JP6701874B2 - Organic resin coated surface-treated metal plate - Google Patents
Organic resin coated surface-treated metal plate Download PDFInfo
- Publication number
- JP6701874B2 JP6701874B2 JP2016064654A JP2016064654A JP6701874B2 JP 6701874 B2 JP6701874 B2 JP 6701874B2 JP 2016064654 A JP2016064654 A JP 2016064654A JP 2016064654 A JP2016064654 A JP 2016064654A JP 6701874 B2 JP6701874 B2 JP 6701874B2
- Authority
- JP
- Japan
- Prior art keywords
- organic resin
- treated
- coating layer
- metal plate
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Rigid Containers With Two Or More Constituent Elements (AREA)
- Details Of Rigid Or Semi-Rigid Containers (AREA)
- Laminated Bodies (AREA)
- Chemical Treatment Of Metals (AREA)
Description
本発明は、飲料缶等の缶体・缶蓋用途に用いられる有機樹脂被覆表面処理金属板に関するものであり、より詳細には、優れた製缶適性を有し、かつ内容品充填後に施される殺菌処理にも対応可能な優れた耐熱水密着性を有する缶体、及び優れた製蓋適性・耐熱水密着性を有する缶蓋を提供可能であると共に、経済性にも優れ、かつ環境への負荷が小さい有機樹脂被覆表面処理金属板に関する。 The present invention relates to an organic resin-coated surface-treated metal plate used for can bodies and can lids such as beverage cans, and more specifically, it has excellent can-making suitability and is applied after filling contents. It is possible to provide a can body that has excellent heat-resistant water adhesion that can also be used for sterilization treatment, as well as a can lid that has excellent lid-making suitability and heat-resistant water adhesion, as well as being economical and environmentally friendly. The present invention relates to an organic resin-coated surface-treated metal plate having a small load.
アルミニウム等の金属板を有機樹脂で被覆した有機樹脂被覆金属板は、缶用材料として古くから知られており、この有機樹脂被覆金属板を絞り加工或いは絞り・しごき加工に付して、飲料等を充填するためのシームレス缶とし、或いはこれをプレス成形してイージーオープンエンド等の缶蓋とすることもよく知られている。例えば、エチレンテレフタレート単位を主体としたポリエステル樹脂から成る熱可塑性樹脂フィルムを有機樹脂被覆層として有する有機樹脂被覆金属板は、シームレス缶用の製缶材料として使用されている(特許文献1)。 An organic resin-coated metal plate obtained by coating a metal plate of aluminum or the like with an organic resin has long been known as a material for cans, and this organic resin-coated metal plate is subjected to squeezing or squeezing/ironing to obtain a beverage, etc. It is well known to make a seamless can for filling with or to press-mold it to form a can lid such as an easy open end. For example, an organic resin-coated metal plate having a thermoplastic resin film made of a polyester resin mainly containing ethylene terephthalate units as an organic resin coating layer is used as a can-making material for seamless cans (Patent Document 1).
また、このような缶体・缶蓋用途の有機樹脂被覆金属板に用いられる金属板としては、一般に、耐食性や有機樹脂被覆層との密着性を確保することを目的として、化成処理等の表面処理を施した表面処理金属板が用いられる。このような表面処理としては、例えばリン酸クロメート処理があり、リン酸クロメート処理を施した表面処理金属板から成る有機樹脂被覆表面処理金属板は、それを用いてシームレス缶等を成形した場合において、製缶適性に優れると共に、内容物充填・密封後の殺菌処理時における有機樹脂被覆層と金属基材間の密着性(耐熱水密着性)に優れることから、広く使用されてきたが、環境保護の観点からノンクロム系表面処理への要請が高まっている。 In addition, as a metal plate used for such an organic resin-coated metal plate for can bodies and can lids, generally, for the purpose of ensuring corrosion resistance and adhesion with an organic resin coating layer, the surface of chemical conversion treatment, etc. A treated surface-treated metal plate is used. As such a surface treatment, there is, for example, phosphoric acid chromate treatment, and an organic resin-coated surface-treated metal plate comprising a phosphoric acid chromate-treated surface-treated metal plate is used when a seamless can or the like is formed using the same. It has been widely used due to its excellent suitability for can making and excellent adhesion (heat-resistant water adhesion) between the organic resin coating layer and the metal substrate during sterilization treatment after filling and sealing the contents. From the viewpoint of protection, there is an increasing demand for chromium-free surface treatment.
これまでに缶用材料向けのノンクロム系表面処理が数多く提案されてきた。例えば有機樹脂被覆シームレスアルミニウム缶向けとして、ジルコニウム化合物とリン化合物、及びフェノール化合物を用いた有機無機複合系の化成処理が提案されており、優れた製缶適性や耐熱水密着性を発現し得るものである(特許文献2)。しかしながら、上記で提案されている表面処理は、処理後に水洗が必要な化成型(反応型)の表面処理であることから、廃水が大量に発生するため、廃水処理にコストがかかり、かつ環境への負荷が大きいことが懸念される。 Many chromium-free surface treatments for can materials have been proposed so far. For example, for organic resin-coated seamless aluminum cans, a chemical conversion treatment of an organic-inorganic composite system using a zirconium compound, a phosphorus compound, and a phenol compound has been proposed, which can exhibit excellent can-making suitability and hot water adhesion. (Patent Document 2). However, since the surface treatment proposed above is a chemical molding (reaction type) surface treatment that requires washing with water after the treatment, a large amount of wastewater is generated, which makes wastewater treatment costly and environmentally friendly. There is concern that the load on the
一方で化成型の表面処理と異なり、処理後に水洗が不要で、廃水処理にかかるコストを低減でき、かつ環境への負荷も小さい塗布型の表面処理(塗布型処理)によるノンクロム系表面処理も缶用材料向けに提案されている。例えばジルコニウム化合物とジルコニウム架橋されたポリアクリル酸が含有されて成る塗布型下地皮膜が形成された樹脂被覆アルミニウム板が提案されている(特許文献3)。 On the other hand, unlike the surface treatment of chemical molding, there is no need to wash with water after the treatment, the cost of wastewater treatment can be reduced, and the non-chromium-based surface treatment by the coating type surface treatment (coating type treatment) has a low environmental load. Proposed for materials. For example, there has been proposed a resin-coated aluminum plate having a coating type undercoat formed by containing a zirconium compound and zirconium-crosslinked polyacrylic acid (Patent Document 3).
しかしながら、上記特許文献3で提案されている塗布型下地皮膜は、特にキャップ成型用の樹脂被覆アルミニウム板向けに提案されており、加工量の少ないキャップへの成形には適したものであったとしても、キャップに比してより過酷な成形加工により形成されるシームレス缶用の有機樹脂被覆金属板に適用した場合には、以下のような問題点がある。即ち、それを用いてシームレス缶を形成した場合に、内容物充填・密封後のパストライズ処理(熱水シャワー処理)やレトルト処理などの殺菌処理の際に、主に缶体成形の後加工(ネッキング加工やフランジ加工)を施したフランジ部近傍において、有機樹脂被覆層と金属基材間の耐熱水密着性の不足により、有機樹脂被覆層が剥離する場合があった。さらに、缶外面側の缶胴側壁部が部分的に水と接触した状態で、かつスチームにより加圧加熱処理されるような、より過酷な条件下でレトルト処理が行われた際には、缶外面側の缶胴側壁部の水と接触していた部分近傍において、有機樹脂被覆層と金属基材間の耐熱水密着性の不足により、有機樹脂被覆層の浮きやフクレ(ブリスター)等の外面不良が発生する場合があった。従って、シームレス缶用の有機樹脂被覆金属板に適用するためには、さらなる改善が必要である。 However, the coating type undercoating proposed in Patent Document 3 has been proposed especially for a resin-coated aluminum plate for cap molding, and is suitable for molding into a cap with a small amount of processing. However, when applied to an organic resin-coated metal plate for a seamless can, which is formed by a more severe forming process than a cap, there are the following problems. That is, when a seamless can is formed using it, it is mainly used for post-processing (necking) of the can body during pasteurizing treatment (hot water shower treatment) after filling and sealing the contents and sterilizing treatment such as retort treatment. In some cases, the organic resin coating layer may be peeled off in the vicinity of the flange portion subjected to the processing or the flange processing) due to lack of hot water adhesion between the organic resin coating layer and the metal substrate. Furthermore, when the retort treatment is performed under more severe conditions where the side wall of the can body on the outer surface side of the can is partially in contact with water and pressure heating is performed by steam, Due to the lack of heat-resistant water adhesion between the organic resin coating layer and the metal substrate, near the portion of the outer can side wall that was in contact with water, the outer surface of the organic resin coating layer such as floating and blisters (blister) There were cases where defects occurred. Therefore, further improvement is required for application to the organic resin-coated metal plate for seamless cans.
従って、本発明の目的は、内容品充填後のパストライズ処理やレトルト処理のような高温・湿潤環境下に賦された場合においても、フランジ部における有機樹脂被覆層の剥離を抑制でき、さらに缶外面の缶胴側壁部が水と接触した状態でスチームにより加圧加熱処理されるような、より過酷な条件下でレトルト処理される場合においても、ブリスター等の外面不良の発生を抑制できると共に、経済性に優れ、かつ環境への負荷が小さいノンクロム系の塗布型処理により形成される表面処理皮膜層を有する有機樹脂被覆表面処理金属板を提供することである。 Therefore, the object of the present invention is to suppress the peeling of the organic resin coating layer in the flange portion even when the paste is subjected to a high temperature/wet environment such as past-rise treatment or retort treatment after filling the contents, and further the outer surface of the can. Even in the case of retort treatment under more severe conditions such as pressure heating treatment with steam in a state where the can body side wall portion is in contact with water, it is possible to suppress the occurrence of outer surface defects such as blister and to reduce the cost. An object of the present invention is to provide an organic resin-coated surface-treated metal plate having a surface-treated coating layer formed by a non-chrome coating type treatment that is excellent in properties and has a low environmental load.
本発明によれば、金属板の少なくとも片面に、表面処理皮膜層及び該表面処理皮膜層上に有機樹脂被覆層が形成されて成る有機樹脂被覆表面処理金属板であって、該表面処理皮膜層がポリカルボン酸系重合体及び多価金属化合物を含有し、前記ポリカルボン酸系重合体が、アクリル酸、メタクリル酸、イタコン酸、マレイン酸から選ばれる少なくとも1種の重合性単量体から誘導される構成単位が60%以上の重合体であり、前記多価金属化合物が、フッ素樹脂を含有しないジルコニウム化合物であり、且つ、該表面処理皮膜層の赤外線吸収スペクトルを測定した際の、1660〜1760cm−1の波数範囲内の最大吸収ピーク高さ(α)と1490〜1659cm−1の波数範囲内の最大吸収ピーク高さ(β)とのピーク高さ比(β/α)が0.37〜2.35であることを特徴とする有機樹脂被覆表面処理金属板が提供される。
本発明の有機樹脂被覆表面処理金属板においては、
1.前記ピーク高さ比(β/α)が0.75〜1.48であること、
2.前記ジルコニウム化合物が、オキシジルコニウム塩由来のジルコニウム化合物であること、
3.前記表面処理皮膜層における前記ポリカルボン酸系重合体の含有量が炭素換算で12〜100mg/m2であり、前記多価金属化合物の含有量が金属換算で2〜80mg/m2であること、
4.前記表面処理皮膜層が、ポリカルボン酸系重合体の固形分100質量部に対して、多価金属化合物が金属換算で3〜67質量部の量で含有すること、
5.前記表面処理皮膜層が、コロイダルシリカを含有すること、
6.前記表面処理皮膜層における前記コロイダルシリカの含有量がケイ素換算で5〜200mg/m2であること、
7.前記有機樹脂被覆層がポリエステル樹脂フィルムであること、
8.前記金属板がアルミニウム板であること、
が好適である。
According to the present invention, there is provided an organic resin-coated surface-treated metal plate comprising a surface-treated coating layer and an organic resin coating layer formed on the surface-treated coating layer on at least one side of the metal plate, the surface-treated coating layer being Contains a polycarboxylic acid polymer and a polyvalent metal compound, and the polycarboxylic acid polymer is derived from at least one polymerizable monomer selected from acrylic acid, methacrylic acid, itaconic acid and maleic acid. The constitutional unit is a polymer of 60% or more, the polyvalent metal compound is a zirconium compound containing no fluororesin, and when the infrared absorption spectrum of the surface-treated coating layer is measured, 1660 to The peak height ratio (β/α) between the maximum absorption peak height (α) in the wave number range of 1760 cm −1 and the maximum absorption peak height (β) in the wave number range of 1490 to 1659 cm −1 is 0.37. The organic-resin-coated surface-treated metal plate characterized by being -2.35 is provided.
In the organic resin-coated surface-treated metal plate of the present invention,
1. The peak height ratio (β/α) is 0.75 to 1.48,
2 . The zirconium compound is a zirconium compound derived from an oxyzirconium salt,
3 . The content of the polycarboxylic acid-based polymer in the surface treatment film layer is 12 to 100 mg/m 2 in terms of carbon, and the content of the polyvalent metal compound is 2 to 80 mg/m 2 in terms of metal. ,
4 . The surface treatment film layer contains the polyvalent metal compound in an amount of 3 to 67 parts by mass in terms of metal, based on 100 parts by mass of the solid content of the polycarboxylic acid polymer.
5 . The surface treatment coating layer contains colloidal silica,
6 . The content of the colloidal silica in the surface treatment film layer is 5 to 200 mg/m 2 in terms of silicon.
7 . The organic resin coating layer is a polyester resin film,
8 . The metal plate is an aluminum plate,
Is preferred.
本発明によればまた、上記有機樹脂被覆表面処理金属板から成ることを特徴とする缶体が提供される。
本発明の缶体としては、上記有機樹脂被覆表面処理金属板から成る有機樹脂被覆シームレス缶であって、該有機樹脂被覆シームレス缶の表面処理皮膜層の赤外線吸収スペクトルを測定した際の、1660〜1760cm−1の波数範囲内の最大吸収ピーク高さ(α)と1490〜1659cm−1の波数範囲内の最大吸収ピーク高さ(β)とのピーク高さ比(β/α)が0.10〜2.35であることが好適である。
本発明によれば更に、上記有機樹脂被覆表面処理金属板から成ることを特徴とする缶蓋が提供される。
本発明によれば更にまた、アルミニウム基材の少なくとも片面に、表面処理皮膜層及び該表面処理皮膜層上にポリエステル樹脂フィルムから成る有機樹脂被覆層が形成されて成る有機樹脂被覆シームレス缶であって、前記表面処理皮膜層がポリカルボン酸系重合体及び多価金属化合物を含有し、且つ、該表面処理皮膜層の赤外線吸収スペクトルを測定した際の、1660〜1760cm−1の波数範囲内の最大吸収ピーク高さ(α)と1490〜1659cm−1の波数範囲内の最大吸収ピーク高さ(β)とのピーク高さ比(β/α)が0.78〜1.45であることを特徴とする有機樹脂被覆シームレス缶が提供される。
According to the present invention, there is also provided a can body comprising the organic resin-coated surface-treated metal plate.
The can body of the present invention is an organic resin-coated seamless can made of the above-mentioned organic resin-coated surface-treated metal plate, and when the infrared absorption spectrum of the surface-treated coating layer of the organic resin-coated seamless can is measured, 1660 to The peak height ratio (β/α) between the maximum absorption peak height (α) in the wave number range of 1760 cm −1 and the maximum absorption peak height (β) in the wave number range of 1490 to 1659 cm −1 is 0.10. It is preferable that it is about 2.35.
According to the present invention, there is further provided a can lid comprising the organic resin-coated surface-treated metal plate.
Furthermore, according to the present invention, there is provided an organic resin-coated seamless can comprising a surface-treated coating layer and an organic resin-coated layer comprising a polyester resin film formed on the surface-treated coating layer on at least one surface of an aluminum substrate. , The surface treatment coating layer contains a polycarboxylic acid polymer and a polyvalent metal compound, and, when measuring the infrared absorption spectrum of the surface treatment coating layer, the maximum in the wave number range of 1660 to 1760 cm -1 The peak height ratio (β/α) between the absorption peak height (α) and the maximum absorption peak height (β) in the wave number range of 1490 to 1659 cm −1 is 0.78 to 1.45. An organic resin-coated seamless can is provided.
本発明者等は、金属板の少なくとも片面に、主成分としてポリアクリル酸等のポリカルボン酸系重合体と該ポリカルボン酸系重合体の架橋成分としてジルコニウム化合物等の多価金属化合物を含有する表面処理皮膜層、及び該表面処理皮膜層上に有機樹脂被覆層を形成して成る有機樹脂被覆表面処理金属板において、多価金属と金属塩を形成していないポリカルボン酸系重合体の遊離のカルボキシル基(−COOH)と多価金属と金属塩を形成しているポリカルボン酸系重合体のカルボキシル基(−COO−)の量比の尺度である、該表面処理皮膜層の赤外線吸収スペクトルを測定した際の、1660〜1760cm−1の波数範囲内の最大吸収ピーク高さ(α)と1490〜1659cm−1の波数範囲内の最大吸収ピーク高さ(β)とのピーク高さ比(β/α)、及び該ピーク高さ比(β/α)から後述の式により定義される、ポリカルボン酸系重合体に含まれるすべてのカルボキシル基に対する多価金属と金属塩を形成しているカルボキシル基の割合の尺度である架橋率が、該有機樹脂被覆表面処理金属板から過酷な加工を経て得られた有機樹脂被覆シームレス缶等の耐熱水密着性に大きな影響を与えることを見出すと共に、製缶適性に優れ、かつレトルト処理のようなスチームによる加圧・加熱処理にも対応可能な、耐熱水密着性に優れたシームレス缶を得るための好適な範囲を見出した。
これにより、優れた製缶適性・耐熱水密着性を有する缶体、及び優れた製蓋適性・耐熱水密着性を有する缶蓋を提供可能な有機樹脂被覆表面処理金属板を提供することが可能になる。
しかも本発明の表面処理皮膜層は、ノンクロム系の塗布型処理により形成されることから、経済性に優れていると共に環境への負荷が少ないという利点がある。
The present inventors include a polycarboxylic acid-based polymer such as polyacrylic acid as a main component and a polyvalent metal compound such as a zirconium compound as a cross-linking component of the polycarboxylic acid-based polymer on at least one surface of the metal plate. In the surface-treated coating layer and the organic-resin-coated surface-treated metal plate formed by forming the organic resin coating layer on the surface-treated coating layer, polycarboxylic acid-based polymer free of polyvalent metal and metal salt is released. polycarboxylic acid polymer carboxyl groups of the carboxyl group (-COOH) and to form a polyvalent metal and a metal salt (-COO -) is a measure of the ratio of infrared absorption spectrum of the surface treated film layer the when measured, the maximum absorption peak height in the wavenumber range of 1660~1760cm -1 (α) and the maximum absorption peak height in the wavenumber range of 1490~1659cm -1 (β) with the peak height ratio ( β/α) and the peak height ratio (β/α) form a polyvalent metal and a metal salt for all the carboxyl groups contained in the polycarboxylic acid-based polymer, which are defined by the formula below. It is found that the crosslinking rate, which is a measure of the proportion of carboxyl groups, has a great influence on the hot water adhesion of an organic resin-coated seamless can or the like obtained through severe processing from the organic resin-coated surface-treated metal plate, The inventors have found a suitable range for obtaining a seamless can having excellent canning suitability and also capable of being subjected to pressure/heat treatment with steam such as retort treatment and having excellent hot water adhesion.
As a result, it is possible to provide a can body having excellent canning suitability and hot water adhesion, and an organic resin-coated surface-treated metal plate capable of providing a can lid having excellent canning suitability and hot water adhesion. become.
Moreover, since the surface-treated coating layer of the present invention is formed by a non-chrome coating type treatment, it has the advantages of excellent economic efficiency and low environmental load.
本発明の上述する作用効果は後述する実施例の結果からも明らかである。
主成分としてポリアクリル酸等のポリカルボン酸系重合体と該ポリカルボン酸系重合体の架橋成分としてジルコニウム化合物等の多価金属化合物を含有する表面処理皮膜層、及び該表面処理皮膜層上に有機樹脂被覆層を形成して成る有機樹脂被覆表面処理金属板において、該表面処理皮膜層の赤外線吸収スペクトルを測定した際の、1660〜1760cm−1の波数範囲内の最大吸収ピーク高さ(α)と1490〜1659cm−1の波数範囲内の最大吸収ピーク高さ(β)とのピーク高さ比(β/α)が2.35(架橋率Xでは70%)を超えている表面処理皮膜層を有する有機樹脂被覆表面処理金属板を用いてシームレス缶を作製したものでは、熱水処理時フランジ部剥離性評価、及びレトルト時フランジ部剥離性評価において、フランジ部で有機樹脂被覆層の剥離が生じ、さらに前述のより過酷な条件下におけるレトルト処理を想定したレトルト時缶胴側壁部外観評価においては、ブリスターの発生を確認している(比較例3)。また、ピーク高さ比(β/α)が0.10(架橋率Xでは5%)未満の表面処理皮膜層を有する有機樹脂被覆表面処理金属板を用いてシームレス缶を作製したものでは、レトルト時フランジ部剥離性評価において、フランジ部で有機樹脂被覆層の剥離が生じ、さらにレトルト時缶胴側壁部外観評価においては、ブリスターの発生を確認している(比較例1,2)。これに対してピーク高さ比(β/α)が0.10〜2.35(架橋率Xでは5〜70%)の範囲にある表面処理皮膜層を有する有機樹脂被覆表面処属板を用いてシームレス缶を作製したものでは、各評価において、有機樹脂被覆層の剥離やブリスターの発生が抑制されており、シームレス缶において優れた耐熱水密着性を有することは明らかである。
一方で、ピーク高さ比(β/α)が0.05(架橋率Xでは5%)未満の表面処理皮膜層を有する有機樹脂被覆表面処理金属板を用いてシームレス缶を作製したものでは、缶胴部成形後に施される熱処理工程(ヒートセット工程)を想定した熱処理時フランジ部剥離性評価(製缶適性評価)において、缶体の開口端(フランジ形成部)で有機樹脂被覆層の剥離が生じている(比較例1,2)。これに対して、ピーク高さ比(β/α)が0.05(架橋率Xでは5%)以上の表面処理皮膜層を有する有機樹脂被覆表面処理金属板を用いたものでは、有機樹脂被覆層の剥離が抑制されており、優れた製缶適性を有していることは明らかである。
また、本発明の表面処理皮膜層において、上述したポリカルボン酸系重合体及び多価金属化合物に加え、更にコロイダルシリカが含有されることにより、製缶適性が更に向上される。熱処理時フランジ部剥離性評価において、実施例1及び24,25の結果を対比することから明らかなように、コロイダルシリカを含有する表面処理皮膜層を有する有機樹脂被覆表面処理金属板を用いてシームレス缶を作製したものでは、フランジ形成部における有機樹脂被覆層の剥離の発生が更に抑制されていることが分かる。
The above-described effects of the present invention are also apparent from the results of the examples described later.
A surface-treated coating layer containing a polycarboxylic acid-based polymer such as polyacrylic acid as a main component and a polyvalent metal compound such as a zirconium compound as a cross-linking component of the polycarboxylic acid-based polymer, and the surface-treated coating layer In an organic resin-coated surface-treated metal plate formed by forming an organic resin coating layer, the maximum absorption peak height (α in the wave number range of 1660 to 1760 cm −1 , when the infrared absorption spectrum of the surface-treated coating layer was measured. ) And the maximum absorption peak height (β) in the wave number range of 1490 to 1659 cm −1 , the peak height ratio (β/α) exceeds 2.35 (70% at the crosslinking rate X). In the case where a seamless can is produced using an organic resin-coated surface-treated metal plate having a layer, peeling of the organic resin coating layer at the flange portion is performed in the hot water treatment flange part peelability evaluation and the retort flange part peelability evaluation. In addition, the occurrence of blisters was confirmed in the external appearance evaluation of the side wall of the can body during retort assuming the retort treatment under the more severe conditions described above (Comparative Example 3). Further, in the case where a seamless can is produced by using an organic resin-coated surface-treated metal plate having a surface-treated coating layer having a peak height ratio (β/α) of less than 0.10 (5% at a crosslinking rate X), a retort It was confirmed that the organic resin coating layer was peeled off at the flange portion in the time flange portion peelability evaluation, and further, the blister was generated in the retort can body side wall appearance evaluation (Comparative Examples 1 and 2). On the other hand, an organic resin-coated surface-treated plate having a surface-treated coating layer having a peak height ratio (β/α) in the range of 0.10 to 2.35 (crosslinking rate X is 5 to 70%) is used. In each of the evaluations, a seamless can was produced, and in each evaluation, the peeling of the organic resin coating layer and the occurrence of blisters were suppressed, and it is clear that the seamless can has excellent hot water adhesion.
On the other hand, in the case where a seamless can is produced using an organic resin-coated surface-treated metal plate having a surface-treated coating layer having a peak height ratio (β/α) of less than 0.05 (5% at the crosslinking rate X), In the heat treatment flange peelability evaluation (canning suitability evaluation) assuming the heat treatment process (heat setting process) performed after forming the can body, peeling the organic resin coating layer at the open end (flange forming part) of the can body Occurs (Comparative Examples 1 and 2). On the other hand, in the case of using the organic resin-coated surface-treated metal plate having a surface-treated coating layer having a peak height ratio (β/α) of 0.05 (5% at the crosslinking rate X) or more, It is apparent that the peeling of the layer is suppressed and that it has excellent suitability for can making.
Further, in the surface-treated coating layer of the present invention, in addition to the above-described polycarboxylic acid-based polymer and polyvalent metal compound, colloidal silica is further contained, whereby the suitability for can making is further improved. As is clear from comparing the results of Examples 1 and 24 and 25 in the evaluation of the flange part peeling property during heat treatment, it was possible to seamlessly use an organic resin-coated surface-treated metal plate having a surface-treated coating layer containing colloidal silica. It can be seen that in the case where the can is manufactured, the occurrence of peeling of the organic resin coating layer in the flange forming portion is further suppressed.
(表面処理皮膜層)
本発明の有機樹脂表面処理金属板における表面処理皮膜層は、少なくとも主成分としてポリカルボン酸系重合体及び該ポリカルボン系重合体の架橋成分として多価金属化合物を含有して成り、且つ、該表面処理皮膜層の赤外線吸収スペクトルを測定した際の、1660〜1760cm−1の波数範囲内の最大吸収ピーク高さ(α)と1490〜1659cm−1の波数範囲内の最大吸収ピーク高さ(β)とのピーク高さ比(β/α)、及び該ピーク高さ比(β/α)から後述の式により定義される架橋率が一定の範囲であることを特徴としている。これは以下の理由による。
表面処理皮膜層において、ポリカルボン酸系重合体が多価金属化合物により架橋された場合、ポリカルボン酸系重合体に含まれるカルボキシル基と多価金属が反応することで、カルボキシル基と多価金属の金属塩が形成される。
赤外線吸収スペクトル測定において、多価金属と金属塩を形成していない遊離のカルボキシル基(−COOH)は、1660〜1760cm−1の波数範囲内で、1720cm−1付近に吸収極大を有するカルボキシル基のC=O伸縮振動に由来する吸収ピークを示し、一方で、多価金属と金属塩を形成しているカルボキシル基(−COO−)は、1490〜1659cm−1の波数範囲で、1560cm−1付近に吸収極大を有するカルボキシル基の金属塩のC=O伸縮振動に由来する吸収ピークを示す。表面処理皮膜層の吸光度は、表面処理皮膜層中に存在する赤外活性を有する化学種の量と比例関係にある。従って、1660〜1760cm−1の波数範囲内の最大吸収ピーク高さ(α)と1490〜1659cm−1の波数範囲内の最大吸収ピーク高さ(β)とのピーク高さ比(β/α)は、ポリカルボン酸系重合体に含まれるカルボキシル基において、多価金属と金属塩を形成していない遊離のカルボキシル基(−COOH)と多価金属と金属塩を形成しているカルボキシル基(−COO−)の量比の尺度となり、この値が大きいほど遊離のカルボキシル基(−COOH)の存在比は少なくなり、一方で多価金属と金属塩を形成しているカルボキシル基(−COO−)が存在比は多くなることを示す。
(Surface treatment film layer)
The surface-treated coating layer in the organic resin surface-treated metal plate of the present invention comprises at least a polycarboxylic acid-based polymer as a main component and a polyvalent metal compound as a crosslinking component of the polycarboxylic-based polymer, and The maximum absorption peak height (α) in the wave number range of 1660 to 1760 cm −1 and the maximum absorption peak height (β in the wave number range of 1490 to 1659 cm −1 , when the infrared absorption spectrum of the surface-treated coating layer was measured. ) And a peak height ratio (β/α), and a cross-linking rate defined by the following formula based on the peak height ratio (β/α) are in a certain range. This is for the following reason.
In the surface treatment coating layer, when the polycarboxylic acid-based polymer is cross-linked by the polyvalent metal compound, the carboxyl group and the polyvalent metal contained in the polycarboxylic acid-based polymer react with each other, so that the carboxyl group and the polyvalent metal are A metal salt of is formed.
In infrared absorption spectrum measurement, free carboxyl groups not forming a polyvalent metal and a metal salt (-COOH), within the wavenumber range of 1660~1760Cm -1, the carboxyl group having an absorption maximum in the vicinity of 1720 cm -1 an absorption peak derived from C = O stretching vibration, while the carboxyl groups to form a polyvalent metal and a metal salt (-COO -) is the wave number range of 1490~1659Cm -1, 1560 cm around -1 Shows an absorption peak derived from C═O stretching vibration of a metal salt of a carboxyl group having an absorption maximum. The absorbance of the surface-treated coating layer is proportional to the amount of chemical species having infrared activity present in the surface-treated coating layer. Therefore, the maximum absorption peak height in the wavenumber range of 1660~1760cm -1 (α) and the maximum absorption peak height in the wavenumber range of 1490~1659cm -1 (β) with the peak height ratio (beta / alpha) Is a free carboxyl group (-COOH) that does not form a metal salt with a polyvalent metal and a carboxyl group (-) that forms a metal salt with a polyvalent metal in the carboxyl group contained in the polycarboxylic acid polymer. It becomes a measure of the amount ratio of COO − ), and the larger this value is, the smaller the existing ratio of free carboxyl group (—COOH) becomes, while the carboxyl group (—COO − ) forming a metal salt with a polyvalent metal. Indicates that the abundance ratio increases.
また、本発明で云う架橋率は、多価金属によるポリカルボン酸系重合体の架橋の程度を示すものであり、すなわち表面処理皮膜層中のポリカルボン酸系重合体に含まれるすべてのカルボキシル基(多価金属と金属塩を形成していないカルボキシル基と、多価金属と金属塩を形成しているカルボキシル基の総和)に対する多価金属と金属塩を形成しているカルボキシル基の割合(モル%)の尺度である。本発明においては、前述の1660〜1760cm−1の波数範囲内の最大吸収ピーク高さ(α)と1490〜1659cm−1の波数範囲内の最大吸収ピーク高さ(β)、及びピーク高さ比(β/α)から、下記式(1)により算出される値Xを架橋率と定義する。
X(%)={β/[α+β]}×100
={(β/α)/[1+(β/α)]}×100 ・・・(1)
本発明における表面処理皮膜層においては、前述のピーク高さ比(β/α)が0.05〜2.35、好ましくは0.45〜1.60、より好ましくは0.47〜1.48、特に好ましくは0.75〜1.48の範囲にあることが望ましい。架橋率で表現した場合は、架橋率が5〜70%、好ましくは30〜62%、より好ましくは32〜60%、特に好ましくは40〜60%の範囲にあることが望ましい。
Further, the cross-linking ratio in the present invention indicates the degree of cross-linking of the polycarboxylic acid-based polymer by the polyvalent metal, that is, all the carboxyl groups contained in the polycarboxylic acid-based polymer in the surface treatment coating layer. Ratio of carboxyl group forming polyvalent metal and metal salt to (total of carboxyl group not forming metal salt with polyvalent metal and carboxyl group forming metal salt with polyvalent metal) (mol %). In the present invention, the maximum absorption peak height (α) in the wave number range of 1660 to 1760 cm −1 and the maximum absorption peak height (β) in the wave number range of 1490 to 1659 cm −1 described above, and the peak height ratio. The value X calculated from (β/α) by the following equation (1) is defined as the crosslinking rate.
X(%)={β/[α+β]}×100
={(β/α)/[1+(β/α)]}×100 (1)
In the surface treatment film layer in the present invention, the above-mentioned peak height ratio (β/α) is 0.05 to 2.35, preferably 0.45 to 1.60, more preferably 0.47 to 1.48. , Particularly preferably in the range of 0.75 to 1.48. When expressed in terms of the crosslinking rate, it is desirable that the crosslinking rate is in the range of 5 to 70%, preferably 30 to 62%, more preferably 32 to 60%, and particularly preferably 40 to 60%.
本発明における作用効果は、以下のように推察している。
上記ピーク高さ比(β/α)及び架橋率が上記範囲にある場合、表面処理皮膜層に遊離のカルボキシル基(多価金属と金属塩を形成していないカルボキシル基)が十分に存在し、この遊離のカルボキシル基を介して表面処理皮膜層と有機樹脂被覆層が良好に密着すると共に、表面処理皮膜層の柔軟性が十分に確保され、絞りしごき加工等の過酷な加工によりシームレス缶等に成形される場合においても、表面処理皮膜層が金属基材に追従することが可能となり、その結果、前述した殺菌処理時のフランジ部における有機樹脂被覆層の剥離や缶胴側壁部におけるブリスター等の外面不良の発生が抑制され、優れた耐熱水密着性が発現する。また、ポリカルボン酸系重合体に含まれるカルボキシル基が多価金属化合物により適度に架橋されることで耐熱性が顕著に向上し、缶胴部成形後のヒートセット工程のような高温環境下においても、表面処理皮膜層の凝集力が確保されることで有機樹脂被覆層の剥離が抑制され、優れた製缶適性を発現することが可能となる。
ピーク高さ比(β/α)及び架橋率が上記範囲よりも大きい場合には、表面処理皮膜層中に存在する遊離のカルボキシル基が少なくなり、有機樹脂被覆層との密着性が低下すると共に、過度に架橋されることで過酷な加工に際して表面処理皮膜層が金属基材に追従することが困難になり、耐熱水密着性が顕著に劣化するおそれがある。一方、上記範囲よりもピーク高さ比(β/α)、及び架橋率が小さい場合には、十分に架橋が形成されず、表面処理皮膜層の耐熱性が不足し、缶胴部成形後のヒートセット工程において、表面処理皮膜層が凝集破壊しやすくなり、それにより有機樹脂被覆層が剥離するおそれがあり、製缶適性が劣化する場合がある。また、殺菌処理時においても、十分な架橋が形成されないことで、表面処理皮膜層の耐熱性、及び耐水性が不足し、表面処理皮膜層が凝集破壊しやすくなり、それにより有機樹脂被覆層が剥離するおそれがあり、耐熱水密着性が劣化する場合がある。
The action and effect of the present invention are presumed as follows.
When the peak height ratio (β/α) and the cross-linking ratio are within the above ranges, free carboxyl groups (carboxyl groups that do not form a metal salt with a polyvalent metal) sufficiently exist in the surface treatment coating layer, The surface-treated coating layer and the organic resin coating layer are well adhered to each other through the free carboxyl group, and the flexibility of the surface-treated coating layer is sufficiently secured. Even when molded, it becomes possible for the surface treatment film layer to follow the metal substrate, and as a result, peeling of the organic resin coating layer at the flange portion and blister at the side wall of the can body during sterilization treatment described above. Outer surface defects are suppressed, and excellent hot water adhesion is exhibited. Further, the carboxyl group contained in the polycarboxylic acid-based polymer is significantly crosslinked by the polyvalent metal compound to significantly improve the heat resistance, and in a high temperature environment such as a heat setting step after can body molding. Also, by ensuring the cohesive force of the surface treatment coating layer, peeling of the organic resin coating layer is suppressed, and it becomes possible to exhibit excellent suitability for can making.
When the peak height ratio (β/α) and the cross-linking ratio are larger than the above-mentioned ranges, the amount of free carboxyl groups present in the surface-treated coating layer decreases, and the adhesion with the organic resin coating layer decreases. The excessive cross-linking makes it difficult for the surface treatment film layer to follow the metal substrate during severe processing, and the hot water adhesion may be significantly deteriorated. On the other hand, when the peak height ratio (β/α) and the crosslinking rate are smaller than the above ranges, sufficient crosslinking is not formed, the heat resistance of the surface-treated coating layer is insufficient, and In the heat setting step, the surface treatment film layer is likely to undergo cohesive failure, which may cause the organic resin coating layer to peel off, which may deteriorate suitability for can making. Further, even during the sterilization treatment, by not forming sufficient cross-linking, the heat resistance of the surface treatment film layer, and water resistance is insufficient, the surface treatment film layer is prone to cohesive failure, thereby the organic resin coating layer There is a risk of peeling, and the hot water adhesion may deteriorate.
本発明の有機樹脂被覆表面処理金属板における表面処理皮膜層は、ポリカルボン酸系重合体の含有量が炭素換算で12〜100mg/m2、特に21〜50mg/m2の範囲の範囲で含有されていること、及び多価金属化合物の含有量が金属換算で2〜80mg/m2、特に4〜40mg/m2の範囲で含有されていることが好適である。上記範囲よりもポリカルボン酸系重合体および多価金属化合物が多い場合には、ピーク高さ比、及び架橋率を前述の範囲に調整することが困難になるか、もしくは皮膜が必要以上に厚膜となり、不経済である。一方で上記範囲よりもポリカルボン酸系重合体、または多価金属化合物の含有量が少ない場合には、ピーク高さ比(β/α)、及び架橋率を前述の範囲に調整することが困難になるか、もしくは、皮膜が必要とされる膜厚よりも薄くなり、有機樹脂被覆層との耐熱水密着性が充分に得られないおそれがある。
また、さらにコロイダルシリカを配合する場合においては表面処理皮膜層中のコロイダルシリカの含有量はケイ素換算で5〜200mg/m2、特に10〜100mg/m2の範囲で含有されていることが好適である。耐熱性に優れたコロイダルシリカが表面処理皮膜層に含有されることで、表面処理皮膜層の耐熱性が更に向上し、缶胴部成形後のヒートセット工程において、表面処理皮膜層の凝集破壊が抑制され、有機樹脂被覆層の剥離を更に抑制することが可能になり、製缶適性が向上する。上記範囲よりもコロイダルシリカの含有量が少ない場合には前述の効果が望めず、その一方、上記範囲よりもコロイダルシリカの量が多くても、それ以上の効果は得られず、かえって有機樹脂被覆層との耐熱水密着性が劣化するおそれがある。
Surface treated film layer in the organic resin-coated surface-treated metal sheet of the present invention, the content of polycarboxylic acid polymer 12~100mg / m 2 in carbon equivalent, in particular contained in the scope of 21~50mg / m 2 It is preferable that the content of the polyvalent metal compound is 2 to 80 mg/m 2 in terms of metal, particularly 4 to 40 mg/m 2 . When the polycarboxylic acid polymer and the polyvalent metal compound are more than the above range, it becomes difficult to adjust the peak height ratio and the crosslinking rate within the above range, or the film is thicker than necessary. It becomes a film and is uneconomical. On the other hand, when the content of the polycarboxylic acid-based polymer or the polyvalent metal compound is less than the above range, it is difficult to adjust the peak height ratio (β/α) and the crosslinking rate within the above range. Or, the film becomes thinner than the required film thickness, and the hot water adhesion with the organic resin coating layer may not be sufficiently obtained.
Further, preferable that they are further contained in content 5 to 200 mg / m 2 of silicon in terms of, particularly from 10-100 mg / m 2 of colloidal silica of surface treated film layer in the case of blending colloidal silica Is. By containing colloidal silica, which has excellent heat resistance, in the surface-treated coating layer, the heat resistance of the surface-treated coating layer is further improved, and cohesive failure of the surface-treated coating layer occurs in the heat setting process after can body molding. As a result, the peeling of the organic resin coating layer can be further suppressed, and the suitability for can making is improved. If the content of colloidal silica is less than the above range, the above-mentioned effect cannot be expected, on the other hand, even if the amount of colloidal silica is more than the above range, no further effect can be obtained, rather, the organic resin coating is used. The hot water adhesion with the layer may deteriorate.
本発明の有機樹脂被覆表面処理金属板における表面処理皮膜層の組成としては、ポリカルボン酸系重合体の固形分100質量部に対して、多価金属化合物が金属換算で3〜67質量部、好ましくは18〜52質量部、より好ましくは18〜48質量部、特に好ましくは29〜48質量部で含有されていることが好適である。上記範囲よりも多価金属化合物が多い場合、或いは少ない場合には、ピーク高さ比、及び架橋率を前述の範囲に調整することが困難になる場合があり、所望の効果が得られないおそれがある。また表面処理皮膜層中にコロイダルシリカを含有する場合には、ポリカルボン酸系重合体100質量部当たり、コロイダルシリカが固形分(二酸化ケイ素;SiO2)換算で10〜200質量部、特に50〜200質量部の量で含有されていることが好適である。上記範囲よりもコロイダルシリカの量が少ない場合には充分な耐熱性の向上が望めず、その一方上記範囲よりもコロイダルシリカの量が多くても、更なる耐熱性の向上は得られず、かえって有機樹脂被覆層との耐熱水密着性を阻害するおそれがある。 The composition of the surface-treated coating layer in the organic resin-coated surface-treated metal plate of the present invention is 3 to 67 parts by mass of the polyvalent metal compound in terms of metal, based on 100 parts by mass of the solid content of the polycarboxylic acid polymer. The content is preferably 18 to 52 parts by mass, more preferably 18 to 48 parts by mass, and particularly preferably 29 to 48 parts by mass. When the polyvalent metal compound is more or less than the above range, it may be difficult to adjust the peak height ratio and the crosslinking rate to the above range, and the desired effect may not be obtained. There is. When the surface-treated coating layer contains colloidal silica, the colloidal silica is 10 to 200 parts by mass, particularly 50 to 50 parts by mass, based on 100 parts by mass of the polycarboxylic acid polymer in terms of solid content (silicon dioxide; SiO 2 ). It is preferably contained in an amount of 200 parts by mass. When the amount of colloidal silica is less than the above range, sufficient heat resistance cannot be expected to be improved. On the other hand, when the amount of colloidal silica is more than the above range, further improvement in heat resistance cannot be obtained. There is a risk of impairing the hot water adhesion with the organic resin coating layer.
(ポリカルボン酸系重合体)
本発明において表面処理皮膜層を構成するポリカルボン酸系重合体としては、既存のポリカルボン酸系重合体を用いることができるが、既存のポリカルボン酸系重合体とは、分子内に2個以上のカルボキシル基を有する重合体の総称である。具体的には、重合性単量体として、エチレン性不飽和カルボン酸を用いた単独重合体、単量体成分として、エチレン性不飽和カルボン酸のみからなり、それらの少なくとも2種の共重合体、またエチレン性不飽和カルボン酸と他のエチレン性不飽和単量体との共重合体、さらにアルギン酸、カルボキシメチルセルロース、ペクチンなどの分子内にカルボキシル基を有する酸性多糖類を例示することができる。これらのポリカルボン酸系重合体は、それぞれ単独で、または少なくとも2種のポリカルボン酸系重合体を混合して用いることができる。
ここでエチレン性不飽和カルボン酸としては、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマール酸、クロトン酸等が代表的なものであり、その中でもアクリル酸、メタクリル酸、イタコン酸、マレイン酸が好適である。またそれらと共重合可能なエチレン性不飽和単量体としては、エチレン、プロピレン等のα−オレフィン類、酢酸ビニル等のカルボン酸ビニルエステル類、アルキルアクリレート、アルキルメタクリレート、アルキルイタコネート等の不飽和カルボン酸エステル類、アクリロニトリル、塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン、アクリルアミド、スチレン等が代表的なものである。
ポリカルボン酸系重合体がエチレン性不飽和カルボン酸と酢酸ビニル等のカルボン酸ビニルエステル類との共重合体の場合には、さらにケン化することにより、飽和カルボン酸ビニルエステル部分をビニルアルコールに変換して使用することができる。
(Polycarboxylic acid polymer)
In the present invention, an existing polycarboxylic acid polymer can be used as the polycarboxylic acid polymer that constitutes the surface treatment coating layer, and the existing polycarboxylic acid polymer is two in the molecule. It is a general term for the above-mentioned polymers having a carboxyl group. Specifically, a homopolymer using an ethylenically unsaturated carboxylic acid as the polymerizable monomer, and a copolymer of at least two of them, consisting of only the ethylenically unsaturated carboxylic acid as the monomer component. Examples thereof include copolymers of ethylenically unsaturated carboxylic acids and other ethylenically unsaturated monomers, and acidic polysaccharides having a carboxyl group in the molecule, such as alginic acid, carboxymethyl cellulose and pectin. These polycarboxylic acid-based polymers can be used alone or as a mixture of at least two kinds of polycarboxylic acid-based polymers.
Here, as the ethylenically unsaturated carboxylic acid, acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid and the like are typical, among them, acrylic acid, methacrylic acid, itaconic acid, maleic acid. Is preferred. Further, as the ethylenically unsaturated monomer copolymerizable with them, α-olefins such as ethylene and propylene, carboxylic acid vinyl esters such as vinyl acetate, unsaturated acrylates such as alkyl acrylate, alkyl methacrylate and alkyl itaconate. Typical examples are carboxylic acid esters, acrylonitrile, vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride, acrylamide and styrene.
When the polycarboxylic acid-based polymer is a copolymer of ethylenically unsaturated carboxylic acid and carboxylic acid vinyl ester such as vinyl acetate, the saturated carboxylic acid vinyl ester moiety is converted to vinyl alcohol by further saponification. It can be converted and used.
このようなポリカルボン酸系重合体の中でも、アクリル酸、メタクリル酸、イタコン酸、マレイン酸の中から選ばれる少なくとも1種の重合性単量体から誘導される構成単位を含む重合体、または該重合体の混合物であることが好ましい。なお、該重合体は、単独重合体でも、共重合体でもよい。また、該重合体において、前記アクリル酸、マレイン酸、メタクリル酸、およびイタコン酸の中から選ばれる少なくとも1種の重合性単量体から誘導される構成単位が60mol%以上、好ましくは80mol%以上、最も好ましくは100モル%の量で含まれていることが望ましい(ただし全構成単位を100mol%とする。)。すなわち、ポリカルボン酸系重合体が前記アクリル酸、マレイン酸、メタクリル酸、およびイタコン酸の中から選ばれる少なくとも1種の重合性単量体のみから成る重合体であることが好ましい。なお、上記構成単位以外の構成単位が含まれる場合には、その他の構成単位としては、例えば前述のエチレン性不飽和カルボン酸と共重合可能なエチレン性不飽和単量体などが挙げられる。更にポリカルボン酸系重合体が前記アクリル酸、マレイン酸、メタクリル酸、およびイタコン酸の中から選ばれる少なくとも1種の重合性単量体のみから成る重合体である場合には、それら重合性単量体の単独重合体、共重合体、或いはそれらの混合物を用いることができる。より好ましくは、ポリアクリル酸、ポリメタクリル酸、ポリイタコン酸、ポリマレイン酸、及びそれらの混合物を用いることができる。 Among such polycarboxylic acid-based polymers, a polymer containing a structural unit derived from at least one polymerizable monomer selected from acrylic acid, methacrylic acid, itaconic acid, and maleic acid, or It is preferably a mixture of polymers. The polymer may be a homopolymer or a copolymer. Further, in the polymer, the constitutional unit derived from at least one kind of polymerizable monomer selected from the acrylic acid, maleic acid, methacrylic acid, and itaconic acid is 60 mol% or more, preferably 80 mol% or more. , And most preferably, it is desirable that the content is 100 mol% (provided that all the constituent units are 100 mol %). That is, it is preferable that the polycarboxylic acid polymer is a polymer composed of only at least one polymerizable monomer selected from the above-mentioned acrylic acid, maleic acid, methacrylic acid, and itaconic acid. When a structural unit other than the above structural units is contained, examples of the other structural unit include the ethylenically unsaturated monomer copolymerizable with the above-mentioned ethylenically unsaturated carboxylic acid. Further, when the polycarboxylic acid polymer is a polymer consisting of at least one polymerizable monomer selected from the above acrylic acid, maleic acid, methacrylic acid, and itaconic acid, the polymerizable monomer A homopolymer, a copolymer, or a mixture thereof may be used. More preferably, polyacrylic acid, polymethacrylic acid, polyitaconic acid, polymaleic acid, and a mixture thereof can be used.
また、本発明に用いるポリカルボン酸系重合体は、本発明の目的を損なわない範囲でポリカルボン酸系重合体の有するカルボキシル基の一部が、予め塩基性化合物で中和されていてもよい。塩基性化合物としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ金属の水酸化物やアンモニア等の各種アミン化合物を挙げることができる。 Further, in the polycarboxylic acid-based polymer used in the present invention, a part of the carboxyl groups of the polycarboxylic acid-based polymer may be preliminarily neutralized with a basic compound within a range that does not impair the object of the present invention. .. Examples of the basic compound include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide, and various amine compounds such as ammonia.
本発明の表面処理皮膜層を構成するポリカルボン酸系重合体は、これに限定されないが、重量平均分子量(Mw)が3,000〜1,000,000、好ましくは10,000〜1,000,000、より好ましくは10,000〜500,000の範囲にあることが望ましい。上記範囲よりも重量平均分子量が小さい場合には、表面処理皮膜層の耐熱水密着性が劣化する場合がある。一方で、上記範囲よりも重量平均分子量が大きい場合には、表面処理液の安定性が低下し、経時でゲル化するおそれがあり、生産性に劣る場合がある。 The polycarboxylic acid polymer constituting the surface-treated coating layer of the present invention is not limited to this, but has a weight average molecular weight (Mw) of 3,000 to 1,000,000, preferably 10,000 to 1,000. It is desirable that it is in the range of 1,000, more preferably 10,000 to 500,000. When the weight average molecular weight is smaller than the above range, the hot water adhesion of the surface-treated coating layer may deteriorate. On the other hand, when the weight average molecular weight is larger than the above range, the stability of the surface treatment liquid may be lowered and gelation may occur over time, resulting in poor productivity.
(多価金属化合物)
本発明において表面処理皮膜層を構成する多価金属化合物とは、金属イオンの価数が2以上の多価金属原子単体、及びその化合物である。多価金属の具体例としては、ベリリウム、マグネシウム、カルシウムなどのアルカリ土類金属、チタン、ジルコニウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛などの遷移金属、アルミニウム等を挙げることができる。多価金属化合物の具体例としては、前記多価金属の酸化物、水酸化物、炭酸塩、有機酸塩、無機酸塩、その他、多価金属のアンモニウム錯体や多価金属の2〜4級アミン錯体とそれら錯体の炭酸塩や有機酸塩等が挙げられる。有機酸塩としては、酢酸塩、シュウ酸塩、クエン酸塩、乳酸塩、ステアリン酸塩、エチレン性不飽和カルボン酸塩等が挙げられる。無機酸塩としては、塩化物、硫酸塩、硝酸塩、リン酸塩等を挙げることができる。それ以外には多価金属の有機金属化合物、例えば金属アルコキシド化合物、金属キレート化合物、及びこれらの部分加水分解物等が挙げられる。これらの多価金属化合物はそれぞれ単独で、また少なくとも2種の多価金属化合物を混合して用いることができる。
本発明においては、上記多価金属化合物の中でも、ジルコニウム化合物、チタン化合物、亜鉛化合物が好適に使用でき、特にジルコニウム化合物が好適である。
(Polyvalent metal compound)
In the present invention, the polyvalent metal compound constituting the surface treatment coating layer is a polyvalent metal atom simple substance having a metal ion valence of 2 or more, and a compound thereof. Specific examples of the polyvalent metal include alkaline earth metals such as beryllium, magnesium and calcium, transition metals such as titanium, zirconium, chromium, manganese, iron, cobalt, nickel, copper and zinc, and aluminum. .. Specific examples of the polyvalent metal compound include oxides, hydroxides, carbonates, organic acid salts, and inorganic acid salts of the polyvalent metal, ammonium complex of the polyvalent metal, and polyvalent metal secondary to quaternary compounds. Examples thereof include amine complexes and carbonates and organic acid salts of these complexes. Examples of organic acid salts include acetates, oxalates, citrates, lactates, stearates, ethylenically unsaturated carboxylates and the like. Examples of the inorganic acid salt include chloride, sulfate, nitrate, phosphate and the like. Other than these, polyvalent metal organometallic compounds such as metal alkoxide compounds, metal chelate compounds, and partial hydrolysates thereof are listed. These polyvalent metal compounds may be used alone, or at least two kinds of polyvalent metal compounds may be mixed and used.
In the present invention, among the above polyvalent metal compounds, zirconium compounds, titanium compounds and zinc compounds can be preferably used, and zirconium compounds are particularly preferable.
(ジルコニウム化合物)
本発明において表面処理皮膜層を構成する多価金属化合物として用いるジルコニウム化合物としては、例えば、酸化ジルコニウム、ヘキサフルオロジルコニウム酸(H2ZrF6)、ヘキサフルオロジルコニウムカリウム(K2ZrF6)やヘキサフルオロジルコニウムアンモニウム((NH4)2ZrF6)、炭酸ジルコニウムアンモニウム((NH4)2ZrO(CO3)2)、オキシ硝酸ジルコニウム(ZrO(NO3)2)、オキシ酢酸ジルコニウム(ZrO(C2H3O2)2)、オキシ塩化ジルコニウム(ZrOCl2)、オキシ硫酸ジルコニウム(ZrOSO4)、オキシ炭酸ジルコニウム(ZrOCO3)、オキシオクチル酸ジルコニウム(ZrO(C8H15O2)2)、水酸化オキシジルコニウム(ZrO(OH)2)、水酸化オキシ塩化ジルコニウム(ZrO(OH)Cl)、炭酸ジルコニウムカリウム(K2(ZrO(CO3)2))、リン酸ジルコニウム、乳酸ジルコニウム、ジルコニウムアセチルアセトネート[Zr(OC(=CH2)CH2COCH3)4]等が挙げられる。上記ジルコニウム化合物の中でも、環境負荷の観点からフッ素成分を含まないものが好ましく、特にオキシジルコニウム塩が好ましい。ここで、「オキシジルコニウム塩」とは、ZrOで表される正2価の基(ジルコニルと呼ばれる)を含む塩を指す。オキシジルコニウム塩としては、炭酸ジルコニウムアンモニウム((NH4)2ZrO(CO3)2)、オキシ硝酸ジルコニウム(ZrO(NO3)2)、オキシ酢酸ジルコニウム(ZrO(C2H3O2)2)、オキシ塩化ジルコニウム(ZrOCl2)、オキシ硫酸ジルコニウム(ZrOSO4)、オキシ炭酸ジルコニウム(ZrOCO3)、炭酸ジルコニウムアンモニウム((NH4)2ZrO(CO3)2)、水酸化オキシジルコニウム(ZrO(OH)2)、水酸化オキシ塩化ジルコニウム(ZrO(OH)Cl)、炭酸ジルコニウムカリウム(K2(ZrO(CO3)2))などが挙げられ、上述した中でも水溶性のオキシジルコニウム塩が好ましく、特に処理液での安定性、耐熱水密着性の観点から、前駆体として炭酸ジルコニウムアンモニウムを好適に用いることができる。
なお、本発明の有機樹脂被覆表面処理金属板の表面処理皮膜層を構成する多価金属化合物(ジルコニウム化合物)として、水溶性のオキシジルコニウム塩(炭酸ジルコニウムアンモニウム)を用いた場合には、表面処理皮膜層において、ポリカルボン酸系重合体100質量部に対して、オキシジルコニウム塩が酸化ジルコニウム(ZrO2)換算で5〜90質量部、好ましくは25〜70質量部、より好ましくは25〜65質量部、特に好ましくは40〜65質量部の範囲で含有されていることが好適である。
(Zirconium compound)
Examples of the zirconium compound used as the polyvalent metal compound constituting the surface treatment coating layer in the present invention include zirconium oxide, hexafluorozirconic acid (H 2 ZrF 6 ), hexafluorozirconium potassium (K 2 ZrF 6 ), and hexafluoro. zirconium ammonium ((NH 4) 2 ZrF 6 ), zirconium carbonate ammonium ((NH 4) 2 ZrO ( CO 3) 2), zirconium oxynitrate (ZrO (NO 3) 2) , zirconium oxyacetate (ZrO (C 2 H 3 O 2 ) 2 ), zirconium oxychloride (ZrOCl 2 ), zirconium oxysulfate (ZrOSO 4 ), zirconium oxycarbonate (ZrOCO 3 ), zirconium oxyoctylate (ZrO(C 8 H 15 O 2 ) 2 ), hydroxylation Oxyzirconium (ZrO(OH) 2 ), hydroxy zirconium oxychloride (ZrO(OH)Cl), potassium zirconium carbonate (K 2 (ZrO(CO 3 ) 2 )), zirconium phosphate, zirconium lactate, zirconium acetylacetonate [Zr(OC(=CH 2 )CH 2 COCH 3 ) 4 ] and the like can be mentioned. Among the zirconium compounds, those containing no fluorine component are preferable from the viewpoint of environmental load, and oxyzirconium salt is particularly preferable. Here, the “oxyzirconium salt” refers to a salt containing a positive divalent group represented by ZrO (called zirconyl). Examples of the oxyzirconium salt include zirconium ammonium carbonate ((NH 4 ) 2 ZrO(CO 3 ) 2 ), zirconium oxynitrate (ZrO(NO 3 ) 2 ), and zirconium oxyacetate (ZrO(C 2 H 3 O 2 ) 2 ). , Zirconium oxychloride (ZrOCl 2 ), zirconium oxysulfate (ZrOSO 4 ), zirconium oxycarbonate (ZrOCO 3 ), ammonium zirconium carbonate ((NH 4 ) 2 ZrO(CO 3 ) 2 ), oxyzirconium hydroxide (ZrO(OH 2 ), zirconium hydroxide oxychloride (ZrO(OH)Cl), potassium zirconium carbonate (K 2 (ZrO(CO 3 ) 2 )) and the like. Among them, the water-soluble oxyzirconium salt is preferable, and From the viewpoint of stability in the treatment liquid and hot water adhesion, ammonium zirconium carbonate can be preferably used as the precursor.
In addition, when a water-soluble oxyzirconium salt (ammonium zirconium carbonate) is used as the polyvalent metal compound (zirconium compound) that constitutes the surface treatment film layer of the organic resin-coated surface-treated metal plate of the present invention, the surface treatment is performed. In the coating layer, the oxyzirconium salt is 5 to 90 parts by mass, preferably 25 to 70 parts by mass, more preferably 25 to 65 parts by mass in terms of zirconium oxide (ZrO 2 ), based on 100 parts by mass of the polycarboxylic acid polymer. Part, particularly preferably in the range of 40 to 65 parts by mass.
(チタン化合物)
本発明において表面処理皮膜層を構成する多価金属として用いるチタン化合物としては、これに限定されないが、例えば、酸化チタン、硝酸チタン、硫酸チタン(Ti(SO4)2)、オキシ硫酸チタン(TiOSO4)、フッ化チタン、ヘキサフルオロチタン酸(H2TiF6)、ヘキサフルオロチタン酸アンモニウム((NH4)2TiF6)、チタンラクテート、チタントリエタノールアミネート、チタンアミノエチルアミノエタノレート、チタンジエタノールアミネート、ジイソプロポキシチタニウムビスアセトン、チタニウムアセチルアセトネート等が挙げられる。本発明においては特にチタントリエタノールアミネートやチタンラクレート等の水溶性の有機チタン化合物を好適に用いることができる。
(Titanium compound)
The titanium compound used as the polyvalent metal constituting the surface treatment coating layer in the present invention is not limited to this, and examples thereof include titanium oxide, titanium nitrate, titanium sulfate (Ti(SO 4 ) 2 ), and titanium oxysulfate (TiOSO). 4 ), titanium fluoride, hexafluorotitanic acid (H 2 TiF 6 ), ammonium hexafluorotitanate ((NH 4 ) 2 TiF 6 ), titanium lactate, titanium triethanolaminate, titanium aminoethylaminoethanolate, titanium Diethanolaminate, diisopropoxytitanium bisacetone, titanium acetylacetonate and the like can be mentioned. In the present invention, water-soluble organic titanium compounds such as titanium triethanolaminate and titanium lactate can be preferably used.
(亜鉛化合物)
本発明において表面処理皮膜層を構成する多価金属として用いる亜鉛化合物としては、これに限定されないが、亜鉛の酸化物、水酸化物、炭酸塩、蟻酸塩、酢酸塩、シュウ酸塩、クエン酸塩、乳酸塩、塩化物、硫酸塩、硝酸塩、リン酸塩が挙げられる。これらの亜鉛化合物の中でも、酸化亜鉛を用いることが好ましい。酸化亜鉛を用いる場合、その形態は、粒子状であっても、非粒子状であってもよいが、粒子状であることが好ましい。また、このような粒子の平均粒子径は特に限定されないが、溶解性の観点からは50μm以下であることが好ましく、10μm以下であることがより好ましく、1μm以下であることが特に好ましい。
(Zinc compound)
The zinc compound used as the polyvalent metal constituting the surface treatment coating layer in the present invention is not limited to this, but includes zinc oxide, hydroxide, carbonate, formate, acetate, oxalate, and citric acid. Examples include salts, lactates, chlorides, sulfates, nitrates and phosphates. Of these zinc compounds, zinc oxide is preferably used. When zinc oxide is used, its form may be particulate or non-particulate, but it is preferably particulate. The average particle diameter of such particles is not particularly limited, but from the viewpoint of solubility, it is preferably 50 μm or less, more preferably 10 μm or less, and particularly preferably 1 μm or less.
(コロイダルシリカ)
本発明において表面処理皮膜層を構成するコロイダルシリカとしては、これに限定されないが、LUDOX(W.R.Grace社製)やスノーテックスN、スノーテックスUP(日産化学工業社製)のような球状シリカを挙げることができる。コロイダルシリカの粒径としては2〜80nm、特に4〜30nmの範囲にあることが望ましい。上記範囲より小さい粒子は一般に入手困難であり、一方上記範囲よりも大きい場合には、表面処理皮膜層中にコロイダルシリカを均一に分布させることが難しく、効果が得られにくい。
(Colloidal silica)
The colloidal silica constituting the surface-treated coating layer in the present invention is not limited to this, but may be spherical such as LUDOX (manufactured by WR Grace), Snowtex N, Snowtex UP (manufactured by Nissan Chemical Industries). Mention may be made of silica. The particle size of colloidal silica is preferably in the range of 2 to 80 nm, particularly 4 to 30 nm. Particles smaller than the above range are generally difficult to obtain, while when larger than the above range, it is difficult to uniformly distribute the colloidal silica in the surface-treated coating layer, and it is difficult to obtain the effect.
本発明における表面処理皮膜層は、本発明の目的を損なわない範囲で、一価のアルカリ金属からなる金属化合物を混合して、又は含まれたまま用いることができる。一価のアルカリ金属化合物の添加量は、前述の耐熱水密着性の観点から、ポリカルボン酸系重合体のカルボキシル基に対して、0.2化学当量以下であることが好ましい。一価の金属化合物は、部分的にポリカルボン酸系重合体の多価金属塩の分子中に含まれていてもよい。
また、本発明の目的を損なわない範囲で、ポリビニルアルコール、エチレン・ビニルアルコール共重合体、ポリビニルピロリドン、ポリビニルエチルエーテル、ポリアクリルアミド、アクリルアミド系化合物、ポリエチレンイミン、澱粉、アラビアガム、メチルセルロース等の水溶性重合体、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、ポリエステル樹脂、ポリウレタン樹脂等の高分子量の化合物が含まれていても良い。
The surface-treated coating layer in the present invention can be used by mixing with a metal compound composed of a monovalent alkali metal, or as it is contained, within a range not impairing the object of the present invention. The amount of the monovalent alkali metal compound added is preferably 0.2 chemical equivalents or less with respect to the carboxyl group of the polycarboxylic acid-based polymer from the viewpoint of the above-mentioned hot water adhesion. The monovalent metal compound may be partially contained in the molecule of the polyvalent metal salt of the polycarboxylic acid polymer.
Further, within a range that does not impair the object of the present invention, water-soluble polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinylpyrrolidone, polyvinylethyl ether, polyacrylamide, acrylamide compounds, polyethyleneimine, starch, gum arabic, methylcellulose, etc. A high molecular weight compound such as a polymer, polyvinyl acetate, an ethylene/vinyl acetate copolymer, a polyester resin or a polyurethane resin may be contained.
[ピーク高さ比(β/α)の算出]
ここで前述した赤外線吸収スペクトル測定による表面処理皮膜層のピーク高さ比(β/α)の算出方法について以下に説明する。まず、所定の方法により、表面処理皮膜層の赤外線吸収スペクトルを、4000〜700cm−1波数範囲で測定し、得られた表面処理皮膜層の赤外線吸収スペクトルから水蒸気及び炭酸ガスに由来する吸収ピークを差し引いた後、図1に例示するように、赤外線吸収スペクトルの1660〜1760cm−1の波数範囲内の最大吸収ピーク高さ(α)と1490〜1659cm−1の波数範囲内の最大吸収ピーク高さ(β)を得て、それらを用いてのピーク高さ比(β/α)を算出する。ここで、赤外線吸収スペクトルの1660〜1760cm−1の波数範囲内の最大吸収ピーク高さ(α)と1490〜1659cm−1の波数範囲内の最大吸収ピーク高さ(β)は以下のように定義する。
[Calculation of peak height ratio (β/α)]
Here, a method of calculating the peak height ratio (β/α) of the surface-treated coating layer by the infrared absorption spectrum measurement described above will be described below. First, by a predetermined method, the infrared absorption spectrum of the surface-treated coating layer was measured in the wave number range of 4000 to 700 cm −1 , and the absorption peaks derived from water vapor and carbon dioxide gas were found from the infrared absorption spectrum of the obtained surface-treated coating layer. After subtraction, as illustrated in FIG. 1, the maximum absorption peak height (α) in the wave number range of 1660 to 1760 cm −1 and the maximum absorption peak height in the wave number range of 1490 to 1659 cm −1 of the infrared absorption spectrum. (Β) is obtained and the peak height ratio (β/α) using them is calculated. Here, the maximum absorption peak height (α) in the wave number range of 1660 to 1760 cm −1 and the maximum absorption peak height (β) in the wave number range of 1490 to 1659 cm −1 of the infrared absorption spectrum are defined as follows. To do.
最大ピーク高さ(α):1800〜2000cm−1の波数範囲内で、吸光度が最も低くなる点と、1000〜1200cm−1の波数範囲内で、吸光度が最も低くなる点を結んだ直線をベースラインとし、1660〜1760cm−1の波数範囲内の最大吸収ピークの頂点から横軸(波数)に対して垂直に直線を下ろし、当該直線とベースラインとの交点における吸光度と最大吸収ピーク頂点の吸光度の差を最大ピーク高さ(α)とする。
最大ピーク高さ(β):1800〜2000cm−1の波数範囲内で、吸光度が最も低くなる点と、1000〜1200cm−1の波数範囲内で、吸光度が最も低くなる点を結んだ直線をベースラインとし、1490〜1659cm−1の波数範囲の最大吸収ピークの頂点から横軸(波数)に対して垂直に直線を下ろし、当該直線とベースラインとの交点における吸光度と最大吸収ピーク頂点の吸光度の差を最大ピーク高さ(β)とする。
Maximum peak height (alpha): the base within the wavenumber range of 1800~2000Cm -1, and that the absorbance is the lowest, in the wavenumber range of 1000 to 1200 -1, the straight line connecting the points at which the absorbance is the lowest As a line, a straight line is drawn from the apex of the maximum absorption peak in the wave number range of 1660 to 1760 cm −1 perpendicularly to the horizontal axis (wave number), and the absorbance at the intersection of the line and the baseline and the absorbance at the apex of the maximum absorption peak The difference between is the maximum peak height (α).
Maximum peak height (beta): base within the wavenumber range of 1800~2000Cm -1, and that the absorbance is the lowest, in the wavenumber range of 1000 to 1200 -1, the straight line connecting the points at which the absorbance is the lowest As a line, a straight line is drawn perpendicularly to the horizontal axis (wave number) from the peak of the maximum absorption peak in the wave number range of 1490 to 1659 cm −1 , and the absorbance at the intersection of the straight line and the baseline and the absorbance at the peak of the maximum absorption peak Let the difference be the maximum peak height (β).
また、本発明で用いるポリカルボン酸系重合体がエチレン性不飽和カルボン酸とその他のアルキルアクリレートやアルキルメタクリレート等、不飽和カルボン酸エステルとの共重合体やエチレン性不飽和カルボン酸の重合体と不飽和カルボン酸エステルの重合体の混合物、或いはエチレン性不飽和カルボン酸とカルボン酸ビニルエステルとの共重合体やエチレン性不飽和カルボン酸の重合体とカルボン酸ビニルエステルの重合体の混合物の場合には、カルボン酸エステルのエステル結合(−COO−R:Rはアルキル基)に帰属するC=O伸縮振動は、1730cm−1〜1750cm−1の波数範囲内に吸収極大を有する吸収ピークを与える。従って、厳密にはそれら共重合体又は混合物の赤外線吸収スペクトルの1660〜1760cm−1の波数範囲内の最大吸収ピークには、カルボキシル基(−COOH)、及びエステル結合(−COO−R)に由来する二つのC=O伸縮振動が含まれる場合があるが、この場合においても、上述の手順により算出されるピーク高さ比(β/α)を多価金属と金属塩を形成していない遊離のカルボキシル基(−COOH)と多価金属と金属塩を形成しているカルボキシル基(−COO−)の量比を表す尺度としてそのまま用いる。さらに、本発明の目的を損なわない範囲で、表面処理皮膜層中にエステル結合を有する化合物、又は重合体が含まれる場合においても同様に、上述の手順により算出されるピーク高さ比(β/α)を多価金属と金属塩を形成していない遊離のカルボキシル基(−COOH)と多価金属と金属塩を形成しているカルボキシル基(−COO−)の量比を表す尺度としてそのまま用いる。 Further, the polycarboxylic acid-based polymer used in the present invention is a copolymer of ethylenically unsaturated carboxylic acid and other alkyl acrylate or alkyl methacrylate, a copolymer of unsaturated carboxylic acid ester or a polymer of ethylenically unsaturated carboxylic acid. In the case of a mixture of polymers of unsaturated carboxylic acid ester, a copolymer of ethylenically unsaturated carboxylic acid and vinyl carboxylate, or a mixture of polymer of ethylenically unsaturated carboxylic acid and vinyl carboxylate polymer Shows that the C═O stretching vibration attributed to the ester bond of carboxylic acid ester (—COO—R:R is an alkyl group) gives an absorption peak having an absorption maximum in the wave number range of 1730 cm −1 to 1750 cm −1. .. Therefore, strictly speaking, the maximum absorption peak in the wave number range of 1660 to 1760 cm −1 of the infrared absorption spectrum of the copolymer or mixture is derived from a carboxyl group (—COOH) and an ester bond (—COO—R). In some cases, the peak height ratio (β/α) calculated by the above-mentioned procedure does not form a polyvalent metal and a metal salt. It is used as it is as a scale showing the ratio of the amount of the carboxyl group (—COOH) and the carboxyl group (—COO − ) forming the metal salt with the polyvalent metal. Further, in a range that does not impair the object of the present invention, also in the case where a compound having an ester bond or a polymer is contained in the surface treatment coating layer, similarly, the peak height ratio (β/ α) is used as it is as a scale representing the quantitative ratio of the free carboxyl group (—COOH) that does not form a metal salt with a polyvalent metal and the carboxyl group (—COO − ) that forms a metal salt with a polyvalent metal. ..
一方で、表面処理皮膜層中に、本発明の目的を損なわない範囲で、ナトリウムやカリウム等のアルカリ金属が含まれる場合(例えば、ポリカルボン酸系重合体のアルカリ金属塩を混合して、又は含まれたまま用いた場合など)にはカルボキシル基とアルカリ金属との1価金属塩(−COO−)に帰属されるC=O伸縮振動は、1490〜1659cm−1の波数範囲内で、1560cm−1付近に吸収極大を有する吸収ピークを与える。従って、厳密には赤外線吸収スペクトルのピークにおいて、カルボキシル基と多価金属の金属塩に由来するC=O伸縮振動に、カルボキシル基とアルカリ金属との1価金属塩に由来するC=O伸縮振動が含まれるが、この場合においても、上述の手順により算出されるピーク高さ比(β/α)を多価金属と金属塩を形成していない遊離のカルボキシル基(−COOH)と多価金属と金属塩を形成しているカルボキシル基(−COO−)の量比を表す尺度としてそのまま用いる。 On the other hand, in the surface treatment coating layer, in the range that does not impair the object of the present invention, when an alkali metal such as sodium or potassium is contained (for example, by mixing an alkali metal salt of a polycarboxylic acid-based polymer, or monovalent metal salts (-COO and included the as carboxyl group and an alkali metal, etc.) is used - C = O stretching vibration attributable to), within the wave number range of 1490~1659cm -1, 1560cm An absorption peak having an absorption maximum near -1 is given. Therefore, strictly speaking, at the peak of the infrared absorption spectrum, C=O stretching vibration derived from a carboxyl group and a metal salt of a polyvalent metal and C=O stretching vibration derived from a monovalent metal salt of a carboxyl group and an alkali metal However, even in this case, the peak height ratio (β/α) calculated by the above-mentioned procedure is used as the free carboxyl group (-COOH) which does not form a metal salt with the polyvalent metal and the polyvalent metal. And is used as it is as a scale showing the ratio of the amount of carboxyl group (—COO − ) forming a metal salt.
尚、表面処理皮膜層の赤外吸収スペクトルの測定法としては、主に金属基材上に形成した薄膜の赤外線吸収スペクトルを、高感度に測定することができる高感度反射法(反射吸収法)が好適である。さらに、測定には偏光子を用いることが好ましい。偏光子を用いることにより平行偏光(P偏光)のみを検出することでより高感度に測定することができる。ただし,偏光子を用いることで,測定に使用できる赤外光量が減少するためにノイズが大きくなるため、測定に用いる検出器としては、半導体型のテルル化カドミウム水銀(MCT)検出器が好適である。また、測定に用いるリファレンス基板としては金蒸着ミラーを用いることが好適である。 As a method for measuring the infrared absorption spectrum of the surface-treated coating layer, a high-sensitivity reflection method (reflection absorption method) that can measure the infrared absorption spectrum of a thin film formed mainly on a metal substrate with high sensitivity Is preferred. Furthermore, it is preferable to use a polarizer for the measurement. By using a polarizer, it is possible to perform measurement with higher sensitivity by detecting only parallel polarized light (P polarized light). However, when a polarizer is used, the amount of infrared light that can be used for measurement decreases and noise increases, so a semiconductor-type cadmium mercury telluride (MCT) detector is suitable as the detector used for measurement. is there. Further, it is preferable to use a gold vapor deposition mirror as the reference substrate used for the measurement.
(表面処理液)
本発明の表面処理皮膜層を形成する表面処理液は、ポリカルボン酸系重合体、多価金属化合物、水性媒体、及び必要に応じてコロイダルシリカを含有する表面処理液から形成することができる。
このような表面処理液においては、ポリカルボン酸系重合体の固形分100質量部に対して、多価金属化合物が金属換算で3〜67質量部、好ましくは18〜52質量部、より好ましくは18〜48質量部、特に好ましくは30〜48質量部の範囲で含有されていることが好適である。(前記多価金属化合物が前述したオキシジルコニウム塩の場合においては、ポリカルボン酸系重合体100質量部当たり、オキシジルコニウム塩が酸化ジルコニウム(ZrO2)換算で5〜90質量部、好ましくは25〜70質量部、より好ましくは25〜65質量部、特に好ましくは40〜65質量部の範囲で含有されていることが好適である。)
また表面処理液にコロイダルシリカを配合する場合には、ポリカルボン酸系重合体100質量部当たり、コロイダルシリカが固形分(二酸化ケイ素;SiO2)換算で10〜200質量部、特に50〜200質量部の量で配合することが好適である。上記範囲よりもコロイダルシリカの量が少ない場合には充分な耐熱性の向上が望めず、その一方上記範囲よりもコロイダルシリカの量が多くても、更なる耐熱性の向上は得られず、かえって有機樹脂被覆層との耐熱水密着性を阻害するおそれがある。
(Surface treatment liquid)
The surface treatment liquid for forming the surface treatment film layer of the present invention can be formed from a surface treatment liquid containing a polycarboxylic acid-based polymer, a polyvalent metal compound, an aqueous medium, and optionally colloidal silica.
In such a surface treatment liquid, the polyvalent metal compound is 3 to 67 parts by mass, preferably 18 to 52 parts by mass, and more preferably, based on 100 parts by mass of the solid content of the polycarboxylic acid polymer. It is preferable that the content is 18 to 48 parts by mass, particularly preferably 30 to 48 parts by mass. (In the case where the polyvalent metal compound is the oxyzirconium salt described above, the oxyzirconium salt is 5 to 90 parts by mass, preferably 25 to 100 parts by mass, based on 100 parts by mass of the polycarboxylic acid polymer, in terms of zirconium oxide (ZrO 2 ). 70 parts by mass, more preferably 25 to 65 parts by mass, and particularly preferably 40 to 65 parts by mass is suitable.)
When compounding colloidal silica in the surface treatment liquid, colloidal silica is 10 to 200 parts by mass, particularly 50 to 200 parts by mass, based on 100 parts by mass of the polycarboxylic acid polymer in terms of solid content (silicon dioxide; SiO 2 ). It is preferred to mix in the amount of parts. When the amount of colloidal silica is less than the above range, sufficient heat resistance cannot be expected to be improved. On the other hand, when the amount of colloidal silica is more than the above range, further improvement in heat resistance cannot be obtained. There is a risk of impairing the hot water adhesion with the organic resin coating layer.
前記水性媒体としては、蒸留水、イオン交換水、純粋水等の水を使用することができ、公知の水性組成物と同様に、アルコール、多価アルコール、その誘導体等の有機溶媒を含有することができる。このような共溶剤を用いる場合には、水に対して5〜30重量%の量で含有することができる。上記範囲で溶剤を含有することにより、製膜性能が向上する。このような有機溶媒としては例えば、メチルアルコール、エチルアルコール、イソプロピルアルコール、プロピレングリコールモノプロピルエーテル、エチレングリコールモノブルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、3−メチル3−メトキシブタノールなどが挙げられる。 As the aqueous medium, water such as distilled water, ion-exchanged water, and pure water can be used, and like the known aqueous composition, it contains an organic solvent such as alcohol, polyhydric alcohol, or its derivative. You can When such a co-solvent is used, it can be contained in an amount of 5 to 30% by weight based on water. By containing the solvent in the above range, the film forming performance is improved. Examples of such organic solvent include methyl alcohol, ethyl alcohol, isopropyl alcohol, propylene glycol monopropyl ether, ethylene glycol monoble ether, propylene glycol monomethyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monomethyl ether. Butyl ether, tripropylene glycol monomethyl ether, 3-methyl 3-methoxybutanol and the like can be mentioned.
(金属板上への表面処理皮膜層の形成方法)
金属板上への表面処理皮膜層の形成方法としては特に限定されず、例えば、金属板に圧延油や防錆油等を除去するための表面洗浄(前処理)として、脱脂処理を施し、水洗や表面調整をし、次いで、前述の表面処理液を金属板上に塗布し、加熱乾燥することで表面処理皮膜層を形成させることができる。
(Method of forming surface treatment film layer on metal plate)
The method for forming the surface treatment film layer on the metal plate is not particularly limited, and, for example, as a surface cleaning (pretreatment) for removing rolling oil, rust preventive oil, etc. on the metal plate, degreasing treatment is performed and water washing is performed. It is possible to form a surface-treated film layer by adjusting the surface and the surface, then applying the above-mentioned surface-treating liquid onto the metal plate and heating and drying.
上記脱脂処理としては特に限定されず、例えば、従来アルミニウムやアルミニウム合金等の金属板の脱脂処理に用いられてきたアルカリ洗浄や酸洗浄を挙げることができる。本発明においては、表面処理皮膜層と金属基材の密着性の点から、アルカリ洗浄の後、更に、酸洗浄を行う方法、又は、上記アルカリ洗浄を行うことなく、酸洗浄を行う方法が好ましい。上記脱脂処理において、通常、アルカリ洗浄はアルカリ性クリーナーを用いて行われ、酸洗浄は酸性クリーナーを用いて行われる The degreasing treatment is not particularly limited, and examples thereof include alkali cleaning and acid cleaning that have been conventionally used for degreasing metal plates such as aluminum and aluminum alloys. In the present invention, from the viewpoint of adhesion between the surface treatment film layer and the metal substrate, a method of further performing acid cleaning after alkali cleaning, or a method of performing acid cleaning without performing the alkali cleaning is preferable. .. In the above degreasing treatment, the alkali cleaning is usually carried out using an alkaline cleaner, and the acid cleaning is carried out using an acidic cleaner.
上記アルカリ性クリーナーとしては特に限定されず、例えば、通常のアルカリ洗浄に用いられるものを用いることができ、例えば、日本ペイント社製「サーフクリーナー420N−2」等が挙げられる。上記酸性クリーナーとしては特に限定されず、例えば、硫酸、硝酸、塩酸等の無機酸等の水溶液が挙げられる。上記脱脂処理を行った後は、金属板表面に残存する脱脂剤を除去するために、水洗処理を行なったのち、エアーブロー若しくは熱空気乾燥等の方法にて、金属板表面の水分を除去する。 The alkaline cleaner is not particularly limited, and for example, those used for ordinary alkaline cleaning can be used, and examples thereof include "Surf Cleaner 420N-2" manufactured by Nippon Paint Co., Ltd. The acidic cleaner is not particularly limited, and examples thereof include aqueous solutions of inorganic acids such as sulfuric acid, nitric acid and hydrochloric acid. After performing the degreasing treatment, in order to remove the degreasing agent remaining on the surface of the metal plate, a water washing treatment is performed, and then water on the surface of the metal plate is removed by a method such as air blowing or hot air drying. ..
表面処理液は、ロールコート法、スプレー法、浸漬法、刷毛塗り法、スプレー絞り法(スプレーにより、金属板上に表面処理液を塗布した後、ロールやエアーで液膜を絞りとり乾燥する)、浸漬絞り法(金属板を表面処理液に浸漬させた後、ロールやエアーで液膜を強く絞りとり乾燥する)等の従来公知の方法で金属板に塗布処理することができ、表面処理後の乾燥条件は50〜300℃、5秒〜5分であり、特に50〜250℃、10秒〜2分であることが好ましい。 The surface treatment liquid is a roll coating method, a spray method, a dipping method, a brush coating method, a spray squeezing method (after applying the surface treatment solution on a metal plate by spraying, squeeze the liquid film with a roll or air to dry). After the surface treatment, the metal plate can be applied by a conventionally known method such as an immersion squeezing method (after immersing the metal plate in the surface treatment liquid, strongly squeezing the liquid film with a roll or air to dry). The drying conditions are 50 to 300° C. and 5 seconds to 5 minutes, and particularly preferably 50 to 250° C. and 10 seconds to 2 minutes.
(金属板)
本発明に用いる金属板としては、特に限定されないが、各種鋼板やアルミニウム板などが使用される。鋼板としては、冷圧延鋼板を焼鈍した後二次冷間圧延したものを用いることができ、他にクラッド鋼板なども用いることができる。また、アルミニウム板としては、いわゆる純アルミニウムの他にアルミニウム合金から成るアルミニウム板を用いることができ、本発明においては、特にアルミニウム合金から成るアルミニウム板を好適に使用できる。上記アルミニウム板としては、例えば、アルミニウム合金5182材、アルミニウム合金5021材、アルミニウム合金5022材、アルミニウム合金5052材、アルミニウム合金3004材、アルミニウム合金3005材、アルミニウム合金3104材、アルミニウム合金1100材等が好適に用いられる。
金属板の元厚は、特に限定はなく、金属の種類、容器の用途或いはサイズによっても相違するが、金属板としては一般に0.10〜0.50mmの厚みを有するのがよく、この中でも鋼板の場合には0.10〜0.30mmの厚み、アルミニウム板の場合は0.15〜0.40mmの厚みを有するのがよい。0.15mm未満では、蓋成形が困難で、かつ所望の蓋強度が得られず、一方0.40mmを超えると、経済性が悪くなるためである。
(Metal plate)
The metal plate used in the present invention is not particularly limited, but various steel plates, aluminum plates and the like are used. As the steel plate, a cold-rolled steel plate that has been annealed and then secondary cold-rolled can be used. In addition, a clad steel plate or the like can also be used. In addition to the so-called pure aluminum, an aluminum plate made of an aluminum alloy can be used as the aluminum plate. In the present invention, an aluminum plate made of an aluminum alloy can be preferably used. As the aluminum plate, for example, aluminum alloy 5182 material, aluminum alloy 5021 material, aluminum alloy 5022 material, aluminum alloy 5052 material, aluminum alloy 3004 material, aluminum alloy 3005 material, aluminum alloy 3104 material, aluminum alloy 1100 material and the like are preferable. Used for.
The original thickness of the metal plate is not particularly limited, and varies depending on the type of metal, the use or size of the container, but it is generally preferable that the metal plate has a thickness of 0.10 to 0.50 mm. In the case of, the thickness should be 0.10 to 0.30 mm, and in the case of an aluminum plate, the thickness should be 0.15 to 0.40 mm. This is because if it is less than 0.15 mm, it is difficult to mold the lid and desired lid strength cannot be obtained, and if it exceeds 0.40 mm, the economical efficiency is deteriorated.
尚、本発明においては、金属板として、あらかじめ従来公知の化成処理やめっき等の表面処理を施したものを使用しても良い。
前述の表面処理としては、金属板として鋼鈑を用いる場合には、亜鉛メッキ、錫メッキ、ニッケルメッキ、電解クロム酸処理、クロム酸処理、リン酸塩処理等の表面処理の一種又は二種以上行ったものを挙げることができる。金属板としてアルミニウム板を用いる場合には、リン酸クロメート処理、リン酸ジルコニウム処理、リン酸塩処理等の無機系の化成処理、及び無機系の化成処理にアクリル樹脂、フェノール樹脂などの水溶性樹脂、タンニン酸等の有機成分を組み合わせた有機無機複合化成処理等を挙げることができる。
In the present invention, as the metal plate, a metal plate which has been subjected to surface treatment such as known chemical conversion treatment or plating in advance may be used.
As the above-mentioned surface treatment, when steel plate is used as the metal plate, one or more surface treatment such as zinc plating, tin plating, nickel plating, electrolytic chromic acid treatment, chromic acid treatment, and phosphate treatment. I can list what I went to. When an aluminum plate is used as the metal plate, a phosphoric acid chromate treatment, a zirconium phosphate treatment, an inorganic chemical conversion treatment such as a phosphate treatment, and a water-soluble resin such as an acrylic resin or a phenol resin for the inorganic chemical conversion treatment. An organic-inorganic composite chemical conversion treatment in which organic components such as tannic acid are combined can be used.
(有機樹脂被覆層)
本発明の有機樹脂被覆塗装金属板において、金属板に形成された表面処理皮膜層上に直接施される有機樹脂被覆層を構成する有機樹脂としては、特に限定されず、例えば、結晶性ポリプロピレン、結晶性プロピレン−エチレン共重合体、結晶性ポリブテン−1、結晶性ポリ4−メチルペンテン−1、低−、中−、或いは高密度ポリエチレン、エチレン−酢酸ビニル共重合体(EVA)、エチレン−アクリル酸エチル共重合体(EEA)、イオン架橋オレフィン共重合体(アイオノマー)等のポリオレフィン類;ポリスチレン、スチレン−ブタジエン共重合体等の芳香族ビニル共重合体;ポリ塩化ビニル、塩化ビニリデン樹脂等のハロゲン化ビニル重合体;アクリロニトリル−スチレン共重合体、アクリロニトリル−スチレン−ブタジエン共重合体の如きニトリル重合体;ナイロン6、ナイロン66、パラ又はメタキシリレンアジパミドの如きポリアミド類;ポリエチレンテレフタレート(PET)、ポリテトラメチレンテレフタレート等のポリエステル類;各種ポリカーボネート;ポリオキシメチレン等のポリアセタール類等の熱可塑性樹脂が挙げられ、これらの熱可塑性樹脂から構成された熱可塑性樹脂フィルムを有機樹脂被覆層として用いることができる。これらの中でも、特に熱可塑性樹脂としてポリエステル樹脂から構成されたポリエステル樹脂フィルムが好適である。
(Organic resin coating layer)
In the organic resin coating coated metal plate of the present invention, the organic resin constituting the organic resin coating layer directly applied to the surface treatment film layer formed on the metal plate is not particularly limited, for example, crystalline polypropylene, Crystalline propylene-ethylene copolymer, crystalline polybutene-1, crystalline poly-4-methylpentene-1, low-, medium- or high-density polyethylene, ethylene-vinyl acetate copolymer (EVA), ethylene-acrylic Polyolefins such as ethyl acid acid copolymer (EEA) and ion-crosslinked olefin copolymer (ionomer); aromatic vinyl copolymers such as polystyrene and styrene-butadiene copolymer; halogens such as polyvinyl chloride and vinylidene chloride resin Vinyl polymers; nitrile polymers such as acrylonitrile-styrene copolymers and acrylonitrile-styrene-butadiene copolymers; polyamides such as nylon 6, nylon 66, para or metaxylylene adipamide; polyethylene terephthalate (PET) , Polyesters such as polytetramethylene terephthalate; various polycarbonates; thermoplastic resins such as polyacetals such as polyoxymethylene, etc., and a thermoplastic resin film composed of these thermoplastic resins is used as an organic resin coating layer. You can Among these, a polyester resin film composed of a polyester resin as a thermoplastic resin is particularly preferable.
前記ポリエステル樹脂フィルムを構成するポリエステル樹脂としては、ホモポリエチレンテレフタレートであってもよいし、テレフタル酸以外の酸成分を酸成分基準で30モル%以下の量で、またエチレングリコール以外のアルコール成分をアルコール成分基準で30モル%以下の量で含有する共重合ポリエステル単体またはそれらのブレンド物であってもよい。
前記テレフタル酸以外の酸成分としては、イソフタル酸、ナフタレンジカルボン酸、シクロヘキサンジカルボン酸、P−β−オキシエトキシ安息香酸、ジフェノキシエタン−4,4’−ジカルボン酸、5−ナトリウムスルホイソフタル酸、ヘキサヒドロテレフタル酸、コハク酸、アジピン酸、セバシン酸、ドデカンジオン酸、ダイマー酸、トリメリット酸、ピロメリット酸等を挙げることができる。
前記エチレングリコール以外のアルコール成分としては、プロピレングリコール、1,4−ブタンジオール、ネオペンチルグリコール、1,6−ヘキシレングリコール、ジエチレングリコール、トリエチレングリコール、シクロヘキサンジメタノール、ビスフェノールAのエチレンオキサイド付加物、トリメチロールプロパン、ペンタエリスリトールなどのグリコール成分を挙げることができる。
また、ホモポリエチレンテレフタレート樹脂及び/又はポリエチレンテレフタレートを主体とした共重合ポリエステル樹脂とこれら以外の結晶性ポリエステル樹脂、たとえばホモポリブチレンテレフタレート樹脂及び/又はポリブチレンテレフタレート樹脂を主体とした共重合ポリエステル樹脂、或いは、ホモポリエチレンナフタレート樹脂及び/又はポリエチレンナフタレート樹脂を主体とした共重合ポリエステル樹脂とをブレンドした樹脂であってもよい。その場合においては、ホモポリエチレンテレフタレート樹脂及び/又はポリエチレンテレフタレート樹脂を主体とした共重合ポリエステル樹脂に対して、ホモポリエチレンテレフタレート樹脂及びポリエチレンテレフタレート樹脂を主体とした共重合ポリエステル樹脂以外の前記結晶性ポリエステル樹脂の配合量が5〜50wt%であることが好ましい。
The polyester resin constituting the polyester resin film may be homopolyethylene terephthalate, an acid component other than terephthalic acid in an amount of 30 mol% or less based on the acid component, and an alcohol component other than ethylene glycol as an alcohol. It may be a copolyester simple substance or a blend thereof containing 30 mol% or less based on the components.
Acid components other than terephthalic acid include isophthalic acid, naphthalenedicarboxylic acid, cyclohexanedicarboxylic acid, P-β-oxyethoxybenzoic acid, diphenoxyethane-4,4'-dicarboxylic acid, 5-sodium sulfoisophthalic acid, hexa Examples thereof include hydroterephthalic acid, succinic acid, adipic acid, sebacic acid, dodecanedioic acid, dimer acid, trimellitic acid, and pyromellitic acid.
As the alcohol component other than the ethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,6-hexylene glycol, diethylene glycol, triethylene glycol, cyclohexanedimethanol, an ethylene oxide adduct of bisphenol A, Examples thereof include glycol components such as trimethylolpropane and pentaerythritol.
Further, a homopolyethylene terephthalate resin and/or a copolyester resin mainly composed of polyethylene terephthalate and a crystalline polyester resin other than these, for example, a homopolybutylene terephthalate resin and/or a copolyester resin mainly composed of a polybutylene terephthalate resin, Alternatively, it may be a resin obtained by blending a homopolyethylene naphthalate resin and/or a copolymerized polyester resin mainly containing a polyethylene naphthalate resin. In that case, the crystalline polyester resin other than the homopolyethylene terephthalate resin and/or the copolyester resin mainly composed of the polyethylene terephthalate resin is added to the homopolyethylene terephthalate resin and/or the copolyester resin mainly composed of the polyethylene terephthalate resin. It is preferable that the compounding amount of 5 to 50 wt %.
上記ポリエステル樹脂の中でも特に、エチレンテレフタレート単位からなるポリエチレンテレフタレート樹脂、ポリエチレンテレフタレート/ポリエチレンイソフタレート共重合樹脂、ポリエチレンテレフタレート/ポリブチレンテレフタレート共重合樹脂、ポリエチレンテレフタレート/ポリエチレンナフタレート共重合樹脂、ポリエチレンテレフタレート樹脂とポリブチレンテレフタレート樹脂のブレンド樹脂、ポリエチレンテレフタレート/ポリエチレンイソフタレート共重合樹脂とポリブチレンテレフタレート樹脂のブレンド樹脂の何れかであることが好ましく、特に、ポリエチレンテレフタレート/ポリエチレンイソフタレート共重合樹脂、ポリエチレンテレフタレート/ポリエチレンイソフタレート共重合樹脂とポリブチレンテレフタレート樹脂のブレンド樹脂が好ましい。なお、ポリエチレンテレフタレート/ポリエチレンイソフタレート共重合樹脂としては、イソフタル酸の含有量が20モル%以下(酸成分基準)のものが好ましい。前記ポリエチレンテレフタレート/ポリエチレンイソフタレート共重合樹脂とポリブチレンテレフタレート樹脂のブレンド樹脂としては、ポリエチレンテレフタレート/ポリエチレンイソフタレート共重合樹脂に対して、ポリブチレンテレフタレート樹脂を10〜50wt%の範囲でブレンドしたものが好ましい。 Among the above polyester resins, polyethylene terephthalate resin composed of ethylene terephthalate unit, polyethylene terephthalate/polyethylene isophthalate copolymer resin, polyethylene terephthalate/polybutylene terephthalate copolymer resin, polyethylene terephthalate/polyethylene naphthalate copolymer resin, polyethylene terephthalate resin It is preferably any one of a blended resin of polybutylene terephthalate resin, a polyethylene terephthalate/polyethylene isophthalate copolymer resin and a blended resin of polybutylene terephthalate resin, and particularly polyethylene terephthalate/polyethylene isophthalate copolymer resin, polyethylene terephthalate/polyethylene. A blend resin of an isophthalate copolymer resin and a polybutylene terephthalate resin is preferable. The polyethylene terephthalate/polyethylene isophthalate copolymer resin preferably has an isophthalic acid content of 20 mol% or less (based on the acid component). The blended resin of the polyethylene terephthalate/polyethylene isophthalate copolymer resin and the polybutylene terephthalate resin is a blend of the polyethylene terephthalate/polyethylene isophthalate copolymer resin with the polybutylene terephthalate resin in the range of 10 to 50 wt %. preferable.
有機樹脂被覆層として使用するポリエステル樹脂は、フィルム形成範囲の分子量を有するべきであり、溶媒として、フェノール/テトラクロロエタン混合溶媒を用いて測定した固有粘度〔η〕が0.5以上、特に0.52〜0.70の範囲にあることが腐食成分に対するバリヤー性や機械的性質の点から好ましく、またガラス転移点が50℃以上、特に60℃〜80℃の範囲にあることが好ましい。 The polyester resin used as the organic resin coating layer should have a molecular weight in the film-forming range, and the intrinsic viscosity [η] measured using a phenol/tetrachloroethane mixed solvent as a solvent is 0.5 or more, and particularly 0. It is preferably in the range of 52 to 0.70 from the viewpoint of barrier properties against corrosive components and mechanical properties, and the glass transition point is preferably 50° C. or higher, particularly preferably in the range of 60° C. to 80° C.
ポリエステル樹脂フィルム等の熱可塑性樹脂フィルムには、それ自体公知のフィルム用配合剤、滑剤、アンチブロッキング剤、顔料、各種帯電防止剤、酸化防止剤等を公知の処方によって配合することができる。
ポリエステル樹脂フィルム等の熱可塑性樹脂フィルムの厚みは、一般に5〜40μmの範囲にあることが好ましい。
熱可塑性樹脂フィルムから成る有機樹脂被覆層は二層構成にすることもでき、熱可塑性樹脂としてポリエステル樹脂を用いる場合には、下層として、エチレンテレフタレート単位を主体とし、イソフタル酸、ナフタレンジカルボン酸等の少なくとも一種を1〜30モル%(酸成分基準)の量で含有し、上層となるポリエステル樹脂における上記酸成分の配合量よりも、その量が多いポリエステル樹脂から形成することが、加工密着性、耐デント性等の点から特に好適である。
A thermoplastic resin film such as a polyester resin film may be blended with a known compounding agent for a film, a lubricant, an anti-blocking agent, a pigment, various antistatic agents, an antioxidant and the like by a known formulation.
The thickness of the thermoplastic resin film such as the polyester resin film is generally preferably in the range of 5 to 40 μm.
The organic resin coating layer composed of a thermoplastic resin film can also have a two-layer structure, and when a polyester resin is used as the thermoplastic resin, the lower layer is mainly composed of ethylene terephthalate units and contains isophthalic acid, naphthalenedicarboxylic acid, etc. When at least one kind is contained in an amount of 1 to 30 mol% (based on the acid component) and the amount of the acid component is larger than the amount of the acid component in the upper layer polyester resin, the processing adhesiveness is It is particularly preferable in terms of dent resistance and the like.
熱可塑性樹脂フィルムから成る有機樹脂被覆層は、エポキシフェノール系やポリエステルフェノール系等の従来公知の接着プライマー層を介して、表面処理皮膜層の上に形成しているものであっても良い。接着プライマー層は、表面処理皮膜層と有機樹脂被覆層との両方に優れた接着性を示すものである。
エポキシフェノール系の接着プライマーとしては、特にエポキシ樹脂とフェノール樹脂を50:50〜99:1の重量比、特に60:40〜95:5の重量比で含有する塗料から形成されることが、密着性と耐食性の観点から好ましい。
ポリエステルフェノール系の接着プライマーとしては、特にポリエステル樹脂とフェノール樹脂を50:50〜99:1の重量比、特に60:40〜95:5の重量比で含有する塗料から形成されることが、密着性と耐食性の観点から好ましい。
上記接着プライマー層は一般に0.1〜10μmの厚みに設けるのがよい。接着プライマー層は予め表面処理金属板上の表面処理皮膜層上に設けても良く、あるいは上記ポリエステル樹脂フィルム等の有機樹脂被覆層上に設けても良い。
The organic resin coating layer made of a thermoplastic resin film may be formed on the surface-treated coating layer via a conventionally known adhesive primer layer such as epoxyphenol type or polyesterphenol type. The adhesive primer layer exhibits excellent adhesiveness to both the surface treatment film layer and the organic resin coating layer.
As the epoxyphenol-based adhesive primer, it is particularly preferable that it is formed from a coating material containing an epoxy resin and a phenol resin in a weight ratio of 50:50 to 99:1, particularly 60:40 to 95:5. It is preferable from the viewpoints of corrosion resistance and corrosion resistance.
As the polyesterphenol-based adhesive primer, it is particularly preferable that it is formed from a paint containing a polyester resin and a phenol resin in a weight ratio of 50:50 to 99:1, particularly 60:40 to 95:5. It is preferable from the viewpoints of corrosion resistance and corrosion resistance.
Generally, the adhesive primer layer is preferably provided in a thickness of 0.1 to 10 μm. The adhesive primer layer may be provided in advance on the surface-treated coating layer on the surface-treated metal plate, or may be provided on the organic resin coating layer such as the polyester resin film.
また本発明の有機樹脂被覆表面処理金属板において、樹脂塗料組成物から成る塗膜を有機樹脂被覆層とすることもできる。好適に使用できる樹脂塗料組成物としては、熱硬化性樹脂塗料、例えば、フェノール樹脂、メラミン樹脂、アルキド樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、エポキシアクリル樹脂、エポキシフェノール樹脂、エポキシユリア樹脂、ビスマレイミド樹脂、トリアリルシアヌレート樹脂、熱硬化型アクリル樹脂、シリコーン樹脂、油性樹脂等を用いた樹脂塗料、或いは熱可塑性樹脂塗料、例えばビニルオルガノゾル、塩化ビニル−酢酸ビニル共重合体、塩化ビニル−酢酸ビニル共重合体部分ケン化物、塩化ビニル−マレイン酸共重合体、塩化ビニル−マレイン酸−酢酸ビニル共重合体、アクリル重合体、飽和ポリエステル樹脂等を用いた樹脂塗料を挙げることができる。これらの樹脂塗料は単独でも2種以上の組合せでも使用される。これらの中でもポリエステル樹脂、フェノール樹脂、エポキシ樹脂、エポキシアクリル樹脂、エポキシフェノール樹脂、エポキシユリア樹脂、ビニルオルガノゾルのうちの1種、又は2種以上を用いた樹脂塗料から成る塗膜が好適である。
尚、上記塗膜の好適な乾燥塗膜質量は5〜200mg/dm2が好ましい。
Further, in the organic resin-coated surface-treated metal plate of the present invention, a coating film composed of the resin coating composition can be used as the organic resin coating layer. Suitable resin coating compositions include thermosetting resin coatings such as phenolic resins, melamine resins, alkyd resins, unsaturated polyester resins, epoxy resins, epoxy acrylic resins, epoxy phenolic resins, epoxy urea resins, bismaleimides. Resins, triallyl cyanurate resins, thermosetting acrylic resins, silicone resins, resin coatings using oily resins, or thermoplastic resin coatings such as vinyl organosols, vinyl chloride-vinyl acetate copolymers, vinyl chloride-acetic acid Examples of the resin coating material include a partially saponified vinyl copolymer, a vinyl chloride-maleic acid copolymer, a vinyl chloride-maleic acid-vinyl acetate copolymer, an acrylic polymer, and a saturated polyester resin. These resin paints may be used alone or in combination of two or more. Among these, a coating film made of a resin paint using one or more of polyester resin, phenol resin, epoxy resin, epoxy acrylic resin, epoxy phenol resin, epoxy urea resin, vinyl organosol is preferable. ..
In addition, the suitable dry coating film mass of the said coating film has preferable 5-200 mg/dm< 2 >.
(表面処理金属板上への有機樹脂被覆層の形成方法)
表面処理金属板上への有機樹脂被覆層の形成方法としては、有機樹脂被覆層が熱可塑性樹脂フィルムである場合には、例えば、熱可塑性樹脂フィルムを予め従来公知の方法により形成した後、表面処理金属板上に熱接着法で被覆する方法や、加熱溶融した熱可塑性樹脂を押出機を用いてフィルム状に押出し、直接表面処理金属板上に被覆する押出ラミネート法などが好適である。また、熱可塑性樹脂フィルムを形成した後で被覆する場合、フィルムは延伸されていてもよいが、未延伸フィルムであることが成形加工性及び耐デント性の点からは好ましい。
有機樹脂被覆層が塗膜である場合には、ロールコート法、スプレー法等、従来公知の方法で表面処理板上に塗料組成物を塗工し、乾燥・焼き付けすることで形成させることができる。
(Method for forming organic resin coating layer on surface-treated metal plate)
As a method for forming the organic resin coating layer on the surface-treated metal plate, when the organic resin coating layer is a thermoplastic resin film, for example, after forming a thermoplastic resin film by a conventionally known method, the surface A method of coating the treated metal plate by a heat-bonding method, an extrusion laminating method of extruding a heat-melted thermoplastic resin into a film using an extruder and directly coating the surface-treated metal plate are preferable. Further, when the thermoplastic resin film is coated after being formed, the film may be stretched, but an unstretched film is preferable from the viewpoint of moldability and dent resistance.
When the organic resin coating layer is a coating film, it can be formed by coating the coating composition on the surface-treated plate by a conventionally known method such as a roll coating method or a spraying method, followed by drying and baking. ..
図2は、本発明の有機樹脂被覆表面処理金属板の断面構造の一例を示すものであり、この有機樹脂被覆表面処理金属板1は、金属板2の両面に施された表面処理皮膜層3a,3b、有機樹脂被覆層4a,4bとから成っている。図2に示す具体例においては、金属板2の容器内外面の両方に表面処理皮膜層3a,3bを介して有機樹脂被覆層4a,4bが形成されているが、本発明の有機樹脂被覆表面処理金属板において、表面処理皮膜層3及び有機樹脂被覆層4は、少なくとも片面に形成されていればよく、もう一方の面には、異なる表面処理皮膜層および有機樹脂被覆層を形成することもできる。 FIG. 2 shows an example of a cross-sectional structure of the organic resin-coated surface-treated metal plate of the present invention. The organic resin-coated surface-treated metal plate 1 has a surface-treated coating layer 3a formed on both sides of the metal plate 2. , 3b and organic resin coating layers 4a, 4b. In the specific example shown in FIG. 2, the organic resin coating layers 4a and 4b are formed on both the inner and outer surfaces of the container of the metal plate 2 via the surface treatment coating layers 3a and 3b. In the treated metal plate, the surface treatment coating layer 3 and the organic resin coating layer 4 may be formed on at least one surface, and different surface treatment coating layers and organic resin coating layers may be formed on the other surface. it can.
(缶体及びその製法)
本発明の有機樹脂被覆表面処理金属板から成る缶体は、従来公知の成形法により製缶することができる。
本発明の有機樹脂被覆表面処理覆金属板は、有機樹脂被覆の優れた加工密着性を有していることから、絞り加工、絞り・深絞り加工、絞り・しごき加工、絞り・曲げ伸ばし加工・しごき加工等の過酷な加工により成形されるシームレス缶を、破胴やフランジ形成部の樹脂被覆の剥離を生じることなく成形することができる。
シームレス缶の側壁部は、有機樹脂被覆表面処理金属板の絞り−再絞り加工による曲げ伸ばし或いは更にしごき加工により、有機樹脂被覆表面処理金属板の元厚の20〜95%、特に25〜85%の厚みとなるように薄肉化されていることが好ましい。
得られたシームレス缶は、少なくとも一段の熱処理に付し、加工により生じるフィルムの残留歪みを除去し、加工の際用いた滑剤を表面から揮散させ、更に表面に印刷した印刷インキを乾燥硬化させる。熱処理後の容器は急冷或いは放冷した後、所望により、一段或いは多段のネックイン加工に付し、フランジ加工を行って、巻締用の缶とする。また、シームレス缶を成形した後、シームレス缶の上部を変形させてボトル形状にすることも可能である。
(Can body and its manufacturing method)
The can body made of the organic resin-coated surface-treated metal plate of the present invention can be manufactured by a conventionally known molding method.
Since the organic resin-coated surface-treated metal sheet of the present invention has excellent processing adhesion of the organic resin coating, it is drawn, drawn/deep-drawn, drawn/ironed, drawn/bent and stretched. A seamless can formed by a rigorous process such as ironing can be formed without causing breakage or peeling of the resin coating on the flange forming portion.
The side wall portion of the seamless can is 20 to 95%, especially 25 to 85% of the original thickness of the organic resin-coated surface-treated metal plate by bending and stretching the organic resin-coated surface-treated metal plate by drawing-redrawing or further ironing. It is preferable that the thickness is reduced so that
The obtained seamless can is subjected to at least one heat treatment to remove the residual strain of the film caused by the processing, vaporize the lubricant used in the processing from the surface, and further dry and cure the printing ink printed on the surface. After the heat treatment, the container is rapidly cooled or allowed to cool, and if desired, subjected to one-step or multi-step neck-in processing and flange processing to obtain a can for tightening. It is also possible to deform the upper portion of the seamless can into a bottle shape after molding the seamless can.
(缶蓋及びその製法)
本発明の有機樹脂被覆表面処理金属板から成る缶蓋は、従来公知の缶蓋の製法により成形することができる。
特に缶蓋の成形に適した有機樹脂被覆表面処理金属板としては、前述したエポキシフェノール系やポリエステルフェノール系等の接着プライマー層を介して、有機樹脂被覆層としてポリエステル樹脂フィルムが形成された有機樹脂被覆表面処理金属板を挙げることができ、上記接着プライマー層は、乾燥膜厚で0.3〜3μmの厚みで形成されていることが好ましい。
また有機樹脂被覆層として、エポキシフェノール系塗料、エポキシアクリル系塗料、ポリエステル系塗料、エポキシユリア系塗料、ビニルオルガノゾル系塗料等から成る塗膜が形成された有機樹脂被覆表面処理金属板も好適に使用することができ、これらの塗膜の乾燥塗膜質量は、エポキシアクリル系塗料から成る塗膜で10〜160mg/dm2、エポキシフェノール系塗料、及びポリエステル系塗料から成る塗膜で30〜140mg/dm2、エポキシユリア系塗料から成る塗膜で30〜70mg/dm2、ビニルオルガノゾル系塗料から成る塗膜で30〜160mg/dm2であることが好ましい。
(Can lid and its manufacturing method)
The can lid made of the organic resin-coated surface-treated metal plate of the present invention can be molded by a conventionally known can lid manufacturing method.
As an organic resin-coated surface-treated metal plate particularly suitable for forming a can lid, an organic resin on which a polyester resin film is formed as an organic resin coating layer through an adhesive primer layer such as the epoxyphenol-based or polyesterphenol-based described above. A coated surface-treated metal plate may be used, and the adhesive primer layer is preferably formed to have a dry film thickness of 0.3 to 3 μm.
In addition, an organic resin-coated surface-treated metal plate having a coating film formed of an epoxyphenol-based coating material, an epoxyacrylic-based coating material, a polyester-based coating material, an epoxyurea-based coating material, a vinylorganosol-based coating material, or the like as the organic resin coating layer is also suitable. It can be used, and the dry coating weight of these coatings is 10 to 160 mg/dm 2 for a coating made of epoxy acrylic paint, 30 to 140 mg for a coating made of epoxy phenolic paint, and polyester paint. / dm 2, 30~70mg / dm 2 in the coating film made of an epoxy urea-based coating material is preferably 30~160mg / dm 2 in the coating film made of a vinyl organosol-based coating.
また缶蓋の形状は、内容物注出用開口を形成するためのスコア及び開封用のタブが設けられたイージーオープン蓋等の従来公知の形状を採用することができ、フルオープンタイプ又はパーシャルオープンタイプ(ステイ・オン・タブタイプ)の何れであってもよい。
イージーオープン蓋の成形は、先ずプレス成形工程で、有機樹脂被覆金属板を円板の形に打抜くと共に、所望の蓋形状に成形する。次いで、スコア刻印工程で、スコアダイスを用いて、蓋の外面側からスコアが金属素材の厚み方向の途中に達するようにスコアの刻印を行う。リベット形成工程において、リベット形成ダイスを用いてスコアで区画された開口予定部に外面に突出したリベットを形成させ、タブ取付工程で、リベットに開口用タブを嵌合させ、リベットの突出部を鋲出してタブを固定させることにより、イージーオープン蓋が成形される。
In addition, the can lid may have a conventionally known shape such as an easy open lid provided with a score for forming a content pouring opening and a tab for opening, and a full open type or a partial open type. It may be any type (stay-on-tab type).
In the molding of the easy-open lid, first, in a press molding step, the organic resin-coated metal plate is punched into a disk shape and molded into a desired lid shape. Next, in a score marking step, a score is used to score the score from the outer surface side of the lid so that the score reaches the middle of the thickness direction of the metal material. In the rivet forming process, a rivet forming die is used to form a rivet projecting on the outer surface at a predetermined opening defined by the score. In the tab attaching process, the opening tab is fitted to the rivet and the rivet protruding part is tacked. An easy open lid is formed by pulling out and fixing the tab.
以下、具体的な実施例を挙げて本発明を詳細に説明するが、本発明は以下の実施例により限定されるものではない。なお、以下において「部」とあるのは「質量部」を意味する。 Hereinafter, the present invention will be described in detail with reference to specific examples, but the present invention is not limited to the following examples. In the following, "parts" means "parts by mass".
[実施例1〜29、比較例1〜3]
(表面処理液の調製)
ポリカルボン酸系重合体をイオン交換水中に溶解させ、2質量%のポリカルボン酸系重合体水溶液を得た。得られたポリカルボン酸系重合体水溶液に、多価金属化合物を所定の配合比となるように、常温にて攪拌しながら徐々に添加した。なお、多価金属化合物は、必要に応じてイオン交換水で所定の固形分濃度に調整した後に、ポリカルボン酸系重合体水溶液に添加した。さらにコロイダルシリカを配合する場合においては、コロイダルシリカの水分散液を、所定の配合比となるように、常温にて攪拌しながらポリカルボン酸系重合体及び多価金属化合物を含む水溶液中に添加した。次いで攪拌しながらイオン交換水を加え、水溶液中のポリカルボン酸系重合体の固形分濃度が0.5〜1質量%となるように調製し、表面処理液を得た。
[Examples 1 to 29, Comparative Examples 1 to 3]
(Preparation of surface treatment liquid)
The polycarboxylic acid polymer was dissolved in ion-exchanged water to obtain a 2% by mass aqueous polycarboxylic acid polymer solution. The polyvalent metal compound was gradually added to the obtained aqueous solution of polycarboxylic acid polymer while stirring at room temperature so as to have a predetermined compounding ratio. The polyvalent metal compound was added to the polycarboxylic acid polymer aqueous solution after being adjusted to a predetermined solid content concentration with ion-exchanged water as needed. Furthermore, when compounding colloidal silica, an aqueous dispersion of colloidal silica is added to an aqueous solution containing a polycarboxylic acid polymer and a polyvalent metal compound while stirring at room temperature so that a predetermined compounding ratio is obtained. did. Next, ion-exchanged water was added with stirring to prepare a polycarboxylic acid-based polymer in the aqueous solution so that the solid content concentration was 0.5 to 1% by mass to obtain a surface treatment liquid.
ポリカルボン酸系重合体としては、ポリアクリル酸(東亞合成社製「ジュリマーAC−10LP、Mw=25,000」:表中「PAA1」と表記、「ジュリマー10LHP、Mw=250,000」:表中「PAA2」と表記、「ジュリマーAC−10P、Mw=5,000」:表中「PAA3」と表記)、ポリメタクリル酸(和光純薬社製「ポリメタクリル酸、Mw=100,000」:表中「PMA」と表記)、ポリイタコン酸(磐田化学工業社製「PIA−728、Mw=3,000」:表中「PIA」と表記)を用いた。多価金属化合物としては、ジルコニウム化合物、チタン化合物、亜鉛化合物を用い、ジルコニウム化合物としては、炭酸ジルコニウムアンモニウム(第一稀元素化学社製「ジルコゾールAC−7、ZrO2換算含有量=13質量%」)、チタン化合物としてはチタントリエタノールアミネート(マツモトファインケミカル社製「オルガチックスTC−400、Ti換算含有量=8.3質量%」)、亜鉛化合物としては、酸化亜鉛(和光純薬社製「酸化亜鉛、0.02μm」)を用いた。コロイダルシリカとしては、W.R.Grace社製「LUDOX AS−30、平均粒子径=20nm、SiO2換算含有量=30質量%)」を用いた。用いたポリカルボン酸系重合体と多価金属化合物の種類、及び表面処理液におけるポリカルボン酸系重合体の固形分100部に対する、多価金属化合物の固形分配合量(炭酸ジルコニウムアンモニウムについてはZrO2換算での固形分配合量)、及び多価金属化合物の金属換算での配合量、さらに二酸化ケイ素(SiO2)換算でのコロイダルシリカの固形分配合量を表1(缶体用)、表3(缶蓋用)に示す。 As the polycarboxylic acid-based polymer, polyacrylic acid (manufactured by Toagosei Co., Ltd., "Jurimer AC-10LP, Mw=25,000": written as "PAA1" in the table, "Jurimer 10LHP, Mw=250,000": table Medium “PAA2”, “Jurimer AC-10P, Mw=5,000”: “PAA3” in the table), polymethacrylic acid (“Polymethacrylic acid, Mw=100,000” manufactured by Wako Pure Chemical Industries, Ltd.): "PMA" in the table) and polyitaconic acid ("PIA-728, Mw=3,000" manufactured by Iwata Chemical Co., Ltd.: "PIA" in the table) were used. As the polyvalent metal compound, a zirconium compound, a titanium compound, and a zinc compound are used, and as the zirconium compound, zirconium ammonium carbonate (“Zircosol AC-7, ZrO 2 conversion content=13 mass%” manufactured by Daiichi Rare Element Chemical Co., Ltd.). ), titanium triethanolaminate as a titanium compound (“Organix TC-400, manufactured by Matsumoto Fine Chemical Co., content in terms of Ti=8.3 mass %”), and zinc compound: zinc oxide (Wako Pure Chemical Industries, Ltd.). Zinc oxide, 0.02 μm”) was used. Examples of colloidal silica include W.I. R. “LUDOX AS-30, average particle diameter=20 nm, SiO 2 conversion content=30 mass %)” manufactured by Grace Co., Ltd. was used. The kind of the polycarboxylic acid-based polymer and the polyvalent metal compound used, and the solid content of the polyvalent metal compound with respect to 100 parts of the solid content of the polycarboxylic acid-based polymer in the surface treatment liquid (ZrO 2 for ammonium zirconium carbonate) (Solid content in terms of 2 ), the content of polyvalent metal compound in terms of metal, and the solid content of colloidal silica in terms of silicon dioxide (SiO 2 ) are shown in Table 1 (for can body) and Table. 3 (for can lid).
(表面処理金属板の作製)
金属板として、アルミニウム板(缶体の場合=3104合金板 板厚:0.28mm 板寸法:200×300mm、缶蓋の場合=5182合金板 板厚:0.28mm 板寸法:200×300mm)を使用した。まず、日本ペイント社製のアルカリ性クリーナー「サーフクリーナー420N−2」(商品名)の2%水溶液中(60℃)に、6秒間浸漬してアルカリ洗浄を行った。アルカリ洗浄後、水洗してから、2%硫酸水溶液中(60℃)に6秒間浸漬して酸洗浄を行い、水洗してから乾燥した。得られた金属板の両面に表面処理液を塗布し、150℃に設定したオーブン内に60秒間保持して乾燥させ、缶体用および缶蓋用の表面処理金属板を作製した。
(Production of surface-treated metal plate)
As a metal plate, an aluminum plate (in the case of a can = 3104 alloy plate thickness: 0.28 mm plate size: 200 x 300 mm, in the case of a can = 5182 alloy plate thickness: 0.28 mm plate size: 200 x 300 mm) used. First, an alkaline cleaner "Surf Cleaner 420N-2" (trade name) manufactured by Nippon Paint Co., Ltd. was immersed in a 2% aqueous solution (60° C.) for 6 seconds for alkali cleaning. After washing with an alkali, washing with water, dipping in a 2% aqueous solution of sulfuric acid (60° C.) for 6 seconds for acid washing, washing with water, and drying. The surface-treating liquid was applied to both surfaces of the obtained metal plate, held in an oven set to 150° C. for 60 seconds and dried to produce a surface-treated metal plate for a can body and a can lid.
(含有量測定)
得られた表面処理金属板における表面処理皮膜層中のポリカルボン酸系重合体に由来する炭素、多価金属化合物に由来する多価金属(ジルコニウム、チタン、亜鉛)、コロイダルシリカに由来するケイ素の単位面積当たりの含有量(mg/m2)は、蛍光X線分析装置を用いて測定した。測定に際して、まず、炭素又は多価金属(ジルコニウム、チタン、亜鉛)又はケイ素の含有量が既知で含有量の異なるサンプルをそれぞれ複数測定し、この際の強度より、強度−含有量の検量線を作製した。同様の条件で、各実施例における表面処理金属板についても測定し、得られた測定強度を検量線に基づき、含有量に変換することにより、表面処理皮膜層中の炭素、多価金属(ジルコニウム、チタン、亜鉛)、ケイ素の含有量を測定した。炭素(C)、多価金属(ジルコニウム:Zr、チタン:Ti、亜鉛:Zn)、ケイ素(Si)の含有量の測定結果を缶体用の場合は表1に、缶蓋用の場合は表3に示す。
使用機器:理学電機製 ZSX100e
測定条件:測定径 20mm
X線出力 50kV−70mA
(Content measurement)
The carbon derived from the polycarboxylic acid-based polymer in the surface-treated coating layer in the obtained surface-treated metal plate, the polyvalent metal (zirconium, titanium, zinc) derived from the polyvalent metal compound, and the silicon derived from the colloidal silica The content per unit area (mg/m 2 ) was measured using a fluorescent X-ray analyzer. In the measurement, first, a plurality of samples each having a known content of carbon or a polyvalent metal (zirconium, titanium, zinc) or silicon and having different contents are measured, and the strength-in this case, a calibration curve of strength-content is obtained. It was made. Under the same conditions, the surface-treated metal plate in each example was also measured, and the obtained measured strength was converted into the content based on the calibration curve, so that carbon in the surface-treated coating layer, polyvalent metal (zirconium , Titanium, zinc) and silicon were measured. The results of measuring the contents of carbon (C), polyvalent metal (zirconium: Zr, titanium: Ti, zinc: Zn), and silicon (Si) are shown in Table 1 for can bodies and in the case of can lids. 3 shows.
Equipment used: Rigaku Denki ZSX100e
Measurement conditions: Measurement diameter 20 mm
X-ray output 50kV-70mA
(有機樹脂被覆表面処理金属板の作製)
缶体用の有機樹脂被覆表面処理板は、以下の方法により作製した。得られた表面処理金属板を、予め板温度250℃に加熱しておき、表面処理金属板の両面に、有機樹脂被覆層としてポリエステル樹脂フィルムを、ラミネートロールを介して熱圧着した後、直ちに水冷することにより、缶体用の有機樹脂被覆表面処理金属板を得た。尚、缶内面側のポリエステル樹脂フィルムとしては、12μm厚のポリエチレンテレフタレート/ポリエチレンイソフタレート共重合樹脂フィルムを用いた。缶外面側の有機樹脂被覆層として、12μm厚のポリエチレンテレフタレート/ポリエチレンイソフタレート共重合樹脂フィルム(PET/IA)、又は12μm厚のポリエチレンテレフタレート/ポリエチレンイソフタレート共重合樹脂とポリブチレンテレフタレート樹脂のブレンド樹脂フィルム(PET/IA・PBT)を用いた。各実施例における外面側の有機樹脂被覆層の種類を表1に示す。
(Preparation of organic resin-coated surface-treated metal plate)
The organic resin-coated surface-treated plate for a can was produced by the following method. The obtained surface-treated metal plate is preliminarily heated to a plate temperature of 250° C., and a polyester resin film as an organic resin coating layer is thermocompression-bonded to both surfaces of the surface-treated metal plate through a laminating roll, followed by immediate water cooling. By doing so, an organic resin-coated surface-treated metal plate for a can was obtained. As the polyester resin film on the inner surface side of the can, a polyethylene terephthalate/polyethylene isophthalate copolymer resin film having a thickness of 12 μm was used. A 12 μm thick polyethylene terephthalate/polyethylene isophthalate copolymer resin film (PET/IA) or a 12 μm thick polyethylene terephthalate/polyethylene isophthalate copolymer resin and polybutylene terephthalate resin as an organic resin coating layer on the outer surface of the can A film (PET/IA.PBT) was used. Table 1 shows the types of the organic resin coating layer on the outer surface side in each example.
缶蓋用の有機樹脂被覆表面処理金属板は、有機樹脂被覆層が塗膜の場合と熱可塑性樹脂フィルムの場合とで、それぞれ以下の方法により作製した。
有機樹脂被覆層が塗膜の場合は、作製した表面処理金属板の蓋内面側となる面に、乾燥後塗膜質量が60mg/dm2となるようにエポキシアクリル系塗料、又はポリエステル系塗料、蓋外面となる面に乾燥後塗膜質量が50mg/dm2となるようにエポキシアクリル系塗料を塗装した後、250℃に設定したオーブン内で70秒間保持し、焼き付けを行い、有機樹脂被覆層が塗膜である有機樹脂被覆表面処理金属板を得た。
有機樹脂被覆層が熱可塑性樹脂フィルムの場合は、まず表面処理金属板を、予め板温度265℃に加熱しておき、表面処理金属板の片面に、エポキシフェノール系接着プライマーを1μm塗布した30μm厚の延伸ポリエステル樹脂フィルム(ポリエチレンテレフタレート/ポリエチレンイソフタレート共重合樹脂含有)を、プライマー塗布面が金属板側となるように、ラミネートロールを介して熱ラミネートした後、直ちに水冷することにより、片面ラミネート板を作製した。次いで片面ラミネート板のラミネートしていない面に、乾燥後の塗膜の膜厚が3μmとなるようにエポキシユリア系塗料を塗布し、185℃に設定したオーブン内で10分間保持し、焼き付けを行い、缶蓋用の有機樹脂被覆表面処理金属板を得た。各実施例における内面側の有機樹脂被覆層の種類を表3に示す。
The organic resin-coated surface-treated metal plate for a can lid was produced by the following method, when the organic resin coating layer was a coating film and when it was a thermoplastic resin film.
When the organic resin coating layer is a coating film, an epoxy acryl-based coating material or a polyester coating material is applied to the surface of the prepared surface-treated metal plate that is the inner surface side of the lid so that the coating film weight after drying is 60 mg/dm 2 . The surface of the lid, which is the outer surface of the lid, is coated with an epoxy acrylic-based paint so that the coating film mass after drying is 50 mg/dm 2, and is then held in an oven set at 250° C. for 70 seconds to be baked to form an organic resin coating layer. An organic resin-coated surface-treated metal plate having a coating film was obtained.
When the organic resin coating layer is a thermoplastic resin film, the surface-treated metal plate is first heated to a plate temperature of 265° C., and one surface of the surface-treated metal plate is coated with an epoxyphenol-based adhesive primer in a thickness of 30 μm. The stretched polyester resin film of (containing polyethylene terephthalate/polyethylene isophthalate copolymer resin) is heat-laminated through a laminating roll so that the primer-coated surface is on the metal plate side, and then immediately water-cooled to form a single-sided laminated plate. Was produced. Next, the epoxy urea-based paint is applied to the non-laminated surface of the single-sided laminated plate so that the thickness of the coating film after drying is 3 μm, and it is baked in an oven set at 185° C. for 10 minutes. An organic resin-coated surface-treated metal plate for a can lid was obtained. Table 3 shows the types of the organic resin coating layer on the inner surface side in each example.
(シームレス缶の作製)
作製した缶体用の有機樹脂被覆表面処理金属板の両面に、パラフィンワックスを静電塗油した後、直径156mmの円形に打ち抜き、浅絞りカップを作成した。次いで、この浅絞りカップを、再絞り−しごき加工及びドーミング成形を行い、開口端縁部のトリミング加工を行い、201℃で75秒間、次いで210℃で80秒間熱処理を施し、開口端をネッキング加工、フランジング加工を行い、缶胴211径でネック部206径の容量500mlのシームレス缶を作製した。シームレス缶の諸特性は以下の通りであった。
缶体径:66mm
缶体高さ:168mm
元板厚に対する缶側壁部の平均板厚減少率:60%
(Production of seamless cans)
Electrostatic coating of paraffin wax was applied to both surfaces of the prepared organic resin-coated surface-treated metal plate for a can, and then punched into a circle having a diameter of 156 mm to prepare a shallow-drawing cup. Then, this shallow-drawn cup is subjected to redrawing-ironing and doming forming, trimming of the edge of the opening end, heat treatment at 201° C. for 75 seconds, and then at 210° C. for 80 seconds to necking the opening end. Then, flanging was performed to produce a seamless can having a diameter of the can body of 211 and a diameter of the neck portion of 206 and a capacity of 500 ml. The various properties of the seamless can were as follows.
Can body diameter: 66 mm
Can height: 168 mm
Average plate thickness reduction rate of the side wall of the can with respect to the original plate thickness: 60%
(缶蓋の作製)
作製した缶蓋用の有機樹脂被覆表面処理金属板を、直径68.7mmに打ち抜き、次いで蓋の外面側にパーシャル開口型のスコア加工(幅22mm、スコア残厚110μm、スコア幅20μm)、リベット加工並びに開封用タブの取り付けを行い、イージーオープン蓋の作製を行った。
(Production of can lid)
The prepared organic resin-coated surface-treated metal plate for a can lid was punched out to a diameter of 68.7 mm, and then a partial opening type score processing (width 22 mm, score remaining thickness 110 μm, score width 20 μm) and rivet processing were performed on the outer surface side of the lid. In addition, an opening tab was attached and an easy-open lid was manufactured.
[ピーク高さ比(β/α)の測定]
各実施例における表処理皮膜層のピーク高さ比(β/α)は、以下の方法により測定した。
缶体用の有機樹脂被覆表面処理金属板の場合は、前記「有機樹脂被覆表面処理金属板の作製」の項に記載した通りに、有機樹脂被覆表面処理金属板を作製した後、8cm×6cmの大きさに切り出した有機樹脂被覆表面処理金属板を、300mLの1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール(HFIP)中に、常温で1時間浸漬させ、有機樹脂被覆層(ポリエステル樹脂フィルム)を溶解・除去した。HFIP中から金属板を取り出して、金属板に付着したHFIPを除去し、測定用のサンプルを得た。次いで、サンプルの表面(表面処理皮膜層が形成されている面)の赤外吸収スペクトルを測定し、得られた表面処理皮膜層の赤外吸収スペクトルから、水蒸気及び炭酸ガスの吸収ピークを差し引いた赤外吸収スペクトルを用いて、前記「ピーク高さ比(β/α)の算出」の項に記載した方法により、表面処理皮膜層のピーク高さ比(β/α)を算出した。また、得られたピーク高さ比(β/α)から、前記「表面処理皮膜層」の項に記載した上記式(1)により、架橋率を算出した。ピーク高さ比(β/α)、及び架橋率の測定結果を表1に示す。
有機樹脂被覆シームレス缶の場合は、前記「シームレス缶の作製」の項に記載した通りにシームレス缶を作製した後、得られたシームレス缶の缶胴側壁部を8cm×4cmの大きさに切り出したものをサンプルとし、該サンプルを300mLの1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール(HFIP)中に、常温で1時間浸漬させ、有機樹脂被覆層(ポリエステル樹脂フィルム)を溶解・除去した。HFIP中からサンプルを取り出して、サンプルに付着したHFIPを除去し、測定用サンプルを得た。次いで、測定用サンプルの表面(表面処理皮膜層)の赤外線吸収スペクトルを測定し、得られた表面処理皮膜層の赤外線吸収スペクトルから、水蒸気及び炭酸ガスの吸収ピークを差し引いた赤外線吸収スペクトルを用いて、前記「ピーク高さ比(β/α)の測定方法」の項に記載した方法により表面処理皮膜層のピーク高さ比(β/α)を算出した。ピーク高さ比(β/α)の測定結果を表2に示す。
缶蓋用の表面処理金属板の場合は、前記「表面処理金属板の作製」の項に記載した通りに、缶蓋用の表面処理金属板を作製した後、8cm×6cmの大きさに切り出した表面処理金属板を測定用サンプルとし、サンプルの表面(表面処理皮膜層が形成されている面)の赤外吸収スペクトルを測定し、得られた表面処理皮膜層の赤外吸収スペクトルから、水蒸気及び炭酸ガスの吸収ピークを差し引いた赤外吸収スペクトルを用いて、前記「ピーク高さ比(β/α)の算出」の項に記載した方法により、表面処理皮膜層のピーク高さ比(β/α)を算出した。また、得られたピーク高さ比(β/α)から、前記「表面処理皮膜層」の項に記載した上記式(1)により、架橋率を算出した。ピーク高さ比(β/α)、及び架橋率の測定結果を表3に示す。
使用機器:Digilab社製 FTS7000series
使用検出器:MCT検出器
使用アクセサリー:PIKE社製 Advanced Grazing Angle(AGA)
測定方法:高感度反射法(入射角:80℃、積算回数:100回、リファレンス基板:金蒸着ミラー、偏光子を使用し平行偏光のみ検出)
測定波数領域:4000〜700cm−1
[Measurement of peak height ratio (β/α)]
The peak height ratio (β/α) of the surface treatment film layer in each example was measured by the following method.
In the case of an organic resin-coated surface-treated metal plate for a can body, after producing the organic resin-coated surface-treated metal plate as described in the section "Preparation of the organic resin-coated surface-treated metal plate", 8 cm x 6 cm The organic resin-coated surface-treated metal plate cut out in the size of 1 is immersed in 300 mL of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) at room temperature for 1 hour to form an organic resin. The coating layer (polyester resin film) was dissolved and removed. The metal plate was taken out of the HFIP, and the HFIP attached to the metal plate was removed to obtain a measurement sample. Then, the infrared absorption spectrum of the surface of the sample (the surface on which the surface treatment film layer is formed) was measured, and the absorption peaks of water vapor and carbon dioxide were subtracted from the infrared absorption spectrum of the obtained surface treatment film layer. Using the infrared absorption spectrum, the peak height ratio (β/α) of the surface-treated coating layer was calculated by the method described in the section “Calculation of peak height ratio (β/α)”. Further, the crosslinking ratio was calculated from the obtained peak height ratio (β/α) by the above-mentioned formula (1) described in the above section “Surface treatment coating layer”. Table 1 shows the measurement results of the peak height ratio (β/α) and the crosslinking rate.
In the case of an organic resin-coated seamless can, after producing a seamless can as described in the section “Production of seamless can”, the can body side wall portion of the obtained seamless can was cut into a size of 8 cm×4 cm. The sample is used as a sample, and the sample is immersed in 300 mL of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) at room temperature for 1 hour to form an organic resin coating layer (polyester resin film). Was dissolved and removed. A sample was taken out of the HFIP and HFIP attached to the sample was removed to obtain a measurement sample. Then, the infrared absorption spectrum of the surface of the measurement sample (surface-treated coating layer) was measured, and the infrared absorption spectrum obtained by subtracting the absorption peaks of water vapor and carbon dioxide from the infrared absorption spectrum of the obtained surface-treated coating layer was used. The peak height ratio (β/α) of the surface-treated coating layer was calculated by the method described in the section “Method of measuring peak height ratio (β/α)”. Table 2 shows the measurement results of the peak height ratio (β/α).
In the case of a surface-treated metal plate for a can lid, after preparing the surface-treated metal plate for a can lid as described in the section “Preparation of a surface-treated metal plate”, cut into a size of 8 cm×6 cm. Using the surface-treated metal plate as a sample for measurement, the infrared absorption spectrum of the surface of the sample (the surface on which the surface-treated coating layer is formed) was measured, and the infrared absorption spectrum of the obtained surface-treated coating layer was used to determine the water vapor content. And the infrared absorption spectrum from which the absorption peak of carbon dioxide was subtracted, the peak height ratio (β of the surface treatment film layer was determined by the method described in the above “Calculation of peak height ratio (β/α)”. /Α) was calculated. Further, the crosslinking ratio was calculated from the obtained peak height ratio (β/α) by the above-mentioned formula (1) described in the above section “Surface treatment coating layer”. Table 3 shows the measurement results of the peak height ratio (β/α) and the crosslinking rate.
Equipment used: FTS7000 series manufactured by Digilab
Detector used: MCT detector Accessories used: Advanced Grazing Angle (AGA) manufactured by PIKE
Measurement method: High-sensitivity reflection method (incident angle: 80°C, number of integrations: 100 times, reference substrate: gold vapor deposition mirror, using a polarizer to detect only parallel polarized light)
Measurement wave number region: 4000 to 700 cm -1
(比較例4)
金属板として、リン酸クロメート処理(化成型処理)を施した表面処理アルミニウム板(3104合金板 板厚:0.28mm 板寸法:200×300mm 表面処理皮膜中のクロム含有量:20mg/m2)を用いて、前記「有機樹脂被覆表面処理金属板の作製」の項に記載した通りに、有機樹脂被覆表面処理金属板を作製し、前記「シームレス缶の作製」の項に記載した通りにシームレス缶を作製した。
(Comparative example 4)
As a metal plate, a surface-treated aluminum plate subjected to phosphoric acid chromate treatment (chemical molding treatment) (3104 alloy plate, plate thickness: 0.28 mm, plate size: 200 x 300 mm, chromium content in the surface-treated film: 20 mg/m 2 ). Using, to prepare an organic resin-coated surface-treated metal plate as described in the section "Production of organic resin-coated surface-treated metal plate", and seamlessly as described in the section "Production of a seamless can". A can was made.
(缶体の評価方法)
実施例1〜26、及び比較例1〜4により得られた缶体について、下記の評価を行い、結果を表2に示した。
(Can body evaluation method)
The following evaluation was performed on the can bodies obtained in Examples 1 to 26 and Comparative Examples 1 to 4, and the results are shown in Table 2.
[熱処理時フランジ部剥離性評価(製缶適性評価)]
熱処理時フランジ部剥離性評価は、前記「シームレス缶の作製」の項に記載した通りに、缶体をトリミング加工まで行った後、オーブンを用いて、201℃で75秒間、次いで210℃で80秒間の熱処理を行った後、缶体の開口端(フランジ形成部)を顕微鏡で観察し、缶体の開口端より有機樹脂被覆層の剥離度合いで評価した。評価結果を表2に示す。
◎:剥離した部分の最大長さが0.05mm未満
○:剥離した部分の最大長さが0.05mm以上0.1mm未満
△:剥離した部分の最大長さが0.1mm以上0.2mm未満
×:剥離した部分の最大長さが0.2mm以上
[Evaluation of peelability of flange during heat treatment (evaluation of suitability for can making)]
Flange releasability at the time of heat treatment was evaluated by performing the trimming process on the can body as described in the above-mentioned “Production of seamless can” and then using an oven for 75 seconds at 201° C. and then at 210° C. for 80 seconds. After the heat treatment for 2 seconds, the open end (flange forming portion) of the can body was observed with a microscope, and the degree of peeling of the organic resin coating layer from the open end of the can body was evaluated. The evaluation results are shown in Table 2.
⊚: Maximum length of peeled part is less than 0.05 mm ○: Maximum length of peeled part is 0.05 mm or more and less than 0.1 mm Δ: Maximum length of peeled part is 0.1 mm or more and less than 0.2 mm X: The maximum length of the peeled portion is 0.2 mm or more
[熱水処理時フランジ部剥離性評価]
熱水処理時フランジ部剥離性評価は、前記「シームレス缶の作製」の項に記載した通りにシームレス缶を作製した後、内面側ネック部の最小径部に内面から缶周に沿ってカッターナイフで金属面まで達するキズを付与した状態で、100℃の熱水に10分間浸漬後のネック部の有機樹脂被覆層の剥離状態を観察して評価した。評価結果を表2に示す。
◎:全周に渡って剥離が認められない
○:一部剥離が認められるが、その剥離部分の長さが缶全周長さの10%未満
△:一部剥離が認められるが、その剥離部分の長さが缶全周長さの10%以上20%
未満
×:剥離部分の長さが全周方向の20%以上
[Evaluation of flange peelability during hot water treatment]
Flange releasability during hot water treatment is evaluated by manufacturing a seamless can as described in the section "Production of seamless can", and then cutting knife along the circumference of the can from the inner surface to the smallest diameter part of the inner surface side neck part. With the scratches reaching the metal surface, the peeling state of the organic resin coating layer on the neck portion after immersing in hot water at 100° C. for 10 minutes was observed and evaluated. The evaluation results are shown in Table 2.
◎: No peeling was observed over the entire circumference ○: Partial peeling was recognized, but the length of the peeled part was less than 10% of the entire circumference of the can △: Partial peeling was recognized, but the peeling The length of the part is 10% or more and 20% of the entire circumference of the can.
Less than x: The length of the peeled portion is 20% or more in the entire circumferential direction
[レトルト時フランジ部剥離性評価]
レトルト時フランジ部剥離性評価は、前記「シームレス缶の作製」の項に記載した通りにシームレス缶を作製した後、以下の方法により行った。まず、得られたシームレス缶を、レトルト釜の中に、正立(缶底部が下側)で配置し、密封したレトルト釜の中でスチームにより125℃で30分間の加圧加熱殺菌処理を施した。上記加圧加熱殺菌処理後に、室温まで冷却した後に、レトルト釜の中のシームレス缶を取り出し、缶内外面フランジ部の有機樹脂被覆層の剥離状態を観察して評価した。評価結果を表2に示す。
◎: 全周に渡って剥離が認められない
○:一部剥離が認められるが、その剥離部分の長さが缶全周長さの5%未満
△:一部剥離が認められるが、その剥離部分の長さが缶全周長さの5%以上10%未
満
×:剥離部分の長さが全周方向の10%以上
[Evaluation of peelability of flange part during retort]
The evaluation of releasability of the flange portion at the time of retort was performed by the following method after producing a seamless can as described in the section "Production of seamless can". First, the obtained seamless can is placed upright (the bottom of the can is on the bottom) in a retort kettle and subjected to heat sterilization under pressure at 125°C for 30 minutes by steam in a sealed retort kettle. did. After the pressure heat sterilization treatment, after cooling to room temperature, the seamless can in the retort kettle was taken out, and the peeling state of the organic resin coating layer on the can inner and outer flange portion was observed and evaluated. The evaluation results are shown in Table 2.
◎: No peeling was observed over the entire circumference ○: Partial peeling was recognized, but the length of the peeled portion was less than 5% of the entire circumference of the can △: Partial peeling was recognized, but the peeling The length of the part is 5% or more and 10% or less of the entire length of the can. ×: The length of the peeled part is 10% or more in the entire circumferential direction.
[レトルト時缶胴側壁部外観評価]
レトルト時缶胴側壁部外観評価は、前記「シームレス缶の作製」の項に記載した通りにシームレス缶を作製した後、以下の方法により行った。まず、得られたシームレス缶に、水を500g充填し、常法に従い蓋を巻き締め、充填パック缶とした。得られた充填パック缶を、水に浸漬し、缶外面の缶胴側壁部が十分に濡れた状態でステンレス製ケースに入れ、充填パック缶が横向きになるようにステンレス製ケースごとレトルト釜の中に静置し、缶胴側壁部が部分的に水と接触している状態で、密封したレトルト釜の中でスチームにより130℃で5分間の加圧加熱殺菌処理を施した。上記加圧加熱殺菌処理後に、室温まで冷却した後に、レトルト釜の中の充填パック缶を取り出し、缶外面の缶胴側壁部での有機樹脂被覆層の浮きやフクレ(ブリスター)の発生有無を目視評価した。
◎:ブリスターの発生が全く認められない
○:ブリスターの発生がほとんど認められない
△:ブリスターの発生が部分的に認められる
×:ブリスターの発生が著しい
(缶蓋の評価方法)
実施例27〜29より得られた缶蓋について、下記の評価を行い、結果を表3に示した。
[Appearance evaluation of can body side wall during retort]
The appearance of the side wall of the can body during retort was evaluated by the following method after producing a seamless can as described in the section "Production of seamless can". First, 500 g of water was filled in the obtained seamless can, and the lid was wound up in a conventional manner to obtain a filled pack can. Immerse the obtained filled pack can in a stainless steel case with the outer side wall of the can body being sufficiently wet, and place it in a retort kettle together with the stainless case so that the filled pack can lies sideways. In a state in which the side wall of the can body was partially in contact with water, pressure sterilization treatment was performed by steam in a sealed retort kettle at 130° C. for 5 minutes. After the above pressure heat sterilization treatment, after cooling to room temperature, take out the filled pack can in the retort kettle and visually check whether the organic resin coating layer floats or blisters (blister) occur on the side wall of the can body on the outer surface of the can. evaluated.
⊚: No occurrence of blisters ○: Almost no occurrence of blisters Δ: Partial occurrence of blisters ×: Significant blisters (can lid evaluation method)
The can lids obtained from Examples 27 to 29 were evaluated as follows, and the results are shown in Table 3.
[フェザリング評価]
フェザリング評価は、前記「缶蓋の作製」の項に記載した通りにイージーオープン蓋を作製し、得られたイージーオープン蓋についてレトルト殺菌処理(125℃で30分間)を実施した後、実際に缶蓋を開口し、開口部分のフェザリングの発生を評価した。各n=50枚実施し、各蓋の最大フェザリング長さをもとに、50枚の平均フェザリング長さを算出し、次の基準で評価し、表3にまとめた。
○:平均フェザリング長さが1.0mm未満
×:平均フェザリング長さが1.0mm以上
[Feathering evaluation]
Feathering evaluation was carried out by producing an easy-open lid as described in the above-mentioned “Production of can lid”, and performing retort sterilization treatment (at 125° C. for 30 minutes) on the obtained easy-open lid, and then actually The can lid was opened, and the occurrence of feathering at the opening was evaluated. For each n=50, the average feathering length of 50 was calculated based on the maximum feathering length of each lid, evaluated according to the following criteria, and summarized in Table 3.
◯: Average feathering length is less than 1.0 mm ×: Average feathering length is 1.0 mm or more
[開口性評価]
開口性評価は、前記「缶蓋の作製」の項に記載した通りにイージーオープン蓋を作製し、得られたイージーオープン蓋について、レトルト殺菌処理(125℃で30分間)を実施した後、開口性評価を実施した。各n=50枚実施し、評価結果は、タブ折れなどによる開口不良数/開口数で示し、表3にまとめた
[Aperture evaluation]
The openness was evaluated by preparing an easy-open lid as described in the section “Preparation of can lid” and performing retort sterilization treatment (at 125° C. for 30 minutes) on the obtained easy-open lid. Sex evaluation was carried out. Each n=50 sheets were carried out, and the evaluation results are shown by the number of defective openings/numerical aperture due to tab breakage etc.
本発明の有機樹脂被覆表面処理金属板は、それを用いてシームレス缶等を成形した場合に、缶胴部の成形後に施される熱処理時にも、フランジ形成部での有機樹脂被覆層の剥離を抑制できる優れた製缶適性が発現可能であると共に、殺菌工程のような高温・湿潤環境下に賦された場合にも、有機樹脂被覆層が剥離やブリスター等の外面不良の発生を抑制できる優れた耐熱水密着性を発現可能であるため、缶体及び缶蓋に好適に使用することができ、しかも過酷な成形加工に賦された場合にも優れた耐熱水密着性を有することから、特に絞りしごき缶等のシームレス缶に好適に利用することができる。 The organic resin-coated surface-treated metal plate of the present invention, when a seamless can or the like is formed using the same, even during the heat treatment performed after the molding of the body of the can, the peeling of the organic resin coating layer in the flange forming part It is possible to develop excellent can making suitability that can be suppressed, and it is possible to suppress the occurrence of external defects such as peeling and blister of the organic resin coating layer even when it is exposed to high temperature and humid environment such as sterilization process. Since it can express hot water adhesion, it can be suitably used for can bodies and can lids, and has excellent hot water adhesion even when subjected to severe molding processing. It can be suitably used for a seamless can such as a squeezed ironing can.
1 有機樹脂被覆表面処理金属板、2 金属板、3 表面処理皮膜層、4 有機樹脂被覆層。 1 organic resin coating surface-treated metal plate, 2 metal plate, 3 surface treatment film layer, 4 organic resin coating layer.
Claims (13)
且つ、該表面処理皮膜層の赤外線吸収スペクトルを測定した際の、1660〜1760cm−1の波数範囲内の最大吸収ピーク高さ(α)と1490〜1659cm−1の波数範囲内の最大吸収ピーク高さ(β)とのピーク高さ比(β/α)が0.37〜2.35であることを特徴とする有機樹脂被覆表面処理金属板。 An organic resin-coated surface-treated metal plate comprising a surface-treated coating layer and an organic resin coating layer formed on the surface-treated coating layer on at least one side of the metal sheet, wherein the surface-treated coating layer comprises a polycarboxylic acid-based heavy metal. The structural unit derived from at least one polymerizable monomer selected from acrylic acid, methacrylic acid, itaconic acid and maleic acid , which contains a polymer and a polyvalent metal compound, is 60. % Polymer or more, the polyvalent metal compound is a zirconium compound containing no fluororesin,
And, when measuring the infrared absorption spectrum of the surface treated film layer, the maximum absorption peak height in the wavenumber range of 1660~1760cm -1 (α) and the maximum absorption peak height in the wavenumber range of 1490~1659Cm -1 A peak-height ratio (β/α) to the surface (β) is 0.37 to 2.35, which is an organic resin-coated surface-treated metal plate.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015066747 | 2015-03-27 | ||
JP2015066747 | 2015-03-27 | ||
JP2015234811 | 2015-12-01 | ||
JP2015234811 | 2015-12-01 | ||
JP2016018970 | 2016-02-03 | ||
JP2016018970 | 2016-02-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017136815A JP2017136815A (en) | 2017-08-10 |
JP6701874B2 true JP6701874B2 (en) | 2020-05-27 |
Family
ID=59564588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016064654A Active JP6701874B2 (en) | 2015-03-27 | 2016-03-28 | Organic resin coated surface-treated metal plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6701874B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2019124416A1 (en) * | 2017-12-22 | 2020-12-10 | 東洋製罐株式会社 | Organic resin coated two-piece aluminum can |
JP7355485B2 (en) * | 2018-02-02 | 2023-10-03 | 東洋製罐株式会社 | aluminum wine container |
JP2022048919A (en) * | 2020-09-15 | 2022-03-28 | 東洋製罐株式会社 | Wine container made of aluminum |
-
2016
- 2016-03-28 JP JP2016064654A patent/JP6701874B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017136815A (en) | 2017-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6812968B2 (en) | Surface-treated metal plate and organic resin-coated surface-treated metal plate | |
JP5077651B2 (en) | Resin-coated metal plate and molded body using the same | |
JP5240489B2 (en) | Resin-coated aluminum alloy plate and molded body using the same | |
WO2013147146A1 (en) | Surface-treated aluminum sheet, organic-resin-coated surface -treated aluminum sheet, and can body and can lid produced using same | |
WO2005123991A1 (en) | Surface-treated metal material and surface treatment method therefor, resin-coated metal material, can and lid of can | |
JP4487651B2 (en) | Surface-treated metal material and surface treatment method thereof, resin-coated metal material, metal can, metal lid | |
JP4492224B2 (en) | Surface-treated metal material, surface treatment method thereof, and resin-coated metal material | |
JP2006348360A (en) | Surface-treated metallic plate, method of surface treating thereof and resin-coated metallic plate, metal can and can lid | |
JP6701874B2 (en) | Organic resin coated surface-treated metal plate | |
US10557205B2 (en) | Organic resin-covered surface-treated metal sheet | |
JP2017140713A (en) | Organic resin coated steel sheet and method for manufacturing the same, and can and can lid using the organic resin coated steel sheet | |
JP6672948B2 (en) | Organic resin-coated seamless cans | |
JP6160162B2 (en) | Surface-treated aluminum plate, organic resin-coated surface-treated aluminum plate, and can body and can lid using the same | |
JP6186792B2 (en) | Surface-treated aluminum plate, organic resin-coated surface-treated aluminum plate, and can body and can lid using the same | |
JP6428857B2 (en) | Surface treatment liquid, method for producing surface treated aluminum plate using the surface treatment liquid, and surface treated aluminum plate | |
WO2019077746A1 (en) | Organic resin coated surface-treated metal plate | |
JP2003138382A (en) | Metal surface treating agent for bonding substrate and treatment method therefor | |
JP6428856B2 (en) | Surface treatment liquid, method for producing surface treated aluminum plate using the surface treatment liquid, and surface treated aluminum plate | |
JP2018053302A (en) | Metal plate having surface coated with organic resin | |
TW201917235A (en) | Organic resin-covered surface-treated metal sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191119 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200114 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200407 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200420 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6701874 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |