JP6699227B2 - Power transmission device - Google Patents

Power transmission device Download PDF

Info

Publication number
JP6699227B2
JP6699227B2 JP2016034278A JP2016034278A JP6699227B2 JP 6699227 B2 JP6699227 B2 JP 6699227B2 JP 2016034278 A JP2016034278 A JP 2016034278A JP 2016034278 A JP2016034278 A JP 2016034278A JP 6699227 B2 JP6699227 B2 JP 6699227B2
Authority
JP
Japan
Prior art keywords
tooth portion
friction
rotation
gear
gear member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016034278A
Other languages
Japanese (ja)
Other versions
JP2017150587A (en
Inventor
敦史 梶川
敦史 梶川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2016034278A priority Critical patent/JP6699227B2/en
Publication of JP2017150587A publication Critical patent/JP2017150587A/en
Application granted granted Critical
Publication of JP6699227B2 publication Critical patent/JP6699227B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Operated Clutches (AREA)

Description

本発明は、回転軸から入力される動力をギヤ部材に伝達する動力伝達装置に関する。   The present invention relates to a power transmission device that transmits power input from a rotary shaft to a gear member.

従来から、車両用の動力伝達装置(トランスミッション)において、回転軸とギヤとの同期をとるためにシンクロ装置が用いられている。例えば、従来のシンクロ装置では、回転軸に固定されたシンクロナイザハブと、回転軸に相対回転自在に支持されたギヤと、シンクロナイザハブとギヤの間に配置されたシンクロナイザリングと、シンクロナイザハブに回転軸の軸線方向に摺動自在に支持されてシンクロナイザリングおよびギヤに係合可能なスリーブとを備えている。そして、シンクロナイザリングには、シンクロナイザハブの回転をギヤのコーン面に伝達する摩擦面が形成されている。   BACKGROUND ART Conventionally, a synchro device has been used in a power transmission device (transmission) for a vehicle in order to synchronize a rotating shaft and a gear. For example, in a conventional synchronizer, a synchronizer hub fixed to a rotating shaft, a gear rotatably supported by the rotating shaft, a synchronizer ring arranged between the synchronizer hub and the gear, and a rotating shaft attached to the synchronizer hub. And a sleeve that is slidably supported in the axial direction and is engageable with the synchronizer ring and the gear. The synchronizer ring is formed with a friction surface that transmits the rotation of the synchronizer hub to the cone surface of the gear.

特開2013−194907号公報JP, 2013-194907, A

しかしながら、従来の動力伝達装置においては、シンクロナイザリングの不使用時(すなわち、非係合時)にも、シンクロナイザリングの摩擦面で摩擦が発生し、いわゆるシンクロナイザリングによる引き摺り損失が発生するという問題があった。   However, in the conventional power transmission device, even when the synchronizer ring is not used (that is, when the synchronizer ring is not engaged), friction is generated on the friction surface of the synchronizer ring, which causes drag loss due to the so-called synchronizer ring. there were.

本発明は、上記の課題に鑑みてなされたもので、シンクロナイザリングによる引き摺り損失をなくすことのできる動力伝達装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a power transmission device capable of eliminating drag loss due to a synchronizer ring.

本発明の動力伝達装置は、スプラインを有する回転軸と、前記回転軸と同軸上に配設され、第1歯部を有するギヤ部材と、前記回転軸と一体回転するとともに前記回転軸の軸方向に移動自在となるように前記スプライン上に配設され、前記軸方向への移動により前記ギヤ部材の前記第1歯部に噛み合うと、前記ギヤ部材が前記回転軸と一体回転を行う回転吸収機構と、を備え、前記回転吸収機構は、前記回転軸と一体回転するスリーブ部材と、前記スリーブ部材を前記軸方向に移動させる移動部材と、前記スリーブ部材と摩擦係合するように前記移動部材と前記スリーブ部材との間に配設され、前記スリーブ部材と相対回転するときに、前記回転軸と前記ギヤ部材との回転差を摩擦により吸収する摩擦部材と、を備えている。   A power transmission device of the present invention includes a rotating shaft having a spline, a gear member arranged coaxially with the rotating shaft, having a first tooth portion, and integrally rotating with the rotating shaft and in an axial direction of the rotating shaft. A rotation absorbing mechanism that is disposed on the spline so as to be movable in the direction of the axis and meshes with the first tooth portion of the gear member by the movement in the axial direction so that the gear member rotates integrally with the rotation shaft. The rotation absorbing mechanism includes a sleeve member that rotates integrally with the rotation shaft, a moving member that moves the sleeve member in the axial direction, and the moving member that frictionally engages with the sleeve member. And a friction member which is disposed between the sleeve member and absorbs a rotation difference between the rotation shaft and the gear member by friction when rotating relative to the sleeve member.

この構成によれば、ギヤ部材と回転軸とを同期させる場合、回転吸収機構の移動部材によってスリーブ部材を回転軸の軸方向に摺動させる。そうすると、回転吸収機構がギア部材の第1歯部(低歯部)に噛み合って、ギヤ部材が回転軸と一体回転するようになる。この場合、回転吸収機構は回転軸と一体回転しているので、回転軸とギヤ部材との間に回転差が生じる。この回転吸収機構には、移動部材とスリーブ部材との間に摩擦部材が配設され、摩擦部材とスリーブ部材とが摩擦係合している。したがって、摩擦部材とスリーブ部材とが相対回転するときに、回転軸とギヤ部材との間の回転差が摩擦部材の摩擦により吸収される。この場合、従来のようにシンクロナイザリングを設ける必要がないので、シンクロナイザリングによる非係合時の引き摺り損失(ロス)をなくすことができる。   According to this configuration, when synchronizing the gear member and the rotating shaft, the sleeve member is slid in the axial direction of the rotating shaft by the moving member of the rotation absorbing mechanism. Then, the rotation absorbing mechanism meshes with the first tooth portion (low tooth portion) of the gear member, and the gear member rotates integrally with the rotation shaft. In this case, since the rotation absorbing mechanism rotates integrally with the rotation shaft, a rotation difference occurs between the rotation shaft and the gear member. In this rotation absorbing mechanism, a friction member is arranged between the moving member and the sleeve member, and the friction member and the sleeve member are frictionally engaged with each other. Therefore, when the friction member and the sleeve member rotate relative to each other, the rotation difference between the rotation shaft and the gear member is absorbed by the friction of the friction member. In this case, since it is not necessary to provide the synchronizer ring as in the conventional case, it is possible to eliminate drag loss due to the synchronizer ring at the time of non-engagement.

また、本発明の動力伝達装置では、前記スリーブ部材は、前記ギヤ部材の前記第1歯部に噛み合う第2歯部を有し、前記回転吸収機構は、前記軸方向への移動により前記第2歯部が前記第1歯部に噛み合うと、前記ギヤ部材が前記回転軸と一体回転を行い、前記摩擦部材は、前記第2歯部が前記第1歯部に噛み合うときに、前記スリーブ部材と相対回転する場合に、前記回転軸と前記ギヤ部材との回転差を摩擦により吸収してもよい。   In the power transmission device of the present invention, the sleeve member has a second tooth portion that meshes with the first tooth portion of the gear member, and the rotation absorbing mechanism moves the second tooth portion by moving in the axial direction. When the tooth portion meshes with the first tooth portion, the gear member rotates integrally with the rotating shaft, and the friction member is connected to the sleeve member when the second tooth portion meshes with the first tooth portion. In the case of relative rotation, the difference in rotation between the rotating shaft and the gear member may be absorbed by friction.

この構成によれば、回転吸収機構の移動部材によってスリーブ部材を回転軸の軸方向に摺動させると、スリーブ部材の第2歯部(スプライン)がギア部材の第1歯部(低歯部)に噛み合って、ギヤ部材が回転軸と一体回転するようになる。この場合、第2歯部が第1歯部に噛み合う際に、摩擦部材とスリーブ部材とが相対回転するときに、回転軸とギヤ部材との回転差を摩擦部材の摩擦により吸収することができる。   According to this configuration, when the sleeve member is slid in the axial direction of the rotation shaft by the moving member of the rotation absorbing mechanism, the second tooth portion (spline) of the sleeve member causes the first tooth portion (low tooth portion) of the gear member. And the gear member rotates integrally with the rotary shaft. In this case, when the second tooth portion meshes with the first tooth portion, when the friction member and the sleeve member rotate relative to each other, the difference in rotation between the rotation shaft and the gear member can be absorbed by the friction of the friction member. .

また、本発明の動力伝達装置では、前記回転吸収機構は、前記第2歯部が前記第1歯部と噛み合う前に、前記ギヤ部材と噛み合う第3歯部を有し、前記第3歯部が前記ギヤ部材と噛み合うときに、前記摩擦部材と前記スリーブ部材との間で相対回転が発生してもよい。   In the power transmission device of the present invention, the rotation absorbing mechanism has a third tooth portion that meshes with the gear member before the second tooth portion meshes with the first tooth portion, and the third tooth portion. When the gear meshes with the gear member, relative rotation may occur between the friction member and the sleeve member.

この構成によれば、第2歯部が第1歯部と噛み合う前に、回転吸収機構の第3歯部がギヤ部材と噛み合う。第3歯部がギヤ部材と噛み合う際に、摩擦部材とスリーブ部材との間で相対回転が発生するときに、回転軸とギヤ部材との回転差を摩擦部材の摩擦により吸収することができる。   According to this structure, the third tooth portion of the rotation absorbing mechanism meshes with the gear member before the second tooth portion meshes with the first tooth portion. When relative rotation occurs between the friction member and the sleeve member when the third tooth portion meshes with the gear member, the difference in rotation between the rotation shaft and the gear member can be absorbed by the friction of the friction member.

また、本発明の動力伝達装置では、前記回転吸収機構は、付勢部材により得られる付勢力を用いて、前記摩擦部材を前記スリーブ部材に対して押圧する押圧部材を備えてもよい。   Further, in the power transmission device of the present invention, the rotation absorbing mechanism may include a pressing member that presses the friction member against the sleeve member by using an urging force obtained by an urging member.

この構成によれば、付勢部材によって得られる付勢力(与圧)により、摩擦部材がスリーブ部材に対して押圧される。これにより、摩擦面に摩擦トルクを発生させることができ、回転軸とギヤ部材との回転差を摩擦により吸収することができる。なお、付勢部材は、例えば、皿バネやコイルスプリングなどで構成することができる。   According to this structure, the friction member is pressed against the sleeve member by the biasing force (pressurization) obtained by the biasing member. As a result, a friction torque can be generated on the friction surface, and the difference in rotation between the rotating shaft and the gear member can be absorbed by friction. The biasing member can be configured by, for example, a disc spring or a coil spring.

また、本発明の動力伝達装置では、前記摩擦部材は、前記軸方向に複数並設されてもよい。   In the power transmission device of the present invention, a plurality of the friction members may be arranged side by side in the axial direction.

この構成によれば、摩擦部材の個数を増やすことによって、摩擦トルクを増加させることができる。これにより、摩擦トルクの設計自由度が高くなる。   According to this configuration, the friction torque can be increased by increasing the number of friction members. This increases the degree of freedom in designing the friction torque.

本発明によれば、シンクロナイザリングによる引き摺り損失をなくすことができる。   According to the present invention, drag loss due to the synchronizer ring can be eliminated.

本発明の実施の形態における動力伝達装置(シンクロ機構)の説明図である。It is explanatory drawing of the power transmission device (synchro mechanism) in embodiment of this invention. 本発明の実施の形態におけるギヤ部材の平面図である。It is a top view of the gear member in the embodiment of the present invention. 本発明の実施の形態における摩擦部材の平面図である。It is a top view of a friction member in an embodiment of the invention. 本発明の実施の形態におけるスリーブ部材の平面図である。It is a top view of a sleeve member in an embodiment of the invention. 本発明の実施の形態における動力伝達装置(シンクロ機構)のプレ係合状態を示す説明図である。It is explanatory drawing which shows the pre-engagement state of the power transmission device (synchro mechanism) in embodiment of this invention. 本発明の実施の形態における動力伝達装置(シンクロ機構)の本係合状態を示す説明図である。It is explanatory drawing which shows the main engagement state of the power transmission device (synchro mechanism) in embodiment of this invention. 他の実施の形態における動力伝達装置(シンクロ機構)の説明図である。It is explanatory drawing of the power transmission device (synchro mechanism) in other embodiment.

以下、本発明の実施の形態の動力伝達装置について、図面を用いて説明する。本実施の形態では、車両用のトランスミッション等に用いられる動力伝達装置の場合を例示する。   Hereinafter, a power transmission device according to an embodiment of the present invention will be described with reference to the drawings. In the present embodiment, the case of a power transmission device used for a vehicle transmission or the like is illustrated.

本発明の実施の形態の動力伝達装置の構成を、図面を参照して説明する。図1は、動力伝達装置であるシンクロ機構の説明図である。図1に示すように、シンクロ機構1は、回転軸2と、ギヤ部材3と、回転吸収機構4を備えている。ギヤ部材3は、回転軸2と同軸上に設けられており、回転軸2とは独立に回転可能に構成されている。例えば、回転軸2は、エンジンなどの駆動源(図示せず)からの動力が伝達されるメインシャフトであり、ギヤ部材3は、低速段側または高速段側への変速用のギヤである。回転軸2の外周面にはスプライン5が設けられている。また、ギヤ部材3の外周面には、第1歯部である低歯部6と、高歯部7が設けられている(図2参照)。低歯部6は、ギヤ部材3の外周の全周にわたって形成されており、高歯部7は、ギヤ部材3の外周の一部に(例えば、120度間隔で3箇所に、あるいは、90度間隔で4箇所に)形成されている。そして、回転軸2のスプライン5上には、回転軸2と一体回転するとともに回転軸2の軸方向に移動自在となるように、回転吸収機構4が設けられている。   A configuration of a power transmission device according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram of a synchronizing mechanism that is a power transmission device. As shown in FIG. 1, the synchronizing mechanism 1 includes a rotating shaft 2, a gear member 3, and a rotation absorbing mechanism 4. The gear member 3 is provided coaxially with the rotating shaft 2 and is rotatable independently of the rotating shaft 2. For example, the rotating shaft 2 is a main shaft to which power from a drive source (not shown) such as an engine is transmitted, and the gear member 3 is a gear for shifting to a low speed side or a high speed side. A spline 5 is provided on the outer peripheral surface of the rotating shaft 2. Further, on the outer peripheral surface of the gear member 3, a low tooth portion 6 which is a first tooth portion and a high tooth portion 7 are provided (see FIG. 2). The low tooth portions 6 are formed over the entire outer circumference of the gear member 3, and the high tooth portions 7 are formed on a part of the outer circumference of the gear member 3 (for example, at three positions at 120 degree intervals, or at 90 degree intervals). Are formed at four intervals). A rotation absorbing mechanism 4 is provided on the spline 5 of the rotary shaft 2 so as to rotate integrally with the rotary shaft 2 and to be movable in the axial direction of the rotary shaft 2.

回転吸収機構4は、スリーブ部材8と、移動部材9と、スリーブホルダ(摩擦部材)10を備えている。スリーブ部材8の内周面には、第2歯部であるスプライン11が設けられている(図4参照)。スプライン11は、スリーブ部材8の全周にわたって形成されている。スリーブ部材8のスプライン11は、回転軸2のスプライン5と噛み合うように構成されており、スリーブ部材8は、回転軸2と一体回転するとともに回転軸2の軸方向に移動自在とされている。スリーブ部材8のスプライン11は、スリーブ部材8が軸方向に沿ってギヤ部材3の方向に移動したときに、ギヤ部材3の低歯部6とも噛み合うように構成されている。   The rotation absorbing mechanism 4 includes a sleeve member 8, a moving member 9, and a sleeve holder (friction member) 10. The inner peripheral surface of the sleeve member 8 is provided with a spline 11, which is a second tooth portion (see FIG. 4). The spline 11 is formed over the entire circumference of the sleeve member 8. The spline 11 of the sleeve member 8 is configured to mesh with the spline 5 of the rotary shaft 2, and the sleeve member 8 rotates integrally with the rotary shaft 2 and is movable in the axial direction of the rotary shaft 2. The spline 11 of the sleeve member 8 is configured to mesh with the low tooth portion 6 of the gear member 3 when the sleeve member 8 moves in the axial direction toward the gear member 3.

スリーブ部材8は、移動部材9によって軸方向に移動させることができる。例えば、移動部材9はフォークである。摩擦部材10は、移動部材9とスリーブ部材8との間に設けられており、この摩擦部材10を介して、移動部材9とスリーブ部材8とが摩擦係合している。本実施の形態では、摩擦部材10は、本体部材12と、摩擦板13と、押圧部材14を備えている。   The sleeve member 8 can be moved in the axial direction by the moving member 9. For example, the moving member 9 is a fork. The friction member 10 is provided between the moving member 9 and the sleeve member 8, and the moving member 9 and the sleeve member 8 are frictionally engaged with each other via the friction member 10. In the present embodiment, the friction member 10 includes a main body member 12, a friction plate 13, and a pressing member 14.

本体部材12の外周面には、移動部材9(フォーク)が嵌合する溝部15が設けられている。また、本体部材12の一方のギヤ部材3側(図1における左側)には、プレート部16が設けられている。プレート部16の先端の内周面には、第3歯部であるドグ歯部17が設けられている(図3参照)。このドグ歯部17は、ギヤ部材3の高歯部7と係合する。ドグ歯部17は、ギヤ部材3の高歯部7と対応するように、プレート部16の内周の一部に(例えば、120度間隔で3箇所に、あるいは、90度間隔で4箇所に)形成されている。プレート部16のスリーブ部材8側(図1における右側)の面には、摩擦面が形成されており、スリーブ部材8のプレート部16側(図1における左側)の面にも、摩擦面が形成されている。   A groove portion 15 into which the moving member 9 (fork) is fitted is provided on the outer peripheral surface of the main body member 12. A plate portion 16 is provided on one gear member 3 side of the main body member 12 (on the left side in FIG. 1 ). A dog tooth portion 17, which is a third tooth portion, is provided on the inner peripheral surface at the tip of the plate portion 16 (see FIG. 3 ). The dog tooth portion 17 engages with the high tooth portion 7 of the gear member 3. The dog tooth portions 17 are provided on a part of the inner circumference of the plate portion 16 (for example, at three positions at 120° intervals or at four positions at 90° intervals) so as to correspond to the high tooth portions 7 of the gear member 3. ) Is formed. A friction surface is formed on the surface of the plate portion 16 on the sleeve member 8 side (right side in FIG. 1), and a friction surface is also formed on the surface of the sleeve member 8 on the plate portion 16 side (left side in FIG. 1). Has been done.

また、本体部材12の内周面には、スプライン18が設けられている。摩擦板13は、本体部材12のスプライン18と噛み合うように構成されており、本体部材12と一体回転するとともに回転軸2の軸方向に移動自在とされている。押圧部材14は、回転軸2の軸方向に移動できないように、スナップ19によって本体部材12に固定されている。押圧部材14の内部には、付勢部材20が収納されている。付勢部材20は、例えば、皿バネやコイルスプリングなどで構成される。この付勢部材20から得られる付勢力によって、摩擦板13がスリーブ部材8側へ押圧されている。スリーブ部材8は、摩擦部材10(本体部材12と摩擦板13)によって両側から挟まれており、付勢部材20の付勢力によって両側から把持されているともいえる。摩擦板13のスリーブ部材8側(図1における左側)の面には、摩擦面が形成されており、スリープ部材の摩擦板13側(図1における右側)の面にも、摩擦面が形成されている。   A spline 18 is provided on the inner peripheral surface of the main body member 12. The friction plate 13 is configured to mesh with the spline 18 of the main body member 12, is integrally rotatable with the main body member 12, and is movable in the axial direction of the rotary shaft 2. The pressing member 14 is fixed to the main body member 12 by a snap 19 so as not to move in the axial direction of the rotating shaft 2. A biasing member 20 is housed inside the pressing member 14. The biasing member 20 is composed of, for example, a disc spring or a coil spring. The friction plate 13 is pressed toward the sleeve member 8 by the urging force obtained from the urging member 20. It can be said that the sleeve member 8 is sandwiched from both sides by the friction member 10 (the main body member 12 and the friction plate 13) and is grasped from both sides by the urging force of the urging member 20. A friction surface is formed on the surface of the friction plate 13 on the sleeve member 8 side (left side in FIG. 1), and a friction surface is also formed on the surface of the sleep member on the friction plate 13 side (right side in FIG. 1). ing.

なお、押圧部材14の他方のギヤ部材3側(図1における右側)にも、本体部材12のプレート部16と同様のプレート部21が設けられており、プレート部21の先端の内周面にも、ギヤ部材3の高歯部7と係合するドグ歯部22が設けられている。このドグ歯部22も、ギヤ部材3の高歯部7と対応するように、プレート部21の内周の一部に(例えば、120度間隔で3箇所に、あるいは、90度間隔で4箇所に)形成されている。   A plate portion 21 similar to the plate portion 16 of the main body member 12 is provided on the other gear member 3 side (right side in FIG. 1) of the pressing member 14, and the inner peripheral surface of the tip of the plate portion 21 is provided. Is also provided with a dog tooth portion 22 that engages with the high tooth portion 7 of the gear member 3. The dog tooth portions 22 are also formed on a part of the inner circumference of the plate portion 21 (e.g., at three positions at 120 degree intervals or four at 90 degree intervals) so as to correspond to the high tooth portions 7 of the gear member 3. Formed).

以上のように構成されたシンクロ機構1について、図面を参照してその動作を説明する。ここでは、シンクロ機構1を用いて、回転している回転軸2と回転していないギヤ部材3の同期をとる場合の動作について説明する。   The operation of the synchronizing mechanism 1 configured as described above will be described with reference to the drawings. Here, the operation when synchronizing the rotating shaft 2 that is rotating and the gear member 3 that is not rotating using the synchro mechanism 1 will be described.

本実施の形態のシンクロ機構1を用いて回転軸2とギヤ部材3の同期をとる場合には、まず、図5に示すように、移動部材9を移動させることにより、スリーブ部材8を軸方向に沿って噛み合い対象であるギヤ部材3(図5における左側のギヤ部材3)側へ摺動させる。そうすると、摩擦部材10のドグ歯部17がギヤ部材3の高歯部7と係合する。摩擦部材10がギヤ部材3と一体回転し始めると、摩擦部材10がギヤ部材3の回転抵抗となり、摩擦部材10とスリーブ部材8に回転差が生じる。すなわち、摩擦部材10とスリーブ部材8とが相対回転するようになる。この場合、スリーブ部材8は摩擦部材10によって両側から挟まれ、付勢部材20の付勢力によって両側から把持されている。したがって、摩擦部材10とスリーブ部材8との回転差が摩擦面の摩擦により吸収される。   When synchronizing the rotating shaft 2 and the gear member 3 using the synchronizing mechanism 1 of the present embodiment, first, as shown in FIG. 5, the moving member 9 is moved to move the sleeve member 8 in the axial direction. The gear member 3 (the gear member 3 on the left side in FIG. 5), which is the object of meshing, is slid along. Then, the dog tooth portion 17 of the friction member 10 engages with the high tooth portion 7 of the gear member 3. When the friction member 10 starts to rotate integrally with the gear member 3, the friction member 10 serves as rotation resistance of the gear member 3, and a difference in rotation occurs between the friction member 10 and the sleeve member 8. That is, the friction member 10 and the sleeve member 8 rotate relative to each other. In this case, the sleeve member 8 is sandwiched from both sides by the friction member 10 and is grasped from both sides by the urging force of the urging member 20. Therefore, the rotation difference between the friction member 10 and the sleeve member 8 is absorbed by the friction of the friction surface.

このようにして、摩擦部材10とスリーブ部材8に回転差がなくなり、ギヤ部材3と回転軸2との同期がとれると、図6に示すように、移動部材9をさらに移動させることにより、スリーブ部材8のスプライン11がギヤ部材3の低歯部6に噛み合うことができる。   In this way, when there is no difference in rotation between the friction member 10 and the sleeve member 8 and the gear member 3 and the rotary shaft 2 are synchronized, the moving member 9 is further moved as shown in FIG. The spline 11 of the member 8 can mesh with the low tooth portion 6 of the gear member 3.

このような本実施の形態のシンクロ機構1によれば、ギヤ部材3と回転軸2とを同期させる場合、回転吸収機構4の移動部材9によってスリーブ部材8を回転軸2の軸方向に摺動させると、回転吸収機構4がギヤ部材3の低歯部6に噛み合って、ギヤ部材3が回転軸2と一体回転するようになる。この場合、回転吸収機構4は回転軸2と一体回転しているので、回転軸2とギヤ部材3との間に回転差が生じる。この回転吸収機構4には、移動部材9とスリーブ部材8との間に摩擦部材10が配設されており、摩擦部材10とスリーブ部材8とが摩擦係合している。したがって、摩擦部材10とスリーブ部材8とが相対回転するときに、回転軸2とギヤ部材3との間の回転差が摩擦部材10の摩擦により吸収される。この場合、従来のようにシンクロナイザリングを設ける必要がないので、シンクロナイザリングによる非係合時の引き摺り損失(ロス)をなくすことができる。   According to the synchro mechanism 1 of this embodiment, when the gear member 3 and the rotary shaft 2 are synchronized, the sleeve member 8 slides in the axial direction of the rotary shaft 2 by the moving member 9 of the rotation absorbing mechanism 4. Then, the rotation absorbing mechanism 4 meshes with the low tooth portion 6 of the gear member 3, and the gear member 3 rotates integrally with the rotating shaft 2. In this case, since the rotation absorbing mechanism 4 rotates integrally with the rotary shaft 2, a rotation difference occurs between the rotary shaft 2 and the gear member 3. In the rotation absorbing mechanism 4, a friction member 10 is arranged between the moving member 9 and the sleeve member 8, and the friction member 10 and the sleeve member 8 are frictionally engaged with each other. Therefore, when the friction member 10 and the sleeve member 8 rotate relative to each other, the rotation difference between the rotating shaft 2 and the gear member 3 is absorbed by the friction of the friction member 10. In this case, since it is not necessary to provide the synchronizer ring as in the conventional case, it is possible to eliminate drag loss due to the synchronizer ring at the time of non-engagement.

具体的には、回転吸収機構4の移動部材9によってスリーブ部材8を回転軸2の軸方向に摺動させると、スリーブ部材8のスプライン11がギヤ部材3の低歯部6に噛み合って、ギヤ部材3が回転軸2と一体回転するようになる。この場合、スプライン11が低歯部6に噛み合う際に、摩擦部材10とスリーブ部材8とが相対回転するときに、回転軸2とギヤ部材3との回転差を摩擦部材10の摩擦により吸収することができる。   Specifically, when the sleeve member 8 is slid in the axial direction of the rotary shaft 2 by the moving member 9 of the rotation absorbing mechanism 4, the spline 11 of the sleeve member 8 meshes with the low tooth portion 6 of the gear member 3, and the gear The member 3 comes to rotate integrally with the rotary shaft 2. In this case, when the spline 11 meshes with the low tooth portion 6, when the friction member 10 and the sleeve member 8 relatively rotate, the difference in rotation between the rotary shaft 2 and the gear member 3 is absorbed by the friction of the friction member 10. be able to.

より具体的には、スプライン11が低歯部6と噛み合う前に、回転吸収機構4のドグ歯部17、22がギヤ部材3の高歯部7と噛み合う。ドグ歯部17、22が高歯部7と噛み合う際に、摩擦部材10とスリーブ部材8との間で相対回転が発生するときに、回転軸2とギヤ部材3との回転差を摩擦部材10の摩擦により吸収することができる。   More specifically, the dog teeth 17 and 22 of the rotation absorbing mechanism 4 mesh with the high teeth 7 of the gear member 3 before the splines 11 mesh with the low teeth 6. When relative rotation occurs between the friction member 10 and the sleeve member 8 when the dog tooth portions 17 and 22 are meshed with the high tooth portion 7, a difference in rotation between the rotary shaft 2 and the gear member 3 is generated. Can be absorbed by friction.

また、本実施の形態では、付勢部材20によって得られる付勢力(与圧)により、摩擦部材10がスリーブ部材8に対して押圧される。これにより、摩擦面に摩擦トルクを発生させることができ、回転軸2とギヤ部材3との回転差を摩擦により吸収することができる。   Further, in the present embodiment, the friction member 10 is pressed against the sleeve member 8 by the biasing force (pressurization) obtained by the biasing member 20. As a result, a friction torque can be generated on the friction surface, and the difference in rotation between the rotary shaft 2 and the gear member 3 can be absorbed by friction.

以上、本発明の実施の形態を例示により説明したが、本発明の範囲はこれらに限定されるものではなく、請求項に記載された範囲内において目的に応じて変更・変形することが可能である。   Although the embodiments of the present invention have been described above by way of example, the scope of the present invention is not limited to these and can be modified or modified according to the purpose within the scope of the claims. is there.

例えば、図7に示すように、摩擦部材10の摩擦板13は、軸方向に複数並設することが可能である。図7には、3枚の摩擦板13を併設した例が示されているが、摩擦板13の枚数はこれに限定されない。この場合、摩擦部材10の個数を増やすことによって、摩擦トルクを増加させることができる。これにより、摩擦トルクの設計自由度が高くなる。   For example, as shown in FIG. 7, a plurality of friction plates 13 of the friction member 10 can be arranged side by side in the axial direction. FIG. 7 shows an example in which three friction plates 13 are provided side by side, but the number of friction plates 13 is not limited to this. In this case, the friction torque can be increased by increasing the number of friction members 10. This increases the degree of freedom in designing the friction torque.

以上のように、本発明にかかる動力伝達装置は、シンクロナイザリングによる引き摺り損失をなくすことができるという効果を有し、車両用のトランスミッション等に用いられ、有用である。   INDUSTRIAL APPLICABILITY As described above, the power transmission device according to the present invention has the effect of eliminating drag loss due to the synchronizer ring, and is useful as a vehicle transmission or the like.

1 シンクロ機構(動力伝達装置)
2 回転軸
3 ギヤ部材
4 回転吸収機構
5 スプライン
6 低歯部(第1歯部)
7 高歯部
8 スリーブ部材
9 移動部材
10 スリーブホルダ(摩擦部材)
11 スプライン(第2歯部)
12 本体部材
13 摩擦板
14 押圧部材
15 溝部
16 プレート部
17 ドグ歯部(第3歯部)
18 スプライン
19 スナップ
20 付勢部材
21 プレート部
22 ドグ歯部(第3歯部)
1 Synchro mechanism (power transmission device)
2 rotating shaft 3 gear member 4 rotation absorbing mechanism 5 spline 6 low tooth portion (first tooth portion)
7 High-tooth part 8 Sleeve member 9 Moving member 10 Sleeve holder (friction member)
11 splines (second tooth)
12 main body member 13 friction plate 14 pressing member 15 groove portion 16 plate portion 17 dog tooth portion (third tooth portion)
18 Spline 19 Snap 20 Biasing Member 21 Plate Part 22 Dog Tooth Part (Third Tooth Part)

Claims (5)

スプラインを有する回転軸と、
前記回転軸と同軸上に配設され、第1歯部を有するギヤ部材と、
前記回転軸と一体回転するとともに前記回転軸の軸方向に移動自在となるように前記スプライン上に配設され、前記軸方向への移動により前記ギヤ部材の前記第1歯部に噛み合うと、前記ギヤ部材が前記回転軸と一体回転を行う回転吸収機構と、
を備え、
前記回転吸収機構は、
前記回転軸と一体回転するスリーブ部材と、
前記スリーブ部材を前記軸方向に移動させる移動部材と、
前記スリーブ部材と摩擦係合するように前記移動部材と前記スリーブ部材との間に配設され、前記スリーブ部材と相対回転するときに、前記回転軸と前記ギヤ部材との回転差を摩擦により吸収する摩擦部材と、
を備えた動力伝達装置。
A rotary shaft having a spline,
A gear member arranged coaxially with the rotation shaft and having a first tooth portion,
It is arranged on the spline so as to rotate integrally with the rotary shaft and to be movable in the axial direction of the rotary shaft, and when the spline meshes with the first tooth portion of the gear member by the movement in the axial direction, A rotation absorbing mechanism in which a gear member rotates integrally with the rotation shaft,
Equipped with
The rotation absorbing mechanism,
A sleeve member that rotates integrally with the rotating shaft,
A moving member for moving the sleeve member in the axial direction,
It is arranged between the moving member and the sleeve member so as to frictionally engage with the sleeve member, and absorbs a rotation difference between the rotary shaft and the gear member by friction when rotating relative to the sleeve member. A friction member to
Power transmission device.
前記スリーブ部材は、前記ギヤ部材の前記第1歯部に噛み合う第2歯部を有し、
前記回転吸収機構は、前記軸方向への移動により前記第2歯部が前記第1歯部に噛み合うと、前記ギヤ部材が前記回転軸と一体回転を行い、
前記摩擦部材は、前記第2歯部が前記第1歯部に噛み合うときに、前記スリーブ部材と相対回転する場合に、前記回転軸と前記ギヤ部材との回転差を摩擦により吸収する、請求項1に記載の動力伝達装置。
The sleeve member has a second tooth portion that meshes with the first tooth portion of the gear member,
In the rotation absorbing mechanism, when the second tooth portion meshes with the first tooth portion due to the movement in the axial direction, the gear member integrally rotates with the rotating shaft,
The friction member absorbs a rotation difference between the rotating shaft and the gear member by friction when the second tooth portion rotates relative to the sleeve member when the second tooth portion meshes with the first tooth portion. 1. The power transmission device according to 1.
前記回転吸収機構は、前記第2歯部が前記第1歯部と噛み合う前に、前記ギヤ部材と噛み合う第3歯部を有し、
前記第3歯部が前記ギヤ部材と噛み合うときに、前記摩擦部材と前記スリーブ部材との間で相対回転が発生する、請求項2に記載の動力伝達装置。
The rotation absorbing mechanism has a third tooth portion that meshes with the gear member before the second tooth portion meshes with the first tooth portion,
The power transmission device according to claim 2, wherein relative rotation occurs between the friction member and the sleeve member when the third tooth portion meshes with the gear member.
前記回転吸収機構は、付勢部材により得られる付勢力を用いて、前記摩擦部材を前記スリーブ部材に対して押圧する押圧部材を備える、請求項1から請求項3のいずれか一項に記載の動力伝達装置。   4. The rotation absorbing mechanism according to claim 1, further comprising a pressing member that presses the friction member against the sleeve member by using an urging force obtained by an urging member. Power transmission device. 前記摩擦部材は、前記軸方向に複数並設されている、請求項1から請求項4のいずれか一項に記載の動力伝達装置。   The power transmission device according to any one of claims 1 to 4, wherein a plurality of the friction members are arranged in parallel in the axial direction.
JP2016034278A 2016-02-25 2016-02-25 Power transmission device Active JP6699227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016034278A JP6699227B2 (en) 2016-02-25 2016-02-25 Power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016034278A JP6699227B2 (en) 2016-02-25 2016-02-25 Power transmission device

Publications (2)

Publication Number Publication Date
JP2017150587A JP2017150587A (en) 2017-08-31
JP6699227B2 true JP6699227B2 (en) 2020-05-27

Family

ID=59741803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016034278A Active JP6699227B2 (en) 2016-02-25 2016-02-25 Power transmission device

Country Status (1)

Country Link
JP (1) JP6699227B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019130531A1 (en) 2018-11-21 2020-05-28 Aisin Seiki Kabushiki Kaisha POWER TRANSMISSION DEVICE

Also Published As

Publication number Publication date
JP2017150587A (en) 2017-08-31

Similar Documents

Publication Publication Date Title
JP2015163953A5 (en)
WO2017033940A1 (en) Automatic clutch device
RU2610330C2 (en) Switching device with synchronizer
WO2017043393A1 (en) Automatic clutch device
JP2009281570A (en) Operation device of dual clutch
JP2018159390A5 (en)
JP5873288B2 (en) Synchronous meshing mechanism of manual transmission
JP6010334B2 (en) Synchronous meshing mechanism of transmission
JP2009103248A (en) Transmission
JP6699227B2 (en) Power transmission device
JP6013236B2 (en) Synchro device
JP5020903B2 (en) Power transmission device
JP6133081B2 (en) Vehicle transmission
JP2007071219A (en) Synchronization device of transmission
JP2018084311A (en) Rotary meshing type engagement device
JP3174236U (en) Gear transmission
JP6248507B2 (en) Dog clutch type transmission
JP6233713B2 (en) Transmission synchronizer
JP6482158B2 (en) Clutch device
RU2019120792A (en) Synchronizer for manual transmission, in particular for vehicle transmission
JP6072740B2 (en) Transmission synchronizer
JP2012220005A (en) Electromagnetic engaging device
JP2011190861A (en) Synchronous meshing device of transmission
JP6072741B2 (en) Transmission synchronizer
JP2012127446A (en) Transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200413

R151 Written notification of patent or utility model registration

Ref document number: 6699227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151