JP6707749B1 - Reservoir failure prediction system, reservoir failure prediction method, and program - Google Patents

Reservoir failure prediction system, reservoir failure prediction method, and program Download PDF

Info

Publication number
JP6707749B1
JP6707749B1 JP2019170379A JP2019170379A JP6707749B1 JP 6707749 B1 JP6707749 B1 JP 6707749B1 JP 2019170379 A JP2019170379 A JP 2019170379A JP 2019170379 A JP2019170379 A JP 2019170379A JP 6707749 B1 JP6707749 B1 JP 6707749B1
Authority
JP
Japan
Prior art keywords
water level
reservoir
level data
predicted
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019170379A
Other languages
Japanese (ja)
Other versions
JP2021047687A (en
Inventor
明 本島
明 本島
昌雄 拝崎
昌雄 拝崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASSIST COMPUTER SYSTEM CO., LTD.
Original Assignee
ASSIST COMPUTER SYSTEM CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASSIST COMPUTER SYSTEM CO., LTD. filed Critical ASSIST COMPUTER SYSTEM CO., LTD.
Priority to JP2019170379A priority Critical patent/JP6707749B1/en
Application granted granted Critical
Publication of JP6707749B1 publication Critical patent/JP6707749B1/en
Publication of JP2021047687A publication Critical patent/JP2021047687A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Revetment (AREA)
  • Alarm Systems (AREA)

Abstract

【課題】ため池の決壊を予測するシステムを提供すること。【解決手段】ため池の決壊を予測するため池決壊予測システム1であって、ため池の予測水位を示す予測水位データを取得する予測水位取得部12と、ため池の水位を示す計測水位データを取得する計測水位取得部14と、予測水位データと計測水位データとの差を解析することによって、ため池の堤体への浸透に関する予測を行う解析部16とを備えるため池決壊予測システム1。【選択図】図2PROBLEM TO BE SOLVED: To provide a system for predicting a collapse of a reservoir. SOLUTION: This is a pond failure prediction system 1 for predicting collapse of a reservoir, and a predicted water level acquisition unit 12 for acquiring predicted water level data indicating the predicted water level of the reservoir, and a measurement for acquiring measured water level data indicating the water level of the reservoir. A pond failure prediction system 1 that includes a water level acquisition unit 14 and an analysis unit 16 that predicts the infiltration of a reservoir into a bank by analyzing the difference between the predicted water level data and the measured water level data. [Selection diagram] Figure 2

Description

本発明は、ため池の決壊を予測する方法に関する。 The present invention relates to a method of predicting a reservoir failure.

大雨などによってため池の堤体へ水が大量に浸透することにより、堤体が崩壊してため池が決壊する場合がある。このような場合、ため池の水位も平常時より上昇していることが多く、そのような状態でため池が決壊すると大量の水が一気に流れ出し、下流域に甚大な被害をもたらす恐れがある。よって、いち早くため池の堤体が崩壊する可能性を察知し、その前に、例えば近隣地域の住民に安全に避難させること等が重要である。 A large amount of water may infiltrate the levee body of a pond due to heavy rain, etc., and the levee body may collapse and the pond may collapse. In such a case, the water level in the reservoir is often higher than in normal times, and if the reservoir collapses in such a state, a large amount of water will flow out at once, which may cause serious damage to the downstream area. Therefore, it is important to detect the possibility that the bank of the reservoir will collapse as soon as possible, and before that, for example, to evacuate the residents in the neighboring area safely.

しかしながら、従来は、ため池の決壊を予測する有効なシステムが存在しなかった。
本発明は、このような課題に鑑みてなされたものである。
However, in the past, there was no effective system for predicting the collapse of a reservoir.
The present invention has been made in view of such problems.

上記課題を解決するために、本発明の一態様は、ため池の決壊を予測するため池決壊予測システムであって、ため池の予測水位を示す予測水位データを取得する予測水位取得部と、前記ため池の水位を示す計測水位データを取得する計測水位取得部と、前記予測水位データと前記計測水位データとの差を解析することによって、ため池の堤体への水の浸透に関する予測を行う解析部と、を備えるため池決壊予測システムである。 In order to solve the above problems, one aspect of the present invention is a pond failure prediction system for predicting a failure of a reservoir, a predicted water level acquisition unit that acquires predicted water level data indicating the predicted water level of the reservoir, and the A measurement water level acquisition unit that acquires measurement water level data indicating the water level, and an analysis unit that predicts water infiltration into the bank of the reservoir by analyzing the difference between the predicted water level data and the measurement water level data, It is a reservoir failure prediction system equipped with.

また、本発明の他の態様は、コンピュータシステムによって実行される方法であって、ため池の予測水位を示す予測水位データを取得するステップと、前記ため池の水位を示す計測水位データを取得するステップと、前記予測水位データと前記計測水位データとの差を解析することによって、ため池の堤体への浸透に関する予測を行うステップと、を備えるため池決壊予測方法である。 Further, another aspect of the present invention is a method executed by a computer system, which comprises a step of acquiring predicted water level data indicating a predicted water level of a reservoir, and a step of acquiring measured water level data indicating a water level of the reservoir. And a step of making a prediction regarding infiltration of the reservoir to the bank by analyzing the difference between the predicted water level data and the measured water level data.

また、本発明の他の態様は、上記の方法をコンピュータシステムに実行させるためのプログラムである。 Another aspect of the present invention is a program for causing a computer system to execute the above method.

予測水位、計測水位、およびため池の堤体への水の時間浸透量の変化の一例を示す図である。It is a figure which shows an example of a change of the predicted water level, the measured water level, and the time permeation amount of water to the bank of a reservoir. 本発明の一実施形態に係るため池決壊予測システムの構成例を示す図である。It is a figure showing an example of composition of a reservoir failure prediction system concerning one embodiment of the present invention. 本発明の一実施形態に係るため池決壊予測システムのハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware constitutions of the reservoir failure prediction system which concerns on one Embodiment of this invention. 本発明の一実施形態に係るため池決壊予測システムにおける処理の一例を示すフロー図である。It is a flow figure showing an example of processing in a reservoir failure prediction system concerning one embodiment of the present invention.

以下、図面を参照しながら本発明の実施形態について詳しく説明する。
(ため池決壊予測システムの構成)
本実施形態に係るため池決壊予測システムは、監視対象であるため池について、降水量などから予測される当該ため池の予測水位と、実際の水位(本明細書において「計測水位」という)との差および当該差の積算値を算出する。そして、当該積算値をため池の堤体への水の浸透量とみなして、当該ため池の決壊の可能性を予測する。ここで、「ため池」とは、主に農業用水を確保するために人工的に作られた池のことである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(Structure of reservoir failure prediction system)
Since the reservoir failure prediction system according to the present embodiment is a monitoring target, the difference between the predicted water level of the reservoir, which is predicted from precipitation, etc., and the actual water level (referred to as “measured water level” in this specification) The integrated value of the difference is calculated. Then, the integrated value is regarded as the amount of water permeating into the bank of the reservoir, and the possibility of collapse of the reservoir is predicted. Here, the “reservoir” is a pond artificially created mainly for securing agricultural water.

図1は、ため池の各時刻における予測水位および計測水位、並びにため池の堤体への水の時間浸透量の変化の一例を示す図である。図1において10:00頃までは予測水位と計測水位との差が非常に小さいが、それ以降は両者の差が徐々に開いている。このように予測水位と実際のため池の計測水位との間に平常時とは異なる差が生じる場合には、両者の差は予測誤差ではなく、ため池の堤体へ水が浸透したことによって生じた差であると考えることができる。図1の「時間浸透量」は、各予測時刻および測定時刻における予測水位と計測水位との差の積算値に基づいて算出された、1時間当たりのため池の堤体への水の浸透量である。このように、降水量などから算出されるため池の予測水位と、実際のため池の水位を示す計測水位との差または当該差の積算値を算出することにより、ため池の堤体への水の浸透量が増して決壊の危険性が増していることを判断することが可能となる。 FIG. 1 is a diagram showing an example of changes in the predicted water level and the measured water level at each time of the reservoir, and the change in the amount of time permeation of water into the bank of the reservoir. In Fig. 1, the difference between the predicted water level and the measured water level is very small until about 10:00, but after that, the difference between the two gradually increases. In this way, when there is a difference between the predicted water level and the actual measured water level for the pond that differs from normal, the difference between the two is not a prediction error, but was caused by the water infiltrating the bank of the reservoir. You can think of it as a difference. "Time permeation amount" in Figure 1 is the permeation amount of water into the bank of the reservoir per hour, calculated based on the integrated value of the difference between the predicted water level and the measured water level at each predicted time and measurement time. is there. In this way, by calculating the difference between the predicted water level of the reservoir and the measured water level that indicates the actual reservoir water level, or the integrated value of the difference, the infiltration of water into the bank of the reservoir is calculated. It becomes possible to judge that the risk of the collapse increases as the amount increases.

以下、本実施形態に係るため池決壊予測システムの構成について説明する。図2は、本実施形態に係るため池決壊予測システムの構成例を示す図である。図2に示されるように、本実施形態に係るため池決壊予測システム1は、予測水位取得部12と、計測水位取得部14と、解析部16とを含んで構成される。 The configuration of the reservoir failure prediction system according to this embodiment will be described below. FIG. 2 is a diagram showing a configuration example of the reservoir failure prediction system according to the present embodiment. As shown in FIG. 2, the reservoir failure prediction system 1 according to the present embodiment includes a predicted water level acquisition unit 12, a measured water level acquisition unit 14, and an analysis unit 16.

予測水位取得部12は、ため池の予測水位を示す予測水位データを取得する。予測水位は、予測時点およびその前における天候(例えば降水量)や、周囲からため池に流れ込む水量などを考慮して予測されうる。一例として、予測水位取得部12は、例えば特許第5654147号の水位予測システムのような外部のコンピュータシステム(装置)から予測水位データを取得することが可能である。なお、予測水位は、堤体へ水が浸透していない状態を前提とした(堤体への浸透を考慮していない)予測水位であってもよいし、例えば過去のデータや経験値から導き出される平均的な水量の堤体への浸透が発生している状態を前提とした予測水位であってもよい。 The predicted water level acquisition unit 12 acquires predicted water level data indicating the predicted water level of the reservoir. The predicted water level can be predicted in consideration of the weather (for example, precipitation amount) at the time of and before the prediction time, the amount of water flowing into the reservoir from the surroundings, and the like. As an example, the predicted water level acquisition unit 12 can acquire the predicted water level data from an external computer system (apparatus) such as the water level prediction system of Japanese Patent No. 5654147. Note that the predicted water level may be a predicted water level that does not allow water to permeate the levee body (without considering penetration into the levee body), or may be derived from past data or empirical values, for example. The predicted water level may be based on the condition that the average amount of water that has been infiltrated into the bank is generated.

また、予測水位データおよび後述の計測水位取得部14において取得される計測水位データは、予め定められた時間間隔の各時刻における予測水位および計測水位を表すデータであり、このような予測水位データおよび計測水位データが、ほぼリアルタイムに近い状態で取得されうる(ただし若干の遅延は許容されうる)。なお、予測水位の予測時刻と計測水位の計測時刻とは、略同時刻であることが望ましい。略同時刻とは、完全に一致するまでの同一性は求めない趣旨である。 Further, the predicted water level data and the measured water level data acquired by the measured water level acquisition unit 14 described later are data representing the predicted water level and the measured water level at each time of a predetermined time interval. Measured water level data may be acquired in near real-time conditions (although some delay may be tolerated). The predicted time of the predicted water level and the measured time of the measured water level are preferably approximately the same time. The term “substantially the same time” means that the identities are not required until they completely match.

計測水位取得部14は、ため池の現実の水位を示す計測水位データを取得する。本実施形態においては、一例として、監視対象であるため池に水位計測器を設置し、計測水位取得部14は、当該水位計測器からネットワークまたは記録媒体等を介して計測水位データを取得する。 The measured water level acquisition unit 14 acquires measured water level data indicating the actual water level of the reservoir. In the present embodiment, as an example, a water level measuring instrument is installed in the pond because it is a monitoring target, and the measurement water level obtaining unit 14 obtains measurement water level data from the water level measuring instrument via a network or a recording medium.

解析部16は、予測水位データと計測水位データとの差を解析することによって、ため池の堤体への水の浸透に関する予測を行う。例えば、解析部16は、予測水位データと計測水位データとの差の積算値に基づいて、ため池の堤体への水の浸透量を予測する。すなわち、時刻tにおけるため池の堤体への浸透量(時間あたりの浸透量)=LV(t)、予測水位=LV(t)pre、計測水位=LV(t)meas、とすると、 The analysis unit 16 analyzes the difference between the predicted water level data and the measured water level data to predict the infiltration of water into the bank of the reservoir. For example, the analysis unit 16 predicts the amount of water permeating into the bank of the reservoir based on the integrated value of the difference between the predicted water level data and the measured water level data. That is, assuming that the permeation amount (permeation amount per time) of the reservoir at the time t=LV(t), the predicted water level=LV(t)pre, and the measured water level=LV(t)meas,

Figure 0006707749
Figure 0006707749

と表される。よって、時刻T1から時刻Tnの間におけるため池の堤体への水の浸透量は、 Is expressed as Therefore, the amount of water permeated into the bank of the reservoir between time T1 and time Tn is

Figure 0006707749
Figure 0006707749

と表される。なお、図1の例においては浸透量を重さ(トン:t)で表しているが、上記の式(1)および式(2)の単位は水位(メートル:m、など)となる。上記式は一例であって、差および差の積算値は重さまたは容積として算出してもよい。ため池の形状は通常は既知であるので、底面積(平方メートル:m)×水位(m)により水量(立方メートル:m)が算出される。例えば、上記の式(1)および式(2)は、以下のように、ため池の底面積をB(m)とすると、時刻tにおける浸透量X(t)および時刻T1から時刻Tnの間における浸透量(総量)X(m)の算出式としてそれぞれ記述できる。 Is expressed as In the example of FIG. 1, the permeation amount is represented by weight (ton:t), but the unit of the above formulas (1) and (2) is the water level (meter:m, etc.). The above formula is an example, and the difference and the integrated value of the difference may be calculated as the weight or the volume. Since the shape of the reservoir is usually known, the amount of water (cubic meter: m 3 ) is calculated from the bottom area (square meter: m 2 ) × water level (m). For example, in the above formulas (1) and (2), assuming that the bottom area of the reservoir is B(m 2 ), the permeation amount X(t) at time t and between time T1 and time Tn are as follows: Can be described as a calculation formula of the permeation amount (total amount) X (m 3 ) in the above.

Figure 0006707749
Figure 0006707749

Figure 0006707749
Figure 0006707749

また、これらの式は、水1m=1000L(リットル)=1tとして、水量を他の単位で表現してもよい。
また、解析部16は、予測水位データと計測水位データとの差または当該差の積算値に基づいて、ため池の決壊の危険度を判定する。
Further, in these equations, the amount of water may be expressed in other units, where water 1 m 3 =1000 L (liter)=1 t.
The analysis unit 16 also determines the risk of collapse of the reservoir based on the difference between the predicted water level data and the measured water level data or the integrated value of the difference.

例えば、解析部16は、予測水位データと計測水位データとの差が予め定められた閾値Vth1を超えた場合に、ため池が決壊する(可能性が高い)と判断してもよい。図1に示されるように、大雨などによってため池の堤体へ浸透する水量が増加すると、予測水位と計測水位との差が開いていく。堤体への浸透が無い場合(または浸透量が少ない場合であっても)両者の間には予測誤差が存在するのが通常であるものの、ある程度両者の差が大きくなった場合には、ため池の堤体への水の浸透量が増えたことによって差が生じていると考えられる。また、当該差がどれぐらいになった場合(浸透量がどれぐらいになった場合)に決壊の危険度が高まっているかは、例えば経験則からも決定されうる。決壊の危険があると判断するための閾値をVth1とすると、 For example, the analysis unit 16 may determine that the reservoir breaks down (probability is high) when the difference between the predicted water level data and the measured water level data exceeds a predetermined threshold Vth1. As shown in Fig. 1, when the amount of water that permeates the bank of the pond increases due to heavy rainfall, the difference between the predicted water level and the measured water level widens. If there is no infiltration into the bank (or even if the infiltration amount is small), there is usually a prediction error between the two, but if the difference between the two becomes large to some extent, It is considered that the difference is caused by the increase in the amount of water permeating into the bank body. Further, how much the difference becomes (when the permeation amount becomes) and the risk of failure is increased can be determined from, for example, an empirical rule. Let Vth1 be the threshold value for determining that there is a risk of breakage,

Figure 0006707749
Figure 0006707749

となった時刻tにおいて決壊の危険があると判断されうる。
同様に、予測水位と計測水位との差の積算値がある程度大きくなった場合も決壊の危険度が高まっていると判断することができる。決壊の危険があると判断される閾値をVth2とすると、
It can be judged that there is a danger of a collapse at the time t.
Similarly, when the integrated value of the difference between the predicted water level and the measured water level becomes large to some extent, it can be determined that the risk of collapse is increasing. Let Vth2 be the threshold that is judged to be in danger of breaking,

Figure 0006707749
Figure 0006707749

となった時刻Tnにおいて決壊の危険があると判断されうる。なお、これらの算出式についても、式(3)および式(4)のように水量(m)または他の単位で表されてもよい。閾値Vth1およびVth2についても同様である。 It can be determined that there is a risk of collapse at time Tn. Note that these calculation formulas may also be expressed in the amount of water (m 3 ) or another unit as in the formulas (3) and (4). The same applies to the threshold values Vth1 and Vth2.

閾値Vth1およびVth2をどのように設定するかについては、例えば、平常時(ため池の堤体へ水が浸透していないと想定されうる状況、または浸透量が少ない場合(降水が無いまたは降水量が予め定められた範囲内である場合等))におけるため池の計測水位および予測水位をもとに両者の予測誤差の範囲(または当該予測誤差の積算値の範囲)を求め、当該誤差の範囲(または予測誤差の積算値の範囲)を逸脱する限界値を閾値として設定するようになっていてもよい。また、例えば、平常時の両者の誤差(または誤算の積算値)の平均値または最大値(またはこれらよりも大きい値)を当該閾値として設定するようになっていてもよい。そして、この閾値を超える差分が検出された場合にため池が決壊する(可能性が高い)と判定されてもよい。 As to how to set the thresholds Vth1 and Vth2, for example, in a normal condition (a situation in which it can be assumed that water does not permeate the bank of the reservoir, or when the permeation amount is small (no precipitation or In the case where it is within a predetermined range)), the range of the prediction error (or the range of the integrated value of the prediction error) between the two is calculated based on the measured water level and the predicted water level of the reservoir, and the error range (or A limit value that deviates from the range of the integrated value of the prediction error) may be set as the threshold value. Further, for example, an average value or a maximum value (or a value larger than these) of both errors (or erroneous integrated values) during normal times may be set as the threshold value. Then, when a difference exceeding this threshold value is detected, it may be determined that the reservoir breaks down (there is a high possibility).

また、予測水位データと計測水位データとの差または差の積算値について複数の閾値を設定して、段階的にため池決壊の危険度を判定するようになっていてもよい。例えば、予測水位データと計測水位データとの差または差の積算値が第1の閾値を超えた場合には、ため池が決壊する可能性が生じていると判断し(近隣住民に決壊の可能性を通知する等)、当該差または差の積算値が第1の閾値よりも大きな値である第2の閾値を超えた場合には、ため池が決壊する可能性が高まっていると判断し(近隣住民に避難準備を通知する等)、当該差または差の積算値がさらに大きい第3の閾値を超えた場合には、ため池が決壊する可能性が高いと判断する(近隣住民に避難指示を行う等)ようになっていてもよい。また、このような段階的な判断に基づいて、管理者や近隣住民への通知をメールやウェブページ等を介して行う等となっていてもよい。 Further, a plurality of thresholds may be set for the difference between the predicted water level data and the measured water level data or an integrated value of the differences, and the risk of reservoir failure may be determined in stages. For example, if the difference between the predicted water level data and the measured water level data or the integrated value of the differences exceeds the first threshold value, it is determined that there is a possibility that the reservoir will be destroyed (the possibility of failure to neighboring residents). If the difference or the integrated value of the differences exceeds the second threshold value, which is a value larger than the first threshold value, it is determined that there is a high possibility that the reservoir will collapse (neighborhood). If the difference or the accumulated value of the differences exceeds the third threshold, which is even larger, such as notifying the residents of evacuation preparation), it is determined that there is a high possibility that the reservoir will be destroyed (instruct neighboring residents to evacuate). Etc.). Further, based on such a stepwise judgment, the notification to the manager or the neighboring residents may be carried out via e-mail or web page.

また、解析部16は、計測水位データに基づいて、ため池の決壊時の浸水被害の予測を行うようになっていてもよい。ため池の決壊時の浸水被害の予測は、ため池が決壊した時に流れ出る水量に基づくが、この水量として以下の2つが考えられる。
(a)決壊時のため池の湛水量
(b)決壊時のため池の湛水量+決壊時までにため池の堤体へ浸透した水の浸透量
ここで、(a)決壊時Tnにおけるため池の湛水量Wは、計測水位LV(t)measおよびため池の底面積Bによって、以下の式によって表されうる。
In addition, the analysis unit 16 may be configured to predict inundation damage when the reservoir breaks, based on the measured water level data. The prediction of inundation damage when a reservoir breaks is based on the amount of water that flows out when the reservoir breaks. The following two can be considered as this amount of water.
(A) Inundation volume of the reservoir at the time of the collapse (b) Inundation volume of the reservoir at the time of the collapse + Infiltration amount of water that has penetrated into the dam body of the reservoir by the time of the collapse Here, (a) Inundation volume of the reservoir at Tn at the time of the collapse W can be represented by the following formula by the measured water level LV(t)meas and the bottom area B of the reservoir.

Figure 0006707749
Figure 0006707749

また、(b)決壊時Tnにおけるため池の湛水量+堤体への浸透量は、以下の式によって表されうる。 In addition, (b) the amount of water inundated by the reservoir + the amount of infiltration into the bank at the time of failure Tn can be expressed by the following formula.

Figure 0006707749
Figure 0006707749

さらに説明すると、例えば、予め定められた時間間隔における予測時刻および計測時刻における予測水位データおよび計測水位データが予測水位取得部12および計測水位取得部14において取得され、取得された各データは、ため池決壊予測システム1のハードディスク等の記憶領域に順次記憶されていく。解析部16は記憶されていくこれらのデータの差または差の積算値を、データが取得される都度計算して各閾値と比較し、ため池の決壊の危険度等を判断する。また、計測水位データ(および浸透量データ)を用いてシミュレータプログラム等を用いてため池決壊時の浸水被害の予測を行ってもよい。 More specifically, for example, the predicted water level data and the measured water level data at the predicted time and the measured time at the predetermined time interval are acquired by the predicted water level acquisition unit 12 and the measured water level acquisition unit 14, and the acquired data are stored in the reservoir. The data is sequentially stored in a storage area such as a hard disk of the failure prediction system 1. The analysis unit 16 calculates the difference or the integrated value of the differences between the stored data each time the data is acquired and compares it with each threshold value to determine the risk of collapse of the reservoir. In addition, it is also possible to use the measured water level data (and the infiltration amount data) to predict the inundation damage at the time of reservoir failure using a simulator program or the like.

なお、以上説明したため池決壊予測システム1の構成はあくまで一例であって、これに限定されるものではない。
(ハードウェア構成)
上記説明されたため池決壊予測システム1の構成は、一般的なコンピュータ装置と同様のハードウェア構成によって実現可能である。図3は、ため池決壊予測システム1のハードウェア構成の一例を示す図である。図3に示されるコンピュータ装置20は、一例として、プロセッサ21と、RAM(Random Access Memory)22と、ROM(Read Only Memory)23と、内蔵のハードディスク装置24と、外付けハードディスク装置、CD、DVD、USBメモリ、メモリスティック、SDカード等のリムーバブルメモリ25と、ユーザがコンピュータ装置20とデータのやり取りを行うための入出力ユーザインタフェース26(キーボード、マウス、タッチパネル、スピーカ、マイク、ランプ等)と、他のコンピュータ装置と通信可能な有線/無線の通信インタフェース27と、ディスプレイ28と、を備える。本実施形態に係るため池決壊予測システム1の機能は、例えば、プロセッサ21が、ハードディスク装置24やROM23、リムーバブルメモリ25等にあらかじめ格納されたプログラムをRAM22等のメモリに読み出し、処理に必要な上述したデータを、ハードディスク装置24やROM23、リムーバブルメモリ25等から適宜読み出しながらプログラムを実行することで実現されうる。
The configuration of the pond failure prediction system 1 described above is merely an example, and the present invention is not limited to this.
(Hardware configuration)
The configuration of the pond failure prediction system 1 described above can be realized by the same hardware configuration as a general computer device. FIG. 3 is a diagram illustrating an example of a hardware configuration of the reservoir failure prediction system 1. As an example, the computer device 20 shown in FIG. 3 includes a processor 21, a RAM (Random Access Memory) 22, a ROM (Read Only Memory) 23, a built-in hard disk device 24, an external hard disk device, a CD, a DVD. , A removable memory 25 such as a USB memory, a memory stick, or an SD card, and an input/output user interface 26 (keyboard, mouse, touch panel, speaker, microphone, lamp, etc.) for the user to exchange data with the computer device 20, A wired/wireless communication interface 27 capable of communicating with other computer devices and a display 28 are provided. The functions of the reservoir failure prediction system 1 according to the present embodiment are described above, for example, in that the processor 21 reads a program previously stored in the hard disk device 24, the ROM 23, the removable memory 25, or the like into a memory such as the RAM 22 and performs processing. It can be realized by executing the program while appropriately reading the data from the hard disk device 24, the ROM 23, the removable memory 25, and the like.

なお、ため池決壊予測システム1は単一のコンピュータ装置として構成されていてもよいし、複数のコンピュータ装置によって構成されていてもよい。後者である場合には、上述したため池決壊予測システム1の各機能が複数のコンピュータ装置によって分散的に実現されており、それぞれのコンピュータ装置が図2に示されるコンピュータ装置20の構成と同一又は類似の構成を備えていてもよい。 The reservoir failure prediction system 1 may be configured as a single computer device or may be configured by a plurality of computer devices. In the latter case, the functions of the above-described storage pond failure prediction system 1 are distributedly realized by a plurality of computer devices, and each computer device has the same or similar configuration as the computer device 20 shown in FIG. May be provided.

なお、図3に示されるハードウェア構成はあくまで一例であって、これに限定されるものではない。
(処理フロー)
図4は、本実施形態に係るため池決壊予測システムにおける処理の一例を示すフロー図である。
The hardware configuration shown in FIG. 3 is merely an example, and the present invention is not limited to this.
(Processing flow)
FIG. 4 is a flowchart showing an example of processing in the reservoir failure prediction system according to the present embodiment.

ステップS102において、予測水位取得部12が予測水位データを取得する。また、ステップS104において、計測水位取得部14が計測水位データを取得する。予測水位データと計測水位データについては以下が想定される。すなわち、予測水位と計測水位は予め定められた時間間隔の各時刻において予測および計測され、これらのデータの予測時刻と計測時刻は略同時刻であり、予測水位データと計測水位データとがほぼリアルタイムに近い状態で取得されること、が望ましい。ステップS102とステップS104の処理は並列的に処理されうる。また、取得された予測水位データおよび計測水位データは、ため池決壊予測システムのハードディスク等の記憶領域に保存されうる。 In step S102, the predicted water level acquisition unit 12 acquires predicted water level data. In addition, in step S104, the measured water level acquisition unit 14 acquires measured water level data. The following is assumed for the predicted water level data and the measured water level data. That is, the predicted water level and the measured water level are predicted and measured at each time of a predetermined time interval, the predicted time and the measured time of these data are approximately the same time, and the predicted water level data and the measured water level data are almost real-time. It is desirable to be acquired in a state close to. The processes of steps S102 and S104 can be processed in parallel. The acquired predicted water level data and measured water level data may be stored in a storage area such as a hard disk of the reservoir failure prediction system.

ステップS106において、解析部16がステップS102およびS104において取得された予測水位データと計測水位データとの差または差の積算値を解析する。例えば解析部16は、予測水位データと計測水位データとの差の積算値に基づいて、ため池の堤体への浸透量を予測する。また、例えば解析部16は、予測水位データと計測水位データとの差または差の積算値が予め定められた閾値を超えた場合にはため池決壊の可能性が高いと判断する。本ステップは、例えば、ステップS102およびS104において予測水位データおよび計測水位データが取得される度に実行されてもよい。または、予め定められた数の予測水位データおよび計測水位データが取得されると、本ステップの処理が実行されるようになっていてもよい。 In step S106, the analysis unit 16 analyzes the difference between the predicted water level data acquired in steps S102 and S104 or the integrated value of the difference. For example, the analysis unit 16 predicts the amount of infiltration into the bank of the reservoir based on the integrated value of the difference between the predicted water level data and the measured water level data. Further, for example, when the difference between the predicted water level data and the measured water level data or the integrated value of the differences exceeds a predetermined threshold value, the analysis unit 16 determines that there is a high possibility of reservoir failure. This step may be executed, for example, every time the predicted water level data and the measured water level data are acquired in steps S102 and S104. Alternatively, the process of this step may be executed when a predetermined number of predicted water level data and measured water level data are acquired.

ステップS108において、解析部16が予測水位データと計測水位データとの差の積算値に基づいてため池の決壊時の浸水被害の予測を行う。なお、本ステップについても、ステップS102およびS104において予測水位データおよび計測水位データが取得される度に実行されてもよいし、予め定められた数の予測水位データおよび計測水位データが取得されると、本ステップの処理が実行されるようになっていてもよい。 In step S108, the analysis unit 16 predicts inundation damage when the reservoir breaks, based on the integrated value of the difference between the predicted water level data and the measured water level data. Note that this step may be executed every time the predicted water level data and the measured water level data are acquired in steps S102 and S104, or when a predetermined number of predicted water level data and measured water level data are acquired. The processing of this step may be executed.

以上の処理は予測処理を終了するまで、複数回繰り返されうる。
ここまで、本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。
The above process can be repeated a plurality of times until the prediction process is completed.
Up to this point, one embodiment of the present invention has been described, but it goes without saying that the present invention is not limited to the above embodiment and may be implemented in various different forms within the scope of the technical idea thereof.

また、本発明の範囲は、図示され記載された例示的な実施形態に限定されるものではなく、本発明が目的とするものと均等な効果をもたらすすべての実施形態をも含む。さらに、本発明の範囲は、各請求項により画される発明の特徴の組み合わせに限定されるものではなく、すべての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組み合わせによって画されうる。 Moreover, the scope of the present invention is not limited to the exemplary embodiments shown and described, but also includes all embodiments providing equivalent effects to those intended by the present invention. Furthermore, the scope of the invention is not limited to the combination of inventive features defined by each claim, but can be defined by any desired combination of specific features of each disclosed feature. ..

1 ため池決壊予測システム
12 予測水位取得部
14 計測水位取得部
16 解析部
20 コンピュータ装置
21 プロセッサ
22 RAM
23 ROM
24 ハードディスク装置
25 リムーバブルメモリ
26 入出力ユーザインタフェース
27 通信インタフェース
28 ディスプレイ
1 Reservoir failure prediction system 12 Predicted water level acquisition unit 14 Measured water level acquisition unit 16 Analysis unit 20 Computer device 21 Processor 22 RAM
23 ROM
24 hard disk device 25 removable memory 26 input/output user interface 27 communication interface 28 display

Claims (6)

ため池の決壊を予測するため池決壊予測システムであって、
ため池の予測水位を示す予測水位データを取得する予測水位取得部と、
前記ため池の水位を示す計測水位データを取得する計測水位取得部と、
前記予測水位データと前記計測水位データとの差を解析することによって、ため池の堤体への水の浸透に関する予測を行う解析部と、
を備え
前記解析部は、前記予測水位データと前記計測水位データとの差の積算値に基づいて、ため池の堤体への水の浸透量を予測する、ため池決壊予測システム。
A pond failure prediction system for predicting the failure of a pond,
A predicted water level acquisition unit that acquires predicted water level data indicating the predicted water level of the reservoir,
A measurement water level acquisition unit that acquires measurement water level data indicating the water level of the reservoir,
By analyzing the difference between the predicted water level data and the measured water level data, an analysis unit that predicts the infiltration of water into the bank of the reservoir,
Equipped with
The reservoir failure prediction system , wherein the analysis unit predicts the amount of water permeating into the bank of the reservoir based on the integrated value of the difference between the predicted water level data and the measured water level data .
ため池の決壊を予測するため池決壊予測システムであって、
ため池の予測水位を示す予測水位データを取得する予測水位取得部と、
前記ため池の水位を示す計測水位データを取得する計測水位取得部と、
前記予測水位データと前記計測水位データとの差を解析することによって、ため池の堤体への水の浸透に関する予測を行う解析部と、
を備え
前記解析部は、前記計測水位データに基づいて、ため池の決壊時の浸水被害の予測を行う、ため池決壊予測システム。
A pond failure prediction system for predicting the failure of a pond,
A predicted water level acquisition unit that acquires predicted water level data indicating the predicted water level of the reservoir,
A measurement water level acquisition unit that acquires measurement water level data indicating the water level of the reservoir,
By analyzing the difference between the predicted water level data and the measured water level data, an analysis unit that predicts the infiltration of water into the bank of the reservoir,
Equipped with
A reservoir failure prediction system , wherein the analysis unit predicts inundation damage at the time of reservoir failure based on the measured water level data .
前記解析部は、前記予測水位データと前記計測水位データとの差または当該差の積算値に基づいて、前記ため池の決壊の危険度を判定する、請求項1または2に記載のため池決壊予測システム。 The storage pond failure prediction system according to claim 1 or 2, wherein the analysis unit determines a risk of failure of the storage pond based on a difference between the predicted water level data and the measured water level data or an integrated value of the difference. .. コンピュータシステムによって実行される方法であって、
ため池の予測水位を示す予測水位データを取得するステップと、
前記ため池の水位を示す計測水位データを取得するステップと、
前記予測水位データと前記計測水位データとの差を解析することによって、ため池の堤体への水の浸透に関する予測を行うステップと、
を備え
前記ため池の堤体への水の浸透に関する予測を行うステップは、前記予測水位データと前記計測水位データとの差の積算値に基づいて、ため池の堤体への水の浸透量を予測する、ため池決壊予測方法。
A method performed by a computer system, comprising:
Acquiring the predicted water level data indicating the predicted water level of the reservoir, and
Obtaining measured water level data indicating the water level of the reservoir,
Analyzing the difference between the predicted water level data and the measured water level data to make a prediction regarding water infiltration into the bank of the reservoir,
Equipped with
The step of predicting the infiltration of water into the bank of the reservoir, based on the integrated value of the difference between the predicted water level data and the measured water level data, to predict the amount of water infiltration into the bank of the reservoir, Reservoir failure prediction method.
コンピュータシステムによって実行される方法であって、
ため池の予測水位を示す予測水位データを取得するステップと、
前記ため池の水位を示す計測水位データを取得するステップと、
前記予測水位データと前記計測水位データとの差を解析することによって、ため池の堤体への水の浸透に関する予測を行うステップと、
を備え
前記ため池の堤体への水の浸透に関する予測を行うステップは、前記計測水位データに基づいて、ため池の決壊時の浸水被害の予測を行う、ため池決壊予測方法。
A method performed by a computer system, comprising:
Acquiring the predicted water level data indicating the predicted water level of the reservoir, and
Obtaining measured water level data indicating the water level of the reservoir,
Analyzing the difference between the predicted water level data and the measured water level data to make a prediction regarding water infiltration into the bank of the reservoir,
Equipped with
The method of predicting inundation of a reservoir according to the step of predicting the infiltration of water into the bank of the reservoir based on the measured water level data .
請求項4または5に記載の方法をコンピュータシステムに実行させるためのプログラム。 A program for causing a computer system to execute the method according to claim 4 or 5.
JP2019170379A 2019-09-19 2019-09-19 Reservoir failure prediction system, reservoir failure prediction method, and program Active JP6707749B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019170379A JP6707749B1 (en) 2019-09-19 2019-09-19 Reservoir failure prediction system, reservoir failure prediction method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019170379A JP6707749B1 (en) 2019-09-19 2019-09-19 Reservoir failure prediction system, reservoir failure prediction method, and program

Publications (2)

Publication Number Publication Date
JP6707749B1 true JP6707749B1 (en) 2020-06-10
JP2021047687A JP2021047687A (en) 2021-03-25

Family

ID=70976335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019170379A Active JP6707749B1 (en) 2019-09-19 2019-09-19 Reservoir failure prediction system, reservoir failure prediction method, and program

Country Status (1)

Country Link
JP (1) JP6707749B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI827003B (en) * 2022-04-15 2023-12-21 中華電信股份有限公司 A rainwater storage monitoring and analysis system, method and computer-readable medium thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8655806B2 (en) * 2010-12-09 2014-02-18 Sungeun JUNG Disaster analysis and decision system
JP5693491B2 (en) * 2012-02-24 2015-04-01 三菱電機株式会社 Reservoir dynamic monitoring system
JP5985243B2 (en) * 2012-05-09 2016-09-06 株式会社東芝 Disaster information notification control device, control method, and control program
JP5731700B1 (en) * 2014-07-25 2015-06-10 エー・シー・エス株式会社 Sediment disaster prediction system based on water level prediction
JP2016102744A (en) * 2014-11-28 2016-06-02 東京電力株式会社 Leakage detection method
JP2016173310A (en) * 2015-03-17 2016-09-29 株式会社協和エクシオ Water leakage detection system for pond
JP6635296B2 (en) * 2016-01-29 2020-01-22 中国電力株式会社 Debris flow generation prediction system and debris flow generation prediction method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI827003B (en) * 2022-04-15 2023-12-21 中華電信股份有限公司 A rainwater storage monitoring and analysis system, method and computer-readable medium thereof

Also Published As

Publication number Publication date
JP2021047687A (en) 2021-03-25

Similar Documents

Publication Publication Date Title
CN113538861B (en) Geological disaster information management system based on mineral geological exploration
JP6874770B2 (en) Rainfall Predictor, Rainfall Prediction Method, and Recording Media
Strader et al. A Monte Carlo model for estimating tornado impacts
US20130324111A1 (en) Method and apparatus for telecommunications network performance anomaly events detection and notification
JP2019152567A (en) Calculation program, calculation method, calculation device, and display program
WO2019073937A1 (en) Risk evaluation system
CN113342877B (en) Urban municipal road operation safety monitoring method based on big data analysis and cloud computing and cloud monitoring platform
WO2018131479A1 (en) Risk determination device, risk determination system, risk determination method, and computer-readable recording medium
CN115600895A (en) Digital twin-based watershed flood beach disaster risk assessment method and device
JP6707749B1 (en) Reservoir failure prediction system, reservoir failure prediction method, and program
CN115659614A (en) Riverbed change simulation deduction method, device and equipment based on three-dimensional scene model
CN115909664A (en) BIM-based river channel safety early warning method, device and equipment
CN111752481A (en) Memory monitoring and service life prediction method and system based on SPD
Zini et al. Frequency vs time domain identification of heritage structures
JPWO2015174067A1 (en) Information processing apparatus, abnormality detection method, and recording medium
JP2012058062A (en) Tsunami scale prediction apparatus, method, and program
KR20170051971A (en) System For Supporting Urban Planning and Method For Urban Planning Information
JP7083735B2 (en) Cut slope failure prediction device, cut slope failure prediction method and cut slope failure prediction program
JP2017133302A (en) Debris flow occurrence prediction system and debris flow occurrence prediction method
JP6107967B2 (en) Analysis apparatus, analysis method, and analysis program
CN108132984B (en) Rendering method and device for rainfall recurrence period of pipe network and computer readable storage medium
KR102661625B1 (en) System and method for risk assessment of wave overtopping
JP6406488B1 (en) Vegetation effect quantification device, quantification system and program
KR102359643B1 (en) Automatic rainfall warning system with improved alarm accuracy by using data mining techniques based on collected rainfall information, soil moisture information, and water level information
CN115186702A (en) Centrifugal pump cavitation state identification method based on vibration signals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191011

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191011

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200407

R150 Certificate of patent or registration of utility model

Ref document number: 6707749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250