JP6708067B2 - Method for producing copper-coated powder - Google Patents

Method for producing copper-coated powder Download PDF

Info

Publication number
JP6708067B2
JP6708067B2 JP2016175679A JP2016175679A JP6708067B2 JP 6708067 B2 JP6708067 B2 JP 6708067B2 JP 2016175679 A JP2016175679 A JP 2016175679A JP 2016175679 A JP2016175679 A JP 2016175679A JP 6708067 B2 JP6708067 B2 JP 6708067B2
Authority
JP
Japan
Prior art keywords
copper
powder
conductive inorganic
coated
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016175679A
Other languages
Japanese (ja)
Other versions
JP2018041649A (en
Inventor
岡田 浩
浩 岡田
雄 山下
雄 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016175679A priority Critical patent/JP6708067B2/en
Publication of JP2018041649A publication Critical patent/JP2018041649A/en
Application granted granted Critical
Publication of JP6708067B2 publication Critical patent/JP6708067B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、銅被覆粉体の製造方法に関し、より詳しくは、主として導電性材料に用いられる導電性フィラーとして好適であって、非導電性無機質の粉体表面に銅を均一で密着性良く付着させた銅被覆粉体の製造方法に関するものである。 The present invention relates to a method for producing a copper-coated powder, and more specifically, it is suitable as a conductive filler mainly used for a conductive material, and evenly adheres copper to the surface of a non-conductive inorganic powder with good adhesion. The present invention relates to a method for producing the copper-coated powder.

近年、導電性ペースト又は電磁波シールド用導電塗料に配合される導電性フィラーとして、金属粉、特に銀や銅の微粉末が主に用いられている。特に銀は、その優れた電気伝導性と耐環境性の特徴から高価であるにもかかわらず多く使用されている。 In recent years, metal powder, particularly fine powder of silver or copper, has been mainly used as a conductive filler to be blended with a conductive paste or a conductive coating material for electromagnetic wave shielding. In particular, silver is often used despite its high price because of its excellent electrical conductivity and environmental resistance.

また、電子機器の小型化、高機能化の進展に伴い、対向する多数の電極や配線間の接続のために、異方性導電材料が採用されている。異方性導電材料としては、異方性導電ペースト、異方性導電フィルム、異方性導電シート等がある。これら異方性導電材料は、導電性微粒子をバインダー樹脂等に混合した材料で、接続時に異方性を発揮するためには、形状が一定の導電性微粒子が必要となる。 In addition, with the progress of miniaturization and high functionality of electronic devices, anisotropic conductive materials have been adopted for the connection between a large number of opposing electrodes and wirings. Examples of the anisotropic conductive material include an anisotropic conductive paste, an anisotropic conductive film, and an anisotropic conductive sheet. These anisotropic conductive materials are materials in which conductive fine particles are mixed with a binder resin or the like, and in order to exhibit anisotropy at the time of connection, conductive fine particles having a constant shape are required.

一般的に用いられている金属粒子では、求める形状に粒子を製造することは難しいため、形状を一定にコントロールして製造できる無機質や有機質の粉体の表面に金属を被覆する方法が利用されている。例えば、特許文献1には、無機質や有機質(樹脂等)からなる平均粒子径が0.5〜2.5μmの粉体表面に貴金属を無電解めっき法で被覆した導電性微粒子が提案されている。 With commonly used metal particles, it is difficult to produce particles in the desired shape.Therefore, a method of coating a metal on the surface of an inorganic or organic powder that can be produced by controlling the shape to a certain extent is used. There is. For example, Patent Document 1 proposes conductive fine particles in which a powder of an inorganic or organic material (resin or the like) having an average particle diameter of 0.5 to 2.5 μm is coated with a noble metal by an electroless plating method. ..

従来、無機質や有機質からなる粉体表面に金属を被覆する方法として、無電解めっき法によって被覆する方法がよく用いられてきた。無電解めっき法は、具体的には、粉体を、塩化第一錫及び塩化パラジウム溶液、あるいは錫及びパラジウムのコロイド溶液中に浸漬することにより、粉体表面を活性化した後(活性化処理)、金属塩、金属錯化剤、pH調整剤、還元剤等を含有する無電解めっき浴に浸漬して所望の金属被膜を形成する方法である。 Conventionally, as a method for coating the surface of a powder made of an inorganic material or an organic material with a metal, a method of coating by electroless plating has been often used. Specifically, the electroless plating method involves activating the powder surface by immersing the powder in a stannous chloride and palladium chloride solution or a colloidal solution of tin and palladium (activating treatment). ), a metal complex, a metal complexing agent, a pH adjusting agent, a reducing agent, etc., is immersed in the electroless plating bath to form a desired metal film.

この方法により形成される金属被膜の種類は、金属塩の種類により各種あり、導電材、電磁波シールド材として利用可能な金属としては、ニッケル、銅、銀、パラジウム等がある。金属の種類により、無電解めっき浴中の金属塩、金属錯化剤、pH調整剤、還元剤の種類は異なるが、通常、無電解めっき法による粉体表面への金属被膜の形成は、粉体を活性化処理した後、還元剤あるいは還元剤と金属塩とを除いた無電解めっき浴中に浸漬し、撹拌により粉体を十分に分散させた後、還元剤、あるいは還元剤と金属塩とを徐々に添加し、ゆっくりと金属被膜を形成させるというものである。 There are various types of metal coatings formed by this method, depending on the type of metal salt, and examples of metals that can be used as conductive materials and electromagnetic wave shielding materials include nickel, copper, silver, and palladium. Although the types of metal salts, metal complexing agents, pH adjusters, and reducing agents in the electroless plating bath differ depending on the type of metal, the formation of a metal coating on the surface of a powder by electroless plating is usually performed using powder. After activating the body, it is immersed in an electroless plating bath from which the reducing agent or reducing agent and the metal salt have been removed, and the powder is sufficiently dispersed by stirring, and then the reducing agent or the reducing agent and the metal salt. And are gradually added to slowly form a metal film.

ところが、上述した方法により粉体表面に金属被膜を形成する場合、粉体表面を活性化する工程において、吸着性等の差により、錫あるいはパラジウムの分布に不均一性が生じることがある。無電解めっきの際、この錫あるいはパラジウムの分布の不均一性によって金属被膜が形成しやすい部分と形成しにくい部分とが生じると、被膜形成の進行により、形成しやすい部分にのみ金属被膜が形成されていくため、極端な部分では未析出部が生じ、粉体自体が表面に露出するという問題が起きることがある。 However, when the metal coating is formed on the powder surface by the above-mentioned method, in the step of activating the powder surface, uneven distribution of tin or palladium may occur due to a difference in adsorptivity or the like. During electroless plating, if unevenness in the distribution of tin or palladium causes areas where a metal film is likely to be formed and areas where it is difficult to form a metal film, the progress of film formation causes the metal film to be formed only on the areas where it is easy to form. As a result, unprecipitated portions are formed in the extreme portions, and the powder itself may be exposed on the surface.

また、無電解めっき法では、活性化工程により粉体表面に吸着したパラジウム、あるいは、先に無電解めっきにより形成された金属被膜が触媒となるために、無電解めっき液中に含まれる還元剤が酸化され、その際に放出される電子によって無電解めっき液中の金属が還元され、金属被膜が形成される。還元剤の還元力は、酸化還元電位により表されるが、その酸化還元電位は、還元剤の種類、濃度、温度、pH等により変化するため、均一で密着性の良好な金属被膜を得るためにはそのコントロールが必要となる。 In the electroless plating method, the reducing agent contained in the electroless plating solution is used because the palladium adsorbed on the powder surface in the activation step or the metal coating previously formed by electroless plating serves as a catalyst. Is oxidized, and electrons emitted at that time reduce the metal in the electroless plating solution to form a metal film. The reducing power of the reducing agent is represented by the redox potential, but since the redox potential changes depending on the type, concentration, temperature, pH, etc. of the reducing agent, in order to obtain a metal film with uniform and good adhesion. Needs that control.

例えば、特許文献2には、活性化処理後の粉体を、還元剤を含有する溶液中に分散し、温度及びpHをコントロールした後に還元剤を含まない無電解めっき液中に添加する方法が提案されている。しかしながら、上述したように無電解めっき法は、非常に多くの工程を必要とし、均一で密着性の良好な金属皮膜を製造するためには、複雑な管理が必要である等の問題もある。また、無電解めっき法では、無電解めっきで発生する廃液の処理コストも問題となる。 For example, Patent Document 2 discloses a method in which powder after activation treatment is dispersed in a solution containing a reducing agent, the temperature and pH are controlled, and then the powder is added to an electroless plating solution containing no reducing agent. Proposed. However, as described above, the electroless plating method requires a great number of steps, and there is a problem that complicated management is required in order to produce a uniform metal film having good adhesion. Further, in the electroless plating method, the treatment cost of the waste liquid generated in the electroless plating also becomes a problem.

特開2000−30526号公報JP 2000-30526 A 特開平8−253870号公報JP-A-8-253870

化学大辞典1 p1050,共立出版社 昭和35年3月30日発行Chemistry Dictionary 1 p1050, Kyoritsu Publishing Co., Ltd., published March 30, 1959

本発明は、上述した従来技術の問題点に鑑みなされたものであり、非導電性の無機質粉体の表面に銅を均一に密着性よく付着させた銅被覆粉体を、簡易な方法で、コストの面でもより効率的に製造することができる方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems of the conventional technique, a copper-coated powder obtained by uniformly adhering copper to the surface of a non-conductive inorganic powder with good adhesion, by a simple method, It is an object of the present invention to provide a method that can be manufactured more efficiently in terms of cost.

本発明者らは、上記目的を達成するために鋭意研究を重ねた。その結果、銅被覆粉体の製造において、非導電性の無機質粉体と酸化銅粉と共に、さらに特定の銅塩を加えて混合し、その混合物を流動させながら還元処理することで、比較的低温の還元温度で効率的に、密着性の良好な銅被覆粉体を製造できることを見出した。すなわち、本発明は、以下のものである。 The present inventors have conducted extensive studies to achieve the above object. As a result, in the production of the copper-coated powder, the non-conductive inorganic powder and the copper oxide powder are further mixed with a specific copper salt, and the mixture is subjected to a reduction treatment while being fluidized, so that the temperature is relatively low. It was found that a copper-coated powder having good adhesion can be efficiently produced at the reduction temperature of. That is, the present invention is as follows.

(1)本発明の第1の発明は、非導電性無機質の粉体に、酸化銅粉と、さらに融点が700℃以下である銅塩とを混合し、この混合物を還元雰囲気中350℃以上800℃以下の温度で、流動させながら加熱還元することにより、前記非導電性無機質の粉体表面に銅を付着させる、銅被覆粉体の製造方法である。 (1) A first aspect of the present invention is to mix non-conductive inorganic powder with copper oxide powder and a copper salt having a melting point of 700° C. or lower, and heat the mixture in a reducing atmosphere at 350° C. or higher. It is a method for producing a copper-coated powder, in which copper is attached to the surface of the non-conductive inorganic powder by heating and reducing it while flowing at a temperature of 800° C. or lower.

(2)本発明の第2の発明は、第1の発明において、前記非導電性無機質の粉体と前記酸化銅粉と前記銅塩とを混合するに際し、前記酸化銅粉を、前記非導電性無機質の粉体に対して、金属銅量換算で5質量%以上60質量%以下の割合で添加する、銅被覆粉体の製造方法である。 (2) The second invention of the present invention is the same as the first invention, wherein, when the non-conductive inorganic powder, the copper oxide powder and the copper salt are mixed, the copper oxide powder is mixed with the non-conductive powder. The method is a method for producing a copper-coated powder, which comprises adding 5 mass% or more and 60 mass% or less in terms of the amount of metallic copper to a powder of a hydrophilic inorganic material.

(3)本発明の第3の発明は、第1又は第2の発明において、前記非導電性無機質の粉体と前記酸化銅粉と前記銅塩とを混合するに際し、前記銅塩を、前記酸化銅粉に対して、金属銅量換算で0.01質量%以上10質量%以下の割合で添加する、銅被覆粉体の製造方法である。 (3) The third invention of the present invention is, in the first or second invention, in mixing the non-conductive inorganic powder, the copper oxide powder and the copper salt, the copper salt is It is a method for producing a copper-coated powder, which is added to copper oxide powder at a rate of 0.01% by mass or more and 10% by mass or less in terms of metallic copper.

(4)本発明の第4の発明は、第1乃至第3のいずれかの発明において、前記銅塩は、塩化銅である、銅被覆粉体の製造方法である。 (4) A fourth invention of the present invention is the method for producing a copper-coated powder according to any one of the first to third inventions, wherein the copper salt is copper chloride.

(5)本発明の第5の発明は、第1乃至第4のいずれかの発明において、前記非導電性無機質の粉体は、金属酸化物の粉体である、銅被覆粉体の製造方法である。 (5) A fifth invention of the present invention is the method for producing a copper-coated powder according to any one of the first to fourth inventions, wherein the non-conductive inorganic powder is a metal oxide powder. Is.

(6)本発明の第6の発明は、第1乃至第5のいずれかの発明において、前記非導電性無機質の粉体の平均粒子径は、1μm以上500μm以下である、銅被覆粉体の製造方法である。 (6) A sixth invention of the copper-coated powder according to any one of the first to fifth inventions, wherein the non-conductive inorganic powder has an average particle size of 1 μm or more and 500 μm or less. It is a manufacturing method.

(7)本発明の第7の発明は、第1乃至第6のいずれかの発明において、前記酸化銅粉は、平均粒子径が20μm以下、比表面積が0.5m/g以上である、銅被覆粉体の製造方法である。 (7) A seventh invention of the present invention is the invention of any of the first to sixth inventions, wherein the copper oxide powder has an average particle diameter of 20 μm or less and a specific surface area of 0.5 m 2 /g or more. It is a method for producing a copper-coated powder.

(8)本発明の第8の発明は、第1乃至第7のいずれかの発明において、前記還元雰囲気は、不活性ガスと還元性ガスの混合ガス雰囲気である、銅被覆粉体の製造方法である。 (8) An eighth invention of the present invention is the method for producing a copper-coated powder according to any one of the first to seventh inventions, wherein the reducing atmosphere is a mixed gas atmosphere of an inert gas and a reducing gas. Is.

本発明によれば、非導電性の無機質粉体の表面に銅を均一に且つ密着性よく付着させた銅被覆粉体を、簡易な方法で、またコストの面でも効率的に製造することができる。 According to the present invention, it is possible to efficiently produce a copper-coated powder in which copper is uniformly and adherently adhered to the surface of a non-conductive inorganic powder by a simple method and in terms of cost. it can.

実施例1にて使用した平均粒子径300μmのジルコニアの粉体(銅を被覆する前)を250倍で撮影したSEM像である。3 is an SEM image of the zirconia powder having an average particle diameter of 300 μm (before being coated with copper) used in Example 1, taken at a magnification of 250 times. 実施例5にて使用した平均粒子径15μmのジルコニアの粉体(銅を被覆する前)を1000倍で撮影したSEM像である。6 is an SEM image of the zirconia powder having an average particle diameter of 15 μm (before being coated with copper) used in Example 5, taken at 1000 times. 実施例1にて製造した銅被覆粉体を250倍で撮影したSEM像である。3 is an SEM image of the copper-coated powder produced in Example 1 taken at 250×. 実施例1にて製造した銅被覆粉体を1000倍で撮影したSEM像である。3 is an SEM image of the copper-coated powder produced in Example 1 taken at 1000 times. 実施例5にて製造した銅被覆粉体を1000倍で撮影したSEM像である。7 is a SEM image of the copper-coated powder produced in Example 5 taken at 1000 times.

以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で適宜変更することができる。また、本明細書にて、「x〜y」(x、yは任意の数値)の表記は、特に断らない限り「x以上y以下」の意味である。 Hereinafter, specific embodiments of the present invention (hereinafter, referred to as “this embodiment”) will be described in detail. The present invention is not limited to the following embodiments, but can be modified as appropriate without departing from the scope of the invention. Further, in the present specification, the notation “x to y” (x and y are arbitrary numerical values) means “not less than x and not more than y” unless otherwise specified.

≪1.銅被覆粉体の製造方法≫
本実施の形態に係る銅被覆粉体の製造方法は、非導電性無機質の粉体の表面に銅を被覆することによって銅被覆粉体とする製造方法であり、非導電性無機質の粉体と、酸化銅粉とを混合し、還元雰囲気で加熱還元する乾式の製法により銅被覆粉体を得る方法である。
<<1. Manufacturing method of copper-coated powder >>
The method for producing a copper-coated powder according to the present embodiment is a method for producing a copper-coated powder by coating copper on the surface of a non-conductive inorganic powder, and a non-conductive inorganic powder. A copper-coated powder is obtained by a dry manufacturing method in which copper oxide powder is mixed and heated and reduced in a reducing atmosphere.

そして、この製造方法では、非導電性無機質の粉体に、酸化銅粉と、さらに融点が700℃以下である銅塩を添加して混合し、その混合物を流動させながら還元雰囲気中350℃〜800℃の温度で加熱還元することにより、非導電性無機質の粉体表面に銅を付着させて、銅被覆粉体を得ることを特徴としている。 Then, in this manufacturing method, copper oxide powder and a copper salt having a melting point of 700° C. or lower are added to and mixed with the non-conductive inorganic powder, and the mixture is allowed to flow in a reducing atmosphere at 350° C. By heat-reducing at a temperature of 800° C., copper is attached to the surface of the non-conductive inorganic powder to obtain a copper-coated powder.

このような製造方法によれば、還元温度が低温であっても、銅の還元及び拡散反応が効率的に且つ効果的に進行し、非導電性無機質の粉体表面に均一に、且つ良好な密着性でもって銅被膜を形成させることができる。また、この製造方法によれば、乾式方法で、且つ比較的低い還元温度で銅被膜を形成できることから、無電解めっき法で問題となっていた複雑な工程管理が不要となり、廃液の処理等の問題もなく、また加熱に要するエネルギーも少ないため、低コストで効率的に銅被覆粉体を製造することができる。 According to such a production method, even if the reduction temperature is low, the reduction and diffusion reactions of copper proceed efficiently and effectively, and evenly and well on the surface of the non-conductive inorganic powder. It is possible to form a copper film with adhesiveness. Further, according to this manufacturing method, since the copper coating can be formed by a dry method and at a relatively low reduction temperature, complicated process control, which has been a problem in the electroless plating method, becomes unnecessary, and a waste liquid is treated. Since there is no problem and less energy is required for heating, the copper-coated powder can be efficiently produced at low cost.

≪2.銅被覆粉体の製造方法における各処理について≫
<原料の混合処理>
本実施の形態に係る銅被覆粉体の製造方法においては、非導電性無機質の粉体に、酸化銅粉を混合すると共に、さらに特定の銅塩を添加して混合する。
<<2. About each treatment in the manufacturing method of copper-coated powder >>
<Mixing of raw materials>
In the method for producing a copper-coated powder according to the present embodiment, copper oxide powder is mixed with non-conductive inorganic powder, and a specific copper salt is further added and mixed.

(1)非導電性無機質の粉体について
非導電性無機質の粉体は、非導電性である無機質の粉体であれば特に限定されないが、還元雰囲気中350℃〜800℃の温度で加熱還元するため、その温度でも変質しない材質であることが好ましく、融点がその加熱還元温度よりも高い金属酸化物の粉体であることがより好ましい。
(1) Non-conductive inorganic powder The non-conductive inorganic powder is not particularly limited as long as it is a non-conductive inorganic powder, but is reduced by heating at a temperature of 350°C to 800°C in a reducing atmosphere. Therefore, a material that does not deteriorate even at that temperature is preferable, and a powder of a metal oxide having a melting point higher than the heating reduction temperature is more preferable.

具体的には、アルミナ、酸化チタン、ジルコニア、窒化ケイ素、サイアロン、炭化ケイ素、ムライト、マグネシア等のセラミック系無機材料の粉体や、ホウケイ酸ガラス、ソーダ石灰ガラス、石英ガラス、アルミノケイ酸ガラス、カリクリスタルガラス、バリウムクリスタルガラス、チタンクリスタルガラス等のガラス系無機材料の粉体が挙げられる。 Specifically, powders of ceramic-based inorganic materials such as alumina, titanium oxide, zirconia, silicon nitride, sialon, silicon carbide, mullite, and magnesia, borosilicate glass, soda lime glass, quartz glass, aluminosilicate glass, and potassium. Examples include powders of glass-based inorganic materials such as crystal glass, barium crystal glass, and titanium crystal glass.

なお、詳しくは後述するが、金属酸化物の粉体では、銅塩が加熱還元時に溶融してその粉体表面に付着する際に濡れ広がりやすく、より均一で密着性の良好な銅被膜を形成しやすく好ましい。 As will be described later in detail, in the case of a metal oxide powder, when the copper salt melts during heating and reduction and is easily wet and spread when adhering to the powder surface, a more uniform and good adhesion copper coating is formed. Easy to do and preferred.

非導電性無機質の粉体の平均粒子径は、特に限定されないが、1μm〜500μm(0.001mm〜0.5mm)であれば、上述した方法により、非導電性無機質の流体表面に均一で密着性の良好な銅被膜を形成することができる。異方性導電材料の基材としては、非導電性無機質の粉体の平均粒子径は1μm〜300μm程度であることが好ましい。 The average particle size of the non-conductive inorganic powder is not particularly limited, but if it is 1 μm to 500 μm (0.001 mm to 0.5 mm), it is evenly adhered to the non-conductive inorganic fluid surface by the method described above. A copper coating having good properties can be formed. As the base material of the anisotropic conductive material, it is preferable that the non-conductive inorganic powder has an average particle diameter of about 1 μm to 300 μm.

なお、非導電性無機質の粉体の平均粒子径は、50%平均粒子径(D50、粒度分布曲線における体積積算50%となる粒径)であり、レーザー回折散乱式粒度分布測定法により測定することができる。 The average particle size of the non-conductive inorganic powder is 50% average particle size (D50, particle size at which 50% volume integration in a particle size distribution curve is achieved), and is measured by a laser diffraction/scattering particle size distribution measurement method. be able to.

(2)酸化銅粉について
酸化銅粉は、特に限定されないが、平均粒子径が20μm以下であり、比表面積0.5m/g以上の粉体であることが好ましい。このように、使用する酸化銅粉として、粒径が小さく、比表面積が大きい粉体を用いることにより、非導電性無機質の粉体と効率的に混合され、その粉体表面への密着性をより高めることができる。
(2) Copper oxide powder The copper oxide powder is not particularly limited, but is preferably a powder having an average particle diameter of 20 μm or less and a specific surface area of 0.5 m 2 /g or more. Thus, by using a powder having a small particle size and a large specific surface area as the copper oxide powder to be used, it is efficiently mixed with the non-conductive inorganic powder, and the adhesion to the powder surface is improved. It can be increased.

なお、酸化銅粉の平均粒子径は、50%平均粒子径(D50、粒度分布曲線における体積積算50%となる粒径)であり、レーザー回折散乱式粒度分布測定法により測定することができる。また、酸化銅粉の比表面積は、BET法によりJIS Z8830:2013に準拠して測定することができる。 The average particle size of the copper oxide powder is a 50% average particle size (D50, particle size at which 50% volume integration in a particle size distribution curve is obtained), and can be measured by a laser diffraction/scattering particle size distribution measuring method. The specific surface area of the copper oxide powder can be measured by the BET method according to JIS Z8830:2013.

また、酸化銅粉としては、種々の方法により製造されたものを用いることができるが、その中でも、電解銅粉やアトマイズ粉等の銅粉を空気雰囲気で酸化焙焼して酸化銅にした後、ボールミル等の機械的な粉砕方法で粉砕する方法によれば、低コストで製造することができ好ましい。 Further, as the copper oxide powder, those produced by various methods can be used, among which, after copper oxide powder such as electrolytic copper powder and atomized powder is oxidized and roasted in an air atmosphere to form copper oxide. A method of pulverizing by a mechanical pulverizing method such as a ball mill is preferable because it can be manufactured at low cost.

具体的には、例えば、硫酸銅5水和物(CuSO・5HO)が銅濃度で5g/L〜50g/Lであり、遊離硫酸濃度が50g/L〜250g/Lとなる浴組成の電解液を用いて、通電電流密度5A/dm〜30A/dm、浴温度が20℃〜60℃の条件で所定時間電解し、陰極上に粉状の電解銅粉を電析させる。次に、得られた電解銅粉を、空気又は純酸素等の酸素を含有する雰囲気下において、400℃〜900℃の温度条件で所定時間加熱して酸化焙焼を行うことによって酸化銅とする。そして、得られた酸化銅を、例えば機械的な粉砕方法により平均粒径が20μm以下程度となるように粉砕することにより、酸化銅粉を製造することができる。 Specifically, for example, copper sulfate pentahydrate (CuSO 4 .5H 2 O) has a copper concentration of 5 g/L to 50 g/L and a free sulfuric acid concentration of 50 g/L to 250 g/L. Electrolysis is carried out for 5 hours at a current density of 5 A/dm 2 to 30 A/dm 2 and a bath temperature of 20° C. to 60° C. using the electrolytic solution of 1 to deposit powdered electrolytic copper powder on the cathode. Next, the obtained electrolytic copper powder is heated in an atmosphere containing oxygen such as air or pure oxygen under a temperature condition of 400° C. to 900° C. for a predetermined time to be oxidized and roasted to form copper oxide. .. Then, the obtained copper oxide is pulverized by, for example, a mechanical pulverization method so that the average particle diameter becomes about 20 μm or less, whereby the copper oxide powder can be manufactured.

酸化銅粉の混合割合としては、特に限定されないが、非導電性無機質の粉体の質量に対して、金属銅量換算で5質量%〜60質量%であることが好ましく、10質量%〜50質量%であることがより好ましい。酸化銅粉の混合割合が、非導電性無機質の粉体の質量に対して5質量%未満であると、銅が不足して非導電性無機質の粉体表面を銅で完全に被覆できにくくなる可能性がある。一方で、非導電性無機質の粉体の質量に対して60質量%を超えると、銅が必要以上に非導電性無機質の粉体表面に付着してしまい、容易に剥がれて遊離しやすくなるため、好ましくない。 The mixing ratio of the copper oxide powder is not particularly limited, but is preferably 5% by mass to 60% by mass in terms of the amount of metallic copper with respect to the mass of the nonconductive inorganic powder, and 10% by mass to 50% by mass. More preferably, it is mass %. When the mixing ratio of the copper oxide powder is less than 5% by mass with respect to the mass of the non-conductive inorganic powder, copper is insufficient and it becomes difficult to completely coat the surface of the non-conductive inorganic powder with copper. there is a possibility. On the other hand, when the content of the non-conductive inorganic powder exceeds 60% by mass, copper is unnecessarily attached to the surface of the non-conductive inorganic powder and easily peels off and is easily released. , Not preferable.

(3)銅塩について
本実施の形態に係る銅被覆粉体の製造方法においては、上述したように、非導電性無機質の粉体と酸化銅粉とを混合すると共に、さらに特定の銅塩を添加して混合することを特徴としている。
(3) Regarding Copper Salt In the method for producing the copper-coated powder according to the present embodiment, as described above, the non-conductive inorganic powder and the copper oxide powder are mixed, and further a specific copper salt is added. It is characterized by adding and mixing.

具体的に、銅塩としては、融点が700℃以下のものを用いる。例えば、塩化銅(I)、塩化銅(II)、硝酸銅、炭酸銅等を挙げることができる。この中でも、塩化銅(I)又は塩化銅(II)であることが好ましい。その理由は、非特許文献1(化学大辞典1 p1050,共立出版社)に示されるように、塩化銅(I)の融点が422℃、塩化銅(II)の融点が498℃と低いからである。 Specifically, a copper salt having a melting point of 700° C. or lower is used. For example, copper (I) chloride, copper (II) chloride, copper nitrate, copper carbonate, etc. can be mentioned. Among these, copper chloride (I) or copper chloride (II) is preferable. The reason is that the melting point of copper(I) chloride is as low as 422° C. and the melting point of copper(II) chloride is as low as 498° C., as shown in Non-Patent Document 1 (Kagaku University Dictionary 1 p1050, Kyoritsu Publishing Co.). is there.

このように、融点が700℃以下と低い塩化銅等の銅塩を、非導電性無機質の粉体と酸化銅粉と共に混合することで、その混合物に対する加熱還元処理の段階で、その銅塩が溶融して、それが非導電性無機質の粉体表面に濡れることによって、酸化銅が非導電性無機質の粉体表面に均一に付着しやすくなるように作用する。そして、この均一に付着した酸化銅が還元されることによって、非導電性無機質の粉体表面に銅被膜が均一に形成された銅被覆粉体を得ることができるようになる。 In this way, by mixing a copper salt such as copper chloride having a low melting point of 700° C. or lower with the non-conductive inorganic powder and the copper oxide powder, the copper salt at the stage of the heat reduction treatment for the mixture is When melted and wetted to the surface of the non-conductive inorganic powder, the copper oxide acts to facilitate uniform attachment to the surface of the non-conductive inorganic powder. Then, by reducing the uniformly deposited copper oxide, it becomes possible to obtain a copper-coated powder in which a copper coating is uniformly formed on the surface of the non-conductive inorganic powder.

なお、添加した塩化銅等の銅塩は、溶融後に徐々に還元反応が進行して、銅の被膜となる。単純に銅の融点を下げることを目的とすると、亜鉛(Zn)や錫(Sn)等の低融点金属で合金化することが考えられるが、これらは最終的に銅被覆粉体の不純物として含まれることになるため最適な方法ではない。一方、塩化銅の塩素や硝酸銅の硝酸成分等の上述した種々の銅塩における銅以外の成分は、加熱還元に際して分解、揮発してしまうため、非導電性無機質の粉体表面の銅中に残留する不純物量としては極めて少ない。なお、粉体表面の銅中に含まれる不純物の量は、銅被覆粉体の導電性を低下させる大きな要因となることから、この点でも銅塩を用いることが有効である。 The added copper salt such as copper chloride undergoes a reduction reaction gradually after melting to form a copper film. For the purpose of simply lowering the melting point of copper, alloying with a low melting point metal such as zinc (Zn) or tin (Sn) is considered, but these are finally contained as impurities in the copper-coated powder. It is not the best method because it will be done. On the other hand, components other than copper in the above-mentioned various copper salts such as chlorine chloride of copper chloride and nitric acid component of copper nitrate are decomposed and volatilized during heat reduction, and therefore, in the copper of the non-conductive inorganic powder surface. The amount of remaining impurities is extremely small. Since the amount of impurities contained in the copper on the powder surface is a major factor in reducing the conductivity of the copper-coated powder, it is effective to use the copper salt also in this respect.

銅塩の混合割合としては、特に限定されないが、使用する酸化銅粉に対して、金属銅量換算で0.01質量%〜10質量%であることが好ましく、0.05質量%〜5質量%であることがより好ましい。銅塩の混合割合が、酸化銅粉の質量に対して0.01質量%未満であると、非導電性無機質の粉体表面を濡らす効果が十分に得られにくくなる。一方、酸化銅粉の質量に対して10質量%を超えると、濡れ性等の効果そのものには影響しないが、添加量が多くなることでコストアップの要因になる。 The mixing ratio of the copper salt is not particularly limited, but is preferably 0.01% by mass to 10% by mass, and 0.05% by mass to 5% by mass, in terms of the amount of metallic copper, based on the copper oxide powder used. % Is more preferable. When the mixing ratio of the copper salt is less than 0.01 mass% with respect to the mass of the copper oxide powder, it becomes difficult to sufficiently obtain the effect of wetting the surface of the non-conductive inorganic powder. On the other hand, if it exceeds 10 mass% with respect to the mass of the copper oxide powder, the effect itself such as wettability is not affected, but the addition amount increases, which causes a cost increase.

<加熱還元処理について>
上述したように、この銅被覆粉体の製造方法では、非導電性無機質の粉体と、酸化銅粉と、さらに融点が700℃以下である銅塩を添加して混合して得られた混合物に対して、還元雰囲気中で加熱処理を施す。この還元加熱処理により、非導電性無機質の粉体表面に酸化銅粉に由来する銅が還元拡散され、銅被膜を形成する。
<About heat reduction treatment>
As described above, in the method for producing the copper-coated powder, the mixture obtained by adding and mixing the non-conductive inorganic powder, the copper oxide powder, and the copper salt having a melting point of 700° C. or less. On the other hand, heat treatment is performed in a reducing atmosphere. By this reduction heat treatment, copper derived from the copper oxide powder is reduced and diffused on the surface of the non-conductive inorganic powder to form a copper coating.

特に、本実施の形態に係る製造方法では、非導電性無機質の粉体に対して酸化銅粉と共に融点が700℃以下である銅塩を添加して混合していることから、その混合物を加熱することにより、混合物中の銅塩がまず溶融して非導電性無機質の粉体表面を濡らしていく。そして、銅塩によって濡れた粉体表面上を酸化銅粉が還元拡散していくことから、銅の還元拡散反応を効率的に且つ効果的に進行させることができ、非導電性無機質の粉体表面に均一に酸化銅が付着するようになる。しかも、銅塩によって粉体表面が濡れるため、非導電性無機質の粉体と銅被膜との密着性を向上させることもできる。 In particular, in the manufacturing method according to the present embodiment, since the copper salt having a melting point of 700° C. or less is added to and mixed with the non-conductive inorganic powder, the mixture is heated. By doing so, the copper salt in the mixture first melts and wets the surface of the non-conductive inorganic powder. Then, since the copper oxide powder is reduced and diffused on the surface of the powder wetted by the copper salt, the reduction and diffusion reaction of copper can be efficiently and effectively progressed, and the non-conductive inorganic powder Copper oxide will adhere evenly to the surface. Moreover, since the surface of the powder is wetted by the copper salt, the adhesion between the non-conductive inorganic powder and the copper coating can be improved.

また、非導電性無機質の粉体が金属酸化物の粉体である場合には、粉体表面の酸化物が銅塩の濡れ広がりがさらに促進され、酸化銅粉がより非導電性無機質の粉体表面に拡散して付着しやすくなり、均一で密着性の良好な銅被膜が得られやすくなる。 When the non-conductive inorganic powder is a metal oxide powder, the oxide on the powder surface further promotes the wetting and spreading of the copper salt, and the copper oxide powder is a more non-conductive inorganic powder. The copper film easily diffuses and adheres to the body surface, and a uniform and good adhesion copper film is easily obtained.

この加熱還元処理では、融点が700℃以下である銅塩を含む混合物に対して処理することにより、銅の還元拡散反応を効率的に且つ効果的に進行させていることから、その加熱温度を比較的低温にすることができる。具体的には、還元雰囲気中で350℃以上800℃以下の温度で処理することができる。これにより、加熱のための熱エネルギーを抑えることができ、コスト面でもより効率的に銅被覆粉体を製造することができる。さらに、比較的低温で反応させることから、還元時における粉体同士の焼結も抑制することができる。 In this heat reduction treatment, since the reduction and diffusion reaction of copper is efficiently and effectively progressed by treating a mixture containing a copper salt having a melting point of 700° C. or lower, the heating temperature is Can be relatively low temperature. Specifically, the treatment can be performed in a reducing atmosphere at a temperature of 350° C. or higher and 800° C. or lower. Thereby, the heat energy for heating can be suppressed, and the copper-coated powder can be manufactured more efficiently in terms of cost. Furthermore, since the reaction is performed at a relatively low temperature, it is possible to suppress sintering of the powder particles during the reduction.

加熱還元処理における温度条件として、熱処理温度が350℃未満であると、銅の還元拡散が十分に進行せず被膜形成が不十分で不均一となり、また被膜にはならない遊離銅粉の残存比率が増大する。一方、熱処理温度が800℃を超えると、粉体同士が焼結して凝集が生じてしまい取り扱いが困難になり、加熱処理後に粉砕等の処理が必要となり、形成した銅被膜の剥離の原因となる。さらに、加熱に要する熱エネルギーが大きくなり、コストアップにつながり効率的な製造が困難となる。 When the heat treatment temperature is lower than 350° C. as the temperature condition in the heat reduction treatment, the reduction and diffusion of copper does not proceed sufficiently, the film formation is insufficient and becomes non-uniform, and the residual ratio of free copper powder that does not become a film is Increase. On the other hand, when the heat treatment temperature exceeds 800° C., the powder particles sinter with each other to cause agglomeration, which makes it difficult to handle and requires treatment such as pulverization after the heat treatment, which may cause peeling of the formed copper coating. Become. Furthermore, the thermal energy required for heating increases, which leads to an increase in cost and makes efficient manufacturing difficult.

なお、加熱還元処理の温度条件としては、銅塩の融点よりも高いことが好ましい。また、もちろん、熱処理温度が350℃以上800℃以下の範囲内であっても、非導電性無機質の粉体の融点を超えない温度とし、好ましくは非導電性無機質の粉体の融点から50℃低い温度以下とする。 The temperature condition of the heat reduction treatment is preferably higher than the melting point of the copper salt. Of course, even if the heat treatment temperature is in the range of 350° C. or higher and 800° C. or lower, the temperature should not exceed the melting point of the non-conductive inorganic powder, and preferably 50° C. from the melting point of the non-conductive inorganic powder. Keep the temperature below the low temperature.

加熱還元処理における還元雰囲気の条件は、特に限定されないが、取り扱いの容易さの観点から、不活性ガスと還元性ガスとの混合ガスを供給して還元雰囲気とするのが好ましい。具体的に、不活性ガスとしては、窒素やアルゴンを用いることが好ましい。また、還元性ガスとしては、水素ガスを用いることが好ましく、このように還元性ガスとして水素ガスを用いることで、銅被膜中の不純物量の増大を抑えることができる。 The conditions of the reducing atmosphere in the heat reduction treatment are not particularly limited, but from the viewpoint of easy handling, it is preferable to supply a mixed gas of an inert gas and a reducing gas to form the reducing atmosphere. Specifically, it is preferable to use nitrogen or argon as the inert gas. Further, it is preferable to use hydrogen gas as the reducing gas, and by using hydrogen gas as the reducing gas in this way, an increase in the amount of impurities in the copper coating can be suppressed.

また、還元加熱処理においては、加熱対象である混合物を流動させながら行う。これは、酸化銅粉が還元されることにより銅が拡散して非導電性の無機質粉体の表面を被覆すると、個々の無機質粉体が焼結して凝集粉となることがあるためであり、流動させながら加熱還元することで焼結による凝集を防止することができる。また、流動させながら加熱還元することで、銅被膜の均一性や、非導電性無機質の粉体と銅被膜との密着性をさらに向上させることもできる。 In addition, the reduction heat treatment is performed while flowing the mixture to be heated. This is because when the copper oxide powder is reduced and copper diffuses to cover the surface of the non-conductive inorganic powder, the individual inorganic powders may sinter and become agglomerated powder. By heating and reducing while flowing, agglomeration due to sintering can be prevented. Further, by heating and reducing while flowing, it is possible to further improve the uniformity of the copper coating and the adhesion between the non-conductive inorganic powder and the copper coating.

具体的に、この還元加熱処理は、ロータリーキルン等の転動炉や流動層還元炉等を用いて行うことができる。その他、混合物を撹拌して流動させながら加熱できる方法であれば、特に限定されない。 Specifically, this reduction heat treatment can be performed using a rolling kiln such as a rotary kiln or a fluidized bed reduction furnace. In addition, the method is not particularly limited as long as it can be heated while stirring and flowing the mixture.

以上のように、本実施の形態に係る銅被覆粉体の製造方法によれば、乾式で且つ比較的低い熱処理温度で、非導電性無機質の粉体の表面に、均一で密着性の良好な銅被膜を形成することができる。さらに、従来の無電解めっき法のように、多くの複雑な工程が不要で、廃液の処理等も問題もなく、また加熱に要するエネルギーも少ないことから、低コストで効率よく、銅被覆粉体を製造することができる。 As described above, according to the method for producing a copper-coated powder according to the present embodiment, the dry and relatively low heat treatment temperature is applied to the surface of the non-conductive inorganic powder with uniform and good adhesion. A copper coating can be formed. Furthermore, unlike the conventional electroless plating method, many complicated steps are not required, there is no problem with waste liquid treatment, and the energy required for heating is low, so that the copper-coated powder is low cost and efficient. Can be manufactured.

以下に、本発明の実施例を比較例と共に具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。 Examples of the present invention will be specifically described below together with comparative examples. However, the present invention is not limited to the following examples.

≪銅被覆粉体の製造≫
[実施例1]
非導電性無機質の粉体として、図1に示す平均粒子径が約300μmのジルコニアの粉体を用い、このジルコニアの粉体100gに対して、平均粒子径が約10μm、BET比表面積が0.6m/gの酸化銅粉を金属銅量換算で20質量%の量になるよう添加して混合した。
<<Production of copper-coated powder>>
[Example 1]
As the non-conductive inorganic powder, a zirconia powder having an average particle diameter of about 300 μm shown in FIG. 1 was used. 100 g of this zirconia powder had an average particle diameter of about 10 μm and a BET specific surface area of 0. 6 m 2 /g of copper oxide powder was added and mixed in an amount of 20 mass% in terms of the amount of metallic copper.

ここで、酸化銅粉は、以下のようにして製造した。すなわち、硫酸銅5水和物(CuSO・5HO)を用いて調製した、銅濃度8g/L、遊離硫酸(HSO)濃度55g/Lとなる浴組成の電解液に、カソードにチタン板、アノードに銅板を配して、浴温25℃、電流密度10A/dm条件で8時間通電し、カソードに電着した銅を掻き落として電解銅粉を製造した。得られた電解銅粉を、空気雰囲気下で800℃、3時間の酸化焙焼を行って酸化銅にした後、小型粉砕機(協立理工(株)製,商品名:サンプルミルSK−M10)で粉砕して酸化銅粉を製造した。 Here, the copper oxide powder was manufactured as follows. That is, a cathode was added to an electrolytic solution having a bath composition prepared using copper sulfate pentahydrate (CuSO 4 .5H 2 O) having a copper concentration of 8 g/L and a free sulfuric acid (H 2 SO 4 ) concentration of 55 g/L. A titanium plate and a copper plate were placed on the anode, and a current was supplied at a bath temperature of 25° C. and a current density of 10 A/dm 2 for 8 hours to scrape off the copper electrodeposited on the cathode to produce electrolytic copper powder. The obtained electrolytic copper powder was oxidized and roasted at 800° C. for 3 hours in an air atmosphere to form copper oxide, and then a small crusher (manufactured by Kyoritsu Riko Co., Ltd., trade name: Sample Mill SK-M10). ), and the copper oxide powder was manufactured.

次に、ジルコニアの粉体と酸化銅粉との混合物に、塩化銅(I)(CuCl)を酸化銅粉に対して金属銅量換算で0.05質量%の割合で添加し、均一に混合するために、小型粉砕機で5分間撹拌して混合物とした。 Next, to a mixture of zirconia powder and copper oxide powder, copper(I) chloride (CuCl) was added at a ratio of 0.05 mass% in terms of the amount of metallic copper to the copper oxide powder and mixed uniformly. In order to do so, the mixture was stirred for 5 minutes with a small pulverizer.

そして、このようにして得られた混合物を、自作した小型ロータリーキルン内に装入し、水素濃度2%の窒素−水素混合ガスからなる還元雰囲気で、ロータリーキルンを20rpmの回転数で回転して混合物を流動させながら、温度500℃の条件で30分間加熱還元を行い、銅被覆粉体を製造した。 Then, the mixture thus obtained was charged into a small rotary kiln which was self-made, and the rotary kiln was rotated at a rotation speed of 20 rpm in a reducing atmosphere consisting of a nitrogen-hydrogen mixed gas having a hydrogen concentration of 2% to form a mixture. While flowing, heat reduction was performed for 30 minutes at a temperature of 500° C. to produce a copper-coated powder.

[実施例2〜4]
ジルコニアの粉体と酸化銅粉との混合物に、塩化銅(I)を、それぞれ酸化銅粉に対して1質量%(実施例2)、5質量%(実施例3)、10質量%(実施例4)の割合となるように添加したこと以外は、実施例1と同様にして銅被覆粉体を製造した。
[Examples 2 to 4]
Copper (I) chloride was added to a mixture of zirconia powder and copper oxide powder in an amount of 1% by mass (Example 2), 5% by mass (Example 3), and 10% by mass (Example), respectively. A copper-coated powder was produced in the same manner as in Example 1 except that the proportion was added in the proportion of Example 4).

[実施例5]
非導電性無機質の粉体として、図2に示す平均粒子径が約15μmのジルコニアの粉体を用い、さらに加熱還元時の温度を600℃としたこと以外は、実施例1と同様にして銅被覆粉体を製造した。
[Example 5]
As the non-conductive inorganic powder, copper was used in the same manner as in Example 1 except that a zirconia powder having an average particle size of about 15 μm shown in FIG. A coated powder was produced.

[実施例6]
ジルコニアの粉体と酸化銅粉との混合物に、塩化銅(I)を酸化銅粉に対して5質量%の割合となるように添加したこと以外は、実施例5と同様にして銅被覆粉体を製造した。
[Example 6]
Copper-coated powder in the same manner as in Example 5 except that copper(I) chloride was added to the mixture of zirconia powder and copper oxide powder at a ratio of 5% by mass to copper oxide powder. Manufactured body.

[実施例7]
非導電性無機質の粉体として、平均粒子径が約30μmのソーダ石灰ガラスの粉体を用い、さらに加熱還元時の温度を400℃としたこと以外は、実施例1と同様にして銅被覆粉体を製造した。
[Example 7]
As the non-conductive inorganic powder, a copper-coated powder was used in the same manner as in Example 1 except that a soda-lime glass powder having an average particle diameter of about 30 μm was used and the temperature during heating and reduction was 400° C. Manufactured body.

[実施例8〜10]
ソーダ石灰ガラスの粉体と酸化銅粉との混合物に、塩化銅(I)を、それぞれ酸化銅粉に対して1質量%(実施例8)、5質量%(実施例9)、10質量%(実施例10)の割合となるように添加したこと以外は、実施例7と同様にして銅被覆粉体を製造した。
[Examples 8 to 10]
Copper (I) chloride was added to a mixture of soda-lime glass powder and copper oxide powder in an amount of 1% by mass (Example 8), 5% by mass (Example 9), and 10% by mass with respect to the copper oxide powder. A copper-coated powder was produced in the same manner as in Example 7, except that the content was added in the proportion of (Example 10).

[比較例1]
塩化銅(I)を添加しないこと以外は、実施例1と同様にして銅被覆粉体を製造した。
[Comparative Example 1]
A copper-coated powder was produced in the same manner as in Example 1 except that copper (I) chloride was not added.

[比較例2]
小型ロータリーキルンの回転を止める、すなわち混合物を流動させない状態としたこと以外は、実施例3と同様にして銅被覆粉体を製造した。
[Comparative example 2]
A copper-coated powder was produced in the same manner as in Example 3, except that the rotation of the small rotary kiln was stopped, that is, the mixture was not allowed to flow.

[比較例3、4]
加熱還元時の温度を、それぞれ300℃(比較例3)、900℃(比較例4)としたこと以外は、実施例3と同様にして銅被覆粉体を製造した。
[Comparative Examples 3 and 4]
A copper-coated powder was produced in the same manner as in Example 3, except that the temperatures at the time of heat reduction were 300° C. (Comparative Example 3) and 900° C. (Comparative Example 4), respectively.

≪評価≫
上述のようにして得られた実施例1〜10、比較例1〜4の銅被覆粉体について、下記に示す基準により、銅被膜の均一性と密着性とを評価した。これらの結果を表1に示す。
<<Evaluation>>
With respect to the copper-coated powders of Examples 1 to 10 and Comparative Examples 1 to 4 obtained as described above, the uniformity and adhesion of the copper coating film were evaluated according to the criteria shown below. The results are shown in Table 1.

(銅被膜の均一性の評価)
銅被膜の均一性の評価は、走査型電子顕微鏡(SEM)を用いて観察し、非導電性無機質の粉体表面に銅被膜が均一に且つ一様に付着している場合を「○」、一部でも非導電性無機質の粉体表面が露出している場合を「×」として評価した。なお、図3及び図4に、実施例1にて製造した銅被膜粉体のSEM観察像を示し、図5に、実施例5にて製造した銅被覆粉体のSEM観察像を示す。
(Evaluation of uniformity of copper film)
The evaluation of the uniformity of the copper coating was observed using a scanning electron microscope (SEM), and when the copper coating was uniformly and uniformly attached to the surface of the non-conductive inorganic powder, "○", Even when a part of the non-conductive inorganic powder surface was exposed, it was evaluated as “x”. 3 and 4 show SEM observation images of the copper-coated powder produced in Example 1, and FIG. 5 shows SEM observation images of the copper-coated powder produced in Example 5.

(銅被膜の密着性の評価)
銅被膜の密着性の評価は、製造した銅被覆粉体50gを、粒子径が1mmのジルコニアビーズ50gと共にステンレス製容器に入れ、小型ボールミル((株)アサヒ理化製作所製,製品名:AV−1型)を用いて、回転数300rpmで1時間回転し、それを篩分けした後、剥がれた銅を回収して化学分析で銅量を測定し、添加した銅量に対する剥がれた銅量の割合から剥離率を求めることで評価した。なお、非導電性無機質の粉体の平均粒子径が100μm以下の場合は篩分けできないため、銅被膜の均一性のみを評価した。
(Evaluation of adhesion of copper film)
To evaluate the adhesion of the copper coating, 50 g of the copper-coated powder produced was placed in a stainless steel container together with 50 g of zirconia beads having a particle diameter of 1 mm, and a small ball mill (manufactured by Asahi Rika Seisakusho, product name: AV-1) was used. Type), it is rotated at a rotation speed of 300 rpm for 1 hour, and after sieving it, the peeled copper is recovered and the amount of copper is measured by chemical analysis. From the ratio of the amount of peeled copper to the added copper amount, It was evaluated by determining the peeling rate. In addition, when the average particle diameter of the non-conductive inorganic powder is 100 μm or less, sieving cannot be performed, so only the uniformity of the copper coating was evaluated.

表1及び図3〜図5の結果から明らかなように、実施例1〜実施例10の銅被覆粉体では、非導電性無機質の粉体と酸化銅粉とに加えて、塩化銅(I)を添加して混合した混合物を還元雰囲気にて加熱還元して製造したことで、均一な銅被膜が形成された。また、この銅被覆粉体では、粉体の表面に高い密着性で銅被膜が形成されていることが確認された(実施例1〜4の剥離率の結果から)。 As is clear from the results of Table 1 and FIGS. 3 to 5, in the copper-coated powders of Examples 1 to 10, in addition to the non-conductive inorganic powder and the copper oxide powder, copper chloride (I ) Was added and mixed, the mixture was heated and reduced in a reducing atmosphere to produce a uniform copper film. In addition, it was confirmed that in this copper-coated powder, a copper coating was formed on the surface of the powder with high adhesiveness (from the results of the peeling rates of Examples 1 to 4).

一方、銅塩を添加せずに製造した比較例1の銅被覆粉体では、均一に銅被膜が形成されず、一部にジルコニアが露出した状態であった。また、その比較例1の銅被覆粉体の剥離率は、非常に高く、銅被膜は粉体に密着していない状態であった。また、混合物を流動させず加熱して製造した比較例2の銅被覆粉体では、粉体表面の一部にジルコニアの露出が認められたと共に、一部の粉体は焼結して凝集している状態であった。 On the other hand, in the copper-coated powder of Comparative Example 1 produced without adding the copper salt, the copper coating was not formed uniformly, and the zirconia was partially exposed. Moreover, the peeling rate of the copper-coated powder of Comparative Example 1 was very high, and the copper coating was in a state of not being in close contact with the powder. Further, in the copper-coated powder of Comparative Example 2 produced by heating the mixture without flowing, zirconia was exposed on a part of the powder surface, and part of the powder was sintered and aggregated. It was in a state of being.

また、加熱還元温度を300℃として製造した比較例3の銅被覆粉体では、還元された銅の拡散が十分に進行しなかったため、銅被膜が不均一であった。一方、加熱還元温度を900℃として製造した比較例4の銅被覆粉体では、加熱還元温度が高過ぎたため、焼結が進んで粉体が凝集していた。また、これら比較例3、4の銅被覆粉体の剥離率は、実施例1〜4の銅被覆粉体よりも高くなっていた。 Further, in the copper-coated powder of Comparative Example 3 produced at a heating reduction temperature of 300° C., diffusion of the reduced copper did not proceed sufficiently, so the copper coating was non-uniform. On the other hand, in the copper-coated powder of Comparative Example 4 produced at a heating reduction temperature of 900° C., the heating reduction temperature was too high, so sintering progressed and the powder was agglomerated. Moreover, the peeling rate of the copper-coated powders of Comparative Examples 3 and 4 was higher than that of the copper-coated powders of Examples 1 to 4.

Claims (8)

非導電性無機質の粉体に、酸化銅粉と、さらに融点が700℃以下である銅塩とを混合し、この混合物を還元雰囲気中350℃以上800℃以下の温度で、流動させながら加熱還元することにより、前記非導電性無機質の粉体表面に銅を付着させる
銅被覆粉体の製造方法。
Copper oxide powder and a copper salt having a melting point of 700° C. or lower are mixed with non-conductive inorganic powder, and the mixture is heated and reduced while flowing in a reducing atmosphere at a temperature of 350° C. or higher and 800° C. or lower. The method for producing a copper-coated powder, wherein copper is adhered to the surface of the non-conductive inorganic powder by doing so.
前記非導電性無機質の粉体と、前記酸化銅粉と、前記銅塩とを混合するに際し、
前記酸化銅粉を、前記非導電性無機質の粉体に対して、金属銅量換算で5質量%以上60質量%以下の割合で添加する
請求項1に記載の銅被覆粉体の製造方法。
When mixing the non-conductive inorganic powder, the copper oxide powder, and the copper salt,
The method for producing a copper-coated powder according to claim 1, wherein the copper oxide powder is added to the non-conductive inorganic powder at a ratio of 5% by mass or more and 60% by mass or less in terms of the amount of metallic copper.
前記非導電性無機質の粉体と、前記酸化銅粉と、前記銅塩とを混合するに際し、
前記銅塩を、前記酸化銅粉に対して、金属銅量換算で0.01質量%以上10質量%以下の割合で添加する
請求項1又は2に銅被覆粉体の製造方法。
When mixing the non-conductive inorganic powder, the copper oxide powder, and the copper salt,
The method for producing a copper-coated powder according to claim 1 or 2, wherein the copper salt is added to the copper oxide powder in a proportion of 0.01% by mass or more and 10% by mass or less in terms of metallic copper.
前記銅塩は、塩化銅である
請求項1乃至3のいずれかに記載の銅被覆粉体の製造方法。
The method for producing a copper-coated powder according to claim 1, wherein the copper salt is copper chloride.
前記非導電性無機質の粉体は、金属酸化物の粉体である
請求項1乃至4のいずれかに記載の銅被覆粉体の製造方法。
The method for producing a copper-coated powder according to claim 1, wherein the non-conductive inorganic powder is a metal oxide powder.
前記非導電性無機質の粉体の平均粒子径は、1μm以上500μm以下である
請求項1乃至5のいずれかに記載の銅被覆粉体の製造方法。
The method for producing a copper-coated powder according to claim 1, wherein the non-conductive inorganic powder has an average particle size of 1 μm or more and 500 μm or less.
前記酸化銅粉は、平均粒子径が20μm以下、比表面積が0.5m/g以上である
請求項1乃至6のいずれかに記載の銅被覆粉体の製造方法。
The method for producing a copper-coated powder according to claim 1, wherein the copper oxide powder has an average particle size of 20 μm or less and a specific surface area of 0.5 m 2 /g or more.
前記還元雰囲気は、不活性ガスと還元性ガスの混合ガス雰囲気である
請求項1乃至7のいずれかに記載の銅被覆粉体の製造方法。
The method for producing a copper-coated powder according to claim 1, wherein the reducing atmosphere is a mixed gas atmosphere of an inert gas and a reducing gas.
JP2016175679A 2016-09-08 2016-09-08 Method for producing copper-coated powder Expired - Fee Related JP6708067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016175679A JP6708067B2 (en) 2016-09-08 2016-09-08 Method for producing copper-coated powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016175679A JP6708067B2 (en) 2016-09-08 2016-09-08 Method for producing copper-coated powder

Publications (2)

Publication Number Publication Date
JP2018041649A JP2018041649A (en) 2018-03-15
JP6708067B2 true JP6708067B2 (en) 2020-06-10

Family

ID=61624013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016175679A Expired - Fee Related JP6708067B2 (en) 2016-09-08 2016-09-08 Method for producing copper-coated powder

Country Status (1)

Country Link
JP (1) JP6708067B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6327133B2 (en) * 2014-02-18 2018-05-23 住友金属鉱山株式会社 Method for producing iron-copper composite powder for powder metallurgy
JP2016219129A (en) * 2015-05-15 2016-12-22 三菱マテリアル株式会社 Metal-coated electrically conductive particle and electrically conductive material containing the particle

Also Published As

Publication number Publication date
JP2018041649A (en) 2018-03-15

Similar Documents

Publication Publication Date Title
TWI510592B (en) Method for manufacturing conductive copper particles
JP6327133B2 (en) Method for producing iron-copper composite powder for powder metallurgy
JP6536581B2 (en) Fine metal particle dispersion
JP5358877B2 (en) Antibacterial ceramic product, ceramic surface treatment agent, and method for manufacturing antibacterial ceramic product
Shoeib et al. Corrosion behavior of electroless Ni–P/TiO2 nanocomposite coatings
CN103262173A (en) Conductive paste, conductive film-attached base material using the conductive paste, and method for manufacturing conductive film-attached base material
Chen et al. Effect of 2, 2′-dipyridyl on the plating rate, microstructure and performance of copper-coated tungsten composite powders prepared using electroless plating
Wei et al. Facile electroless copper plating on diamond particles without conventional sensitization and activation
JP2004162164A (en) Copper powder for conductive paste and its production method
JP4490305B2 (en) Copper powder
JP6708067B2 (en) Method for producing copper-coated powder
JPWO2015060258A1 (en) Silver coated copper powder
US20170113278A1 (en) Metal composite powder and method for producing same
JP2001011502A (en) Copper powder, its manufacture, and electrical conductive paste using the same
Zuo et al. Effect of activators on the properties of nickel coated diamond composite powders
JP2018059151A (en) Nickel copper coated powder, and production method of nickel copper coated powder
JP2018060673A (en) Tin copper coated powder and manufacturing method of tin copper coated powder
JP2018059152A (en) Silver copper coated powder, and production method of silver copper coated powder
Velez et al. Electroless Ni–B coated WC and VC powders as precursors for liquid phase sintering
Xu et al. Preparation and properties of silver-coated copper powder with Sn transition layer
JP2014141493A (en) Antibacterial ceramic industry product, ceramic industry surface treatment agent and manufacturing method of antibacterial ceramic industry product
US10376962B2 (en) Metal composite powder and method for producing same
JPH06240464A (en) Silver coated copper powder and electric conductive composition using the same
JP2006147457A (en) Silver oxide powder, its manufacturing method, and conductive paste
JP2019057561A (en) Electromagnetic wave absorption material and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200504

R150 Certificate of patent or registration of utility model

Ref document number: 6708067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees