりセラミック成形体60の第1部61に伝熱し易くできる。特に、壁部42及び支持部43に穴部47,48が形成されているので、穴部48から焼成治具40の第1空間65へ進入した流体を穴部47から第2空間66へ移動させることができる。その結果、対流熱伝導を活発化させることができ、セラミック成形体60にムラなく伝熱できる。 Since the hole portion 47 is provided in the support portion 43 of the firing jig 40, heat can be easily transferred to the first portion 61 of the ceramic molded body 60 by convective heat conduction. In particular, since the holes 47 and 48 are formed in the wall 42 and the support 43, the fluid that has entered the first space 65 of the firing jig 40 from the holes 48 moves from the holes 47 to the second space 66. Can be made. As a result, convective heat conduction can be activated, and heat can be evenly transferred to the ceramic molded body 60.

セラミック成形体60の第3部63は第1部61よりも外径が大きい、即ち第1部61は第3部63より外径が小さいので、第1部61が吊り下げられることにより、第3部63が吊り下げられる場合に比べて、傾斜面46の下端部をセラミック成形体60から遠ざけ、傾斜面46と第1部61とを干渉し難くできる。その結果、鉛直方向に対する傾斜面46の角度を設定できる範囲を大きくできる。よって、傾斜面46の設計の自由度を大きくできる。また、第3部63の外径よりも第1部61の外径を小さくすることにより、第1部61を傾斜面46へ挿入し易くできる。 The outer diameter of the third portion 63 of the ceramic molded body 60 is larger than that of the first portion 61, that is, the outer diameter of the first portion 61 is smaller than that of the third portion 63. Compared to the case where the three parts 63 are suspended, the lower end of the inclined surface 46 can be moved away from the ceramic molded body 60, and the inclined surface 46 and the first part 61 can be less likely to interfere with each other. As a result, the range in which the angle of the inclined surface 46 with respect to the vertical direction can be set can be increased. Therefore, the degree of freedom in designing the inclined surface 46 can be increased. Further, by making the outer diameter of the first portion 61 smaller than the outer diameter of the third portion 63, the first portion 61 can be easily inserted into the inclined surface 46.

次に図7を参照して第2実施の形態について説明する。第1実施の形態では、下端側へ向かうにつれて窄む環状の傾斜面46が、周方向に断続的に支持部43に形成される場合について説明した。また、第1実施の形態では、傾斜面46が鉛直方向に対して直線状に傾斜する場合について説明した。 Next, a second embodiment will be described with reference to FIG. In the first embodiment, a case has been described in which the annular inclined surface 46 that narrows toward the lower end side is intermittently formed in the support portion 43 in the circumferential direction. Further, in the first embodiment, the case where the inclined surface 46 inclines linearly with respect to the vertical direction has been described.

これに対し第2実施の形態では、環状の傾斜面72が周方向に連続して支持部71に形成される場合について説明する。また、傾斜面72が上に凸の湾曲面である場合について説明する。なお、第1実施の形態で説明した部分と同一の部分については、同一の符号を付して以下の説明を省略する。 On the other hand, in the second embodiment, a case where the annular inclined surface 72 is continuously formed in the circumferential direction on the support portion 71 will be described. Further, a case where the inclined surface 72 is a curved surface that is convex upward will be described. The same parts as those described in the first embodiment are designated by the same reference numerals, and the following description will be omitted.

図7は、第2実施の形態における焼成治具70及びセラミック成形体60の断面図である。図7は、セラミック成形体60の第2部62が焼成治具70に支持された状態において、図5と同様に、焼成治具70を鉛直方向に切断した断面図である。図8は図7のVIII−VIII線における焼成治具70及びセラミック成形体60の断面図である。傾斜面72が形成された支持部71は、壁部42の上端に載置されている。 FIG. 7 is a sectional view of the firing jig 70 and the ceramic molded body 60 according to the second embodiment. FIG. 7 is a cross-sectional view of the firing jig 70 cut in the vertical direction in a state where the second portion 62 of the ceramic molded body 60 is supported by the firing jig 70, similarly to FIG. FIG. 8 is a sectional view of the firing jig 70 and the ceramic molded body 60 taken along the line VIII-VIII of FIG. 7. The support portion 71 having the inclined surface 72 is placed on the upper end of the wall portion 42.

図7に示すように、焼成治具70の支持部71に形成された環状の傾斜面72は、上に凸の湾曲面である。焼成治具70の壁部42及び支持部71には、板厚方向へ貫通する穴部(図示せず)が形成されている。壁部42及び支持部71に穴部が形成されているので、第1実施の形態と同様に、第1空間65(図4参照)と第2空間66との間の対流熱伝導による伝熱ができる。 As shown in FIG. 7, the annular inclined surface 72 formed on the support portion 71 of the firing jig 70 is a curved surface convex upward. Holes (not shown) penetrating in the plate thickness direction are formed in the wall portion 42 and the supporting portion 71 of the firing jig 70. Since holes are formed in the wall portion 42 and the support portion 71, heat transfer by convective heat conduction between the first space 65 (see FIG. 4) and the second space 66, as in the first embodiment. You can

セラミック成形体60は焼成によって第2部62の外周縁64の外径が小さくなるので、焼成時の収縮に伴い、傾斜面72における外周縁64の接触位置が下降する。セラミック成形体60が下降するときには、セラミック成形体60の軸が鉛直方向に対して傾いて焼結体(絶縁体11)が変形する可能性があるが、傾斜面72が上に凸の湾曲面であると、傾斜面が下に凸の湾曲面や平面(図5参照)の場合に比べて、焼成時の収縮に伴う第2部62の下降量を少なくできる。その結果、下降する第2部62の外周縁64の一部が傾斜面72に引っ掛かる可能性を小さくすることができ、軸が傾いた状態に絶縁体11が変形する可能性を小さくできる。よって、軸が傾いた不良の焼結体(絶縁体11)の発生を抑制できる。 Since the outer diameter of the outer peripheral edge 64 of the second portion 62 of the ceramic molded body 60 is reduced by firing, the contact position of the outer peripheral edge 64 on the inclined surface 72 is lowered due to contraction during firing. When the ceramic molded body 60 descends, the axis of the ceramic molded body 60 may be tilted with respect to the vertical direction and the sintered body (insulator 11) may be deformed, but the inclined surface 72 is a curved surface convex upward. Then, the amount of lowering of the second portion 62 due to the contraction during firing can be reduced as compared with the case where the inclined surface is a curved surface or a flat surface that is convex downward (see FIG. 5 ). As a result, it is possible to reduce the possibility that part of the outer peripheral edge 64 of the descending second portion 62 will be caught by the inclined surface 72, and reduce the possibility that the insulator 11 will be deformed when the shaft is inclined. Therefore, it is possible to suppress the generation of a defective sintered body (insulator 11) whose axis is inclined.

図8に示すように、傾斜面72は周方向に連続的に設けられているので、セラミック成形体60の第1部61が吊り下げられると、第2部62の外周縁64(角の部分)の全周が傾斜面72に接触する。よって、傾斜面72に線状に接触する第2部62の外周縁64を安定に支持できる。 As shown in FIG. 8, since the inclined surface 72 is continuously provided in the circumferential direction, when the first portion 61 of the ceramic molded body 60 is suspended, the outer peripheral edge 64 (corner portion) of the second portion 62 is suspended. ) Contacts the inclined surface 72 all around. Therefore, the outer peripheral edge 64 of the second portion 62 that linearly contacts the inclined surface 72 can be stably supported.

また、第2部62の外周縁64の全周が傾斜面72に接触するので、第2部62の外周縁64の周の一部が傾斜面に接触する場合に比べて接触面積を大きくできる。その結果、セラミック成形体60の自重によって第2部62が傾斜面72から受ける単位面積あたりの荷重を、第2部62の外周縁64の周の一部が傾斜面に接触するときに第2部62が受ける単位面積あたりの荷重よりも小さくできる。よって、傾斜面72に擦れて絶縁体11の大径部14に生じる可能性のある擦り傷を小さくできる。 Further, since the entire circumference of the outer peripheral edge 64 of the second portion 62 contacts the inclined surface 72, the contact area can be increased as compared with the case where part of the circumference of the outer peripheral edge 64 of the second portion 62 contacts the inclined surface. .. As a result, the load per unit area that the second portion 62 receives from the inclined surface 72 due to the self-weight of the ceramic molded body 60 is increased by the second portion 62 when a part of the outer peripheral edge 64 of the second portion 62 contacts the inclined surface. It can be made smaller than the load per unit area received by the portion 62. Therefore, it is possible to reduce scratches that may be generated on the large diameter portion 14 of the insulator 11 by rubbing the inclined surface 72.

次に図9を参照して第3実施の形態について説明する。第1実施の形態および第2実施の形態では、セラミック成形体60の第3部63の外径が第1部61の外径よりも大きい場合について説明した。これに対し第3実施の形態では、第3部93の外径が第1部91の外径よりも小さいセラミック成形体90を焼成する場合について説明する。なお、第1実施の形態と同一の部分については、同一の符号を付して以下の説明を省略する。 Next, a third embodiment will be described with reference to FIG. In the first and second embodiments, the case where the outer diameter of the third portion 63 of the ceramic molded body 60 is larger than the outer diameter of the first portion 61 has been described. On the other hand, in the third embodiment, a case will be described in which the ceramic molded body 90 in which the outer diameter of the third portion 93 is smaller than the outer diameter of the first portion 91 is fired. The same parts as those in the first embodiment are designated by the same reference numerals, and the following description will be omitted.

図9は、第3実施の形態における焼成治具80及びセラミック成形体90の断面図である。図9は、セラミック成形体90の第2部92が焼成治具80に支持された状態において、図5と同様に、焼成治具80を鉛直方向に切断した断面図である。図9において、焼成前のセラミック成形体90は実線で図示され、セラミック成形体90を焼成して得られた絶縁体11(焼結体)は想像線(二点鎖線)で図示されている。傾斜面82が形成された焼成治具80の支持部81は、壁部42の上端に載置されている。 FIG. 9 is a sectional view of the firing jig 80 and the ceramic molded body 90 according to the third embodiment. FIG. 9 is a cross-sectional view of the firing jig 80 cut in the vertical direction in a state where the second portion 92 of the ceramic molded body 90 is supported by the firing jig 80, similarly to FIG. In FIG. 9, the ceramic molded body 90 before firing is shown by a solid line, and the insulator 11 (sintered body) obtained by firing the ceramic molded body 90 is shown by an imaginary line (two-dot chain line). The supporting portion 81 of the firing jig 80 on which the inclined surface 82 is formed is placed on the upper end of the wall portion 42.

図9に示すように、焼成治具80の支持部81に環状の傾斜面82が断続的に形成されている。焼成治具80の壁部42及び支持部81には、板厚方向へ貫通する穴部(図示せず)が形成されている。壁部42及び支持部81に穴部が形成されているので、第1実施の形態と同様に、第1空間65(図4参照)と第2空間66との間の対流熱伝導による伝熱ができる。 As shown in FIG. 9, an annular inclined surface 82 is intermittently formed on the supporting portion 81 of the firing jig 80. Holes (not shown) penetrating in the plate thickness direction are formed in the wall portion 42 and the supporting portion 81 of the firing jig 80. Since holes are formed in the wall portion 42 and the support portion 81, heat transfer by convective heat conduction between the first space 65 (see FIG. 4) and the second space 66 is performed, as in the first embodiment. You can

セラミック成形体90は、長尺状の第1部91と、第1部91よりも大径の第2部92と、第2部92よりも外径が小さく、第2部92を挟んで第1部91の反対側に設けられた第3部93とを備えている。第3部93は、第1部91よりも外径が小さい。 The ceramic molded body 90 has a long first portion 91, a second portion 92 having a larger diameter than the first portion 91, and an outer diameter smaller than that of the second portion 92. The third portion 93 is provided on the opposite side of the first portion 91. The outer diameter of the third portion 93 is smaller than that of the first portion 91.

焼成治具80は、セラミック成形体90の第2部92の外周縁94(角の部分)を傾斜面82に支持し、第1部91を鉛直方向に吊り下げる。セラミック成形体90の第3部93は、支持部81に対して鉛直方向の上側に突出する。第1部91は、焼成後は絶縁体11の胴部13を構成する。セラミック成形体90の第2部92は、焼成後は絶縁体11の大径部14を構成する。セラミック成形体90の第3部93は、焼成後は絶縁体11の中胴部15、脚長部16及び棚部32を構成する。 The firing jig 80 supports the outer peripheral edge 94 (corner portion) of the second portion 92 of the ceramic molded body 90 on the inclined surface 82, and suspends the first portion 91 in the vertical direction. The third portion 93 of the ceramic molded body 90 projects upward in the vertical direction with respect to the support portion 81. The first portion 91 constitutes the body portion 13 of the insulator 11 after firing. The second portion 92 of the ceramic molded body 90 constitutes the large diameter portion 14 of the insulator 11 after firing. The third part 93 of the ceramic molded body 90 constitutes the middle body part 15, the leg long part 16 and the shelf part 32 of the insulator 11 after firing.

セラミック成形体90の第3部93は第1部91よりも外径が小さいので、第1部91が吊り下げられたセラミック成形体90の重心の位置を上がり難くできる。よって、焼成治具80はセラミック成形体90を安定に支持できる。 Since the third portion 93 of the ceramic molded body 90 has an outer diameter smaller than that of the first portion 91, it is difficult to raise the position of the center of gravity of the ceramic molded body 90 on which the first portion 91 is suspended. Therefore, the firing jig 80 can stably support the ceramic molded body 90.

以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。例えば、絶縁体11、セラミック成形体60,90及び焼成治具40,70,80の形状や大きさ等はこれに限られるものではなく、適宜設定できる。 Although the present invention has been described above based on the embodiments, the present invention is not limited to the above embodiments, and various improvements and modifications are possible without departing from the spirit of the present invention. It can be easily guessed. For example, the shapes, sizes, and the like of the insulator 11, the ceramic molded bodies 60, 90, and the firing jigs 40, 70, 80 are not limited to this, and can be set appropriately.

上記各実施の形態では、スパークプラグ10の絶縁体11を製造するためのセラミック成形体60,90について説明した。しかし、セラミック成形体を焼成して得られる焼結体の用途は、必ずしもスパークプラグに限られるものではない。焼結体の用途は適宜設定できる。 In each of the above-described embodiments, the ceramic molded bodies 60 and 90 for manufacturing the insulator 11 of the spark plug 10 have been described. However, the application of the sintered body obtained by firing the ceramic molded body is not necessarily limited to the spark plug. The usage of the sintered body can be set as appropriate.

上記各実施の形態では、セラミック成形体60,90を焼成する炉50が連続炉の場合について説明したが、必ずしもこれに限られるものではない。一定量のセラミック成形体60,90を収容して焼成するバッチ炉を用いて焼結体を製造することは当然可能である。 In each of the above embodiments, the case where the furnace 50 for firing the ceramic molded bodies 60 and 90 is a continuous furnace has been described, but the present invention is not limited to this. It is naturally possible to manufacture a sintered body using a batch furnace in which a certain amount of the ceramic molded bodies 60 and 90 are housed and fired.

上記各実施の形態では、焼成治具40,70,80の壁部42と底板41とが別々に形成される場合について説明したが、必ずしもこれに限られるものではない。底板41及び壁部42を一体成形品にすることは当然可能である。 In each of the above embodiments, the case where the wall portion 42 of the firing jig 40, 70, 80 and the bottom plate 41 are formed separately has been described, but the present invention is not limited to this. It is naturally possible to form the bottom plate 41 and the wall portion 42 as an integrally molded product.

また、連続炉の場合の移動部材53やバッチ炉の場合の棚板を利用して、焼成治具40,70,80の壁部42の開口する下端部を塞ぎ、壁部42を有底筒状にすることで第1空間65を形成できれば、底板41を省略することは当然可能である。 Further, by using the moving member 53 in the case of a continuous furnace or the shelf plate in the case of a batch furnace, the lower end portion of the opening of the wall portion 42 of the firing jigs 40, 70, 80 is closed to close the wall portion 42 with a bottomed cylinder. If the first space 65 can be formed by forming the shape, it is possible to omit the bottom plate 41.

上記各実施の形態では、板状の支持部43,71,81に開口44を設け、開口44の内側に傾斜面46,72,82を形成する場合について説明したが、必ずしもこれに限られるものではない。内側へ向かって突出する複数のアーム(支持部)を壁部42に設け、その複数のアームの端面に、壁部42の下端側へ向かって窄む傾斜面を形成することは当然可能である。この場合には、壁部42から突出するアーム間の隙間が、支持部に設けられた穴部となる。 In each of the above-described embodiments, the case where the opening 44 is provided in the plate-shaped support portions 43, 71, 81 and the inclined surfaces 46, 72, 82 are formed inside the opening 44 has been described, but the present invention is not limited to this. is not. It is naturally possible to provide a plurality of arms (supporting portions) projecting inward on the wall portion 42, and to form an inclined surface that narrows toward the lower end side of the wall portion 42 on the end surfaces of the plurality of arms. .. In this case, the gap between the arms protruding from the wall 42 becomes a hole provided in the support portion.

上記各実施の形態では、壁部42及び支持部43,71,81の両方に穴部47,48が形成される場合について説明したが、必ずしもこれに限られるものではない。壁部42及び支持部43,71,81のいずれか一方の穴部を省略することは当然可能である。また、セラミック成形体60,90と支持部43との隙間を穴部49にする場合には、壁部42及び支持部43,71,81の穴部47,48を両方とも省略できる。 In each of the above-described embodiments, the case where the holes 47 and 48 are formed in both the wall 42 and the supporting portions 43, 71 and 81 has been described, but the present invention is not limited to this. Of course, it is possible to omit the hole in either one of the wall portion 42 and the support portions 43, 71, 81. Further, when the gap between the ceramic molded bodies 60, 90 and the support portion 43 is the hole portion 49, both the wall portion 42 and the hole portions 47, 48 of the support portions 43, 71, 81 can be omitted.

なお、上記の各実施形態は、それぞれ、他の実施形態が有する構成の一部または複数部分を、その実施形態に追加し或いはその実施形態の構成の一部または複数部分と交換できる。例えば、第2実施の形態で説明した傾斜面72を、第1実施の形態で説明した傾斜面46のように断続的にすることは当然可能である。その結果、対流熱伝導によりセラミック成形体60の第2部62に伝熱し易くできる。 In each of the above-described embodiments, a part or a plurality of parts of the configuration of another embodiment can be added to the embodiment or a part or a plurality of parts of the configuration of the embodiment can be exchanged. For example, it is naturally possible to make the inclined surface 72 described in the second embodiment intermittently like the inclined surface 46 described in the first embodiment. As a result, heat can be easily transferred to the second portion 62 of the ceramic molded body 60 by convective heat conduction.

同様に、第1実施の形態で説明した傾斜面46及び第3実施の形態で説明した傾斜面82を、第2実施の形態で説明した傾斜面46のように連続的にすることは当然可能である。その結果、傾斜面に線状に接触する第2部62,92の外周縁64,94を安定に支持できる。 Similarly, it is naturally possible to make the inclined surface 46 described in the first embodiment and the inclined surface 82 described in the third embodiment continuous like the inclined surface 46 described in the second embodiment. Is. As a result, it is possible to stably support the outer peripheral edges 64 and 94 of the second portions 62 and 92 that linearly contact the inclined surface.

また、第3実施の形態で説明したセラミック成形体90を、第1実施の形態や第2実施の形態で説明した焼成治具40,70を用いて焼成することは当然可能である。この場合も、セラミック成形体90の重心の位置が上がらないようできるので、セラミック成形体90を安定に支持できる。 Further, it is naturally possible to fire the ceramic molded body 90 described in the third embodiment using the firing jigs 40 and 70 described in the first embodiment and the second embodiment. Also in this case, the position of the center of gravity of the ceramic molded body 90 can be prevented from rising, so that the ceramic molded body 90 can be stably supported.

上記実施の形態では、リング部材37及び粉末38を介して主体金具30の被係合部35が大径部14の後端部と係合する絶縁体11の場合について説明したが、必ずしもこれに限られるものではない。リング部材37及び粉末38を省略して、主体金具30の被係合部35を絶縁体11の大径部14の後端部と係合させることは当然可能である。 In the above embodiment, the case where the engaged portion 35 of the metal shell 30 is engaged with the rear end portion of the large diameter portion 14 via the ring member 37 and the powder 38 has been described, but this is not always the case. It is not limited. It is of course possible to omit the ring member 37 and the powder 38 and engage the engaged portion 35 of the metal shell 30 with the rear end portion of the large diameter portion 14 of the insulator 11.

上記実施の形態では、中心電極20の先端に接地電極39が対向するスパークプラグ10に用いられる絶縁体11について説明したが、スパークプラグの構造は必ずしもこれに限られるものではない。絶縁体11を備える他のスパークプラグに、本実施の形態における技術を適用することは当然可能である。他のスパークプラグとしては、例えば、中心電極20の側面に接地電極39が対向するスパークプラグ、主体金具30に複数の接地電極39を接合した多極のスパークプラグ、中心電極よりも軸方向に突出する主体金具の先端に円環状の接地電極を配置したスパークプラグ、接地電極39が省略され有底筒状の絶縁体に中心電極が覆われたスパークプラグなどが挙げられる。 Although the insulator 11 used in the spark plug 10 in which the ground electrode 39 faces the tip of the center electrode 20 has been described in the above embodiment, the structure of the spark plug is not necessarily limited to this. It is of course possible to apply the technique of the present embodiment to other spark plugs including the insulator 11. Other spark plugs include, for example, a spark plug in which the ground electrode 39 faces the side surface of the center electrode 20, a multi-pole spark plug in which a plurality of ground electrodes 39 are joined to the metal shell 30, and a spark plug protruding in the axial direction from the center electrode. Examples of the metal plug include a spark plug in which a ring-shaped ground electrode is arranged at the tip of the metal shell, a spark plug in which the ground electrode 39 is omitted and the center electrode is covered by a bottomed cylindrical insulator.

なお「セラミック成形体を焼成して得られる焼結体の製造方法であって、長尺状の第1部と、前記第1部よりも大径の第2部とを備える前記セラミック成形体を成形する成形工程と、下端側が閉塞した有底筒状の壁部と、上端面が下端側に向かうにつれて窄む傾斜面であり連続的または断続的に環状に形成された傾斜面を有し前記壁部の内側に固定される支持部と、を備える焼成治具の前記傾斜面に前記セラミック成形体の前記第2部の外周縁を支持させ、前記第1部を鉛直方向に吊り下げた状態で、前記焼成治具を炉内に配置して前記セラミック成形体を焼成する焼成工程と、を備え、前記傾斜面は上に凸の湾曲面である焼結体の製造方法。」は、上記実施形態に含まれる発明である。 In addition, "a method of manufacturing a sintered body obtained by firing a ceramic molded body, comprising: a ceramic molded body having a long first portion and a second portion having a diameter larger than that of the first portion; A molding step of molding, a bottomed cylindrical wall portion having a closed lower end side, and an inclined surface which is an inclined surface whose upper end surface narrows toward the lower end side and which is continuously or intermittently formed into an annular shape. A state in which the outer peripheral edge of the second portion of the ceramic molded body is supported on the inclined surface of the firing jig including a support portion fixed to the inside of the wall portion, and the first portion is suspended in the vertical direction. And a firing step in which the firing jig is placed in a furnace to fire the ceramic molded body, and the inclined surface is a curved surface convex upward.” It is an invention included in the embodiment.

この発明によれば以下の効果がある。即ち、焼成によって第2部の外周縁の外径が小さくなるセラミック成形体は、焼成時の収縮に伴い、傾斜面における第2部の外周縁の接触位置が下降する。セラミック成形体が下降するときには、セラミック成形体の軸が鉛直方向に対して傾いて焼結体が変形する可能性があるが、傾斜面が上に凸の湾曲面であると、傾斜面が下に凸の湾曲面や平面の場合に比べて、焼成時の収縮に伴う第2部の下降量を少なくできる。その結果、軸が傾いた状態に焼結体が変形する可能性を小さくできるので、軸が傾いた不良の焼結体の発生を抑制できる効果がある。 The present invention has the following effects. That is, in the ceramic molded body whose outer diameter of the outer peripheral edge of the second portion is reduced by firing, the contact position of the outer peripheral edge of the second portion on the inclined surface is lowered due to contraction during firing. When the ceramic molded body descends, the axis of the ceramic molded body may be inclined with respect to the vertical direction and the sintered body may be deformed. However, if the inclined surface is a curved surface that is convex upward, the inclined surface is lower. It is possible to reduce the amount of lowering of the second portion due to shrinkage during firing, as compared with the case of a convex curved surface or a flat surface. As a result, it is possible to reduce the possibility that the sintered body is deformed in a state where the shaft is tilted, and thus it is possible to suppress the generation of a defective sintered body in which the shaft is tilted.

11 絶縁体(焼結体)
40,70,80 焼成治具
42 壁部
43,71,81 支持部
46,72,82 傾斜面
47,48,49 穴部
50 炉
60,90 セラミック成形体
61,91 第1部
62,92 第2部
63,93 第3部
64,94 外周縁
65 第1空間
66 第2空間
11 Insulator (sintered body)
40, 70, 80 Firing jig 42 Wall part 43, 71, 81 Support part 46, 72, 82 Inclined surface 47, 48, 49 Hole part 50 Furnace 60, 90 Ceramic molded body 61, 91 First part 62, 92 2nd part 63,93 3rd part 64,94 Outer peripheral edge 65 1st space 66 2nd space

Claims (8)

セラミック成形体を焼成して得られる焼結体の製造方法であって、
長尺状の第1部と、前記第1部よりも大径の第2部とを備える前記セラミック成形体を成形する成形工程と、
下端側が閉塞した有底筒状の壁部と、上端面が下端側に向かうにつれて窄む傾斜面であり連続的または断続的に環状に形成された傾斜面を有し前記壁部の内側に固定される支持部と、を備える焼成治具の前記傾斜面に前記セラミック成形体の前記第2部の外周縁を支持させ、前記第1部を鉛直方向に吊り下げた状態で、前記焼成治具を炉内に配置して前記セラミック成形体を焼成する焼成工程とを備え、
前記焼成治具は、前記焼成工程において前記第2部の前記外周縁が前記傾斜面に接触した状態で、前記セラミック成形体、前記壁部および前記支持部により囲まれる第1空間と、前記焼成治具の外側の前記炉内の第2空間と、を連通する穴部を備える焼結体の製造方法。
A method for manufacturing a sintered body obtained by firing a ceramic molded body,
A forming step of forming the ceramic formed body including a long first portion and a second portion having a diameter larger than that of the first portion;
It has a bottomed cylindrical wall portion with a closed lower end side, and an inclined surface whose upper end surface narrows toward the lower end side and which is formed continuously or intermittently in an annular shape, and is fixed to the inside of the wall portion. And a supporting portion for supporting the outer peripheral edge of the second portion of the ceramic molded body on the inclined surface of the firing jig, and suspending the first portion in the vertical direction. And a firing step of firing the ceramic molded body by placing it in a furnace,
The firing jig includes a first space surrounded by the ceramic molded body, the wall portion and the support portion in a state where the outer peripheral edge of the second portion is in contact with the inclined surface in the firing step, and the firing. A method for manufacturing a sintered body, comprising a hole communicating with the second space inside the furnace outside the jig .
前記穴部は前記壁部に設けられている請求項1記載の焼結体の製造方法。 The method for manufacturing a sintered body according to claim 1, wherein the hole is provided in the wall. 前記穴部は前記支持部に設けられている請求項1又は2に記載の焼結体の製造方法。 The method for manufacturing a sintered body according to claim 1, wherein the hole is provided in the support. 前記傾斜面は連続的に設けられている請求項1から3のいずれかに記載の焼結体の製造方法。 The method for producing a sintered body according to claim 1, wherein the inclined surface is continuously provided. 前記傾斜面は断続的に設けられており、
前記穴部は、断続的な前記傾斜面に支持された前記セラミック成形体と前記支持部との隙間である請求項1から3のいずれかの記載の焼結体の製造方法。
The inclined surface is provided intermittently,
The method for manufacturing a sintered body according to claim 1, wherein the hole portion is a gap between the ceramic molded body supported by the intermittent inclined surface and the support portion.
前記セラミック成形体は、前記第2部よりも外径が小さく、前記第2部を挟んで前記第1部の反対側に設けられた第3部を備え、
前記第3部は、前記第1部よりも外径が小さい請求項1から5のいずれかに記載の焼結体の製造方法。
The ceramic molded body has a third portion having an outer diameter smaller than that of the second portion and provided on the opposite side of the first portion with the second portion interposed therebetween.
The method for producing a sintered body according to claim 1, wherein the third part has an outer diameter smaller than that of the first part.
前記セラミック成形体は、前記第2部よりも外径が小さく、前記第2部を挟んで前記第1部の反対側に設けられた第3部を備え、
前記第3部は、前記第1部よりも外径が大きい請求項1から5のいずれかに記載の焼結体の製造方法。
The ceramic molded body has a third portion having an outer diameter smaller than that of the second portion and provided on the opposite side of the first portion with the second portion interposed therebetween.
The method for producing a sintered body according to claim 1, wherein the third part has an outer diameter larger than that of the first part.
前記傾斜面は、上に凸の湾曲面である請求項1から7のいずれかに記載の焼結体の製造方法。 The method for manufacturing a sintered body according to claim 1, wherein the inclined surface is a curved surface that is convex upward.
JP2016237374A 2016-12-07 2016-12-07 Sintered body manufacturing method Expired - Fee Related JP6713919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016237374A JP6713919B2 (en) 2016-12-07 2016-12-07 Sintered body manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016237374A JP6713919B2 (en) 2016-12-07 2016-12-07 Sintered body manufacturing method

Publications (2)

Publication Number Publication Date
JP2018090462A JP2018090462A (en) 2018-06-14
JP6713919B2 true JP6713919B2 (en) 2020-06-24

Family

ID=62564196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016237374A Expired - Fee Related JP6713919B2 (en) 2016-12-07 2016-12-07 Sintered body manufacturing method

Country Status (1)

Country Link
JP (1) JP6713919B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6833561B2 (en) * 2017-02-27 2021-02-24 三菱重工業株式会社 Turbine wheel manufacturing methods, turbine wheels, and turbine wheel sintering jigs
CN111072379A (en) * 2019-12-30 2020-04-28 广州市尤特新材料有限公司 Burning bearing plate suitable for tubular rotary ceramic target material and sintering method

Also Published As

Publication number Publication date
JP2018090462A (en) 2018-06-14

Similar Documents

Publication Publication Date Title
JP6713919B2 (en) Sintered body manufacturing method
US20090256461A1 (en) Ceramic spark plug insulator and method of making
CN103972792B (en) Spark plug and its manufacture method
EP2194622B1 (en) Spark plug
EP2381546A1 (en) Spark plug for internal combustion engine
JP5992022B2 (en) Insulator and spark plug
JP5129819B2 (en) Spark plug insulator and manufacturing method thereof, and spark plug and manufacturing method thereof
KR101888746B1 (en) Ceramic heater and glow plug
JP5616858B2 (en) Spark plug
US20170250523A1 (en) Method for manufacturing insulator for spark plug
KR101908191B1 (en) Ceramic heater and glow plug
JP6456278B2 (en) Spark plug
JP5351985B2 (en) Method for manufacturing insulator for spark plug, firing container, and method for manufacturing spark plug
JP7261767B2 (en) Method for manufacturing spark plug insulator
JP6567340B2 (en) Ceramic heater and manufacturing method thereof, glow plug and manufacturing method thereof
JP5308315B2 (en) Method for manufacturing an insulator for a spark plug
US10751923B2 (en) Spark plug insulator production method, insulator, molding die
JP4335765B2 (en) Spark plug insulator firing method, firing device, and spark plug manufacturing method manufactured by the firing method
JP6270703B2 (en) Insulator manufacturing method for spark plug and mold
US20180351331A1 (en) Spark plug
JP6335770B2 (en) Method for manufacturing an insulator for a spark plug
JP6712966B2 (en) Spark plug
JP6675340B2 (en) Bar member
JP6707404B2 (en) Spark plug
JP6347735B2 (en) Method for manufacturing an insulator for a spark plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200604

R150 Certificate of patent or registration of utility model

Ref document number: 6713919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees