JP6709850B2 - Oriented alumina sintered body and manufacturing method thereof - Google Patents

Oriented alumina sintered body and manufacturing method thereof Download PDF

Info

Publication number
JP6709850B2
JP6709850B2 JP2018525935A JP2018525935A JP6709850B2 JP 6709850 B2 JP6709850 B2 JP 6709850B2 JP 2018525935 A JP2018525935 A JP 2018525935A JP 2018525935 A JP2018525935 A JP 2018525935A JP 6709850 B2 JP6709850 B2 JP 6709850B2
Authority
JP
Japan
Prior art keywords
alumina
curved surface
sintered body
surface portion
oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018525935A
Other languages
Japanese (ja)
Other versions
JPWO2018008207A1 (en
Inventor
聡太 大河内
聡太 大河内
守道 渡邊
守道 渡邊
吉川 潤
潤 吉川
七瀧 努
七瀧  努
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Publication of JPWO2018008207A1 publication Critical patent/JPWO2018008207A1/en
Application granted granted Critical
Publication of JP6709850B2 publication Critical patent/JP6709850B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/08Apparatus or processes for treating or working the shaped or preshaped articles for reshaping the surface, e.g. smoothing, roughening, corrugating, making screw-threads
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、配向アルミナ焼結体及びその製法に関する。 The present invention relates to an oriented alumina sintered body and a method for producing the same.

配向アルミナ焼結体の製法としては、例えば特許文献1の方法が知られている。この方法では、板状アルミナ粉末と微細アルミナ粉末とを混合し、そこにバインダーや分散媒等を加えてスラリーを調製し、そのスラリーをテープ成形した後そのテープを積層して成形体とし、成形体を焼成して配向アルミナ焼結体を得ている。こうして得られる配向アルミナ焼結体は、平板状であり、c面配向度の高いものである。 As a method for producing an oriented alumina sintered body, for example, the method of Patent Document 1 is known. In this method, a plate-like alumina powder and a fine alumina powder are mixed, a binder and a dispersion medium are added to the mixture to prepare a slurry, and the slurry is tape-formed, and then the tape is laminated to form a molded body, and molded. The body is fired to obtain an oriented alumina sintered body. The oriented alumina sintered body thus obtained has a flat plate shape and a high degree of c-plane orientation.

一方、曲面部を備えるセラミックスプレートの製法としては、例えば特許文献2の方法が知られている。この方法では、まず、セラミックスグリーンシートを、そのシートに含まれるバインダーのガラス転移点の10℃以上40℃以下の環境下にて加熱するとともに、加熱されたセラミックスグリーンシートに対して曲げ加工を行う。次に、曲げ加工後のセラミックスグリーンシートを焼成する。こうすることにより、曲面部を備えるセラミックスプレートが得られる。この製法によれば、曲げ加工中のセラミックスグリーンシートの割れ等の発生を抑制することができるとされている。 On the other hand, as a method of manufacturing a ceramic plate having a curved surface portion, for example, the method of Patent Document 2 is known. In this method, first, a ceramics green sheet is heated in an environment where the glass transition point of the binder contained in the sheet is 10° C. or higher and 40° C. or lower, and bending is performed on the heated ceramics green sheet. .. Next, the ceramic green sheet after bending is fired. By doing so, a ceramic plate having a curved surface portion can be obtained. According to this manufacturing method, it is said that it is possible to suppress the occurrence of cracking of the ceramic green sheet during bending.

国際公開第2016/084722号パンフレットInternational Publication No. 2016/084722 Pamphlet 特開2015−30233号公報JP, 2005-30233, A

しかしながら、曲面部を有する配向アルミナ焼結体については、特許文献1,2のいずれにも記載も示唆もない。また、特許文献1のようにテープを積層して平板状の成形体としたあと、その成形体を特許文献2のようにバインダーのガラス転移点の10℃以上40℃以下の環境下にて加熱するとともに曲げ加工を行うと、曲げ加工時に割れやしわが入るという問題があった。そのため、特許文献1,2を単に組み合わせただけでは、曲面部を有する配向アルミナ焼結体を得ることはできない。 However, there is no description or suggestion in any of Patent Documents 1 and 2 regarding an oriented alumina sintered body having a curved surface portion. Moreover, after laminating tapes as in Patent Document 1 to form a flat plate-shaped molded product, the molded product is heated in an environment of 10° C. or higher and 40° C. or lower of the glass transition point of the binder as in Patent Document 2. However, when the bending process is performed, there is a problem that cracks and wrinkles are formed during the bending process. Therefore, it is not possible to obtain an oriented alumina sintered body having a curved surface portion by simply combining Patent Documents 1 and 2.

本発明はこのような課題を解決するためになされたものであり、曲面部を有する配向アルミナ焼結体を提供することを主目的とする。 The present invention has been made to solve such a problem, and its main object is to provide an oriented alumina sintered body having a curved surface portion.

本発明の配向アルミナ焼結体は、
曲面部を有する配向アルミナ焼結体であって、
前記曲面部のアルミナ粒子は、前記曲面部の法線方向に結晶配向している、
ものである。
The oriented alumina sintered body of the present invention,
An oriented alumina sintered body having a curved surface portion,
Alumina particles of the curved surface portion, the crystal orientation in the normal direction of the curved surface portion,
It is a thing.

本発明の配向アルミナ焼結体の製法は、
(a)板状アルミナ粉末と平均粒径が前記板状アルミナ粉末の厚みより小さい微細アルミナ粉末とを混合した混合アルミナ粉末100質量部に対して有機バインダーを2〜30質量部含む平板状のアルミナ成形体に、前記有機バインダーのガラス転移点プラス45℃を下限値、前記有機バインダーの分解温度マイナス50℃を上限値とする範囲内で設定された加工温度で曲げ加工を施して曲面部を有するアルミナ成形体を得る工程と、
(b)前記曲面部を有するアルミナ成形体を焼成することにより配向アルミナ焼結体を得る工程と、
を含むものである。
The manufacturing method of the oriented alumina sintered body of the present invention,
(A) A plate-shaped alumina containing 2 to 30 parts by mass of an organic binder with respect to 100 parts by mass of mixed alumina powder in which plate-shaped alumina powder and fine alumina powder having an average particle size smaller than the thickness of the plate-shaped alumina powder are mixed. The molded body is bent at a processing temperature set within a range in which the glass transition point of the organic binder plus 45° C. is a lower limit value, and the decomposition temperature of the organic binder minus 50° C. is an upper limit value. A step of obtaining an alumina molded body,
(B) a step of obtaining an oriented alumina sintered body by firing an alumina formed body having the curved surface portion,
Is included.

本発明の配向アルミナ焼結体の製法によれば、曲面部を備えた配向アルミナ焼結体を比較的容易に製造することができる。 According to the method for producing an oriented alumina sintered body of the present invention, it is possible to relatively easily produce an oriented alumina sintered body having a curved surface portion.

なお、「有機バインダーの分解温度」とは、バインダー単体でTG−DTA測定(昇温速度10℃/分、大気中)を行った場合に10%重量減少したときの温度と定義する。以下には、ガラス転移点をTg、分解温度をTdと略して表記する。 The "decomposition temperature of the organic binder" is defined as the temperature at which the weight is reduced by 10% when TG-DTA measurement (temperature rising rate 10°C/min, in air) is performed on the binder alone. Hereinafter, the glass transition point is abbreviated as Tg, and the decomposition temperature is abbreviated as Td.

曲面部10の斜視図。The perspective view of the curved surface part 10. 図1のA−A断面図。AA sectional drawing of FIG. 曲面部20の斜視図。The perspective view of the curved surface part 20. 配向アルミナ焼結体30の断面図。Sectional drawing of the oriented alumina sintered compact 30. 配向アルミナ焼結体40の断面図。Sectional drawing of the oriented alumina sintered body 40. 観測点P1〜P3の説明図で、(a)は曲面部10の平面図、(b)〜(d)は断面図。4A and 4B are explanatory views of observation points P1 to P3, where FIG. 7A is a plan view of the curved surface portion 10 and FIGS. 観測点P6〜P8の説明図で、(a)は曲面部10の裏面図、(b)〜(d)は断面図。It is explanatory drawing of observation point P6-P8, (a) is a back view of the curved surface part 10, (b)-(d) is sectional drawing. 観測点での法線と配向軸とのなす角度を測定する手法の説明図。Explanatory drawing of the method of measuring the angle which the normal line and the orientation axis at an observation point make. 板状アルミナ粒子の模式図で、(a)は平面図、(b)は正面図。It is a schematic diagram of a plate-like alumina particle, (a) is a top view, (b) is a front view. 下型50の説明図で、(a)は平面図、(b)はB−B断面図。It is an explanatory view of lower mold 50, (a) is a top view and (b) is a BB sectional view. 上型60の説明図で、(a)は平面図、(b)はC−C断面図。It is explanatory drawing of the upper mold 60, (a) is a top view, (b) is CC sectional drawing. 曲げ加工の説明図。Explanatory drawing of bending process. 実験例1で得られたアルミナ焼結体の表面を研磨にて鏡面化した後の外観写真。The appearance photograph after the surface of the alumina sintered body obtained in Experimental Example 1 was mirror-finished by polishing.

本発明の好適な実施形態を以下に示す。本実施形態の配向アルミナ焼結体は、曲面部を有し、その曲面部のアルミナ粒子は、その曲面部の法線方向に結晶配向しているものである。結晶配向している軸は、特に限定するものではなく、c軸、a軸、m軸、r軸などが挙げられるが、このうちc軸が好ましい。曲面部とは、平面でない、連続的に曲がった面の部分のことをいう。 Preferred embodiments of the present invention will be shown below. The oriented alumina sintered body of the present embodiment has a curved surface portion, and the alumina particles on the curved surface portion are crystal-oriented in the normal direction of the curved surface portion. The crystal-oriented axis is not particularly limited, and examples thereof include c-axis, a-axis, m-axis, and r-axis, and among these, c-axis is preferable. The curved surface portion refers to a portion that is not a flat surface but is a continuously curved surface.

曲面部の例を図1〜図3に示す。図1は曲面部10の斜視図、図2は図1のA−A断面図、図3は曲面部20の斜視図である。なお、図1の点線は立体的に見えるように便宜上書き入れたものである。図2は曲面部10の頂点を通りその頂点での法線を含む面で切断したときの断面図である。曲面部10は、球面の一部であり、上面が凸面領域10a、下面が凹面領域10bとなっている。この曲面部10の断面をみると、アルミナ粒子のc軸(図2の矢印)は凸面領域10aの法線方向に配向している。曲面部20は、円筒面の一部である。その他に、曲面部は、図示しないが凹状の湾曲面と凸状の湾曲面とが連続していてもよい。その場合、凹状の湾曲面と凸状の湾曲面との境界がそれぞれの湾曲面の外縁になる。 An example of the curved surface portion is shown in FIGS. 1 is a perspective view of the curved surface portion 10, FIG. 2 is a sectional view taken along the line AA of FIG. 1, and FIG. 3 is a perspective view of the curved surface portion 20. The dotted line in FIG. 1 is drawn for convenience so that it looks three-dimensional. FIG. 2 is a cross-sectional view taken along a plane passing through the apex of the curved surface portion 10 and including a normal line at the apex. The curved surface portion 10 is a part of a spherical surface, and the upper surface thereof is a convex surface area 10a and the lower surface thereof is a concave surface area 10b. Looking at the cross section of the curved surface portion 10, the c-axis of the alumina particles (arrow in FIG. 2) is oriented in the direction normal to the convex surface region 10a. The curved surface portion 20 is a part of a cylindrical surface. In addition, in the curved surface portion, although not shown, a concave curved surface and a convex curved surface may be continuous. In that case, the boundary between the concave curved surface and the convex curved surface becomes the outer edge of each curved surface.

本実施形態の配向アルミナ焼結体は、曲面部のみからなるものでもよいし、曲面部と他の部分とを有するものでもよい。図4は配向アルミナ焼結体30の断面図、図5は配向アルミナ焼結体40の断面図である。配向アルミナ焼結体30は、曲面部32と平面部34とを有するものであり、矢印はアルミナ粒子のc軸を示す。曲面部32は上面も下面もアーチ状である。アルミナ粒子のc軸は曲面部32の凸面領域32aの法線方向に配向すると共に平面部34の表面34aの法線方向に配向している。曲面部32の凸面領域32aと平面部34の表面34aとの境界が凸面領域32aの外縁になる。配向アルミナ焼結体40は、曲面部42と平面部44とを有するものであり、矢印はアルミナ粒子のc軸を示す。曲面部42は上面がアーチ状で下面が平面状である。アルミナ粒子のc軸は曲面部42の凸面領域42aの法線方向に配向すると共に平面部44の表面44aの法線方向に配向している。曲面部42の凸面領域42aと平面部44の表面44aとの境界が凸面領域42aの外縁になる。 The oriented alumina sintered body of the present embodiment may have only a curved surface portion or may have a curved surface portion and other portions. FIG. 4 is a sectional view of the oriented alumina sintered body 30, and FIG. 5 is a sectional view of the oriented alumina sintered body 40. The oriented alumina sintered body 30 has a curved surface portion 32 and a flat surface portion 34, and the arrow indicates the c-axis of alumina particles. The curved surface portion 32 has an arch shape on both the upper surface and the lower surface. The c-axis of the alumina particles is oriented in the normal direction of the convex region 32a of the curved surface portion 32 and the normal direction of the surface 34a of the flat portion 34. The boundary between the convex surface area 32a of the curved surface portion 32 and the surface 34a of the flat surface portion 34 becomes the outer edge of the convex surface area 32a. The oriented alumina sintered body 40 has a curved surface portion 42 and a flat surface portion 44, and the arrow indicates the c-axis of alumina particles. The curved surface 42 has an arched upper surface and a flat lower surface. The c-axis of the alumina particles is oriented in the normal direction of the convex region 42a of the curved surface portion 42 and the normal direction of the surface 44a of the flat portion 44. The boundary between the convex surface region 42a of the curved surface portion 42 and the surface 44a of the flat surface portion 44 becomes the outer edge of the convex surface region 42a.

本実施形態の配向アルミナ焼結体は、配向アルミナ焼結体の断面において、曲面部の少なくとも3つの観測点でそれぞれ法線を引いたとき、各法線上にあるアルミナ粒子のうち配向軸がその法線に対して±15°以内に収まるものの割合が60%以上であることが好ましい。各観測点での法線と配向軸とのなす角度は±12°以内がより好ましく、±10°以内が更に好ましく、±8°以内が一層好ましく、±5°以内が特に好ましい。また、上述の割合は70%以上がより好ましく、80%以上が更に好ましく、90%以上が特に好ましい。また、3つの観測点を決めるにあたっては、曲面部を平面視したときに、曲面部の凸面領域又は凹面領域の極値点を1つめの観測点とし、極値点を通り曲面部の凸面領域又は凹面領域の外縁と交差するように引いた線分の長さが最長となるときのその線分の両端点のそれぞれと極値点との中点(2点)を残り2つの観測点とすることが好ましい。極値点とは、凸面領域では最上点、凹面領域では最下点をいう。 In the oriented alumina sintered body of the present embodiment, when a normal line is drawn at each of at least three observation points on the curved surface portion in the cross section of the oriented alumina sintered body, the orientation axis of the alumina particles on each normal line is It is preferable that the ratio of those falling within ±15° with respect to the normal is 60% or more. The angle between the normal line and the orientation axis at each observation point is more preferably within ±12°, further preferably within ±10°, further preferably within ±8°, and particularly preferably within ±5°. Further, the above-mentioned ratio is more preferably 70% or more, further preferably 80% or more, particularly preferably 90% or more. In determining the three observation points, when the curved surface portion is viewed in plan, the extreme point of the convex surface area or concave surface area of the curved surface portion is set as the first observation point, and the convex area of the curved surface portion is passed through the extreme value point. Or, when the length of a line segment drawn so as to intersect with the outer edge of the concave region becomes the longest, the midpoints (2 points) of each end point of the line segment and the extreme point are the two remaining observation points. Preferably. The extreme point is the highest point in the convex area and the lowest point in the concave area.

