JP6706975B2 - Photovoltaic power generator cooperation hot water supply type hot water supply system - Google Patents

Photovoltaic power generator cooperation hot water supply type hot water supply system Download PDF

Info

Publication number
JP6706975B2
JP6706975B2 JP2016119453A JP2016119453A JP6706975B2 JP 6706975 B2 JP6706975 B2 JP 6706975B2 JP 2016119453 A JP2016119453 A JP 2016119453A JP 2016119453 A JP2016119453 A JP 2016119453A JP 6706975 B2 JP6706975 B2 JP 6706975B2
Authority
JP
Japan
Prior art keywords
boiling
capacity
hot water
night
water storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016119453A
Other languages
Japanese (ja)
Other versions
JP2017223410A (en
Inventor
本間 誠
誠 本間
信人 諸橋
信人 諸橋
誠 森田
誠 森田
正己 大桃
正己 大桃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2016119453A priority Critical patent/JP6706975B2/en
Publication of JP2017223410A publication Critical patent/JP2017223410A/en
Application granted granted Critical
Publication of JP6706975B2 publication Critical patent/JP6706975B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、太陽光発電装置と、貯湯タンクと加熱手段と加熱循環回路とを有した貯湯式給湯装置と、を備え、太陽光発電装置の発電余剰電力を利用して沸き上げる太陽光発電装置連携貯湯式給湯システムに関するものである。 The present invention includes a solar power generation device, and a hot water storage type hot water supply device having a hot water storage tank, a heating unit, and a heating circulation circuit, and uses the surplus power generated by the solar power generation device to boil The present invention relates to a cooperative hot water supply type hot water supply system.

従来よりこの種の太陽光発電装置と連携して動作する貯湯式給湯装置には、特許文献1に開示されているように、翌日の発電電力予測と消費電力予測とから余剰電力を予測し、余剰電力で沸き上げ可能な熱量を算出すると共に、過去の使用湯量に基づいて翌日の必要熱量を算出し、必要熱量から余剰電力で沸き上げ可能な熱量を減じた値を、夜間に沸き上げるべき熱量として算出し、この熱量を夜間に沸き上げ、昼間の余剰電力で残り分を沸き上げるようにしている。 Conventionally, in a hot water storage type hot water supply device that operates in cooperation with a solar power generation device of this type, as disclosed in Patent Document 1, surplus power is predicted from the power generation power prediction and power consumption prediction of the next day, Calculate the amount of heat that can be boiled with excess power, calculate the required amount of heat for the next day based on the amount of hot water used in the past, and subtract the amount of heat that can be boiled with excess power from the required amount of heat to boil at night. The amount of heat is calculated, and this amount of heat is boiled at night, and the remaining amount is boiled by surplus power during the day.

特開2013−148287号公報JP, 2013-148287, A

ところが、近年ではヒートポンプ式加熱手段の加熱効率を高めるために、沸き上げ温度を比較的低めの65℃〜75℃程度に設定することが多く、沸き上げ温度を低めに設定すると、貯湯タンク内を満タンにしても必要熱量を沸き上げられない状況が生じる。 However, in recent years, in order to increase the heating efficiency of the heat pump type heating means, the boiling temperature is often set to a relatively low temperature of about 65° C. to 75° C. When the boiling temperature is set to a low value, the inside of the hot water storage tank Even if the tank is full, there will be situations where the required amount of heat cannot be boiled up.

このような状況において、上記のように必要熱量から余剰電力で沸き上げ可能な熱量を減じた値を夜間に沸き上げるべき熱量として算出し、この熱量を夜間に沸き上げると、昼間の余剰電力発生時に沸き上げを開始しても、当初予測していた余剰電力で沸き上げ可能な熱量を沸き上げ完了する前に貯湯タンクが満タンになってしまい、余剰電力での沸き上げが継続できずに当初予測の余剰電力を全量活用することができないという課題があった。 In such a situation, a value obtained by subtracting the heat quantity that can be boiled with excess power from the required heat quantity as described above is calculated as the heat quantity that should be boiled at night, and when this heat quantity is boiled at night, excess power is generated during the day. Even if boiling is started at some time, the hot water tank will be full before the amount of heat that can be boiled with the initially predicted excess power has been completely heated, and the boiling with excess power cannot continue. There was a problem that it was not possible to fully utilize the surplus power predicted at the beginning.

そこで、本発明は上記課題を解決するために、太陽光発電装置と、貯湯タンクと加熱手段と加熱循環回路とを有した貯湯式給湯装置と、を備えた太陽光発電装置連携貯湯式給湯システムにおいて、前記太陽光発電装置の翌日の発電電力予測値から前記貯湯式給湯装置を除く電気負荷の翌日の消費電力予測値を減じて翌日の余剰電力予測値を算出する余剰電力予測手段と、1日の湯の使用量を学習使用量として複数日分学習記憶する使用湯量学習手段と、過去複数日分の前記学習使用量から翌日に必要な熱量を必要熱量として決定する必要熱量決定手段と、前記必要熱量を別途決定された沸き上げ目標温度と給水温度との温度差で除して必要容量を算出し、前記必要容量と前記貯湯タンクの容量とを比較し、小さい方の容量を夜間沸き上げ容量とする夜間沸き上げ容量算出手段と、前記必要容量が前記貯湯タンクの容量を超える場合に、前記必要容量から前記貯湯タンクの容量を減じて昼間沸き増し容量を算出する昼間沸き増し容量算出手段と、前記余剰電力予測値に基づいて沸き上げに用いることができる余剰沸き上げ時間を設定する余剰沸き上げ時間設定手段と、前記余剰沸き上げ時間で前記沸き上げ目標温度まで沸き上げられる余剰沸き上げ容量を算出する余剰沸き上げ容量算出手段と、前記必要容量が前記貯湯タンクの容量を超える場合に前記貯湯タンクの容量である前記夜間沸き上げ容量から前記余剰沸き上げ容量を減じて補正夜間沸き上げ容量を算出し、前記必要容量が前記貯湯タンクの容量を超えない場合に前記必要容量である前記夜間沸き上げ容量から前記余剰沸き上げ容量を減じて補正夜間沸き上げ容量を算出する補正夜間沸き上げ容量算出手段と、夜間に前記補正夜間沸き上げ容量を沸き上げる夜間沸き上げ制御手段と、昼間の余剰電力で前記余剰沸き上げ容量を沸き上げる余剰沸き上げ制御手段と、を備えたものとした。 Therefore, in order to solve the above-mentioned problems, the present invention has a solar power generation device and a hot water storage type hot water supply device having a hot water storage tank, a heating means, and a heating circulation circuit. In the above, the surplus power predicting means for calculating the surplus power prediction value of the next day by subtracting the power consumption prediction value of the next day of the electric load excluding the hot water storage type hot water supply device from the power generation prediction value of the next day of the solar power generation device, and 1 A used hot water amount learning means for learning and storing the used amount of hot water for multiple days as a learned used amount, and a required heat amount determination means for determining the required amount of heat on the next day from the learned used amount for the past multiple days as a required heat amount, The required capacity is calculated by dividing the required heat quantity by the temperature difference between the separately determined boiling target temperature and the feed water temperature, and the required capacity and the capacity of the hot water storage tank are compared, and the smaller capacity is boiled at night. Night-time boiling capacity calculation means for increasing the capacity, and when the required capacity exceeds the capacity of the hot water storage tank, the capacity of the hot water storage tank is subtracted from the required capacity to calculate the daytime boiling capacity and the daytime additional capacity calculation Means, surplus boiling time setting means for setting a surplus boiling time that can be used for boiling based on the surplus power predicted value, and surplus boiling that is boiled to the boiling target temperature at the surplus boiling time and surplus water heating capacity calculating means for calculating a raised capacity correction night by subtracting the surplus water heating capacity from the night boiling capacity is the capacity of the previous SL hot water storage tank when the required capacity exceeds the capacity of the hot water storage tank Calculate the boiling capacity, and if the required capacity does not exceed the capacity of the hot water storage tank, subtract the surplus boiling capacity from the night boiling capacity that is the required capacity, and correct night to calculate the boiling capacity. Boiling capacity calculation means, night boiling control means for boiling the corrected night boiling capacity at night, surplus boiling control means for boiling the surplus boiling capacity with daytime surplus power, and did.

また、前記余剰沸き上げ制御手段による余剰沸き上げが完了後に前記昼間沸き増し容量を沸き上げる昼間沸き増し制御手段と、を備えたものとした。 Further, a daytime additional boiling control means for increasing the daytime additional boiling capacity after the completion of the excess boiling by the excess boiling control means is provided.

本発明によれば、余剰電力で沸き上げ可能な熱量を沸き上げるのに必要な分の未加熱の水すなわち余剰沸き上げ容量を貯湯タンクに残した状態で夜間沸き上げを終えることができ、当初予測していた余剰電力を全量活用した昼間の沸き上げを完了させることができる。 According to the present invention, it is possible to finish the night-time boiling in a state in which unheated water necessary for boiling up the amount of heat that can be boiled with excess power, that is, the excess boiling capacity is left in the hot water storage tank, It is possible to complete the boiling in the daytime by fully utilizing the predicted surplus power.

本発明の一実施形態のシステム図System diagram of one embodiment of the present invention 同一実施形態のブロック図Block diagram of the same embodiment 同一実施形態の作動を説明するためのフローチャートFlowchart for explaining the operation of the same embodiment 同一実施形態の作動を説明するためのフローチャートFlowchart for explaining the operation of the same embodiment 同一実施形態と比較例としての従来技術の沸き上げ運転の種別と沸き上げ容量の関係を示す図The figure which shows the kind of boiling operation of the same embodiment and a prior art as a comparative example, and a relationship of boiling capacity

次に、本発明の一実施形態の太陽光発電装置連携貯湯式給湯システムを図面を用いて説明する。
1は主に夜間の電力料金単価が安価な時間帯に沸き上げを行うヒートポンプ式の貯湯式給湯装置、2は商用電源に接続され家屋に設置された分電盤、3は家屋の屋根等に設置された太陽光発電パネル4と、太陽光発電パネル4の発電電力を交流電源に変換するインバータ5とからなる太陽光発電装置、6はエアコン等の他の電気負荷機器、7は家庭内の電力マネジメントを行うためのHEMS機器(HEMSはホームエネルギーマネジメントシステムの略語)、8は外部のインターネット通信網、9は外部サーバ機器である。
Next, a solar power generation device cooperation hot water storage type hot water supply system according to an embodiment of the present invention will be described with reference to the drawings.
1 is a heat pump type hot water storage type hot water supply device that mainly performs boiling at night when the unit price of electricity is cheap at night 2 is a distribution board connected to a commercial power source and installed in a house 3 is a roof of a house A solar power generation device including a installed solar power generation panel 4 and an inverter 5 that converts generated power of the solar power generation panel 4 into an AC power source, 6 is another electric load device such as an air conditioner, and 7 is a household HEMS equipment for performing power management (HEMS is an abbreviation for home energy management system), 8 is an external Internet communication network, and 9 is an external server equipment.

HEMS機器7は、貯湯式給湯装置1および太陽光発電装置3に双方向に通信可能に接続され、貯湯式給湯装置1の使用状況や太陽光発電装置3の発電電力情報を収集可能とし、さらに分電盤2の分岐回路毎の消費電力量の情報を収集可能としていると共に、インターネット通信網8を介して外部サーバ機器9と必要な情報を相互にやり取りできるように接続されているものである。なお、HEMS機器7と太陽光発電装置3間の通信の代わりに、分電盤2への発電電力の入力、あるいは分電盤3と商用電源との間の電力の授受を監視して太陽光発電装置3の発電電力情報を収集することとしてもよい。 The HEMS device 7 is bidirectionally connected to the hot water storage type hot water supply device 1 and the solar power generation device 3 so as to be able to collect the usage status of the hot water storage type hot water supply device 1 and the generated power information of the solar power generation device 3. Information on the amount of power consumption for each branch circuit of the distribution board 2 can be collected and connected so that necessary information can be exchanged with the external server device 9 via the Internet communication network 8. .. Instead of communication between the HEMS device 7 and the solar power generation device 3, input of generated power to the distribution board 2 or transfer of power between the distribution board 3 and a commercial power source is monitored to perform sunlight. The power generation information of the power generation device 3 may be collected.

ヒートポンプ式の貯湯式給湯装置1について説明すると、10は湯水を貯湯する貯湯タンク、11は貯湯タンク10底部に給水する給水管、12は貯湯タンク10頂部から出湯する出湯管、13は給水管11から分岐した給水バイパス管、14は出湯管12からの湯と給水バイパス管13からの水を図示しないリモコン装置によって設定された給湯設定温度になるように混合する混合弁、15は給湯端末に給湯する給湯管、16は給湯流量を検出する給湯流量センサ、17は給湯温度を検出する給湯温度センサ、18は貯湯タンク10の側面に高さ位置を変えて複数設けられ、貯湯温度を検出する貯湯温度センサである。 The heat pump hot water storage type hot water supply apparatus 1 will be described. 10 is a hot water storage tank for storing hot water, 11 is a water supply pipe for supplying water to the bottom of the hot water storage tank 10, 12 is a hot water discharge pipe for discharging hot water from the top of the hot water storage tank 10, and 13 is a water supply pipe 11 The water supply bypass pipe branched from 14 is a mixing valve for mixing the hot water from the hot water supply pipe 12 and the water from the water supply bypass pipe 13 to a hot water supply set temperature set by a remote control device (not shown), and 15 is a hot water supply terminal A hot water supply pipe, 16 is a hot water supply flow rate sensor for detecting a hot water supply flow rate, 17 is a hot water supply temperature sensor for detecting a hot water supply temperature, and 18 is a plurality of hot water storage tanks provided on the side surface of the hot water storage tank 10 at different height positions to detect the hot water storage temperature. It is a temperature sensor.

19は貯湯タンク10内の湯水を沸き上げ目標温度に加熱するヒートポンプ式加熱手段で、冷媒を高温高圧に圧縮搬送する圧縮機20と、高温高圧の冷媒と貯湯タンク10からの水とを熱交換する水冷媒熱交換器21と、熱交換後の冷媒を減圧膨張させる膨張手段22と、低圧冷媒を蒸発させる空気熱交換器23と、空気熱交換器23へ外気を送風する送風機24と、圧縮機20から吐出される冷媒の温度を検出する吐出温度センサ25から構成されているものである。 Reference numeral 19 denotes a heat pump type heating means for boiling hot water in the hot water storage tank 10 to heat it to a target temperature. The compressor 20 compresses and conveys the refrigerant to high temperature and high pressure, and the high temperature and high pressure refrigerant and water from the hot water storage tank 10 exchange heat. Water refrigerant heat exchanger 21, expansion means 22 for decompressing and expanding the refrigerant after heat exchange, air heat exchanger 23 for evaporating low pressure refrigerant, blower 24 for blowing outside air to air heat exchanger 23, and compression The discharge temperature sensor 25 detects the temperature of the refrigerant discharged from the machine 20.

26は貯湯タンク10の下部と水冷媒熱交換器21の水側入口を接続する加熱往き管、27は水冷媒熱交換器21の水側出口と貯湯タンク10の上部とを接続する加熱戻り管、28は加熱往き管26途中に設けられた加熱循環ポンプ、29は加熱戻り管27に設けられた沸き上げ温度センサ、30は外気温度を検出する外気温度センサ、31は貯湯式給湯装置1全体の作動を制御する制御手段である。加熱往き管26、加熱戻り管27、加熱循環ポンプ28で加熱循環回路を構成している。 Reference numeral 26 is a heating return pipe connecting the lower part of the hot water storage tank 10 and the water side inlet of the water refrigerant heat exchanger 21, and 27 is a heating return pipe connecting the water side outlet of the water refrigerant heat exchanger 21 and the upper part of the hot water storage tank 10. , 28 is a heating circulation pump provided in the middle of the heating forward pipe 26, 29 is a boiling temperature sensor provided in the heating return pipe 27, 30 is an outside air temperature sensor for detecting the outside air temperature, and 31 is the whole hot water storage water heater 1. Is a control means for controlling the operation of. The heating forward pipe 26, the heating return pipe 27, and the heating circulation pump 28 constitute a heating circulation circuit.

ここで、HEMS機器7には、図2に示すように、余剰電力予測手段32と、余剰沸き上げ時間設定手段33が設けられている。 Here, as shown in FIG. 2, the HEMS device 7 is provided with a surplus power predicting means 32 and a surplus boiling time setting means 33.

余剰電力予測手段32は、太陽光発電装置3から取得した過去所定期間の単位時間毎の発電電力量や外部サーバ機器9から天気予報情報から予測される単位時間毎の発電電力予測値と、分電盤2から取得した貯湯式給湯装置1が接続された分岐回路以外の過去所定期間の単位時間毎の消費電力量から予測される単位時間毎の消費電力予測値と、から翌日の単位時間毎の余剰電力予測値を算出する。 The surplus power predicting unit 32 calculates the amount of power generated per unit time in the past predetermined period acquired from the solar power generation device 3, the predicted value of generated power per unit time predicted from the weather forecast information from the external server device 9, and the minutes. From the power consumption prediction value per unit time predicted from the power consumption per unit time in the past predetermined period other than the branch circuit connected to the hot water storage type hot water supply device 1 acquired from the electric panel 2, The surplus power prediction value of is calculated.

余剰沸き上げ時間設定手段33は翌日の単位時間毎の余剰電力予測値と、貯湯式給湯装置1が沸き上げを行うのに必要な所定の消費電力値とを比較して、連続して沸き上げ運転が可能な時間を余剰沸き上げ時間として設定する。 The surplus boiling time setting means 33 compares the surplus power predicted value for each unit time of the next day with a predetermined power consumption value required for the hot water storage type hot water supply device 1 to perform boiling, and continuously heats the same. The operating time is set as the excess boiling time.

制御手段31には、図2に示すように、給湯流量センサ16の出力と給湯温度センサ17の出力とから所定温度(ここでは43℃)の使用湯量に換算して過去所定期間の日毎の学習湯量として学習する使用湯量学習手段34と、過去所定期間の日毎の学習湯量から翌日の必要熱量を決定する必要熱量決定手段35と、翌日の必要熱量と別途決定された沸き上げ目標温度と給水温度との温度差で除して必要容量を算出し、必要容量と貯湯タンク10の容量とを比較して小さい方を夜間沸き上げ容量とする夜間沸き上げ容量算出手段36とが設けられている。 As shown in FIG. 2, the control means 31 converts the output of the hot water supply flow rate sensor 16 and the output of the hot water supply temperature sensor 17 into the amount of hot water used at a predetermined temperature (here, 43° C.) and learns every day for a predetermined past period. Used water amount learning means 34 for learning as the amount of hot water, required heat amount determination means 35 for determining the required heat amount for the next day from the daily learned hot water amount for the past predetermined period, and the required heating amount for the next day and the boiling target temperature and the supply water temperature separately determined There is provided night-time boiling capacity calculating means 36 for calculating the necessary capacity by dividing it by the temperature difference between and, comparing the necessary capacity with the capacity of the hot water storage tank 10, and setting the smaller one as the night-time boiling capacity.

また、制御手段31には、HEMS機器7の余剰沸き上げ時間設定手段33が決定した余剰沸き上げ時間で沸き上げ目標温度まで沸き上げられる余剰沸き上げ容量を算出する余剰沸き上げ容量算出手段37と、夜間沸き上げ容量から余剰沸き上げ容量を減じて補正夜間沸き上げ容量を算出する補正夜間沸き上げ容量算出手段38と、夜間時間帯に補正夜間沸き上げ容量を沸き上げるようヒートポンプ式加熱手段19を制御する夜間沸き上げ制御手段39と、昼間時間帯に余剰電力を用いて余剰沸き上げ容量を沸き上げるようヒートポンプ式加熱手段19を制御する余剰沸き上げ制御手段40とが設けられている。 Further, the control means 31 includes an excess boiling capacity calculating means 37 for calculating an excess boiling capacity for boiling to the boiling target temperature in the excess boiling time determined by the excess boiling time setting means 33 of the HEMS device 7. , A correction night boiling capacity calculating means 38 for calculating a correction night boiling capacity by subtracting the surplus boiling capacity from the night boiling capacity, and a heat pump type heating means 19 for boiling the correction night boiling capacity in the night time zone. A night boiling control means 39 for controlling and a surplus boiling control means 40 for controlling the heat pump type heating means 19 so as to boil the surplus boiling capacity by using surplus power in the daytime are provided.

さらに、制御手段31には、必要容量が貯湯タンク10の容量を超えている場合に、夜間に沸き上げられなかった分を昼間に沸き増す昼間沸き増し容量を算出する昼間沸き増し容量算出手段41と、貯湯タンク10内の残湯容量が所定量以下まで減少すると昼間時間帯に商用電力を用いて昼間沸き増し容量を沸き上げるようにヒートポンプ式加熱手段19を制御する昼間沸き増し制御手段42とが設けられている。 Furthermore, when the required capacity exceeds the capacity of the hot water storage tank 10, the control means 31 calculates the daytime boiling capacity calculating means 41 for calculating the daytime boiling capacity for increasing the portion that could not be heated at night during the daytime. When the remaining hot water capacity in the hot water storage tank 10 decreases to a predetermined amount or less, the daytime boiling control means 42 for controlling the heat pump type heating means 19 so as to raise the capacity by using the commercial power in the daytime Is provided.

次に、この太陽光発電装置連携貯湯式給湯システムの作動について図3に示すフローチャートに基づいて説明する。 Next, the operation of this solar power generation device cooperation hot water storage type hot water supply system will be described based on the flowchart shown in FIG.

HEMS機器7は、電力料金単価の安価な夜間時間帯の開始時刻tn1になると(ステップS1でYes)、余剰電力予測手段32が太陽光発電装置3から取得した過去所定期間(ここでは7日間)の単位時間(ここでは1時間)毎の発電電力量や外部サーバ機器9から天気予報情報、太陽光発電パネル4の設置条件(例えば、設置地域やパネルの向き等)、日付情報等から単位時間毎の発電電力予測値を予測し(ステップS2)、分電盤2から取得した貯湯式給湯装置1が接続された分岐回路以外の過去所定期間の単位時間毎の消費電力量から単位時間毎の消費電力予測値を予測し(ステップS3)、単位時間毎の発電電力予測値から単位時間毎の消費電力予測値を減じて翌日の単位時間毎の余剰電力予測値を算出する(ステップS4)。 When the start time tn1 of the nighttime time zone where the power unit price is low (Yes in step S1), the HEMS device 7 receives the surplus power prediction unit 32 from the solar power generation device 3 for a predetermined predetermined period (here, 7 days). Per unit time (here, one hour), weather forecast information from the external server device 9, installation conditions of the photovoltaic power generation panel 4 (for example, installation area, panel orientation, etc.), unit time from date information, etc. The predicted value of the generated power for each time is predicted (step S2), and the power consumption for each unit time in the past predetermined period other than the branch circuit connected to the hot water storage type hot water supply device 1 acquired from the distribution board 2 is calculated for each unit time. The predicted power consumption value is predicted (step S3), the predicted power consumption value for each unit time is subtracted from the generated power prediction value for each unit time, and the surplus power predicted value for each unit time of the next day is calculated (step S4).

そして、余剰沸き上げ時間設定手段33が翌日の単位時間毎の余剰電力予測値と貯湯式給湯装置1が沸き上げを行うのに必要な所定の消費電力値とを比較し、余剰電力予測値が沸き上げ必要電力値以上となる連続した時間を見いだして、この連続した沸き上げ運転可能な時間から他の制限条件(例えば最短1時間、最長5時間等)等を考慮して連続して沸き上げ運転可能な余剰沸き上げ時間Tを設定し(ステップS5)、連続した沸き上げ運転可能な時間の終了時点から余剰沸き上げ時間Tだけ遡って余剰沸き上げ開始時刻td1を決定する(ステップS6)。 Then, the surplus boiling time setting means 33 compares the surplus power predicted value for each unit time on the next day with a predetermined power consumption value required for the hot water storage water heater 1 to perform boiling, and the surplus power predicted value is Find a continuous time that is equal to or higher than the required boiling power value, and continuously boil from this continuous boiling operation time considering other limiting conditions (for example, minimum 1 hour, maximum 5 hours, etc.). The operable surplus boiling time T is set (step S5), and the surplus boiling start time td1 is determined by going back by the surplus boiling time T from the end of the continuous boiling operation time (step S6).

一方、貯湯式給湯装置1の制御手段31では、使用湯量学習手段34で記憶している過去所定期間の日毎の湯の学習使用量から、必要熱量決定手段35が平均や標準偏差等を用いて翌日の必要熱量Qを決定する(ステップS7)。ここでは、必要熱量Qを所定温度(ここでは43℃)換算の必要湯量Vqとして算出・決定している。 On the other hand, in the control means 31 of the hot water storage type hot water supply apparatus 1, the required heat quantity determining means 35 uses the average or standard deviation from the learned hot water usage for each day in the past predetermined period stored in the hot water usage learning means 34. The required heat quantity Q for the next day is determined (step S7). Here, the required heat quantity Q is calculated and determined as the required hot water quantity Vq converted to a predetermined temperature (here, 43° C.).

そして、制御手段31は、必要熱量決定手段35が決定した必要湯量Vqと、外気温度あるいは給水温度等の他の条件とから沸き上げ目標温度tmを決定する(ステップS8)。沸き上げ目標温度tmは、65℃〜75℃の間でなるべく低く設定され、必要湯量Vqが多い場合、外気温度が低い場合、給水温度が低い場合に沸き上げ目標温度tmが高く設定されるものである。 Then, the control unit 31 determines the boiling target temperature tm from the required hot water amount Vq determined by the required heat amount determination unit 35 and other conditions such as the outside air temperature or the feed water temperature (step S8). The boiling target temperature tm is set as low as possible between 65° C. and 75° C., and the boiling target temperature tm is set high when the required hot water amount Vq is high, the outside air temperature is low, and the feed water temperature is low. Is.

次に、夜間沸き上げ容量算出手段36は、必要湯量Vqを沸き上げ目標温度tmでの必要容量Cqに換算し、必要容量Cqが貯湯タンク10の容量Ct以下であれば必要容量Cqを夜間沸き上げ容量Cyとし、必要容量Cqが貯湯タンク10の容量Ct超であれば貯湯タンク10の容量Ctを夜間沸き上げ容量Cyとするよう、夜間沸き上げ容量Cyを算出する(ステップS9)。 Next, the night boiling capacity calculation means 36 converts the required hot water amount Vq into the necessary capacity Cq at the boiling target temperature tm, and if the necessary capacity Cq is equal to or less than the capacity Ct of the hot water storage tank 10, the required capacity Cq is boiled at night. If the required capacity Cq is set as the raising capacity Cy and the required capacity Cq exceeds the capacity Ct of the hot water storage tank 10, the nighttime boiling capacity Cy is calculated so that the capacity Ct of the hot water storage tank 10 becomes the nighttime boiling capacity Cy (step S9).

この必要容量Cqは具体的に式1により算出される。
式1:Cq=Vq・(43℃−tw)/(tm−tw)
Cq:必要容量
Vq:必要湯量
43℃:所定換算温度
tm:目標沸き上げ温度
tw:給水温度
なお、水の比熱と密度は共に1として計算を簡略化している。
This required capacity Cq is specifically calculated by Expression 1.
Formula 1: Cq=Vq·(43°C-tw)/(tm-tw)
Cq: Required capacity Vq: Required amount of hot water 43°C: Predetermined conversion temperature tm: Target boiling temperature tw: Water supply temperature Note that the specific heat of water and the density are both 1 to simplify the calculation.

そして、夜間沸き上げ容量Cyは以下のように算出される。
Cq>Ctの場合
Cy=Ct
Cq≦Ctの場合
Cy=Cq
Then, the night-time boiling capacity Cy is calculated as follows.
When Cq>Ct Cy=Ct
When Cq≦Ct Cy=Cq

また、制御手段31の昼間沸き増し容量算出手段41は、必要容量Cqが貯湯タンク10の容量Ct以上であった場合、必要容量Cqから貯湯タンク10の容量Ctを減じた残りの湯量を、夜間時間帯以外の時間に沸き増す必要のある昼間沸き増し容量Cwとして算出する(ステップS10)。 When the required capacity Cq is equal to or greater than the capacity Ct of the hot water storage tank 10, the daytime boiling capacity calculation means 41 of the control means 31 subtracts the remaining hot water amount obtained by subtracting the capacity Ct of the hot water storage tank 10 from the required capacity Cq at night. It is calculated as the daytime additional boiling capacity Cw that needs to be increased during times other than the time zone (step S10).

この沸き増し容量Cwは具体的に数式2により算出される。
式2:Cw=Cq−Ct
Cw:沸き増し容量
Cq:必要容量
Ct:貯湯タンク容量
This additional heating capacity Cw is specifically calculated by Expression 2.
Formula 2: Cw=Cq-Ct
Cw: Boiled capacity Cq: Required capacity Ct: Hot water storage tank capacity

次に、制御手段31の余剰沸き上げ容量算出手段37は、HEMS機器の余剰沸き上げ時間設定手段33が設定した余剰沸き上げ時間Tの間、加熱能力Hで沸き上げ目標温度tmまで沸き上げられる余剰沸き上げ容量Chを算出する(ステップS11)。ここで、加熱能力Hはヒートポンプ式加熱手段19の所定の加熱能力の大きさである。 Next, the surplus boiling capacity calculation means 37 of the control means 31 is heated to the boiling target temperature tm with the heating capacity H during the surplus boiling time T set by the surplus boiling time setting means 33 of the HEMS device. The surplus boiling capacity Ch is calculated (step S11). Here, the heating capacity H is a predetermined heating capacity of the heat pump heating means 19.

この余剰沸き上げ容量Chは具体的に式3により算出される。
式3:Ch=T・H/(tm−tw)
Ch=余剰沸き上げ容量
T:余剰沸き上げ時間
H:加熱能力
tm:沸き上げ目標温度
tw:給水温度
This surplus boiling capacity Ch is specifically calculated by Expression 3.
Formula 3: Ch=T·H/(tm-tw)
Ch = surplus boiling capacity T: surplus boiling time H: heating capacity tm: boiling target temperature tw: feed water temperature

次に、制御手段31の補正夜間沸き上げ容量算出手段38は、夜間沸き上げ容量算出手段36が算出した夜間沸き上げ容量Cyから、余剰沸き上げ容量算出手段37が算出した余剰沸き上げ容量Chを減じて、実際に夜間に沸き上げる補正夜間沸き上げ容量Cyhを算出する(ステップS12)。 Next, the corrected night boiling capacity calculating means 38 of the control means 31 calculates the surplus boiling capacity Ch calculated by the surplus boiling capacity calculating means 37 from the night boiling capacity Cy calculated by the night boiling capacity calculating means 36. Then, the corrected night-time boiling capacity Cyh is calculated by subtracting the corrected night-time boiling capacity (step S12).

この補正夜間沸き上げ容量Cyhは具体的に式4により算出される。
式4:Cyh=Cy−Ch
Cyh:補正夜間沸き上げ容量
Cy:夜間沸き上げ容量
Ch:余剰沸き上げ容量
This corrected night-time boiling capacity Cyh is specifically calculated by Expression 4.
Formula 4: Cyh=Cy−Ch
Cyh: Corrected night-time boiling capacity Cy: Night-time boiling capacity Ch: Excessive boiling capacity

そして、制御手段31の夜間沸き上げ制御手段39は、複数の貯湯温度センサ18の検出する貯湯温度とそのセンサ位置情報を用いて、お湯と見なせる所定の閾温度(ここでは50℃)以上の容量である残湯容量Czを算出し(ステップS13)、補正夜間沸き上げ容量Cyhを夜間時間帯の終了時刻tn2に沸き上げ完了するように適切な夜間沸き上げ開始時刻tnsを算出する(ステップS14)。 Then, the night-time boiling control means 39 of the control means 31 uses the hot water storage temperatures detected by the hot water storage temperature sensors 18 and the sensor position information, and has a capacity equal to or higher than a predetermined threshold temperature (here, 50° C.) that can be regarded as hot water. Is calculated (step S13), and an appropriate night boiling start time tns is calculated so that the corrected night boiling capacity Cyh is completely boiled at the end time tn2 of the night time zone (step S14). ..

この夜間沸き上げ開始時刻tnsは具体的に式5により算出される。
式5:tns=tn2−(Cyh−Cz)・(tm−tw)/H
tns:夜間沸き上げ開始時刻
tn2:夜間時間帯終了時刻
Cyh:補正夜間沸き上げ容量
Cz:残湯容量
tm:沸き上げ目標温度
tw:給水温度
H:加熱能力
This nighttime boiling start time tns is specifically calculated by Expression 5.
Formula 5: tns=tn2-(Cyh-Cz)*(tm-tw)/H
tns: Night boiling start time tn2: Night time end time Cyh: Corrected night boiling capacity Cz: Remaining hot water capacity tm: Boiling target temperature tw: Water supply temperature H: Heating capacity

そして、夜間沸き上げ制御手段39は、現在時刻が夜間沸き上げ開始時刻tnsとなると(ステップS15でYes)、ヒートポンプ式加熱手段19と加熱循環ポンプ28を駆動して、貯湯タンク10下部から取り出した水を沸き上げ目標温度tmまで加熱して貯湯タンク10の上部から順次積層するように夜間沸き上げ運転を行う(ステップS16)。 Then, when the current time reaches the nighttime boiling start time tns (Yes in step S15), the nighttime boiling control means 39 drives the heat pump type heating means 19 and the heating circulation pump 28 to take out from the lower part of the hot water storage tank 10. The boiling operation is performed at night so that the water is heated to the boiling target temperature tm and sequentially laminated from the upper part of the hot water storage tank 10 (step S16).

夜間沸き上げ制御手段39は、補正夜間沸き上げ容量Cyhを沸き上げたことを貯湯温度センサ18で検出するか、現在時刻が夜間時間帯の終了時刻tn2となると、夜間沸き上げ完了したと判断し(ステップS17でYes)、夜間沸き上げ運転を停止する(ステップS18)。 The night-time boiling control means 39 determines that the night-time boiling is completed when the hot water storage temperature sensor 18 detects that the corrected night-time boiling capacity Cyh has been boiled or when the current time is the end time tn2 of the night time zone. (Yes in step S17), the night boiling operation is stopped (step S18).

このとき、貯湯タンク10の下部には、余剰沸き上げ容量Chと同じ容量だけ未加熱の水が残ることとなる。 At this time, unheated water remains in the lower part of the hot water storage tank 10 by the same capacity as the surplus boiling capacity Ch.

そして、余剰沸き上げ制御手段40は、現在時刻が余剰沸き上げ開始時刻td1となると(ステップS19でYes)、ヒートポンプ式加熱手段19と加熱循環ポンプ28を駆動して、貯湯タンク10下部から取り出した水を沸き上げ目標温度tmまで加熱して貯湯タンク10の上部から順次積層するように予定されていた余剰沸き上げ運転を行う(ステップS20)。 Then, when the current time reaches the surplus boiling start time td1 (Yes in step S19), the excess boiling control means 40 drives the heat pump type heating means 19 and the heating circulation pump 28 to take out from the lower portion of the hot water storage tank 10. The excess boiling operation, which is scheduled to heat the water to the boiling target temperature tm and sequentially stack the hot water storage tanks 10 from above, is performed (step S20).

余剰沸き上げ制御手段40は、余剰沸き上げ容量Chを沸き上げたことを貯湯温度センサ18で検出するか、余剰沸き上げ開始時刻td1からの経過時間が余剰沸き上げ時間Tに達すると、余剰沸き上げ完了したと判断し(ステップS21でYes)、余剰沸き上げ運転を停止する(ステップS22)。 The excess boiling control means 40 detects that the excess boiling capacity Ch has been boiled by the hot water storage temperature sensor 18, or when the elapsed time from the excess boiling start time td1 reaches the excess boiling time T, the excess boiling time T is reached. It is determined that the raising has been completed (Yes in step S21), and the excess boiling operation is stopped (step S22).

ここで、夜間沸き上げ運転の完了時には、貯湯タンク10の下部に余剰沸き上げ容量Chと同じ容量だけ未加熱の水が残っているため、余剰沸き上げ運転の開始までの間に一切給湯されていなくとも当初予測していた余剰電力を全量活用した余剰沸き上げ運転を連続して行うことができる。 Here, at the time of completion of the night boiling operation, unheated water by the same capacity as the surplus boiling capacity Ch remains in the lower part of the hot water storage tank 10, so that hot water is not supplied at all until the start of the surplus boiling operation. Even if it is not necessary, it is possible to continuously perform the surplus boiling operation that fully utilizes the surplus power that was originally predicted.

余剰沸き上げ運転が完了した後、昼間沸き増し制御手段42は、ステップ10で昼間沸き増し容量Cwが算出されて容量があった場合、ステップS23で昼間沸き増し容量CwありでYesと判断し、複数の貯湯温度センサ18で検出する貯湯温度から現在の貯湯タンク10内の残湯容量Czを算出し、この残湯容量Czが所定量以下かどうかを判断する(ステップS24)。 After the surplus boiling operation is completed, the daytime additional boiling control means 42 determines that the daytime additional boiling capacity Cw is Yes in step S23 when the additional daytime additional heating capacity Cw is calculated and there is a capacity, The present remaining hot water capacity Cz in the hot water storage tank 10 is calculated from the hot water storage temperatures detected by the plurality of hot water storage temperature sensors 18, and it is determined whether or not the remaining hot water capacity Cz is equal to or less than a predetermined amount (step S24).

給湯によって貯湯タンク10内の湯が出湯されて下部からの給水に置換されることにより残湯容量Czが所定量以下まで減少すると(ステップS24でYes)、ヒートポンプ式加熱手段19と加熱循環ポンプ28を駆動して、貯湯タンク10下部から取り出した水を沸き上げ目標温度tmまで加熱して貯湯タンク10の上部から順次積層するように予定されていた昼間沸き増し運転を開始し(ステップS25)、昼間沸き増し運転の進行に伴って沸き増した分を昼間沸き増し容量Cwから減算して更新していく(ステップS26)。 When the hot water in the hot water storage tank 10 is discharged by the hot water supply and is replaced with the water supplied from the lower portion to reduce the residual hot water capacity Cz to a predetermined amount or less (Yes in step S24), the heat pump heating means 19 and the heating circulation pump 28. Is driven to heat the water taken out from the lower portion of the hot water storage tank 10 to the target temperature tm by boiling and start the daytime reheating operation that is scheduled to be sequentially stacked from the upper portion of the hot water storage tank 10 (step S25), The amount increased by the progress of the daytime additional heating operation is subtracted from the daytime additional heating capacity Cw and updated (step S26).

そして、更新された昼間沸き増し容量Cwが0になるか(ステップS27でYes)、貯湯タンク10最下部の貯湯温度センサ18が所定の昼間沸き増し完了温度以上を検出して満タンになると(ステップS28でYes)、予定の昼間沸き増し運転を停止し(ステップS29)、ステップS23へ戻る。 Then, when the updated daytime boiling capacity Cw becomes 0 (Yes in step S27), or when the hot water storage temperature sensor 18 at the bottom of the hot water storage tank 10 detects a predetermined daytime boiling completion temperature or more and becomes full ( Yes in step S28), the scheduled daytime additional heating operation is stopped (step S29), and the process returns to step S23.

ステップS23では再び昼間沸き増し容量Cwが残っているかどうかを判断し、昼間沸き増し容量Cwが残っていないと判断すると(ステップS23でNo)、貯湯タンク10最上部の貯湯温度センサ18が所定の湯切れ危険温度以下にまで低下するかどうかを監視し、所定の湯切れ危険温度以下まで低下すると湯切れと判断し(ステップS30でYes)、湯切れを一時的に解消するための所定時間(ここでは1時間)の湯切れ沸き増しを行い(ステップS31)、現在時刻が夜間時間帯の開始時刻に達すると(ステップS31でYes)、再度ステップ1へ戻るようにしている。 In step S23, it is again determined whether or not the extra boiling capacity Cw remains in the daytime, and when it is determined that the extra boiling capacity Cw in the daytime does not remain (No in step S23), the hot water storage temperature sensor 18 at the top of the hot water storage tank 10 is set to a predetermined value. It is monitored whether the temperature falls below the hot water danger temperature, and when it falls below a predetermined hot water danger temperature, it is determined that the hot water runs out (Yes in step S30), and a predetermined time for temporarily eliminating the hot water runout ( Here, the hot water is reheated for 1 hour (step S31), and when the current time reaches the start time of the night time zone (Yes in step S31), the process returns to step 1 again.

このように、本発明では、翌日の必要熱量を沸き上げ目標温度での必要容量に換算し、必要容量と貯湯タンク容量の小さい方を夜間沸き上げ容量とすると共に、夜間沸き上げ容量から余剰沸き上げ時間で沸き上げ目標温度まで沸き上げられる余剰沸き上げ容量を減じて補正夜間沸き上げ容量を算出し、この補正夜間沸き上げ容量を夜間時間帯に沸き上げるようにしているため、余剰電力で沸き上げ可能な熱量を沸き上げるのに必要な分の未加熱の水すなわち余剰沸き上げ容量を貯湯タンクに残した状態で夜間沸き上げを終えることができ、当初予測していた余剰電力を全量活用した昼間の沸き上げを完了させることができる。 Thus, in the present invention, the required amount of heat of the next day is converted into the required capacity at the boiling target temperature, and the smaller of the required capacity and the hot water storage tank capacity is taken as the nighttime boiling capacity, and the excess boiling capacity is calculated from the nighttime boiling capacity. Calculate the corrected night boiling capacity by subtracting the surplus boiling capacity that can be boiled to the target temperature at the raising time, and the corrected night boiling capacity is boiled during the night time zone, so it is boiled with excess power. It is possible to finish night-time boiling with the unheated water required for boiling up the heat that can be raised, that is, the excess boiling capacity left in the hot water storage tank, and utilize all the surplus power that was initially predicted. The daytime boiling can be completed.

ここで、図5は本実施形態と比較例としての特許文献1に開示された従来技術の沸き上げ運転の種別と沸き上げ容量の関係を示す図で、縦軸に沸き上げ目標温度tmでの沸き上げ容量を示している。 Here, FIG. 5 is a diagram showing the relationship between the boiling operation type and the boiling capacity of the conventional technology disclosed in Patent Document 1 as a comparative example of the present embodiment, and the vertical axis indicates the boiling target temperature tm. It shows the boiling capacity.

従来は必要熱量から余剰電力で沸き上げ可能な熱量を減じているため、これを容量に換算して、必要容量Cq−余剰沸き上げ容量Cwを夜間に沸き上げる容量としており、夜間の沸き上げ完了時点では、貯湯タンク10底部にCt−(Cq−Cw)の容量しか未加熱の水が残っていない。このため、いざ太陽光発電装置3が発電して余剰電力が発生していても当初予測していた余剰沸き上げ容量Cwの全量を沸き上げる前に貯湯タンク10が沸き上げ目標温度Tmの湯で満タンになるため、余剰電力があっても沸き上げが継続できない。 Conventionally, the amount of heat that can be boiled with excess power is reduced from the required amount of heat, so this is converted into a capacity, and the required capacity Cq-excessive boiling capacity Cw is set as the capacity to boil at night, and the boiling at night is completed. At this time, only unheated water remains at the bottom of the hot water storage tank 10 at the capacity of Ct-(Cq-Cw). For this reason, even if the solar power generation device 3 generates power and surplus power is generated, the hot water storage tank 10 is heated to the boiling target temperature Tm before boiling all of the initially predicted surplus boiling capacity Cw. Since the tank is full, boiling cannot continue even if there is excess power.

一方、本発明は、貯湯タンク容量を上限として夜間沸き上げ容量を定めると共に、夜間沸き上げ容量(最大でCt)から余剰沸き上げ容量Cwを減じた容量を夜間時間帯に沸き上げるようにしているため、夜間の沸き上げ完了時点で、貯湯タンク10底部にCwの容量の未加熱の水が残っていることとなる。このため、太陽光発電装置3が発電して余剰電力が発生した時に、当初予測していた余剰電力を全量活用することができる。 On the other hand, the present invention determines the night-time boiling capacity with the capacity of the hot water storage tank as the upper limit, and heats the capacity obtained by subtracting the surplus boiling capacity Cw from the night-time boiling capacity (maximum Ct) in the night time zone. Therefore, at the time of completion of boiling at night, unheated water of Cw capacity remains at the bottom of the hot water storage tank 10. Therefore, when the solar power generation device 3 generates power to generate surplus power, the initially predicted surplus power can be fully utilized.

なお、本発明は上記の一実施形態に限定されるものではなく、発明の要旨を変更しない範囲で種々の変更が可能なものであり、例えば、ヒートポンプ式加熱手段19に代えて電気ヒータ式加熱手段を用いてもよいものである。 It should be noted that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the invention. For example, instead of the heat pump heating means 19, an electric heater heating is possible. Means may be used.

また、余剰電力予測手段32と余剰沸き上げ時間設定手段33は、HEMS機器7内に設けた構成としたが、外部サーバ機器9内に設ける構成としたり、HEMS機器7と制御手段31の通信内容を充実化することで、これらを制御手段31内に設けた構成としてもよく、逆に制御手段31内の構成をHEMS機器7内に設けた構成としてもよい。 Further, although the surplus power predicting means 32 and the surplus boiling time setting means 33 are provided in the HEMS device 7, they may be provided in the external server device 9 or the communication contents of the HEMS device 7 and the control means 31. May be provided in the control means 31, or conversely, the configuration in the control means 31 may be provided in the HEMS device 7.

また、余剰沸き上げ制御手段40は、予め算出していた余剰沸き上げ開始時刻td1となると余剰沸き上げを開始する構成としていたが、これに限らず、太陽光発電装置3が所定の発電電力に達した時点から余剰沸き上げを開始する構成としてもよい。 Further, the surplus boiling control means 40 is configured to start the surplus boiling at the previously calculated surplus boiling start time td1, but the present invention is not limited to this, and the solar power generation device 3 outputs a predetermined generated power. It is also possible to adopt a configuration in which the surplus boiling is started from the time when the temperature reaches the upper limit.

1 貯湯式給湯装置
3 太陽光発電装置
6 電気負荷機器
10 貯湯タンク
11 給水管
19 ヒートポンプ式加熱手段(加熱手段)
26 加熱往き管(加熱循環回路)
27 加熱戻り管(加熱循環回路)
28 加熱循環ポンプ(加熱循環回路)
31 制御手段
32 余剰電力予測手段
33 余剰沸き上げ時間設定手段
34 使用湯量学習手段
35 必要熱量決定手段
36 夜間沸き上げ容量算出手段
37 余剰沸き上げ容量算出手段
38 補正夜間沸き上げ容量算出手段
39 夜間沸き上げ制御手段
40 余剰沸き上げ制御手段
41 昼間沸き増し容量算出手段
42 昼間沸き増し制御手段
1 Hot water storage type hot water supply device 3 Photovoltaic power generation device 6 Electric load equipment 10 Hot water storage tank 11 Water supply pipe 19 Heat pump type heating means (heating means)
26 Heating forward pipe (heating circulation circuit)
27 Heating return pipe (heating circulation circuit)
28 Heating circulation pump (heating circulation circuit)
31 control means 32 surplus power predicting means 33 surplus boiling time setting means 34 used hot water amount learning means 35 required heat amount determining means 36 night boiling capacity calculating means 37 surplus boiling capacity calculating means 38 corrected night boiling capacity calculating means 39 night boiling Raising control means 40 Excessive boiling control means 41 Daytime additional boiling capacity calculation means 42 Daytime additional boiling control means

Claims (2)

太陽光発電装置と、
貯湯タンクと加熱手段と加熱循環回路とを有した貯湯式給湯装置と、
を備えた太陽光発電装置連携貯湯式給湯システムにおいて、
前記太陽光発電装置の翌日の発電電力予測値から前記貯湯式給湯装置を除く電気負荷の翌日の消費電力予測値を減じて翌日の余剰電力予測値を算出する余剰電力予測手段と、
1日の湯の使用量を学習使用量として複数日分学習記憶する使用湯量学習手段と、
過去複数日分の前記学習使用量から翌日に必要な熱量を必要熱量として決定する必要熱量決定手段と、
前記必要熱量を別途決定された沸き上げ目標温度と給水温度との温度差で除して必要容量を算出し、前記必要容量と前記貯湯タンクの容量とを比較し、小さい方の容量を夜間沸き上げ容量とする夜間沸き上げ容量算出手段と、
前記必要容量が前記貯湯タンクの容量を超える場合に、前記必要容量から前記貯湯タンクの容量を減じて昼間沸き増し容量を算出する昼間沸き増し容量算出手段と、
前記余剰電力予測値に基づいて沸き上げに用いることができる余剰沸き上げ時間を設定する余剰沸き上げ時間設定手段と、
前記余剰沸き上げ時間で前記沸き上げ目標温度まで沸き上げられる余剰沸き上げ容量を算出する余剰沸き上げ容量算出手段と、
前記必要容量が前記貯湯タンクの容量を超える場合に前記貯湯タンクの容量である前記夜間沸き上げ容量から前記余剰沸き上げ容量を減じて補正夜間沸き上げ容量を算出し、前記必要容量が前記貯湯タンクの容量を超えない場合に前記必要容量である前記夜間沸き上げ容量から前記余剰沸き上げ容量を減じて補正夜間沸き上げ容量を算出する補正夜間沸き上げ容量算出手段と、
夜間に前記補正夜間沸き上げ容量を沸き上げる夜間沸き上げ制御手段と、
昼間の余剰電力で前記余剰沸き上げ容量を沸き上げる余剰沸き上げ制御手段と、
を備えたことを特徴とする太陽光発電装置連携貯湯式給湯システム。
Solar power generation device,
A hot water storage type hot water supply device having a hot water storage tank, heating means, and a heating circulation circuit;
In the photovoltaic hot water storage system hot water supply system with
Surplus power predicting means for calculating a surplus power prediction value for the next day by subtracting the power consumption prediction value for the next day of the electric load excluding the hot water storage type hot water supply device from the power generation prediction value for the next day of the solar power generation device,
A hot water usage learning means for learning and storing a plurality of days of hot water usage as a learning usage for one day;
Required heat amount determining means for determining the heat amount necessary for the next day from the learning usage amount for the past multiple days as the required heat amount,
The required capacity is calculated by dividing the required heat quantity by the temperature difference between the separately determined boiling target temperature and the feed water temperature, the required capacity and the capacity of the hot water storage tank are compared, and the smaller capacity is boiled at night. Night-time boiling capacity calculation means for increasing capacity,
When the required capacity exceeds the capacity of the hot water storage tank, a daytime boiling capacity calculation means for calculating the daytime boiling capacity by subtracting the capacity of the hot water storage tank from the required capacity,
Excessive boiling time setting means for setting an excessive boiling time that can be used for boiling based on the surplus power predicted value,
Excessive boiling capacity calculation means for calculating an excessive boiling capacity that is boiled to the boiling target temperature at the excessive boiling time,
The required capacity is calculated capacitance boiling correction night by subtracting the surplus water heating capacity from the night boiling capacity is the capacity of the previous SL hot water tank when it exceeds the capacity of the hot water storage tank, the required capacity is the hot water storage Corrected night boiling capacity calculation means for calculating a corrected night boiling capacity by subtracting the surplus boiling capacity from the night boiling capacity which is the required capacity when the capacity of the tank is not exceeded ,
Night-time boiling control means for boiling the corrected night-time boiling capacity at night,
Excessive boiling control means for boiling the excess boiling capacity with excess power in the daytime,
A hot water supply system with a hot water storage system linked to a solar power generator.
前記余剰沸き上げ制御手段による余剰沸き上げが完了後に前記昼間沸き増し容量を沸き上げる昼間沸き増し制御手段と、
を備えたことを特徴とする請求項1記載の太陽光発電装置連携貯湯式給湯システム。
Daytime boiling control means for boiling the daytime boiling capacity after the completion of the surplus boiling by the surplus boiling control means,
The solar power generation device cooperation hot water storage type hot water supply system according to claim 1, further comprising:
JP2016119453A 2016-06-16 2016-06-16 Photovoltaic power generator cooperation hot water supply type hot water supply system Active JP6706975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016119453A JP6706975B2 (en) 2016-06-16 2016-06-16 Photovoltaic power generator cooperation hot water supply type hot water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016119453A JP6706975B2 (en) 2016-06-16 2016-06-16 Photovoltaic power generator cooperation hot water supply type hot water supply system

Publications (2)

Publication Number Publication Date
JP2017223410A JP2017223410A (en) 2017-12-21
JP6706975B2 true JP6706975B2 (en) 2020-06-10

Family

ID=60688198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016119453A Active JP6706975B2 (en) 2016-06-16 2016-06-16 Photovoltaic power generator cooperation hot water supply type hot water supply system

Country Status (1)

Country Link
JP (1) JP6706975B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7142216B2 (en) * 2018-06-06 2022-09-27 パナソニックIpマネジメント株式会社 Water heater and hot water system
JP6914446B2 (en) * 2018-07-20 2021-08-04 三菱電機株式会社 Control devices, control systems, control methods and programs
JP7534648B2 (en) * 2021-11-30 2024-08-15 ダイキン工業株式会社 Hot water supply equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5293447A (en) * 1992-06-02 1994-03-08 The United States Of America As Represented By The Secretary Of Commerce Photovoltaic solar water heating system
JP5813980B2 (en) * 2011-04-08 2015-11-17 株式会社コロナ Heat pump bath water heater
JP5838825B2 (en) * 2012-01-20 2016-01-06 三菱電機株式会社 Hot water storage hot water supply system
JP2015152256A (en) * 2014-02-17 2015-08-24 株式会社コロナ Storage type hot water supply device
JP6381362B2 (en) * 2014-08-21 2018-08-29 株式会社コロナ Solar power generator linked heat pump hot water storage hot water supply system

Also Published As

Publication number Publication date
JP2017223410A (en) 2017-12-21

Similar Documents

Publication Publication Date Title
JP6381362B2 (en) Solar power generator linked heat pump hot water storage hot water supply system
US9557068B2 (en) Heat pump hot-water supply system
JP5724418B2 (en) Hot water supply apparatus and method for performing heat treatment thereof
JP6706975B2 (en) Photovoltaic power generator cooperation hot water supply type hot water supply system
JP2006286450A (en) Fuel cell system, its control method, and its control device
CN108351119A (en) Water heater control system and heat accumulation discharge type electric water heater
JP6280788B2 (en) Cogeneration system
JP2016044849A (en) Photovoltaic power generation device cooperation heat pump hot water storage type hot water supply system
JP5126000B2 (en) Hot water storage water heater
JP2011089701A (en) Hot water supply system
JP2014163641A (en) Hot water storage type water heater and solar system including hot water storage type water heater
JP5115452B2 (en) Hot water storage water heater
JP6803781B2 (en) Photovoltaic power generation equipment cooperation hot water storage type hot water supply system and solar power generation equipment cooperation hot water storage type hot water supply equipment
JP7116907B2 (en) hot water storage system
JP2005012906A (en) Method and device for controlling output of cogeneration system
JP6110228B2 (en) Heat pump hot water storage hot water supply system for solar power generation equipment
JP6247133B2 (en) Heat pump water heater
JP2011089702A (en) Hot water supply system
JP5590188B1 (en) Hybrid hot water supply system
JP7228421B2 (en) hot water system
JP2002075392A (en) Heat accumulating device for fuel cell power generation system
JP7108220B2 (en) Storage hot water heater
JP5580244B2 (en) Hot water storage water heater
JP6782130B2 (en) Thermal equipment
JP6830843B2 (en) Photovoltaic power generation equipment cooperation hot water storage type hot water supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200519

R150 Certificate of patent or registration of utility model

Ref document number: 6706975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250