JP6708196B2 - A continuous metal for continuous casting of different steel types and a continuous casting method for steel - Google Patents

A continuous metal for continuous casting of different steel types and a continuous casting method for steel Download PDF

Info

Publication number
JP6708196B2
JP6708196B2 JP2017216086A JP2017216086A JP6708196B2 JP 6708196 B2 JP6708196 B2 JP 6708196B2 JP 2017216086 A JP2017216086 A JP 2017216086A JP 2017216086 A JP2017216086 A JP 2017216086A JP 6708196 B2 JP6708196 B2 JP 6708196B2
Authority
JP
Japan
Prior art keywords
charge
steel
post
continuous casting
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017216086A
Other languages
Japanese (ja)
Other versions
JP2018089688A (en
Inventor
佳祐 佐野
佳祐 佐野
雄一郎 中武
雄一郎 中武
暢 井上
暢 井上
小川 尚志
尚志 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2018089688A publication Critical patent/JP2018089688A/en
Priority to JP2020024857A priority Critical patent/JP6923022B2/en
Application granted granted Critical
Publication of JP6708196B2 publication Critical patent/JP6708196B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、鋼の連続鋳造操業時、先行チャージの鋳造に連続して鋼種の異なる後続チャージの鋳造を行う場合に、前チャージと後チャージとの継目部に使用する異鋼種連続鋳造用継目金物、並びに、それを用いた鋼の連続鋳造方法に関するものである。 The present invention, in the continuous casting operation of steel, when performing the casting of the subsequent charge of different steel types in succession to the casting of the preceding charge, a joint metal for continuous casting of different steel types used for the joint part of the pre-charge and the post-charge And a continuous casting method for steel using the same.

多数チャージを連続して連続鋳造することを連続連続鋳造(「連々鋳」ともいう)といい、このうち特に鋼の成分値が大きく異なるヒート間での連々鋳を異鋼種連々鋳と呼ばれる。
異鋼種連々鋳は、前チャージのタンディッシュから鋳型への溶鋼注入を完了する時点に合わせて、一旦鋳片の引き抜きを停止し、鋳型内に継目金物をセットし、その後、後チャージの溶鋼のタンディッシュから鋳型への注入を開始する。
Continuous continuous casting of a large number of charges is called continuous continuous casting (also referred to as "continuous casting"). Among them, continuous casting between heats in which the composition values of steels are greatly different is called continuous casting of different steel types.
In continuous casting of different steel types, when the molten steel injection from the pre-charged tundish to the mold is completed, the withdrawal of the slab is temporarily stopped, the joint metal is set in the mold, and then the molten steel of the post-charge is cast. Start injection from the tundish into the mold.

このような異鋼種連々鋳において、前チャージと後チャージの境界部の鋳片はその成分値が前後チャージの成分規格範囲のどちらにも属さずに屑となってしまうこと、及び後チャージの鋳片引き抜き再開時に鋳片継ぎ目部の解離によってブレークアウトが発生することが大きな問題である。
継目金物はこのような問題を解決するために考案されたものであり、例えば特許文献1には、2枚の鋼板を溶接してV字状に組み合わせた仕切り鉄板を用いたものが開示されている。
In such continuous casting of different steel types, the slabs at the boundary between the pre-charge and the post-charge become scraps without the component values belonging to either of the standard range of the components of the front-rear charge and the cast of the post-charge. A major problem is that breakout occurs due to the dissociation of the slab seam when restarting single-sided drawing.
The joint metal was devised in order to solve such a problem, and for example, Patent Document 1 discloses one using a partition iron plate obtained by welding two steel plates and combining them into a V shape. There is.

特開2008―246532号公報JP, 2008-246532, A

特許文献1に開示された継目金物のように鉄板で仕切るタイプのものは、鋳型内で前チャージと後チャージの溶鋼の混合防止を主目的とする思想で設計されている。
しかし、このタイプの継目金物では、前チャージの凝固収縮によって発生する下向きの応力によって鉄板が破損して溶鋼の混合が生じたり、あるいは、前チャージと後チャージの結合が不十分で継目からブレークアウトが発生するという問題を十分に改善できていなかった。
The type of partitioning with an iron plate, such as the seam metal disclosed in Patent Document 1, is designed with the idea of mainly preventing the mixture of molten steel of the pre-charge and the post-charge in the mold.
However, in this type of joint metal, the downward stress generated by the solidification shrinkage of the precharge damages the steel plate and causes the mixing of molten steel, or the combination of the precharge and the postcharge is insufficient and breakout from the seam occurs. However, the problem of occurrence of is not sufficiently improved.

本発明は、かかる問題を解決するためになされたものであり、異鋼種連々鋳において、前チャージと後チャージの境界部での溶鋼の混合を防止しつつブレークアウトの発生を防止できる異鋼種連続鋳造用継目金物及び鋼の連続鋳造方法を提供することを目的としている。 The present invention has been made to solve such a problem, and in continuous casting of different steel types, it is possible to prevent the occurrence of breakout while preventing the mixing of molten steel at the boundary between the pre-charge and the post-charge. It is an object of the present invention to provide a continuous casting method for casting seams and steel.

発明者は、特許文献1に開示された鉄板で仕切るタイプの継目金物で生じた原因について考察したので、これについて図6に基づいて以下説明する。 The inventor has considered the cause of the seam piece of the type of partitioning with an iron plate disclosed in Patent Document 1, which will be described below with reference to FIG.

図6において、31は前チャージの溶鋼、33は前チャージの凝固シェル、35は継目金物である。
図6(a)は、前チャージが完了して、継目金物35を鋳型に投入した状態を示しており、継目金物35は前チャージで鋳型内面に形成された凝固シェル33に支持されている。
継目金物35を投入すると、継目金物35の冷材効果で継目金物35の上下面には凝固層37が形成され、溶鋼31は凝固収縮する。この凝固収縮によって、継目金物35の上方では湯引きが生じ、継目金物35の下方では引け巣39が形成される(図6(b)参照)。
In FIG. 6, 31 is a pre-charged molten steel, 33 is a pre-charged solidified shell, and 35 is a joint metal.
FIG. 6A shows a state in which the pre-charging is completed and the joint metal piece 35 is put into the mold, and the joint metal piece 35 is supported by the solidification shell 33 formed on the inner surface of the mold by the pre-charge.
When the joint metal piece 35 is charged, a solidified layer 37 is formed on the upper and lower surfaces of the joint metal piece 35 due to the cooling material effect of the joint metal piece 35, and the molten steel 31 solidifies and shrinks. Due to this solidification shrinkage, the molten metal is drawn above the joint metal 35, and the shrinkage cavity 39 is formed below the joint metal 35 (see FIG. 6B).

前チャージのタンディッシュからの溶鋼注入を完了してから、後チャージの溶鋼注入開始まで5分ほどの時間があるため、この時間経過によって溶鋼表面のシェル周辺からいわゆる皮張り41が生じる(図6(c)参照)。その部分が内側への張り出し部となり、ここからシェルの先端までが上端シェル43となる。図6(c)において、Lはシェル長さを、Lは上端シェル長さを示している。
その後、鋳型内に浸漬ノズル45を挿入して、後チャージを行うと、上端シェル43周辺に後チャージの溶鋼47のシェルが形成され、前後チャージの接続部49となる(図6(d)、図7参照)。
Since there is a time of about 5 minutes from the completion of the molten steel injection from the pre-charged tundish to the start of the post-charged molten steel injection, so-called skinning 41 is generated from the periphery of the shell on the molten steel surface due to this time elapse (FIG. 6). (See (c)). That portion becomes an inwardly projecting portion, and from this point to the tip of the shell is the upper end shell 43. In FIG. 6 (c), L 1 is a shell length, L 2 represents the upper shell length.
After that, when the immersion nozzle 45 is inserted into the mold and post-charging is performed, a shell of the molten steel 47 for post-charging is formed around the upper end shell 43 and becomes a connecting portion 49 for front-back charging (FIG. 6(d), (See FIG. 7).

以上のメカニズムから、投入した連結金物の下に引け巣39が形成され、継目金物35の鉄板は引け巣39に引かれる応力を受け、鉄板とその周辺が下向きの応力に負けた際に鉄板が破損すると考えられる。
また、継目でのブレークアウトは、上端シェル43が短いために、前後チャージの接続長さが不十分な結果であると考えられる。
From the above mechanism, a shrinkage cavity 39 is formed under the inserted metal fitting, and the iron plate of the joint metal piece 35 receives the stress drawn by the shrinkage cavity 39, and when the iron plate and its periphery lose the downward stress, the iron plate is It is thought to be damaged.
Further, the breakout at the joint is considered to be the result of insufficient connection length between the front and rear charges because the upper end shell 43 is short.

以上の考察から、継目金物の破損を防止すると共にブレークアウトの発生を防止するには、継目金物を引け巣形成によって応力の作用しない形状であって、かつ湯引き量を増加させて上端シェルを長くできる形状にすることが効果的であると考えられる。そのためには、前チャージと後チャージを板状体で仕切るのではなく、所定の隙間のある部材で仕切ることが効果的であるとの知見を得た。
本発明は、かかる知見に基づくものであり、具体的には以下の構成を備えたものである。
From the above consideration, in order to prevent damage to the joint metal and to prevent breakout from occurring, the shape of the joint metal is such that stress does not act due to shrinkage cavity formation, and the amount of boil is increased to lengthen the upper shell. It is considered effective to make the shape possible. For that purpose, it was found that it is effective to partition the pre-charge and the post-charge with a member having a predetermined gap, rather than with a plate-shaped body.
The present invention is based on such knowledge, and specifically has the following configuration.

(1)本発明に係る異鋼種連続鋳造用継目金物は、前チャージの鋳造に連続して鋼種の異なる後チャージの鋳造を行う際に、前チャージの鋳込み完了後に鋳型内に配置して、前チャージと後チャージとの継目部に使用する異鋼種連続鋳造用継目金物であって、
前記前チャージと前記後チャージの間に配置され、外形が矩形状に形成された仕切り部材を備え、該仕切り部材は、溶鋼が通過できる複数の隙間が形成された隙間面部を有することを特徴とするものである。
(1) The joint metal for continuous casting of different steel types according to the present invention is arranged in the mold after completion of casting of the precharge when casting the postcharge of different steel types continuously from the casting of the precharge. A joint metal for continuous casting of different steel types used for the joint between the charge and the post-charge,
A partition member disposed between the pre-charge and the post-charge and having a rectangular outer shape, wherein the partition member has a gap surface portion having a plurality of gaps through which molten steel can pass. To do.

(2)また、上記(1)に記載のものにおいて、前記仕切り部材は、鋳型の両短辺側に配置される部位が板状体で形成され、該板状体で挟まれた部位に隙間面部が形成されていることを特徴とするものである。 (2) Moreover, in the thing described in said (1), the said partition member WHEREIN: The site|part arrange|positioned at both short side of a mold is formed by a plate-shaped body, and a gap|interval is located in the site|part sandwiched by this plate-shaped body. It is characterized in that a surface portion is formed.

(3)また、上記(1)に記載のものにおいて、前記仕切り部材は、鋳型長辺方向の全長に亘って隙間面部が形成されていることを特徴とするものである。 (3) Moreover, in the thing described in said (1), the said partition member is characterized by forming the crevice surface part over the full length of a casting mold long side direction.

(4)また、上記(1)乃至(3)のいずれかに記載のものにおいて、前記隙間面部は、複数の棒鋼が所定の隙間を介して連結されてなることを特徴とするものである。 (4) Further, in any one of the above (1) to (3), the gap surface portion is characterized in that a plurality of steel bars are connected through a predetermined gap.

(5)本発明に係る鋼の連続鋳造方法は、上記(1)乃至(4)のいずれかに記載の異鋼種連続鋳造用継目金物を用いた連続鋳造方法であって、
前チャージの鋳込み完了後に鋳型内に前記異鋼種連続鋳造用継目金物を投入する異鋼種連続鋳造用継目金物投入工程と、
該異鋼種連続鋳造用継目金物投入工程の後、前記隙間面部の隙間に凝固層が形成される所定時間経過後に後チャージを開始する後チャージ工程を備えたことを特徴とするものである。
(5) A continuous casting method for steel according to the present invention is a continuous casting method using the joint metal for different steel type continuous casting according to any one of (1) to (4) above,
After the casting of the pre-charge, the dissimilar steel type continuous casting joint metal casting step of charging the dissimilar steel type continuous casting joint metal in the mold,
After the step of introducing the joint metal for continuous casting of different steel types, a post-charging step of starting post-charging after a lapse of a predetermined time in which a solidified layer is formed in the gap of the gap surface portion is provided.

(6)また、上記(5)に記載のものにおいて、前チャージのシェルと後チャージ溶鋼との接合面積Aを用いて、下式に基づいて後チャージの必要最低の注ぎ上げ時間Tを決め、この時間T以上の時間で注ぎ上げを行った後に、鋳型振動とピンチロールによる後チャージの引き抜きを開始することを特徴とするものである。
T=αA−β
α、βは過去の操業データに基づいて求まる数値
(6) Further, in the one described in (5) above, the minimum required pouring time T of the post-charge is determined based on the following formula using the joint area A between the shell of the pre-charge and the molten steel of the post-charge, After the pouring is performed for the time T or more, the extraction of the post-charge by the vibration of the mold and the pinch roll is started.
T=αA −β
α and β are numerical values obtained based on past operational data

(7)また、上記(5)に記載のものにおいて、スラブ周囲長さLを用いて、下式に基づいて後チャージの必要最低の注ぎ上げ時間Tを決め、この時間T以上の時間で注ぎ上げを行った後に、鋳型振動とピンチロールによる後チャージの引き抜きを開始することを特徴とするものである。
T=γL−δ
γ、δは過去の操業データから決まる数値
(7) Further, in the above (5), the minimum necessary pouring time T of the post-charge is determined based on the following formula using the slab circumference length L, and pouring is performed at a time longer than this time T. After raising the temperature, the mold vibration and the extraction of the post-charge by the pinch roll are started.
T=γL− δ
γ and δ are numerical values determined from past operational data

本発明に係る異鋼種連続鋳造用継目金物は、前チャージと後チャージの間に配置され、外形が矩形状に形成された仕切り部材を備え、該仕切り部材は、溶鋼が通過できる複数の隙間が形成された隙間面部を有することにより、前チャージ後に異鋼種連続鋳造用継目金物を投入したときに形成される上端シェル長さを長くすることができ、前後チャージの鋼の接合を強固にできるので、継目性のブレークアウトを抑制することができる。
また、隙間面部の隙間に溶鋼が凝固層を形成し、前チャージと後チャージを仕切るので、前後チャージの溶鋼の過度の混合を抑制することもできる。
The dissimilar steel continuous casting joint metal according to the present invention is disposed between the pre-charge and the post-charge, and includes a partition member having a rectangular outer shape, and the partition member has a plurality of gaps through which molten steel can pass. By having the formed gap surface portion, it is possible to increase the length of the upper end shell formed when a joint metal for continuous casting of different steel types is charged after precharging, and it is possible to strengthen the joining of steel for front and rear charges. The breakout of the seam can be suppressed.
Further, since the molten steel forms a solidified layer in the gap of the gap surface portion and separates the pre-charge and the post-charge, it is possible to suppress excessive mixing of the molten steel before and after the charge.

本発明の一実施の形態に係る異鋼種連続鋳造用継目金物の平面図である。It is a top view of the dissimilar steel continuous casting joint metal which concerns on one embodiment of this invention. 本発明の一実施の形態に係る異鋼種連続鋳造用継目金物の側面図である。It is a side view of the joint metal article for different steel kind continuous casting concerning one embodiment of the present invention. 本発明の一実施の形態に係る異鋼種連続鋳造用継目金物の作用効果の説明図である(その1)。It is explanatory drawing of the effect of the joint metal article for different steel type continuous casting which concerns on one embodiment of this invention (the 1). 本発明の一実施の形態に係る異鋼種連続鋳造用継目金物の作用効果の説明図である(その2)。It is explanatory drawing of the effect of the joint metal article for different steel type continuous casting which concerns on one embodiment of this invention (the 2). 本発明の一実施の形態に係る異鋼種連続鋳造用継目金物を用いた連続鋳造方法の実施後に採取したサンプルのマクロ写真である。It is a macro photograph of the sample taken after implementation of the continuous casting method using the seam for dissimilar steel type continuous casting concerning one embodiment of the present invention. 従来例で生ずる問題発生のメカニズムの説明図である。It is explanatory drawing of the mechanism of the problem occurrence which arises in a prior art example. 従来例の継目金物を用いた連続鋳造方法の実施後に採取したサンプルのマクロ写真である。It is a macro photograph of the sample extracted after implementation of the continuous casting method using the seam metal of the conventional example. 継ぎ目接合不良が発生したときの注ぎ上げ時間と接合面積との関係を示すグラフである。It is a graph which shows the relationship between the pouring time and the joint area when a seam joint failure occurs. 本発明の異鋼種連々鋳金物1とシェル長さの関係の説明図であり、図9(b)は図9(a)の矢視A−A断面図に相当する。It is explanatory drawing of the relationship between the different steel type continuous casting 1 of this invention, and a shell length, FIG.9(b) is equivalent to the arrow AA sectional drawing of FIG.9(a). 継ぎ目接合不良の発生有り無しにおける注ぎ上げ時間とスラブ周囲長さとの関係を示すグラフである。It is a graph which shows the relationship between the pouring time and the slab circumference length with and without the occurrence of joint failure. 実際の操業における注ぎ上げ時間の設定方法の一例の説明図である。It is explanatory drawing of an example of the setting method of the pouring time in actual operation.

本発明の一実施の形態に係る異鋼種連続鋳造用継目金物1は、前チャージの鋳造に連続して鋼種の異なる後チャージの鋳造を行う際に、前チャージの鋳込み完了後に鋳型内に配置して、前チャージと後チャージとの継目部に使用するものであって、図1、図2に示すように、外形が矩形状に形成された仕切り部材3を有している。 The joint metal 1 for continuous casting of different steel types according to the embodiment of the present invention is arranged in the mold after the completion of the casting of the pre-charge when performing the casting of the post-charge of different steel types following the casting of the pre-charge. As shown in FIGS. 1 and 2, the partition member 3 has a rectangular outer shape and is used as a joint between the pre-charge and the post-charge.

仕切り部材3は、鋳型の両短辺側に配置される部位が板状体である鋼板部5で形成され、鋼板部5の間は、複数の棒鋼7(例えば鉄筋)が所定の隙間8を介して配置された隙間面部9で形成されている。
さらに、本実施の形態の異鋼種連続鋳造用継目金物1は、鋼板部5に立設された門形の鋳片倒れ込み防止棒11と、棒鋼7と鋼板部5との境界部分に立設された門形の鋳片倒れ込み防止板13とを備えている。
The partition member 3 is formed by a steel plate portion 5 that is a plate-shaped body at the portions arranged on both short sides of the mold, and a plurality of steel bars 7 (for example, reinforcing bars) form a predetermined gap 8 between the steel plate portions 5. It is formed by the gap surface portion 9 arranged through the gap.
Further, the seam metal 1 for continuous casting of different steel types of the present embodiment is erected on the gate-shaped cast piece falling prevention rod 11 erected on the steel plate portion 5 and on the boundary portion between the steel bar 7 and the steel plate portion 5. And a gate-shaped cast piece fall prevention plate 13.

上記のように構成された本実施の形態の異鋼種連続鋳造用継目金物1の作用効果を説明する。
前チャージが終了した後、異鋼種連続鋳造用継目金物1を鋳型内に投入する。この時に鋳型内で生ずる凝固のメカニズムは図6に示したのと基本的に同じであるが、本実施の形態の異鋼種連続鋳造用継目金物1を用いた場合、異鋼種連続鋳造用継目金物1の投入後、少し時間が経過すると図3(a)の状態となる。同じタイミングでの従来例では図3(b)(従来例を示した図6(c)と同じ図)に示す状態となる。
The function and effect of the seam piece 1 for continuous casting of different steel types of the present embodiment configured as described above will be described.
After the pre-charging is completed, the joint metal 1 for continuous casting of different steel types is put into the mold. The solidification mechanism that occurs in the mold at this time is basically the same as that shown in FIG. 6, but when using the different steel grade continuous casting joint metal 1 of the present embodiment, the different steel type continuous casting joint metal is used. After a short time has passed after the addition of 1, the state shown in FIG. In the conventional example at the same timing, the state becomes as shown in FIG. 3B (the same figure as FIG. 6C showing the conventional example).

図3(a)に示すように、シェル長さLが従来例の図3(b)の場合に比較して若干長くなり、かつ上端シェル長さLは図3(b)に比較して格段に長くなっている。これは、異鋼種連続鋳造用継目金物1が隙間面部9を有しているため、凝固収縮によって異鋼種連続鋳造用継目金物1の下方に引け巣39が形成される際の圧力の低下に伴って溶鋼31が隙間面部9を通過して下方に供給されることで、湯引き量が増えるためである。 As shown in FIG. 3(a), the shell length L 1 is slightly longer than that of the conventional example shown in FIG. 3(b), and the upper end shell length L 2 is compared with that of FIG. 3(b). It is much longer. This is because the seam metal 1 for continuous casting of different steel types has the gap surface portion 9, so that the pressure when the shrinkage cavity 39 is formed below the seam metal 1 for continuous casting of different steel types due to solidification shrinkage is accompanied. This is because the molten steel 31 passes through the gap surface portion 9 and is supplied downward, so that the amount of molten metal is increased.

上端シェル43は後チャージとの接続部となるため、この上端シェル長さLが長くなることで、接合が強固になり継目性ブレークアウトの発生を抑制できる。
また、隙間面部9は鋼板と違って隙間があるため、引け巣39が形成される際に負圧状態にならず、従来の継目金物35の使用時に生じた応力が発生しないため、破損するという危険もない。
Since the upper end shell 43 serves as a connection portion with the post-charge, the increase in the upper end shell length L 2 strengthens the joint and suppresses the occurrence of a joint breakout.
Further, since the gap surface portion 9 has a gap unlike the steel plate, it does not become a negative pressure state when the shrinkage cavity 39 is formed, and the stress generated when the conventional joint metal piece 35 is used is not generated, so that it is damaged. There is no danger.

なお、湯引き量が増えて上端シェル43の長さが長くなると、上端シェル43が内側に倒れ込むことが懸念されるが、本実施の形態では、鋳片倒れ込み防止棒11及び鋳片倒れ込み防止板13を備えることで、これを防止している。 It should be noted that there is a concern that the upper end shell 43 may fall inward when the length of the upper end shell 43 becomes longer due to an increase in the amount of molten metal drawn. This is prevented by providing.

また、隙間面部9には隙間8があるため、後チャージの溶鋼が隙間8を通過して前チャージの溶鋼31と混じってしまうことが懸念されるので、この点について説明する。
前述したように、異鋼種連続鋳造用継目金物1を投入した後、後チャージが開始されるまでに少し時間があるため、図3、図4に示すように、湯引きの進行と並行して棒鋼7を核としてその周囲に凝固層37が形成され、棒鋼7間の隙間8が塞さがれる。このため、後チャージの過度の成分混合を抑止できる。しかも、引け巣39の形成に伴って応力が作用したとしても、例えば鋼板よりも厚みがあり強度が高いので破損することもない。
Further, since the gap surface portion 9 has the gap 8, it is feared that the molten steel of the post-charge may pass through the gap 8 and be mixed with the molten steel 31 of the front charge. This point will be described.
As described above, since there is a little time before the post-charge is started after the joint steel for continuous casting of different steel types 1 is introduced, as shown in FIG. 3 and FIG. The solidified layer 37 is formed around the core 7 and the gap 8 between the steel bars 7 is closed. For this reason, it is possible to suppress excessive mixing of the components of the post-charge. Moreover, even if stress is applied along with the formation of the shrinkage cavity 39, it is not damaged because it is thicker and stronger than the steel plate, for example.

なお、棒鋼7間の隙間8は、前後チャージ間の経過時間で形成される凝固層37で塞がれるような間隔にする。前後チャージ間の経過時間を、凝固層37の形成のために長くするのは操業上好ましくないので、通常必要とされる、例えば5分程度の経過時間で形成される凝固層37で塞がる間隔の隙間になるように、棒鋼7を配置するのが好ましい。 The gap 8 between the steel bars 7 is set so that the solidified layer 37 formed in the elapsed time between the front and rear charges blocks the gap 8. Since it is not preferable in operation to elongate the elapsed time between the front and rear charges for the formation of the solidified layer 37, the interval required for closing the solidified layer 37, which is normally required, for example, about 5 minutes, is used. It is preferable to arrange the steel bars 7 so as to form a gap.

図5は、幅中央部のサンプルのマクロ写真である。図7の従来例と比較すると、本実施の形態の異鋼種連続鋳造用継目金物1では、湯引き量が増加し上端シェル長さLが約3倍に増大した。また、湯引きしたため引け巣39がほぼ消滅し前後チャージの溶鋼を仕切る凝固層37の破損も見られない。 FIG. 5 is a macro photograph of a sample in the width center part. As compared with the conventional example of FIG. 7, in the joint metal 1 for continuous casting of different steel types of the present embodiment, the amount of boil was increased and the upper end shell length L 2 was increased to about 3 times. In addition, since the shrinkage cavity 39 is almost disappeared because the molten metal is drawn, no damage is observed in the solidified layer 37 that separates the molten steel before and after the charge.

以上のように、本実施の形態の異鋼種連続鋳造用継目金物1を使用することで、継目性ブレークアウトの発生を抑制しつつ異鋼種の成分の過度の混合を防止できる。
また、本実施の形態では、鋳型長辺方向の両側に設けられた鋼板部5と、鋼板部5の間に複数の棒鋼7が所定の隙間を介して配置された隙間面部9とを備えることで、鋼板を比較的薄くすることで全体の重量を軽減することができる。これによって、作業者が手作業で鋳型内へ設置することができる重量、例えば30kg以下にすることもできる。
また、鋼板部5を有することで、異鋼種の混合をより抑制できるという効果もある。
As described above, by using the seam metal 1 for continuous casting of different steel types of the present embodiment, it is possible to prevent the occurrence of seam breakout and prevent excessive mixing of the components of the different steel types.
In addition, in the present embodiment, the steel plate portions 5 provided on both sides in the long side direction of the mold and the gap surface portions 9 in which a plurality of steel bars 7 are arranged with predetermined gaps between the steel plate portions 5 are provided. Thus, the overall weight can be reduced by making the steel sheet relatively thin. With this, it is possible to reduce the weight that an operator can manually install in the mold, for example, 30 kg or less.
Further, by having the steel plate portion 5, there is an effect that the mixing of different steel types can be further suppressed.

もっとも、鋼板部5を無くして全体を棒鋼7で形成してもよく、また棒鋼7の軸線の方向についても特に限定されるものではない。
さらに、隙間面部9は鉄筋等の棒鋼7で形成するものに限定されず、所定の厚みを有する鋼板に細い矩形状の開口部を複数設けるようにしてもよい。
However, the steel plate portion 5 may be eliminated and the whole may be formed of the steel bar 7, and the direction of the axis of the steel bar 7 is not particularly limited.
Further, the gap surface portion 9 is not limited to the one formed by the steel bar 7 such as a reinforcing bar, and a plurality of thin rectangular openings may be provided in a steel plate having a predetermined thickness.

本実施の形態の異鋼種連続鋳造用継目金物1を用いて連続鋳造する方法を概説すると以下の通りである。
前チャージの鋳型への注入が終了した後、鋳片の引抜きを停止する。この状態で、異鋼種連続鋳造用継目金物1を、前チャージでチャージされた溶鋼内に投入し、仕切り部材3の周縁を既に形成されている凝固シェルで支持する。その後、隙間面部9の棒鋼7を核として隙間8が塞がれる凝固層が形成される所定時間経過後に後チャージを開始する。
The outline of the method of continuous casting using the seam metal 1 for continuous casting of different steel types of the present embodiment is as follows.
After the injection of the precharge into the mold is completed, the withdrawal of the slab is stopped. In this state, the seam metal 1 for continuous casting of different steel types is put into the molten steel charged by the precharge, and the peripheral edge of the partition member 3 is supported by the solidified shell already formed. After that, post-charge is started after a lapse of a predetermined time in which a solidified layer for closing the gap 8 is formed with the steel bar 7 of the gap surface portion 9 as a nucleus.

上記のように、本発明の異鋼種連続鋳造用継目金物1を用いることで、前後チャージの接続を良好にして、ブレークアウトの発生を抑制できる。
もっとも、寸法の小さなスラブの場合には、前後チャージの接合面積が小さくなるため、寸法の大きなスラブに比べると前後チャージの接続が不十分になることが考えられる。
また、後チャージ後のスラブ引抜きは注ぎ上げ時間(秒)[注ぎ上げ時間とは、後チャージの溶鋼の鋳型への注入を開始してから、湯面が上昇して、規定の湯面高さ(=鋳型上端から一定の値下がった位置。通常は鋳型幅によらず一定値)に到達するまでの時間。通常、は湯面レベル計の測距範囲の下限値より一定値湯面が上がった状態。]の経過後に行うが、この注ぎ上げ時間が短いと、鋳型内で前後チャージの継ぎ目部が接合するまでの保持時間が短くなり、この場合にも前後チャージの接続が不十分になることが考えられる。
このように、接合面積と注ぎ上げ時間は前後チャージの接続に密接に関係する。
そこで、以下においては、前後チャージの接続を確実に行うための条件について、検討した。
As described above, by using the seam piece 1 for continuous casting of different steel types of the present invention, it is possible to improve the connection between the front and rear charges and suppress the occurrence of breakout.
However, in the case of a slab having a small size, the junction area of the front and rear charges becomes small, and therefore it is considered that the connection of the front and rear charges becomes insufficient as compared with the slab having a large size.
In addition, the slab drawing after the post-charge is the pouring time (seconds) [The pouring time is the level of the molten steel that rises after the start of pouring the molten steel into the mold after the post-charging (= A position where a certain value is dropped from the upper end of the mold. Normally, it is a constant value regardless of the mold width). Normally, the level of the molten metal is higher than the lower limit of the measuring range of the molten metal level gauge. ], but if this pouring time is short, the holding time until the joints of the front and rear charges are joined in the mold is shortened, and in this case too, the connection of the front and rear charges may be insufficient. Be done.
Thus, the joint area and the pouring time are closely related to the connection of the front and rear charges.
Therefore, in the following, the conditions for surely connecting the front and rear charges are examined.

発明者らは、過去のトラブル実績より継ぎ目接合不良が発生し得る接合面積と注ぎ上げ時間の関係を定量化することを考えた。図8は、継ぎ目接合不良が発生したときの注ぎ上げ時間と接合面積との関係を示すグラフであり、縦軸が注ぎ上げ時間で、横軸が接合面積を示している。図8中には、異鋼種金物として従来の鉄板を用いた場合(鉄板型と表記)と、本発明の異鋼種連続鋳造用継目金物1を用いた場合(鉄筋型と表記)の両方について、継ぎ目接合不良が発生した事例(鉄板型トラブル、鉄筋型トラブルと表記)をプロットした。 The inventors considered quantifying the relationship between the joint area that may cause a joint joint failure and the pouring time based on past trouble records. FIG. 8 is a graph showing the relationship between the pouring time and the joint area when a seam joint failure occurs, where the vertical axis represents the pouring time and the horizontal axis represents the joint area. In FIG. 8, both of the case of using a conventional steel plate as the different steel type metal product (expressed as iron plate type) and the case of using the seam metal 1 for different steel type continuous casting of the present invention (expressed as rebar type), Plots were made of cases in which seam joint failure occurred (described as iron plate type trouble and reinforcing bar type trouble).

図8を見ると理解されるように、鉄板型と鉄筋型に大きな差はなく、注ぎ上げ時間と接合面積が前後チャージの接続強度に大きく寄与しており、継ぎ目接合不良が発生し得る注ぎ上げ時間は、接合面積によって定式化することができ、従来の鉄板型の場合は、(1)式で、鉄筋型である異鋼種連続鋳造用継目金物1の場合は(2)式で近似できる。
T=114.54A-0.107 ・・・・ (1)
T=201.99A-0.183 ・・・・ (2)
ただし、T:注ぎ上げ時間(秒)
A:前後チャージの接合面積(cm2)
As can be seen from FIG. 8, there is no big difference between the iron plate type and the rebar type, and the pouring time and the joint area contribute greatly to the connection strength between the front and rear charges, and the joint joint failure may occur. The time can be formulated by the joining area, and can be approximated by the formula (1) in the case of the conventional iron plate type and by the formula (2) in the case of the rebar type continuous casting for different steel type continuous casting 1.
T=114.54A -0.107 ...(1)
T=201.99A -0.183 ... (2)
However, T: pouring time (seconds)
A: Junction area of front and rear charges (cm 2 )

接合面積Aは、スラブ周囲長さL=W×2+t×2(スラブ幅(cm):W、スラブ厚み:t)とシェル長さを掛け算して算出した値である。すなわち、A=L×シェル長さ The joint area A is a value calculated by multiplying the slab peripheral length L=W×2+t×2 (slab width (cm): W, slab thickness: t) by the shell length. That is, A=L×shell length

したがって、(1)式、(2)式から求まる注ぎ上げ時間Tよりも長い時間で注ぎ上げを行った後に、鋳型振動とピンチロールによる後チャージの引き抜きを開始すれば、継ぎ目接合不良によるトラブルを確実に防止することができる。
もっとも、(1)式におけるAの係数(114.54)及びAの乗数(-0.107)、(2)式におけるAの係数(201.99)及びAの乗数(-0.183)は、これらの式を求めるために使用する過去のデータによって変わってくるので、(1)式及び(2)式を一般化すると下式(3)となる。
T=αA−β ・・・・ (3)
α、βは過去の操業データから決まる数値
Therefore, if pouring is performed for a time longer than the pouring time T obtained from the formulas (1) and (2) and then the extraction of the post-charge by the mold vibration and the pinch roll is started, the trouble due to the defective seam joining will occur. It can be surely prevented.
However, the coefficient of A (114.54) and the multiplier of A (-0.107) in the equation (1), and the coefficient of A (201.99) and the multiplier of A (-0.183) in the equation (2) are used to obtain these expressions. The formula (1) and the formula (2) can be generalized as the following formula (3) because it depends on the past data used.
T=αA −β ··· (3)
α and β are numerical values determined from past operational data

よって、(3)式に基づいて求まる注ぎ上げ時間Tよりも長い時間で注ぎ上げを行った後に、鋳型振動とピンチロールによる後チャージの引き抜きを開始すれば、継ぎ目接合不良によるトラブルを確実に防止することができる。 Therefore, if pouring is performed for a time longer than the pouring time T obtained based on the formula (3) and then the extraction of the post-charge by the mold vibration and the pinch roll is started, the trouble due to the defective seam joining can be reliably prevented. can do.

しかし、上記において接合面積Aを求めるために必要なシェル長さは、鋳造後のスラブを切り出し、腐食して測定する方法で判明するものである。そのため、鋳造時(=まさに異鋼種連々鋳を実施せんとするその時)の注ぎ上げ時間を決めるのに用いることはできず、過去のデータから接続不良を回避できる注ぎ上げ時間を大まかに定めて操業を実施している。
そこで、シェル長さに代えて鋳造時の注ぎ上げ時間を決めるのに用いることができる指標についてさらに検討した。
However, the shell length required to obtain the joint area A in the above is found by a method in which the cast slab is cut out, corroded and measured. Therefore, it cannot be used to determine the pouring time at the time of casting (= exactly when successive castings of different steels are to be carried out), and the operation is performed by roughly determining the pouring time that can prevent connection failure from past data. Is being carried out.
Therefore, we further examined the index that can be used to determine the pouring time during casting instead of the shell length.

鋳型内に投入する異鋼種連々鋳金物が本発明の鉄筋を用いたものの(図1の異鋼種連々鋳金物1)場合、湯引き(凝固収縮や凝固シェルのバルジングで湯面が下がる)が生じると、異鋼種連々鋳金物よりも上方の溶鋼が金物の下方に移動するので、シェル長さは図3のLとなる。
ここで、仮に異鋼種連々鋳金物1の上端、すなわち図9に示す鋳片倒れ込み防止板13の上端まで鋳型湯面に入れ込むとすれば、「金物高さC―鉄筋周辺の凝固厚D」がシェル長さとなる。
つまり、本発明の異鋼種連々鋳金物1を使用した場合には、図3(a)に示すように、凝固シェルの下端位置が鉄筋周囲に形成される凝固層の上端位置になるので、金物高さCが一定で、かつ鋳型への押し込み深さが一定であればシェル長さは、鉄筋周辺の凝固層厚をD(cm)とすれば、C−Dとして求めることができる。
しがたって、下記の(4)式が成立する。
(C−D)×L=A∝L ・・・・(4)
Cは金物高さ(cm)、
Dは鉄筋周辺の凝固層厚(cm)、
Lはスラブ周囲長さ(cm))
金物高さCは、一定として金物を製造することで一定値となり、鉄筋周辺の凝固層厚Dは、ピンチロールを停止して、異鋼種連々鋳金物を鋳型内にセットしてから後チャージの鋳型内鋳込み開始するまでの時間を一定値とする、つまり鋳型内での前チャージが滞留する時間を一定とすることで一定の値となる。
In the case where the different steel type castings to be put into the mold use the reinforcing bar of the present invention (the different steel type castings 1 in FIG. 1), when the molten metal is drawn (the surface of the molten metal is lowered by solidification shrinkage or bulging of the solidified shell). Since the molten steel above the cast metal products of different steel types moves downwards, the shell length is L 2 in FIG.
Here, if it is assumed that the upper end of the cast metal 1 of different steel types, that is, the upper end of the slab collapse prevention plate 13 shown in FIG. 9 is put into the mold molten metal surface, "the height of the metal C-the solidification thickness D around the rebar" Is the shell length.
That is, when the different steel type castings 1 of the present invention are used, the lower end position of the solidified shell is the upper end position of the solidified layer formed around the reinforcing bar as shown in FIG. If the height C is constant and the indentation depth into the mold is constant, the shell length can be obtained as CD when the solidified layer thickness around the reinforcing bar is D (cm).
Therefore, the following expression (4) is established.
(C−D)×L=A∝L ··· (4)
C is the height of the hardware (cm),
D is the solidification layer thickness (cm) around the rebar,
L is the slab circumference (cm))
The height C of the metal product becomes a constant value by manufacturing the metal product with a constant value. The thickness D of the solidified layer around the reinforcing bar is set after the pinch roll is stopped and the different steel grades are continuously set in the mold and the post-charging is performed. The time until the start of casting in the mold is set to a constant value, that is, the time during which the precharge stays in the mold is set to be a constant value.

以上のように、本発明の異鋼種連々鋳金物1を使用することを前提とすれば、シェル長さを定数にすることができ、接合面積はスラブ周長Lに比例すると見なすことができる。
そこで、図8の横軸の接合面積をスラブ周囲長Lに置き換えて、注ぎ上げ時間と継ぎ目接合不良の発生の有無を示したグラフを図10に示す。
図10から、注ぎ上げ時間Tとスラブ周長Lとの関係は、下記の(5)式で近似できる。
T=9398.1L-0.959 ・・・・・ (5)
As described above, assuming that the continuous castings 1 of different steels of the present invention are used, the shell length can be made constant, and the joint area can be regarded as being proportional to the slab circumferential length L.
Therefore, FIG. 10 is a graph showing the pouring time and the presence/absence of joint failure by replacing the joint area on the horizontal axis in FIG. 8 with the slab peripheral length L.
From FIG. 10, the relationship between the pouring time T and the slab circumference L can be approximated by the following equation (5).
T=9398.1L -0.959 ... (5)

なお、異鋼種連々鋳金物として、従来の鉄板型の場合には、湯引きが生じたときに鉄板が破損等して必ずしも図3(b)に示すようにシェル長さが一定にはならないが、一定になると仮定して、図10に鉄板型の場合で継ぎ目接合不良が発生したデータをプロットして、注ぎ上げ時間Tとスラブ周長Lとの関係を求めると、下記の(6)式で近似できる。
T=26619L-1.117 ・・・・ (6)
In the case of a conventional iron plate type as a continuous casting of different steel types, the shell length is not always constant as shown in FIG. Assuming that it is constant, plotting the data of seam joint failure in the case of the iron plate type in FIG. 10 and obtaining the relationship between the pouring time T and the slab circumference L, the following equation (6) is obtained. Can be approximated.
T=26619L -1.117 ... (6)

図10及び(5)式、(6)式を見れば分かるように、本発明の異鋼種連々鋳金物1を使用することで、同じスラブ周囲長さであっても、継ぎ目接合不良が発生しない注ぎ上げ時間が鉄板型のものよりも短くなる。換言すれば、注ぎ上げ時間が同じであれば、本発明の異鋼種連々鋳金物1を使用することで、継ぎ目接合不良を確実に防止できる。 As can be seen from FIG. 10 and the expressions (5) and (6), by using the different steel type continuous metal casting 1 of the present invention, even if the slab circumference is the same, the seam joint failure does not occur. The pouring time is shorter than that of the iron plate type. In other words, if the pouring time is the same, it is possible to surely prevent the seam joining failure by using the castings 1 of different steel types according to the present invention.

また、本発明の異鋼種連々鋳金物1を使用すれば、注ぎ上げ時間をスラブ周囲長さを用いて定式化することができ、鋳造時においてスラブ接合が十分となる注ぎ上げ時間を設定した連続鋳造を行うことができる。このときの、注ぎ上げ時間Tは上記の(4)式によって与えられるが、(5)式のLの係数(9398.1)や、Lの乗数(-0.959)は、(5)式を求めるために使用する過去のデータによって変わってくるので、(5)式を一般化すると下式(7)となる。
T=γL−δ ・・・・ (7)
γ、δは過去の操業データから決まる数値
Further, by using the continuous castings 1 of different steel types of the present invention, the pouring time can be formulated by using the slab peripheral length, and the continuous pouring time is set so that the slab joining is sufficient during casting. Casting can be performed. At this time, the pouring time T is given by the above equation (4), but the coefficient of L in equation (5) (9398.1) and the multiplier of L (-0.959) are used to obtain equation (5). The formula (5) is generalized as the following formula (7) because it depends on the past data used.
T=γL− δ ... (7)
γ and δ are numerical values determined from past operational data

よって、(7)式に基づいて求まる注ぎ上げ時間Tよりも長い時間で注ぎ上げを行った後に、鋳型振動とピンチロールによる後チャージの引き抜きを開始すれば、接続の不備によるトラブルを確実に防止することができる。 Therefore, if pouring is performed for a time longer than the pouring time T calculated based on the equation (7) and then the extraction of the post-charge by the mold vibration and the pinch roll is started, the trouble due to the inadequate connection can be reliably prevented. can do.

なお、注ぎ上げ時間を実際の操業で設定する場合には、(7)式に鋳型の寸法(=スラブ周囲長さ)を代入して鋳造前に必要最小限の注ぎ上げ時間を求め、この時間をスライディングノズルの注ぎ上げ制御の目標時間として自動セットするようにすればよい。
もっとも、注ぎ上げ時間の制御に関し、連続鋳造機の仕様によっては、注ぎ上げ時間の設定の自由度が低い場合もあり、このような場合には、(7)式で求まる注ぎ上げ時間以上であって、設定可能な操業下限値に設定すればよく、例えば、図11の階段状のグラフのように鋳造スラブ寸法で区間分けして、区間ごとに注ぎ上げ時間の許容下限値(操業下限と表記)を設定することで、オペレーションを簡易化することが可能となる。
When setting the pouring time in actual operation, the mold size (= slab circumference) is substituted into equation (7) to find the minimum required pouring time before casting. May be automatically set as the target time for the pouring control of the sliding nozzle.
However, regarding the control of the pouring time, the degree of freedom in setting the pouring time may be low depending on the specifications of the continuous casting machine. In such a case, it is more than the pouring time obtained by the formula (7). Then, it can be set to a settable lower limit of operation. For example, as shown in the stepwise graph of FIG. 11, the casting slab dimensions are divided into sections, and the allowable lower limit of the pouring time for each section (expressed as the operation lower limit) ), it is possible to simplify the operation.

従来品を用いていた場合には、年間で2〜3回の継目性ブレークアウトの発生があったが、上記実施の形態で示した異鋼種連続鋳造用継目金物1を実際の操業に用いた結果、年間の継目性ブレークアウトの発生は皆無となった。 When the conventional product was used, the seam breakout occurred 2 to 3 times a year, but the seam metal 1 for different steel type continuous casting shown in the above embodiment was used for the actual operation. As a result, no yearly seam breakouts occurred.

1 異鋼種連続鋳造用継目金物
3 仕切り部材
5 鋼板部
7 棒鋼
8 隙間
9 隙間面部
11 鋳片倒れ込み防止棒
13 鋳片倒れ込み防止板
31 溶鋼(前チャージ)
33 凝固シェル(前チャージ)
35 継目金物(従来例)
37 凝固層
39 引け巣
41 皮張り
43 上端シェル
45 浸漬ノズル
47 溶鋼(後チャージ)
49 接続部
1 Splice for continuous casting of different steel types 3 Partition member 5 Steel plate part 7 Steel bar 8 Gap 9 Gap surface part 11 Slab collapse prevention rod 13 Slab collapse prevention plate 31 Molten steel (pre-charge)
33 Coagulation shell (pre-charge)
35 Joint hardware (conventional example)
37 Solidified layer 39 Shrinkage cavities 41 Skinning 43 Upper-end shell 45 Immersion nozzle 47 Molten steel (post-charge)
49 Connection

Claims (2)

前チャージの鋳造に連続して鋼種の異なる後チャージの鋳造を行う際に、前チャージの鋳込み完了後に鋳型内に配置して、前チャージと後チャージとの継目部に使用する異鋼種連続鋳造用継目金物であって、前記前チャージと前記後チャージの間に配置され、外形が矩形状に形成された仕切り部材を備え、該仕切り部材は、溶鋼が通過できる複数の隙間が形成された隙間面部を有するものを用いた鋼の連続鋳造方法であって、
前チャージの鋳込み完了後に鋳型内に前記異鋼種連続鋳造用継目金物を投入する異鋼種連続鋳造用継目金物投入工程と、
該異鋼種連続鋳造用継目金物投入工程の後、前記隙間面部の隙間に凝固層が形成される所定時間経過後に後チャージを開始する後チャージ工程を備え、
前チャージのシェルと後チャージ溶鋼との接合面積Aを用いて下式に基づいて決まる必要最低の注ぎ上げ時間T以上の時間で注ぎ上げを行った後に、鋳型振動とピンチロールによる後チャージの引き抜きを開始することを特徴とする鋼の連続鋳造方法。
T=αA−β
α、βは過去の操業データに基づいて求まる数値
For continuous casting of different steel types, which is used in the joint between the pre-charge and the post-charge, when placing the post-charge of different steel types in succession to the casting of the pre-charge, placing it in the mold after the casting of the pre-charge is completed A joint metal product, which is provided between the pre-charge and the post-charge and includes a partition member having a rectangular outer shape, and the partition member has a gap surface portion in which a plurality of gaps through which molten steel can pass are formed. A method for continuously casting steel using a steel having
After the casting of the pre-charge, the dissimilar steel type continuous casting joint metal casting step of charging the dissimilar steel type continuous casting joint metal in the mold,
After the step of introducing a joint metal for continuous casting of different steel types, a post-charging step of starting post-charging after a lapse of a predetermined time in which a solidified layer is formed in the gap of the gap surface portion,
After performing the pouring for a time longer than the required minimum pouring time T, which is determined based on the following formula using the joint area A between the shell of the pre-charge and the molten steel of the post-charge, pulling out the post-charge by the vibration of the mold and the pinch roll. The method for continuous casting of steel, characterized in that
T=αA −β
α and β are numerical values obtained based on past operational data
前チャージの鋳造に連続して鋼種の異なる後チャージの鋳造を行う際に、前チャージの鋳込み完了後に鋳型内に配置して、前チャージと後チャージとの継目部に使用する異鋼種連続鋳造用継目金物であって、前記前チャージと前記後チャージの間に配置され、外形が矩形状に形成された仕切り部材を備え、該仕切り部材は、溶鋼が通過できる複数の隙間が形成された隙間面部を有するものを用いた鋼の連続鋳造方法であって、
前チャージの鋳込み完了後に鋳型内に前記異鋼種連続鋳造用継目金物を投入する異鋼種連続鋳造用継目金物投入工程と、
該異鋼種連続鋳造用継目金物投入工程の後、前記隙間面部の隙間に凝固層が形成される所定時間経過後に後チャージを開始する後チャージ工程を備え、
スラブ周囲長さLを用いて下式に基づいて決まる後チャージの必要最低の注ぎ上げ時間T以上の時間で注ぎ上げを行った後に、鋳型振動とピンチロールによる後チャージの引き抜きを開始することを特徴とする連続鋳造方法。
T=γL−δ
γ、δは過去の操業データから決まる数値
For continuous casting of different steel types, which is used in the joint between the pre-charge and the post-charge, when placing the post-charge of different steel types in succession to the casting of the pre-charge, placing it in the mold after the casting of the pre-charge is completed A joint metal product, which is provided between the pre-charge and the post-charge and includes a partition member having a rectangular outer shape, and the partition member has a gap surface portion in which a plurality of gaps through which molten steel can pass are formed. A method for continuously casting steel using a steel having
After the casting of the pre-charge, the dissimilar steel type continuous casting joint metal casting step of charging the dissimilar steel type continuous casting joint metal in the mold,
After the step of introducing a joint metal for continuous casting of different steel types, a post-charging step of starting post-charging after a lapse of a predetermined time in which a solidified layer is formed in the gap of the gap surface portion,
After the pouring is performed for a time longer than the minimum required pouring time T of the post-charge determined based on the following formula using the slab circumference length L, the start of the post-charge withdrawal by the mold vibration and the pinch roll. Characteristic continuous casting method.
T=γL− δ
γ and δ are numerical values determined from past operational data
JP2017216086A 2016-11-29 2017-11-09 A continuous metal for continuous casting of different steel types and a continuous casting method for steel Active JP6708196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020024857A JP6923022B2 (en) 2016-11-29 2020-02-18 Continuous casting method for seams and steel for continuous casting of different steel types

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016230880 2016-11-29
JP2016230880 2016-11-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020024857A Division JP6923022B2 (en) 2016-11-29 2020-02-18 Continuous casting method for seams and steel for continuous casting of different steel types

Publications (2)

Publication Number Publication Date
JP2018089688A JP2018089688A (en) 2018-06-14
JP6708196B2 true JP6708196B2 (en) 2020-06-10

Family

ID=62564905

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017216086A Active JP6708196B2 (en) 2016-11-29 2017-11-09 A continuous metal for continuous casting of different steel types and a continuous casting method for steel
JP2020024857A Active JP6923022B2 (en) 2016-11-29 2020-02-18 Continuous casting method for seams and steel for continuous casting of different steel types

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020024857A Active JP6923022B2 (en) 2016-11-29 2020-02-18 Continuous casting method for seams and steel for continuous casting of different steel types

Country Status (1)

Country Link
JP (2) JP6708196B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942587B2 (en) * 1978-06-20 1984-10-16 川崎製鉄株式会社 Continuous casting method for molten steel of different steel types
JPS5958553U (en) * 1982-10-12 1984-04-17 株式会社神戸製鋼所 Connecting member for continuous casting
JPH0641708Y2 (en) * 1990-01-10 1994-11-02 日新製鋼株式会社 Mixing prevention device for different steel types in continuous casting
JP4494244B2 (en) * 2005-02-10 2010-06-30 株式会社神戸製鋼所 Sequence block

Also Published As

Publication number Publication date
JP2020073291A (en) 2020-05-14
JP2018089688A (en) 2018-06-14
JP6923022B2 (en) 2021-08-18

Similar Documents

Publication Publication Date Title
US3612150A (en) Method of changing the cross section of continuous castings
JP6708196B2 (en) A continuous metal for continuous casting of different steel types and a continuous casting method for steel
US20060177683A1 (en) Method of producing clad metal products
JP4549201B2 (en) Continuous casting method of different steel types
KR100983371B1 (en) A device for preventing the inflow of slag into the mold and seperating a remained molten iron solidified in the continuously casting machine
JP2020028906A (en) Method of casting steel
US3561722A (en) Steel casting mold insert
US2445583A (en) Method and apparatus for casting metals
US3593777A (en) Leader for ingot in continuous casting
JPS58138543A (en) Continuous casting method of steel of dissimilar kind
JP4113967B2 (en) Metal ingot casting apparatus and casting method
JP6318849B2 (en) Weir refractory construction method of induction heating type tundish and repair method of weir refractory constructed by this method
US3409267A (en) Riser construction with separate upper relatively large reusable section
US1785941A (en) Mold for casting metals
JP7425949B2 (en) Remaining water storage container
JP3082834B2 (en) Continuous casting method for round slabs
Fedorov et al. Aspects of the Production of Continuous-Cast Beams.
US1554616A (en) Strong
KR810002019B1 (en) Dummy bar head for continuous casting and method of starting a continuously cast strand
US2556035A (en) Ingot mold
JPS6132105B2 (en)
SU969438A1 (en) Intermediate apparatus
JPH0377758A (en) Method for starting pouring in continuous casting
JP6028583B2 (en) Tundish for continuous casting
JPH086022Y2 (en) Converter Furnace Mouth brick fallout prevention structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200218

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200504

R150 Certificate of patent or registration of utility model

Ref document number: 6708196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250