図6は曲面部10の凸面領域10aで3つの観測点P1〜P3を決める方法の一例を示す説明図であり、図6(a)は曲面部10の凸面領域10aを平面視したときの平面図である。この図6(a)において、凸面領域10aの極値点(最上点)を通り、凸面領域10aの外縁と交差する2つの交点を両端点とする線分を引く。こうした線分は無数に引くことができるが、その中から長さが最長となる線分を選び、その線分の両端点を交点P4,P5とする。図6(a)では、凸面領域10aの平面図は楕円形であるため、線分の長さが最長となるのは長径である。この場合、3つの観測点のうちの1つは、曲面部10の凸面領域10aの最上点(観測点P1)である。残りの2つは、平面図において、交点P4と観測点P1とを結んだ線分の中点(観測点P2)と、交点P5と観測点P1とを結んだ線分の中点(観測点P3)である。そして、観測点P1での法線上にあるアルミナ粒子の配向性を調べるには、観測点P1を通り観測点P1での法線NL1を含む面で凸面領域10aを切断したときの断面図(図6(b)参照)を用いる。観測点P2の法線上にあるアルミナ粒子の配向性を調べるには、観測点P2を通り観測点P2での法線NL2を含む面で凸面領域10aを切断したときの断面図(図6(c)参照)を用いる。観測点P3の法線上にあるアルミナ粒子の配向性を調べるには、観測点P3を通り観測点P3での法線NL3を含む面で凸面領域10aを切断したときの断面図(図6(d)参照)を用いる。なお、観測点P2での法線NL2が図6(b)に示す観測点P1の断面と同一面上にあるときには、観測点P2の断面は観測点P1の断面と一致するが、それ以外のときには、観測点P2の断面は観測点P1の断面と一致しない。観測点P3の断面についても同様である。 FIG. 6 is an explanatory diagram showing an example of a method of determining three observation points P1 to P3 on the convex surface area 10a of the curved surface portion 10, and FIG. 6A is a plan view of the convex surface area 10a of the curved surface portion 10 in plan view. It is a figure. In FIG. 6(a), a line segment is drawn which has two end points as two intersections that pass through the extreme points (uppermost points) of the convex area 10a and intersect the outer edge of the convex area 10a. Although such line segments can be drawn innumerably, a line segment having the longest length is selected from the line segments, and both end points of the line segment are defined as intersection points P4 and P5. In FIG. 6A, since the plan view of the convex surface area 10a is elliptical, the longest line segment has a long diameter. In this case, one of the three observation points is the highest point (observation point P1) of the convex area 10a of the curved surface portion 10. The remaining two are the midpoint of the line segment connecting the intersection P4 and the observation point P1 (observation point P2) and the midpoint of the line segment connecting the intersection P5 and the observation point P1 (observation point in the plan view). P3). Then, in order to investigate the orientation of the alumina particles on the normal line at the observation point P1, a cross-sectional view of the convex region 10a taken along a plane passing through the observation point P1 and including the normal line NL1 at the observation point P1 (FIG. 6(b)) is used. To examine the orientation of the alumina particles on the normal line of the observation point P2, a cross-sectional view of the convex region 10a taken along a plane passing through the observation point P2 and including the normal line NL2 at the observation point P2 (FIG. 6(c ) Reference) is used. In order to examine the orientation of the alumina particles on the normal line of the observation point P3, a cross-sectional view of the convex region 10a taken along a plane passing through the observation point P3 and including the normal line NL3 at the observation point P3 (see FIG. 6(d ) Reference) is used. When the normal line NL2 at the observation point P2 is on the same plane as the cross section of the observation point P1 shown in FIG. 6B, the cross section of the observation point P2 matches the cross section of the observation point P1. Sometimes, the cross section of the observation point P2 does not match the cross section of the observation point P1. The same applies to the cross section of the observation point P3.

図7は曲面部10の凹面領域10bで3つの観測点P6〜P8を決める方法の一例を示す説明図であり、図7(a)は曲面部10の凹面領域10bを平面視したときの平面図である。この図7(a)において、凹面領域10bの極値点(最下点)を通り、凹面領域10bの外縁と交差する2つの交点を両端点とする線分を引く。こうした線分は無数に引くことができるが、その中から長さが最長となる線分を選び、その線分の両端点を交点P9,P10とする。図7(a)では、凹面領域10bの平面図は楕円形であるため、線分の長さが最長となるのは長径である。この場合、3つの観測点のうちの1つは、曲面部10の凹面領域10bの最下点(観測点P6)である。残りの2つは、平面図において、交点P9と観測点P6とを結んだ線分の中点(観測点P7)と、交点P10と観測点P6とを結んだ線分の中点(観測点P8)である。そして、観測点P6の法線上にあるアルミナ粒子の配向性を調べるには、観測点P6を通り観測点P6での法線NL6を含む面で凹面領域10bを切断したときの断面図(図7(b)参照)を用いる。観測点P7の法線上にあるアルミナ粒子の配向性を調べるには、観測点P7を通り観測点P7での法線NL7を含む面で凹面領域10bを切断したときの断面図(図7(c)参照)を用いる。観測点P8の法線上にあるアルミナ粒子の配向性を調べるには、観測点P8を通り観測点P8での法線NL8を含む面で凹面領域10bを切断したときの断面図(図7(d)参照)を用いる。なお、観測点P7での法線NL7が図7(b)に示す観測点P6の断面と同一面上にあるときには、観測点P7の断面は観測点P6の断面と一致するが、それ以外のときには、観測点P7の断面は観測点P6の断面と一致しない。観測点P8の断面についても同様である。 FIG. 7 is an explanatory diagram showing an example of a method of determining three observation points P6 to P8 in the concave surface area 10b of the curved surface portion 10, and FIG. 7A is a plan view of the concave surface area 10b of the curved surface portion 10 in plan view. It is a figure. In FIG. 7A, a line segment having two end points that intersect the outer edge of the concave surface area 10b and pass through the extreme points (bottom points) of the concave surface area 10b is drawn. Although such a line segment can be drawn innumerably, the line segment having the longest length is selected from the line segments, and both end points of the line segment are defined as intersection points P9 and P10. In FIG. 7A, since the plan view of the concave surface region 10b is elliptical, the longest line segment has a long diameter. In this case, one of the three observation points is the lowest point (observation point P6) of the concave area 10b of the curved surface portion 10. The remaining two are the midpoint of the line segment connecting the intersection P9 and the observation point P6 (observation point P7) and the midpoint of the line segment connecting the intersection P10 and the observation point P6 (observation point in the plan view). P8). Then, in order to investigate the orientation of the alumina particles on the normal line of the observation point P6, a cross-sectional view of the concave region 10b taken along a plane passing through the observation point P6 and including the normal line NL6 at the observation point P6 (FIG. (See (b)) is used. In order to examine the orientation of the alumina particles on the normal line of the observation point P7, a cross-sectional view of the concave region 10b taken along a plane passing through the observation point P7 and including the normal line NL7 at the observation point P7 (FIG. 7(c ) Reference) is used. In order to examine the orientation of the alumina particles on the normal line of the observation point P8, a cross-sectional view of the concave region 10b taken along a plane passing through the observation point P8 and including the normal line NL8 at the observation point P8 (see FIG. 7(d ) Reference) is used. When the normal line NL7 at the observation point P7 is on the same plane as the cross section of the observation point P6 shown in FIG. 7B, the cross section of the observation point P7 coincides with the cross section of the observation point P6. Sometimes, the cross section of the observation point P7 does not match the cross section of the observation point P6. The same applies to the cross section of the observation point P8.

各観測点での法線と配向軸とのなす角度は、図8のようにして測定することができる。図8は観測点での法線と配向軸とのなす角度を測定する手法の説明図である。まず、本実施形態の配向アルミナ焼結体を切断する。例えば、配向アルミナ焼結体の曲面部が図6(a)の凸面領域10aを含む場合、3つの観測点P1〜P3のそれぞれについて図6(b)〜(d)の断面が得られるように切断する。また、配向アルミナ焼結体の曲面部の図7(a)の凹面領域10bを含む場合、3つの観測点P6〜P8のそれぞれについて図7(b)〜(d)の断面が得られるように切断する。このように切断した断面をイオンミリングによって研磨したあと、その研磨した断面を走査型電子顕微鏡を用いてEBSD(Electron Back Scatter Diffraction Patterns)測定を行う。そして、各観測点で法線を引き、配向アルミナ焼結体の厚み方向に並んだアルミナ粒子のうちこの法線に接触するアルミナ粒子(図8でグレーで示したアルミナ粒子)を決定する。そして、観測点での法線とこの法線に接触するアルミナ粒子のc軸との角度を求める。 The angle formed by the normal line and the orientation axis at each observation point can be measured as shown in FIG. FIG. 8 is an explanatory diagram of a method for measuring the angle formed by the normal line at the observation point and the orientation axis. First, the oriented alumina sintered body of the present embodiment is cut. For example, when the curved surface portion of the oriented alumina sintered body includes the convex area 10a of FIG. 6A, the cross sections of FIGS. 6B to 6D are obtained for each of the three observation points P1 to P3. Disconnect. When the curved surface portion of the oriented alumina sintered body includes the concave region 10b of FIG. 7A, the cross sections of FIGS. 7B to 7D are obtained for each of the three observation points P6 to P8. Disconnect. After the cross section thus cut is polished by ion milling, the polished cross section is subjected to EBSD (Electron Back Scatter Diffraction Patterns) measurement using a scanning electron microscope. Then, a normal line is drawn at each observation point, and among the alumina particles arranged in the thickness direction of the oriented alumina sintered body, the alumina particles (alumina particles shown in gray in FIG. 8) that come into contact with this normal line are determined. Then, the angle between the normal line at the observation point and the c-axis of the alumina particles in contact with this normal line is obtained.

本実施形態の配向アルミナ焼結体は、高密度、高純度とすることで透明性を得ることができる。即ち、透明性の観点では、高密度、高純度、高配向であることが好ましい。曲面部の法線方向に配向した透明配向アルミナ焼結体は、その表面を鏡面研磨することで、曲面部を有するスマートフォン、スマートウォッチ、腕時計等のカバーガラス、各種窓材、レンズ等の光学部材などに用いることができる。曲面部の法線方向に配向した透明な配向アルミナ焼結体は、バルク状の透明配向アルミナ焼結体を加工・切削して曲面部を付与した焼結体と比較して、法線方向から見た際の透明性が高いという特徴を有する。 The oriented alumina sintered body of the present embodiment can have transparency by having high density and high purity. That is, from the viewpoint of transparency, high density, high purity, and high orientation are preferable. The transparent oriented alumina sintered body oriented in the normal direction of the curved surface portion is a mirror-polished surface of the surface, and is a cover glass for smartphones, smart watches, wristwatches, etc. having curved surface portions, various window materials, optical members such as lenses. It can be used for The transparent oriented alumina sintered body that is oriented in the normal direction of the curved surface section is more transparent than the sintered body in which a curved transparent oriented alumina sintered body is processed and cut to give the curved surface section. It is characterized by high transparency when viewed.

本実施形態の配向アルミナ焼結体の製法は、(a)板状アルミナ粉末と平均粒径が前記板状アルミナ粉末の厚みより小さい微細アルミナ粉末とを混合した混合アルミナ粉末100質量部に対して有機バインダーを2〜30質量部含む平板状のアルミナ成形体に、前記有機バインダーのTgプラス45℃を下限値、前記有機バインダーのTdマイナス50℃を上限値とする範囲内で設定された加工温度で曲げ加工を施して曲面部を有するアルミナ成形体を得る工程と、(b)前記曲面部を有するアルミナ成形体を焼成することにより配向アルミナ焼結体を得る工程と、を含むものである。 The manufacturing method of the oriented alumina sintered body of the present embodiment is as follows: (a) 100 parts by mass of mixed alumina powder obtained by mixing plate-like alumina powder and fine alumina powder having an average particle size smaller than the thickness of the plate-like alumina powder. Processing temperature set in a flat alumina molded body containing 2 to 30 parts by mass of an organic binder in a range in which Tg of the organic binder is 45° C. as a lower limit and Td of the organic binder is 50° C. as an upper limit. And a step of obtaining an alumina molded body having a curved surface portion by (1) and (b) obtaining an oriented alumina sintered body by firing the alumina molded body having a curved surface portion.

工程(a)では、アルミナ成形体を作製するためのアルミナ原料として、板状アルミナ粉末と平均粒径が板状アルミナ粉末よりも小さい微細アルミナ粉末とを混合した混合粉末を用いることが好ましい。このようにすることで、板状アルミナ粉末が種結晶(テンプレート)となり、微細アルミナ粉末がマトリックスとなって、テンプレートがマトリックスを取り込みながらホモエピタキシャル成長する。こうした製法は、TGG(Templated Grain Growth)法と呼ばれる。TGG法では、板状アルミナ粉末と微細アルミナ粉末の粒径や混合比によって、得られるアルミナ焼結体の微細構造を制御することができ、板状アルミナ粉末単体を焼成する場合に比べて緻密化しやすく、配向度が向上しやすい。 In the step (a), it is preferable to use a mixed powder obtained by mixing a plate-shaped alumina powder and a fine alumina powder having an average particle size smaller than that of the plate-shaped alumina powder as an alumina raw material for producing the alumina molded body. By doing so, the plate-like alumina powder serves as a seed crystal (template), the fine alumina powder serves as a matrix, and the template undergoes homoepitaxial growth while taking in the matrix. Such a manufacturing method is called a TGG (Templated Grain Growth) method. In the TGG method, the fine structure of the obtained alumina sintered body can be controlled by the particle size and the mixing ratio of the plate-like alumina powder and the fine alumina powder, and the densification can be performed as compared with the case of firing the plate-like alumina powder alone. It is easy to improve the degree of orientation.

混合粉末中の板状アルミナ粉末の含有量は、特に限定されるものではなく、100質量%でもよいが、0.1〜50質量%が好ましい。0.1質量%未満だと得られるアルミナ焼結体のc面配向度が高くなりにくく、50質量%を超えるとアルミナが焼結しにくくなるおそれがあるからである。板状アルミナ粉末の含有量は、0.1〜15質量%がより好ましく、0.5〜5質量%が更に好ましく、1.5〜5質量%が特に好ましい。こうすれば、得られるc面配向度が十分高くなるし、高価な板状アルミナの使用量が比較的少ないためコスト的に有利である。得られるアルミナ焼結体の配向度を上げるという観点からすると、板状アルミナ粉末を構成する粒子の厚みは微細アルミナ粉末の粒子の平均粒径より大きいことが好ましい。また、板状アルミナ粉末を構成する板状粒子の板面の粒径は高配向化の観点からは大きい方が好ましく、1.5μm以上が好ましく、5μm以上がより好ましく、10μm以上が更に好ましく、15μm以上が特に好ましい。但し、緻密化の観点では板面の粒径が小さい方が好ましく、30μm以下が好ましい。こうしたことから、高配向と緻密化を両立するには板面の粒径が1.5〜20μmであることが好ましい。板状アルミナ粉末は高純度のものを用いることが好ましい。板状アルミナ粉末の純度は99質量%以上が好ましく、99.9質量%以上がより好ましく、99.99質量%以上が更に好ましい。但し、焼成中に揮発消失する不純物元素は含んでいてもよく、例えばFやSなどの元素は含まれていてもよい。 The content of the plate-like alumina powder in the mixed powder is not particularly limited and may be 100% by mass, but 0.1 to 50% by mass is preferable. This is because if it is less than 0.1% by mass, the degree of c-plane orientation of the obtained alumina sintered body is unlikely to be high, and if it exceeds 50% by mass, alumina may be difficult to sinter. The content of the plate-shaped alumina powder is more preferably 0.1 to 15% by mass, further preferably 0.5 to 5% by mass, and particularly preferably 1.5 to 5% by mass. In this case, the degree of c-plane orientation obtained is sufficiently high, and the amount of expensive plate-like alumina used is relatively small, which is advantageous in terms of cost. From the viewpoint of increasing the degree of orientation of the obtained alumina sintered body, the thickness of the particles forming the plate-like alumina powder is preferably larger than the average particle diameter of the particles of the fine alumina powder. Further, the particle size of the plate surface of the plate-like particles constituting the plate-like alumina powder is preferably large from the viewpoint of high orientation, preferably 1.5 μm or more, more preferably 5 μm or more, further preferably 10 μm or more, 15 μm or more is particularly preferable. However, from the viewpoint of densification, it is preferable that the grain size of the plate surface is small, and 30 μm or less is preferable. Therefore, in order to achieve both high orientation and densification, it is preferable that the grain size of the plate surface is 1.5 to 20 μm. The plate-like alumina powder is preferably of high purity. The purity of the plate-like alumina powder is preferably 99% by mass or more, more preferably 99.9% by mass or more, and further preferably 99.99% by mass or more. However, an impurity element that volatilizes and disappears during firing may be included, and for example, an element such as F or S may be included.

工程(a)では、有機バインダーとして、ポリマーを用いることが好ましく、ブチラール系ポリマー、アクリル系ポリマー又はメタクリル系ポリマーを用いることがより好ましい。ブチラール系ポリマーとしては、例えばポリビニルブチラールが挙げられる。積水化学製のBM−2はブチラール系ポリマーであり、Tgが67℃、Tdが350℃である。アクリル系ポリマーとしては、例えばアクリル酸エステルポリマーが挙げられる。共栄社化学製のKC7025Tは、アクリル系ポリマーであり、Tgが56℃、Tdが235℃である。メタクリル系ポリマーとしては、例えばメタクリル酸エステルポリマーが挙げられる。根上工業製のM6003は、メタクリル系ポリマーであり、Tgが20℃、Tdが244℃である。 In the step (a), it is preferable to use a polymer as the organic binder, and it is more preferable to use a butyral-based polymer, an acrylic-based polymer or a methacrylic-based polymer. Examples of the butyral-based polymer include polyvinyl butyral. BM-2 manufactured by Sekisui Chemical Co., Ltd. is a butyral-based polymer and has Tg of 67° C. and Td of 350° C. Examples of acrylic polymers include acrylic acid ester polymers. Kyoeisha Chemical's KC7025T is an acrylic polymer having a Tg of 56°C and a Td of 235°C. Examples of methacrylic polymers include methacrylic acid ester polymers. Negami Kogyo's M6003 is a methacrylic polymer and has Tg of 20°C and Td of 244°C.

工程(a)では、アルミナ原料100質量部に対して、有機バインダーを2〜30質量部添加する。有機バインダーの添加量は4〜15質量部がより好ましい。可塑剤は、アルミナ原料100質量部に対して、0.5〜25質量部添加するのが好ましく、2〜8質量部添加するのがより好ましい。 In the step (a), 2 to 30 parts by mass of an organic binder is added to 100 parts by mass of the alumina raw material. The addition amount of the organic binder is more preferably 4 to 15 parts by mass. The plasticizer is preferably added in an amount of 0.5 to 25 parts by mass, more preferably 2 to 8 parts by mass, based on 100 parts by mass of the alumina raw material.

工程(a)では、平板状のアルミナ成形体を作製する方法は、テープ成形、押出成形、鋳込み成形、ゲルキャスト成形、射出成形、一軸プレス成形、及びそれらと磁場配向の組み合わせ等、板状アルミナ粉末が配向する方法であればどのようなものでもよい。このうち、テープ成形が好ましい。 In the step (a), a method for producing a flat-plate-shaped alumina molded body includes tape-shaped, extrusion-molded, cast-molded, gel-cast molding, injection-molded, uniaxial press-molded, and combinations thereof with plate-shaped alumina. Any method may be used as long as the powder is oriented. Of these, tape molding is preferable.

工程(a)では、平板状のアルミナ成形体の曲げ加工は、平板状のアルミナ成形体を曲げ加工用の型に入れて加熱後、一軸プレス又は冷間等方圧加圧(CIP)処理を行うことが好ましい。加熱温度は、有機バインダーのTgプラス45℃を下限値、Tdマイナス50℃を上限値とする範囲内で設定するのが好ましい。加熱温度が下限値を下回ると、平板状のアルミナ成形体の軟化が不十分であったり、曲げ加工中に割れやしわ等が生じるおそれがあるため、好ましくない。 In the step (a), the flat plate-shaped alumina molded body is bent by placing the flat-plate-shaped alumina molded body in a bending mold and heating it, followed by uniaxial pressing or cold isostatic pressing (CIP) treatment. It is preferable to carry out. The heating temperature is preferably set within a range in which Tg plus 45° C. of the organic binder is a lower limit value and Td minus 50° C. is an upper limit value. If the heating temperature is lower than the lower limit, the flat alumina molded body may be insufficiently softened, or cracks, wrinkles, and the like may occur during bending, which is not preferable.

工程(b)では、曲面部を有するアルミナ成形体を脱脂後、焼成することにより配向アルミナ焼結体を得る。また、焼成体の形状を維持するには、アルミナ成形体の密度が高い方が好ましい。このため、成形体の密度を高めるという観点においては、アルミナ成形体や脱脂体に一軸プレス又はCIP処理を行い密度を高めておくのが好ましい。 In the step (b), the oriented alumina sintered body is obtained by degreasing the alumina molded body having a curved surface portion and then firing it. Further, in order to maintain the shape of the fired body, it is preferable that the density of the alumina formed body is high. Therefore, from the viewpoint of increasing the density of the molded body, it is preferable to uniaxially press or CIP the alumina molded body or degreased body to increase the density.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It is needless to say that the present invention is not limited to the above-described embodiment and can be implemented in various modes within the technical scope of the present invention.

[実験例1]
1.アルミナ焼結体の作製
(1)板状アルミナ粉末の作製
高純度γ−アルミナ粉末(TM−300D、大明化学製)96質量部と、高純度AlF3粉末(関東化学製、鹿特級)4質量部と、種結晶として高純度α−アルミナ粉末(TM−DAR、大明化学製、D50=1μm)0.17質量部とを、溶媒をIPA(イソプロピルアルコール)としてφ2mmのアルミナボールを用いて5時間ポットミルで混合した。ポットミル混合した後、IPAをエバポレータにて乾燥し、混合粉末を得た。得られた混合粉末300gを純度99.5質量%の高純度アルミナ製のさや(容積750cm3)に入れ、純度99.5質量%の高純度アルミナ製の蓋をして電気炉内でエアフロー中、900℃、3時間熱処理した。エアーの流量は25000cc/minとした。熱処理後の粉末を大気中、1150℃で42.5時間アニール処理した後、φ2mmのアルミナボールを用いて4時間粉砕して平均粒径2μm、厚み0.3μm、アスペクト比約7の板状アルミナ粉末を得た。粒子の平均粒径、平均厚み、アスペクト比は、走査型電子顕微鏡(SEM)で板状アルミナ粉末中の任意の粒子100個を観察して決定した。平均粒径は、粒子板面の長軸長の平均値、平均厚みは、粒子の短軸長(厚み)の平均値、アスペクト比は、平均粒径/平均厚みである。図9は、板状アルミナ粒子の模式図であり、(a)は平面図、(b)は正面図である。板状アルミナ粒子は、平面視したときの形状が略六角形状であり、その粒径は図9(a)に示したとおりであり、厚みは図9(b)に示したとおりである。
[Experimental Example 1]
1. Preparation of Alumina Sintered Body (1) Preparation of Plate Alumina Powder 96 parts by mass of high-purity γ-alumina powder (TM-300D, manufactured by Daimei Kagaku) and 4 parts by mass of high-purity AlF 3 powder (manufactured by Kanto Chemical, deer special grade). Parts and 0.17 parts by mass of high-purity α-alumina powder (TM-DAR, manufactured by Daimei Kagaku Co., D50=1 μm) as seed crystals, using an alumina ball of φ2 mm as a solvent for IPA (isopropyl alcohol) for 5 hours. Mixed in pot mill. After mixing with a pot mill, IPA was dried with an evaporator to obtain a mixed powder. 300 g of the obtained mixed powder is put into a sheath (volume 750 cm 3 ) made of high-purity alumina having a purity of 99.5% by mass, a lid made of high-purity alumina having a purity of 99.5% by mass is put, and air flow is performed in an electric furnace. Heat treatment was performed at 900° C. for 3 hours. The flow rate of air was 25,000 cc/min. The heat-treated powder is annealed in air at 1150° C. for 42.5 hours, and then pulverized for 4 hours using alumina balls of φ2 mm to obtain a plate-like alumina having an average particle diameter of 2 μm, a thickness of 0.3 μm, and an aspect ratio of about 7. A powder was obtained. The average particle diameter, average thickness, and aspect ratio of the particles were determined by observing 100 arbitrary particles in the plate-like alumina powder with a scanning electron microscope (SEM). The average particle diameter is the average value of the major axis length of the particle plate surface, the average thickness is the average value of the minor axis length (thickness) of the particles, and the aspect ratio is the average particle diameter/average thickness. FIG. 9 is a schematic view of plate-like alumina particles, (a) is a plan view and (b) is a front view. The plate-like alumina particles have a substantially hexagonal shape when viewed in a plan view, the particle size thereof is as shown in FIG. 9(a), and the thickness is as shown in FIG. 9(b).

(2)テープ成形及び曲げ加工
上記(1)で作製した板状アルミナ粉末2.0質量部と、平均粒径がこの板状アルミナ粉末の厚みより小さい微細アルミナ粉末(AKP−20、住友化学製)98.0質量部とを混合した。この混合アルミナ粉末100質量部に対し、酸化マグネシウム(500A、宇部マテリアルズ製)0.025質量部と、バインダーとしてポリビニルブチラール(品番BM−2、積水化学工業製)8質量部と、可塑剤としてジ(2−エチルヘキシル)フタレート(黒金化成製)4質量部と、分散剤としてトリオレイン酸ソルビタン(レオドールSP−O30、花王製)0.5質量部と、分散媒としてキシレンとブタノールの1:1混合溶液とを加えて混合した。分散媒の量は、スラリー粘度が20000cPとなるように調整した。このようにして調製されたスラリーを、ドクターブレード法によってPETフィルムの上に乾燥後の厚さが40μmとなるようにシート状に成形し、テープ成形体を得た。
(2) Tape forming and bending process 2.0 parts by mass of the plate-like alumina powder prepared in (1) above and fine alumina powder having an average particle size smaller than the thickness of the plate-like alumina powder (AKP-20, manufactured by Sumitomo Chemical Co., Ltd. ) 98.0 parts by mass were mixed. With respect to 100 parts by mass of this mixed alumina powder, 0.025 parts by mass of magnesium oxide (500A, manufactured by Ube Materials), 8 parts by mass of polyvinyl butyral (product number BM-2, manufactured by Sekisui Chemical Co., Ltd.) as a binder, and a plasticizer 4 parts by mass of di(2-ethylhexyl) phthalate (manufactured by Kurogane Kasei), 0.5 part by mass of sorbitan trioleate (Reodol SP-O30, manufactured by Kao) as a dispersant, and xylene and butanol as a dispersion medium 1: 1 mixed solution was added and mixed. The amount of the dispersion medium was adjusted so that the slurry viscosity would be 20000 cP. The slurry thus prepared was molded into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 40 μm to obtain a tape molded body.

上述した厚さ40μmのテープ成形体をφ47mmに切断し、それを30枚積層して積層体とし、その積層体に曲げ加工を施した。曲げ加工は、下型50及び上型60を用いて行った。図10は下型50の説明図で、(a)は平面図、(b)はB−B断面図である。図11は上型60の説明図で、(a)は平面図、(b)はC−C断面図である。下型50は、上面に円形凹部52を有する金型である。円形凹部52の底面は、凹曲面52aとなっている。上型60は、下面に円形凸部62を有する金型である。円形凸部62の表面は、凸曲面62aとなっている。本実験例では、円形凹部52及び円形凸部62はφ47mm、凹曲面52a及び凸曲面62aの曲率半径は160mmとした。図12は曲げ加工の説明図である。上述した積層体を下型50の円形凹部52に置いて上から上型60で挟み、一軸プレス成形機(プレス部上下面に加熱機構を有する)にセットした。そして、一軸プレス成形機で20kgf/cm2の圧力を掛けながら、120℃にて10min加熱した後、166kgf/cm2の圧力にて1min、一軸プレスを行ない、曲面形状成形体を得た。The above-mentioned tape molded body having a thickness of 40 μm was cut into φ47 mm, and 30 pieces were laminated to form a laminated body, and the laminated body was bent. The bending process was performed using the lower mold 50 and the upper mold 60. 10A and 10B are explanatory views of the lower mold 50, FIG. 10A is a plan view, and FIG. 10B is a sectional view taken along line BB. 11A and 11B are explanatory views of the upper mold 60. FIG. 11A is a plan view and FIG. 11B is a cross-sectional view taken along line CC. The lower die 50 is a die having a circular recess 52 on the upper surface. The bottom surface of the circular recess 52 is a concave curved surface 52a. The upper die 60 is a die having a circular convex portion 62 on the lower surface. The surface of the circular convex portion 62 is a convex curved surface 62a. In this experimental example, the circular concave portion 52 and the circular convex portion 62 were φ47 mm, and the radius of curvature of the concave curved surface 52a and the convex curved surface 62a was 160 mm. FIG. 12 is an explanatory diagram of bending work. The above-mentioned laminated body was placed in the circular recess 52 of the lower mold 50, sandwiched by the upper mold 60 from above, and set in a uniaxial press molding machine (having a heating mechanism on the upper and lower surfaces of the press part). Then, while applying a pressure of 20 kgf/cm 2 with a uniaxial press molding machine, the mixture was heated at 120° C. for 10 minutes, and then uniaxially pressed at a pressure of 166 kgf/cm 2 for 1 minute to obtain a curved shaped article.

バインダーとして用いたポリビニルブチラール(品番BM−2、積水化学工業製)のTgは67℃、Tdは350℃である。そのため、曲げ加工時の温度は(Tg+45)℃以上(Td−50)℃以下の範囲、つまり112℃以上300℃以下の範囲で設定すればよく、ここでは120℃に設定した。 Polyvinyl butyral (product number BM-2, manufactured by Sekisui Chemical Co., Ltd.) used as a binder has Tg of 67° C. and Td of 350° C. Therefore, the temperature during bending may be set in the range of (Tg+45)° C. or higher and (Td-50)° C. or lower, that is, in the range of 112° C. or higher and 300° C. or lower, and is set to 120° C. here.

(3)焼成
得られた曲面形状成形体を脱脂炉中に配置し、600℃で10時間の条件で脱脂を行った。得られた脱脂体をアルミナ製の鞘に入れ、大気中、1550℃で4時間の条件で常圧焼成し、焼成体を作製した。作製した焼成体をアルミナ製の鞘に入れ、熱間等方圧加圧法(HIP)処理をArガス、圧力185MPa、1900℃で2時間の条件で行った。
(3) Firing The obtained curved surface-shaped molded body was placed in a degreasing furnace and degreased at 600° C. for 10 hours. The obtained degreased body was put in an alumina sheath, and calcined under atmospheric pressure at 1550° C. for 4 hours under atmospheric pressure to prepare a calcined body. The fired body thus prepared was put in an alumina sheath, and hot isostatic pressing (HIP) treatment was performed under the conditions of Ar gas, pressure of 185 MPa, and 1900° C. for 2 hours.

2.アルミナ焼結体の特性
(1)EBSD測定
得られたアルミナ焼結体を断面が凸面側曲面の3つの観測点P1〜P3のそれぞれにおいて、法線を含むように切断し、断面をダイヤモンド砥粒を用いて予備研磨した後、クロスセクションポリッシャ(CP)(日本電子製、IB−09010CP)で研磨した。CPはイオンミリングの範疇に属する。観測点P1〜P3については、既述した方法によって決定した(図6参照)。その得られた断面にカーボン蒸着し、EBSD(オックスフォード・インストゥルメンツ株式会社製、Nordlys Nano)を組み合わせた走査型電子顕微鏡(日立ハイテクノロジーズ製、SU−5000)を用いて、EBSD測定を行った。EBSD測定の諸条件は以下のとおりとした。
2. Characteristics of Alumina Sintered Body (1) EBSD Measurement The obtained alumina sintered body was cut so as to include a normal line at each of three observation points P1 to P3 on the convex side curved surface, and the cross section was diamond abrasive grain. After being preliminarily polished by using, a cross section polisher (CP) (manufactured by JEOL Ltd., IB-09010CP) was used for polishing. CP belongs to the category of ion milling. The observation points P1 to P3 were determined by the method described above (see FIG. 6). Carbon was vapor-deposited on the obtained cross section, and EBSD measurement was performed using a scanning electron microscope (SU-5000 manufactured by Hitachi High-Technologies Corporation) in combination with EBSD (Nordlys Nano manufactured by Oxford Instruments). .. The various conditions for the EBSD measurement are as follows.

<EBSD測定条件>
測定プログラム:AZtec(version3.3)
・加速電圧:15kV
・スポットサイズ:70
・ワークディスタンス:20mm
・ステップ幅:5μm
・試料傾斜角:70°
・EBSDカメラピニングモード:1×1
・フレーム平均:5フレーム
・静的バックグラウンド補正:オン
・自動バックグラウンド補正:オン
・Z軸の規定:サンプル台座表面に対し法線方向をZとする
<結晶方位マップ作成>
解析プログラム:OXFORD HKL CHANNEL5 (version 5.12.57.0)
・ソフト内のアプリケーション「Tango」を使用し、Texturecomponentマップ(結晶方位マップ)を作成
・Desciption methodはFibre textureとし、Z方向を基軸として、任意の結晶面(c軸配向の場合0001面)の傾きを0〜90°の範囲でマッピング
<EBSD measurement conditions>
Measurement program: AZtec (version 3.3)
・Acceleration voltage: 15 kV
・Spot size: 70
・Work distance: 20mm
・Step width: 5 μm
・Sample tilt angle: 70°
・EBSD camera pinning mode: 1×1
・Frame average: 5 frames ・Static background correction: ON ・Automatic background correction: ON ・Z-axis specification: Z is the normal direction to the sample pedestal surface <Crystal orientation map creation>
Analysis program: OXFORD HKL CHANNEL5 (version 5.12.57.0)
-Use the application "Tango" in the software to create a Texture component map (Crystal orientation map). Mapping in the range 0-90°

(2)c軸配向の割合
観測点P1での切断面において観測点P1から法線を引いた場合に、アルミナ粒子が20〜50個となるような視野で結晶方位マッピングを行った。このとき、法線と接触する厚み方向のすべての粒子の結晶方位が評価できるように複数の連続した視野で測定した。次に、凸面側曲面の観測点P1から引いた法線と接触する全てのアルミナ粒子の結晶方位を調べた。観測点P2,P3においても同様に測定を行い、結晶方位を調べた。得られた結果より、観測点P1〜P3のそれぞれについて、法線に対して±15°以内にc軸配向している粒子の割合Rを以下の式を用いて算出した。その結果を表1に示す。
R=(No/Nt)×100[%]
Nt:観測点での法線上(アルミナ焼結体の厚み方向)に存在する全ての粒子の数
No:観測点での法線に対して±15°以内にc軸が配向している法線上の粒子の数
(2) Ratio of c-axis orientation Crystal orientation mapping was performed in a visual field such that 20 to 50 alumina particles were obtained when a normal line was drawn from the observation point P1 on the cut surface at the observation point P1. At this time, measurement was performed in a plurality of continuous visual fields so that the crystal orientations of all particles in the thickness direction in contact with the normal line could be evaluated. Next, the crystal orientations of all the alumina particles in contact with the normal line drawn from the observation point P1 on the convex side curved surface were examined. The same measurement was carried out at the observation points P2 and P3 to examine the crystal orientation. From the obtained results, the ratio R of particles having c-axis orientation within ±15° with respect to the normal line was calculated for each of the observation points P1 to P3 using the following formula. The results are shown in Table 1.
R=(No/Nt)×100[%]
Nt: Number of all particles existing on the normal line at the observation point (thickness direction of the alumina sintered body) No: On the normal line where the c-axis is oriented within ±15° with respect to the normal line at the observation point Number of particles

[実験例2]
アルミナ焼結体を作製するにあたり、上記1.(2)のテープ成形において微細アルミナ粉末として、アルミナ粉末(AKP−50、住友化学製)を使用したこと以外は、実験例1と同様にしてアルミナ焼結体を作製し、観測点P1〜P3における割合Rを求めた。その結果を表1に示す。
[Experimental Example 2]
In producing the alumina sintered body, the above 1. An alumina sintered body was prepared in the same manner as in Experimental Example 1 except that alumina powder (AKP-50, manufactured by Sumitomo Chemical Co., Ltd.) was used as the fine alumina powder in the tape molding of (2), and observation points P1 to P3. The ratio R in was calculated. The results are shown in Table 1.

[実験例3]
アルミナ焼結体を作製するにあたり、上記1.(2)の曲げ加工において一軸プレス成形時の加熱温度を115℃にしたこと以外は、実験例2と同様にしてアルミナ焼結体を作製し、観測点P1〜P3における割合Rを求めた。その結果を表1に示す。
[Experimental Example 3]
In producing the alumina sintered body, the above 1. In the bending process of (2), an alumina sintered body was produced in the same manner as in Experimental Example 2 except that the heating temperature at the time of uniaxial press forming was 115° C., and the ratio R at the observation points P1 to P3 was obtained. The results are shown in Table 1.

[実験例4]
アルミナ焼結体を作製するにあたり、上記1.(2)の曲げ加工において一軸プレス成形時の加熱温度を290℃にしたこと以外は、実験例2と同様にしてアルミナ焼結体を作製し、観測点P1〜P3における割合Rを求めた。その結果を表1に示す。
[Experimental Example 4]
In producing the alumina sintered body, the above 1. In the bending process of (2), an alumina sintered body was prepared in the same manner as in Experimental Example 2 except that the heating temperature during uniaxial press molding was 290° C., and the ratio R at the observation points P1 to P3 was obtained. The results are shown in Table 1.

[実験例5]
アルミナ焼結体を作製するにあたり、上記1.(2)のテープ成形においてバインダーを5質量部使用したこと以外は、実験例2と同様にしてアルミナ焼結体を作製し、観測点P1〜P3における割合Rを求めた。その結果を表1に示す。
[Experimental Example 5]
In producing the alumina sintered body, the above 1. An alumina sintered body was produced in the same manner as in Experimental Example 2 except that 5 parts by mass of the binder was used in the tape molding of (2), and the ratio R at the observation points P1 to P3 was obtained. The results are shown in Table 1.

[実験例6]
アルミナ焼結体を作製するにあたり、上記1.(2)のテープ成形においてバインダーを14質量部使用したこと以外は、実験例2と同様にしてアルミナ焼結体を作製し、観測点P1〜P3における割合Rを求めた。その結果を表1に示す。
[Experimental Example 6]
In producing the alumina sintered body, the above 1. An alumina sintered body was prepared in the same manner as in Experimental Example 2 except that 14 parts by mass of the binder was used in the tape molding of (2), and the ratio R at the observation points P1 to P3 was obtained. The results are shown in Table 1.

[実験例7]
アルミナ焼結体を作製するにあたり、上記1.(2)のテープ成形においてバインダーを3質量部使用したこと以外は、実験例2と同様にしてアルミナ焼結体を作製し、観測点P1〜P3における割合Rを求めた。その結果を表1に示す。
[Experiment 7]
In producing the alumina sintered body, the above 1. An alumina sintered body was produced in the same manner as in Experimental Example 2 except that 3 parts by mass of the binder was used in the tape molding of (2), and the ratio R at the observation points P1 to P3 was obtained. The results are shown in Table 1.

[実験例8]
アルミナ焼結体を作製するにあたり、上記1.(2)のテープ成形においてバインダーを25質量部使用したこと以外は、実験例2と同様にしてアルミナ焼結体を作製し、観測点P1〜P3における割合Rを求めた。その結果を表1に示す。
[Experimental Example 8]
In producing the alumina sintered body, the above 1. An alumina sintered body was produced in the same manner as in Experimental Example 2 except that 25 parts by mass of the binder was used in the tape molding of (2), and the ratio R at the observation points P1 to P3 was obtained. The results are shown in Table 1.

[実験例9]
アルミナ焼結体を作製するにあたり、上記1.(2)のテープ成形においてバインダーとして、アクリル系ポリマー(KC7025T、共栄社化学製)を使用したこと以外は、実験例2と同様にしてアルミナ焼結体を作製し、観測点P1〜P3における割合Rを求めた。その結果を表1に示す。
[Experimental Example 9]
In producing the alumina sintered body, the above 1. An alumina sintered body was produced in the same manner as in Experimental Example 2 except that an acrylic polymer (KC7025T, manufactured by Kyoeisha Chemical Co., Ltd.) was used as a binder in the tape molding of (2), and the ratio R at the observation points P1 to P3. I asked. The results are shown in Table 1.

[実験例10]
アルミナ焼結体を作製するにあたり、上記1.(2)のテープ成形においてバインダーとして、メタクリル系ポリマー(M6003、根上工業製)を使用したこと以外は、実験例2と同様にしてアルミナ焼結体を作製し、観測点P1〜P3における割合Rを求めた。その結果を表1に示す。
[Experimental Example 10]
In producing the alumina sintered body, the above 1. An alumina sintered body was prepared in the same manner as in Experimental Example 2 except that a methacrylic polymer (M6003, manufactured by Negami Kogyo Co., Ltd.) was used as a binder in the tape molding of (2), and the ratio R at the observation points P1 to P3. I asked. The results are shown in Table 1.

[実験例11]
アルミナ焼結体を作製するにあたり、上記1.(2)の曲げ加工において一軸プレス成形時の加熱温度を100℃にしたこと以外は、実験例2と同様にしてアルミナ焼結体を作製しようとしたが、曲面形状成形体を得ることができなかった。
[Experimental Example 11]
In producing the alumina sintered body, the above 1. An attempt was made to produce an alumina sintered body in the same manner as in Experimental Example 2 except that the heating temperature at the time of uniaxial press molding was set to 100° C. in the bending process of (2), but a curved surface shaped molded body could be obtained. There wasn't.

[実験例12]
アルミナ焼結体を作製するにあたり、上記1.(2)の曲げ加工において一軸プレス成形時の加熱温度を310℃にしたこと以外は、実験例2と同様にしてアルミナ焼結体を作製しようとしたが、曲面形状成形体を得ることができなかった。
[Experimental Example 12]
In producing the alumina sintered body, the above 1. An attempt was made to produce an alumina sintered body in the same manner as in Experimental Example 2 except that the heating temperature at the time of uniaxial press molding was set to 310° C. in the bending process of (2), but it was possible to obtain a curved shape molded body. There wasn't.

[実験例13]
アルミナ焼結体を作製するにあたり、上記1.(2)のテープ成形においてバインダーを1質量部使用したこと以外は、実験例2と同様にしてアルミナ焼結体を作製しようとしたが、テープ成形体を得ることができなかった。
[Experimental Example 13]
In producing the alumina sintered body, the above 1. An attempt was made to produce an alumina sintered body in the same manner as in Experimental Example 2 except that 1 part by mass of the binder was used in the tape molding of (2), but the tape molded body could not be obtained.

[実験例14]
アルミナ焼結体を作製するにあたり、上記1.(2)のテープ成形においてバインダーを35質量部使用したこと以外は、実験例2と同様にしてアルミナ焼結体を作製しようとしたが、テープ成形体を得ることができなかった。
[Experimental Example 14]
In producing the alumina sintered body, the above 1. An attempt was made to produce an alumina sintered body in the same manner as in Experimental Example 2 except that 35 parts by mass of the binder was used in the tape molding of (2), but the tape molded body could not be obtained.

[評価]
実験例1〜10のアルミナ焼結体では、曲面部のアルミナ粒子はその曲面部の法線方向にc軸配向していた。また、実験例1〜10の3つの観測点P1〜P3における割合Rはいずれも60%以上であり、そのうち実験例1〜6,9,10の3つの観測点P1〜P3における割合Rはいずれも80%以上であった。一方、実験例11,12では、曲げ加工時の温度が適正でなかったため、アルミナ成形体の軟化が不十分であったり曲げ加工中に割れやしわ等が生じたりして設計通りの形状を精度よく成形することができなかった。また、実験例13,14では、バインダーの使用量が適正でなかったため、テープ成形が困難であり、成形できなかった。
[Evaluation]
In the alumina sintered bodies of Experimental Examples 1 to 10, the alumina particles on the curved surface portion were c-axis oriented in the normal direction of the curved surface portion. Further, the proportions R at the three observation points P1 to P3 in Experimental Examples 1 to 10 are all 60% or more, and the proportion R at the three observation points P1 to P3 in Experimental Examples 1 to 6, 9, and 10 is any of them. Was 80% or more. On the other hand, in Experimental Examples 11 and 12, since the temperature during bending was not appropriate, the softening of the alumina molded body was insufficient, cracks and wrinkles were generated during bending, and the shape as designed was accurately obtained. It could not be molded well. In addition, in Experimental Examples 13 and 14, the amount of the binder used was not appropriate, and thus tape molding was difficult and molding could not be performed.

ここで、実験例1で得られたアルミナ焼結体の表面を研磨にて鏡面化した後の外観写真を図13に示す。この外観写真から、鏡面化後の配向アルミナ焼結体は透明性の高いものであることがわかる。 Here, FIG. 13 shows a photograph of the appearance after the surface of the alumina sintered body obtained in Experimental Example 1 was mirror-finished by polishing. From this appearance photograph, it can be seen that the oriented alumina sintered body after mirror-finishing has high transparency.

以上説明した実験例1〜10が本発明の実施例に相当し、実験例11〜14が比較例に相当する。なお、本発明は上述した実施例に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 Experimental Examples 1 to 10 described above correspond to Examples of the present invention, and Experimental Examples 11 to 14 correspond to Comparative Examples. Needless to say, the present invention is not limited to the above-described embodiments and can be carried out in various modes within the technical scope of the present invention.

本出願は、2016年7月8日に出願された日本国特許出願第2016−135852号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。 This application is based on Japanese Patent Application No. 2016-135852 filed on Jul. 8, 2016, and the entire contents of which are incorporated herein by reference.

本発明は、例えば、スマートフォン、スマートウォッチ、腕時計等のカバーガラス、各種窓材、レンズ等の光学部材などに利用可能である。 INDUSTRIAL APPLICABILITY The present invention can be applied to, for example, cover glasses for smart phones, smart watches, wristwatches, various window materials, optical members such as lenses, and the like.

10 曲面部、10a 凸面領域、10b 凹面領域、20 曲面部、30 配向アルミナ焼結体、32 曲面部、32a 凸面領域、34 平面部、34a 表面、40 配向アルミナ焼結体、42 曲面部、42a 凸面領域、44 平面部、44a 表面、50 下型、52 円形凹部、52a 凹曲面、60 上型、62 円形凸部、62a 凸曲面、P1〜P3,P6〜P8 観測点、P4,P5,P9,P10 交点、NL1〜NL3,NL6〜NL8 法線。 10 curved surface portion, 10a convex surface area, 10b concave surface area, 20 curved surface portion, 30 oriented alumina sintered body, 32 curved surface portion, 32a convex surface area, 34 flat surface portion, 34a surface, 40 oriented alumina sintered body, 42 curved surface portion, 42a Convex area, 44 Plane part, 44a Surface, 50 Lower mold, 52 Circular concave part, 52a Concave curved surface, 60 Upper mold, 62 Circular convex part, 62a Convex curved surface, P1 to P3, P6 to P8 Observation points, P4, P5, P9 , P10 intersections, NL1 to NL3, NL6 to NL8 normals.

Claims (5)

曲面部を有する配向アルミナ焼結体であって、
前記曲面部のアルミナ粒子は、前記曲面部の法線方向に結晶配向しており、
前記配向アルミナ焼結体の断面において、前記曲面部の少なくとも3つの観測点でそれぞれ法線を引いたとき、各法線上にあるアルミナ粒子のうち配向軸が前記法線に対して±15°以内に収まるものの割合が60%以上であり、
前記3つの観測点を決めるにあたっては、前記曲面部を平面視したときに、前記曲面部の凸面領域又は凹面領域の極値点を1つめの観測点とし、前記極値点を通り前記曲面部の凸面領域又は凹面領域の外縁と交差するように引いた線分の長さが最長となるときのその線分の両端点のそれぞれと前記極値点との中点を残り2つの観測点とする、
配向アルミナ焼結体。
An oriented alumina sintered body having a curved surface portion,
Alumina particles of the curved surface portion, the crystal orientation in the normal direction of the curved surface portion ,
In the cross section of the oriented alumina sintered body, when a normal line is drawn at each of at least three observation points of the curved surface portion, the orientation axis of the alumina particles on each normal line is within ±15° with respect to the normal line. The percentage of items that fit in is 60% or more,
In determining the three observation points, when the curved surface portion is viewed in plan, the extreme point of the convex surface area or the concave surface area of the curved surface portion is set as the first observation point, and the curved surface portion passes through the extreme value point. When the length of a line segment drawn so as to intersect the outer edge of the convex region or the concave region of is the longest, the midpoints of both end points of the line segment and the extreme point are the remaining two observation points. To do
Oriented alumina sintered body.
前記割合が80%以上である、
請求項に記載の配向アルミナ焼結体。
The ratio is 80% or more,
The oriented alumina sintered body according to claim 1 .
前記曲面部のアルミナ粒子は、前記曲面部の法線方向にc軸配向している、
請求項1又は2に記載の配向アルミナ焼結体。
The alumina particles of the curved surface portion are c-axis oriented in the normal direction of the curved surface portion,
Oriented alumina sintered body according to claim 1 or 2.
(a)板状アルミナ粉末と平均粒径が前記板状アルミナ粉末の厚みより小さい微細アルミナ粉末とを混合した混合アルミナ粉末100質量部に対して有機バインダーを2〜30質量部含む平板状のアルミナ成形体に、前記有機バインダーのガラス転移点プラス45℃を下限値、前記有機バインダーの分解温度マイナス50℃を上限値とする範囲内で設定された加工温度で曲げ加工を施して曲面部を有するアルミナ成形体を得る工程と、
(b)前記曲面部を有するアルミナ成形体を焼成することにより配向アルミナ焼結体を得る工程と、
を含む配向アルミナ焼結体の製法。
(A) A plate-shaped alumina containing 2 to 30 parts by mass of an organic binder with respect to 100 parts by mass of mixed alumina powder in which plate-shaped alumina powder and fine alumina powder having an average particle size smaller than the thickness of the plate-shaped alumina powder are mixed. The molded body is bent at a processing temperature set within a range in which the glass transition point of the organic binder plus 45° C. is a lower limit value, and the decomposition temperature of the organic binder minus 50° C. is an upper limit value. A step of obtaining an alumina molded body,
(B) a step of obtaining an oriented alumina sintered body by firing an alumina formed body having the curved surface portion,
A method for producing an oriented alumina sintered body containing:
前記有機バインダーは、ブチラール系ポリマー、アクリル系ポリマー又はメタクリル系ポリマーである、
請求項に記載の配向アルミナ焼結体の製法。
The organic binder is a butyral polymer, an acrylic polymer or a methacrylic polymer,
The method for producing the oriented alumina sintered body according to claim 4 .
JP2018525935A 2016-07-08 2017-03-29 Oriented alumina sintered body and manufacturing method thereof Active JP6709850B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016135852 2016-07-08
JP2016135852 2016-07-08
PCT/JP2017/013081 WO2018008207A1 (en) 2016-07-08 2017-03-29 Oriented alumina sintered body and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2018008207A1 JPWO2018008207A1 (en) 2019-04-25
JP6709850B2 true JP6709850B2 (en) 2020-06-17

Family

ID=60912055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018525935A Active JP6709850B2 (en) 2016-07-08 2017-03-29 Oriented alumina sintered body and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP6709850B2 (en)
WO (1) WO2018008207A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4808837B2 (en) * 2000-10-10 2011-11-02 京セラ株式会社 High frequency alumina sintered body
JP6253918B2 (en) * 2013-08-06 2017-12-27 日機装株式会社 Manufacturing method and manufacturing apparatus for ceramic plate with curved surface
CN105830237B (en) * 2013-12-18 2019-09-06 日本碍子株式会社 Light-emitting component composite substrate and its manufacturing method
US20160039717A1 (en) * 2014-08-11 2016-02-11 Jen Long Vacuum Industrial Co., Ltd. Polycrystalline transparent ceramics laminate
TWI670251B (en) * 2014-11-28 2019-09-01 日商日本碍子股份有限公司 Method for producing transparent alumina sintered body

Also Published As

Publication number Publication date
WO2018008207A1 (en) 2018-01-11
JPWO2018008207A1 (en) 2019-04-25

Similar Documents

Publication Publication Date Title
JP5685846B2 (en) Transparent zirconia sintered body, method for producing the same, and use thereof
US10315957B2 (en) Method for producing transparent alumina sintered body
JP2017526609A (en) Transparent spinel article and tape forming method for producing the same
KR20170088823A (en) Alumina sintered body and ground substrate for optical element
KR102115629B1 (en) Composite oxide sintered body and transparent conductive oxide film
KR20160133429A (en) Sintered oxide and transparent conductive oxide film
CN108698932B (en) Oxide sintered body and oxide transparent conductive film
WO2016182011A1 (en) Alumina sintered body and optical element base substrate
TW201835004A (en) Oriented AlN sintered body, and production method therefor
JP6709850B2 (en) Oriented alumina sintered body and manufacturing method thereof
JP5998712B2 (en) IGZO sintered body, sputtering target, and oxide film
KR102557205B1 (en) Transparent AlN sintered body and its manufacturing method
US20160060131A1 (en) High strength transparent ceramic using corundum powder and methods of manufacture
JP6813441B2 (en) Oriented ceramic sintered body and its manufacturing method
Paygin et al. Density and microstructural investigation of Ce: YAG ceramic subjected to powerful ultrasonic treatment during the compaction process
TWI746519B (en) Oxide sintered body, sputtering target material, oxide transparent conductive film and manufacturing method thereof
JP2009102698A (en) Sputtering target for forming transparent conductive film, and transparent conductive film formed by using the target
JPWO2019187269A1 (en) Oxide sintered body, sputtering target and transparent conductive film
CN110937891A (en) Sintered body, sputtering target, and method for producing sintered body
KR20140103097A (en) Complex oxide sintered body, sputtering target, transparent conductive oxide film, and method for producing same
JP2017149594A (en) Oxide sintered body and oxide transparent conductive film
JP6747003B2 (en) Oxide sintered body and oxide transparent conductive film
JP2015025195A (en) Oxide sintered body and oxide transparent conductive film
JP2017178691A (en) Production method of alumina sintered body

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190819

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200525

R150 Certificate of patent or registration of utility model

Ref document number: 6709850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150