JP6696819B2 - Operating point control circuit device for series connected solar cells or other power sources - Google Patents

Operating point control circuit device for series connected solar cells or other power sources Download PDF

Info

Publication number
JP6696819B2
JP6696819B2 JP2016083307A JP2016083307A JP6696819B2 JP 6696819 B2 JP6696819 B2 JP 6696819B2 JP 2016083307 A JP2016083307 A JP 2016083307A JP 2016083307 A JP2016083307 A JP 2016083307A JP 6696819 B2 JP6696819 B2 JP 6696819B2
Authority
JP
Japan
Prior art keywords
terminals
switching means
pair
electrode connection
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016083307A
Other languages
Japanese (ja)
Other versions
JP2016214061A (en
JP6696819B6 (en
Inventor
心一 浦部
心一 浦部
清水 敏久
敏久 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Tokyo Metropolitan University
Original Assignee
Toyota Motor Corp
Tokyo Metropolitan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Tokyo Metropolitan University filed Critical Toyota Motor Corp
Priority to US15/139,453 priority Critical patent/US9602049B2/en
Publication of JP2016214061A publication Critical patent/JP2016214061A/en
Application granted granted Critical
Publication of JP6696819B2 publication Critical patent/JP6696819B2/en
Publication of JP6696819B6 publication Critical patent/JP6696819B6/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、太陽電池及びその他の任意の電源(電池、蓄電器、燃料電池、発電機、発電素子等)用の動作点制御回路装置に係り、より詳細には、直列接続された太陽電池又はその他の電源用の動作点制御回路装置であって、各電池又は電源の発電電圧又は動作電圧を制御すると共に出力電圧の昇圧が可能な構成を有する装置に係る。   The present invention relates to an operating point control circuit device for a solar cell and any other power source (battery, battery, fuel cell, generator, power generating element, etc.), and more specifically, a series connected solar cell or other The present invention relates to an operating point control circuit device for a power supply, which has a configuration capable of controlling a generated voltage or an operating voltage of each battery or a power supply and boosting an output voltage.

一つの太陽電池(セル)の発電電圧は、一般的に、種々の機械器具や充電器の動作電圧よりも低いので、そのような機械器具の作動や充電器の充電に太陽電池を利用するための一つの方法として、太陽光発電システムに於いて、複数個の太陽電池セルを直列に接続した構成(太陽電池モジュール)が採用される。かかる複数の太陽電池セルが直列に接続された太陽電池モジュールに於いては、各太陽電池セルの設置角度の違いや建造物等によって一部のセル上に影が生じ、セル毎の受光量のバラつきが生じると、発電量の小さいセルは抵抗(逆バイアスのダイオード)となり、太陽電池モジュールの出力を低下させることとなり得る。   Since the generated voltage of one solar cell (cell) is generally lower than the operating voltage of various machines and chargers, the solar cells are used to operate such machines and chargers and charge the charger. As one of the methods, a configuration in which a plurality of solar battery cells are connected in series (solar battery module) is adopted in a solar power generation system. In such a solar cell module in which a plurality of solar cells are connected in series, a shadow is produced on some cells due to differences in the installation angle of each solar cell, buildings, etc. When the variation occurs, the cell with a small power generation amount becomes a resistance (reverse bias diode), which may reduce the output of the solar cell module.

より具体的には、この分野に於いてよく知られている如く、太陽電池は、図7(A)に例示されているように、発電電圧が0Vから増大すると伴に電流が変化する特性を有しており、発電電力には、その大きさが最大となる最適な動作点(最大電力点又は最適動作点と称される。)が存在する。そして、上記の如き複数の太陽電池セルが直列に接続された太陽電池モジュールの場合、全ての太陽電池セルの最大出力点が実質的に一致しており、従って、直列に接続された全ての太陽電池セルに於いて、共通の最大出力点に於ける電流が流通することが前提となっているところ、実際には、上記の如く、影などによって、太陽電池モジュール内の一部の太陽電池セルの受光量が低減することがあり、その場合、その受光量が低減された太陽電池セルの発電特性だけが、発電電圧に対する電流が低減する方向に変化し、最大出力点がずれることとなる。そうすると、太陽電池セルが直列に接続された回路構成に於いて、最大出力点が互いに相異する太陽電池セルに同一の電流が流通することとなり、受光量の小さいセル(発電量の小さいセル)は、電流が受光量の大きいセルの最大出力点に合わされている場合には、実質的に発電しないだけでなく、電流に対する抵抗となるので、太陽電池モジュールの出力低下を惹起することとなる。(太陽電池モジュールの受光量に見合った発電出力が得られないだけでなく、出力の損失も生ずることとなる。)   More specifically, as is well known in this field, the solar cell has a characteristic that the current changes as the generated voltage increases from 0 V, as illustrated in FIG. 7 (A). The generated power has an optimum operating point (referred to as a maximum power point or an optimum operating point) that maximizes its magnitude. And, in the case of a solar cell module in which a plurality of solar cells are connected in series as described above, the maximum output points of all the solar cells are substantially the same, and therefore all the solar cells connected in series are In the battery cell, it is assumed that the current flows at the common maximum output point, but in reality, as described above, due to shadows, some solar battery cells in the solar battery module In some cases, the amount of received light may decrease, and in that case, only the power generation characteristics of the solar cells with the reduced amount of received light change in the direction in which the current with respect to the generated voltage decreases, and the maximum output point shifts. Then, in a circuit configuration in which solar cells are connected in series, the same current will flow to solar cells whose maximum output points differ from each other, resulting in cells with a small amount of received light (cells with a small amount of power generation). When the current is matched with the maximum output point of the cell having a large amount of received light, it not only does not substantially generate power but also becomes a resistance to the current, which causes a decrease in the output of the solar cell module. (Not only does the power generation output corresponding to the amount of light received by the solar cell module not obtained, but output loss also occurs.)

そこで、そのような太陽電池セル毎の受光量のバラつきに起因する出力低下を回避するための装置として、直列に接続された太陽電池セルの各々の勳作点を個別に制御することが可能な発電動作点制御回路装置が提案されている(非特許文献1〜3)。かかる発電動作点制御回路装置は、複数の太陽電池セルが直列に接続された回路構成に対して、多段昇降圧チョッパ回路を用いて、太陽電池セル毎に、それぞれの最大出力点に於ける電流が流れるように発電電圧を制御し、これにより、全ての太陽電池セルが実質的に最大出力点にて発電することを可能にする。この発電動作点制御回路装置によれば、影などによって受光量が低減した太陽電池セルについても、その最大出力点にて動作させることができるので、太陽電池モジュールの受光量に見合った発電電力が得られ、また、受光量が低減した太陽電池セルが逆バイアスのダイオードとはならないので、出力損失も低減されることとなる。   Therefore, as a device for avoiding the output reduction due to the variation in the amount of received light for each solar battery cell, it is possible to individually control the operating points of each of the solar battery cells connected in series. Power generation operating point control circuit devices have been proposed (Non-Patent Documents 1 to 3). Such a power generation operating point control circuit device uses a multistage buck-boost chopper circuit for a circuit configuration in which a plurality of solar cells are connected in series, and for each solar cell, a current at each maximum output point The generated voltage is controlled so that all the solar cells can generate electricity at substantially the maximum output point. According to this power generation operating point control circuit device, even a solar battery cell whose light receiving amount is reduced due to a shadow or the like can be operated at its maximum output point, so that the generated power corresponding to the light receiving amount of the solar battery module is generated. Further, since the solar battery cell obtained and having a reduced amount of received light does not serve as a reverse-biased diode, output loss is also reduced.

なお、太陽電池の動作制御に於いてチョッパ回路を用いる構成に関して、スイッチング素子に於ける損失を低減して太陽電池の発電出力を効率良く充電器に充電させることのできる回路装置の例が特許文献1に於いて提案されている。   Regarding the configuration using the chopper circuit in the operation control of the solar cell, there is an example of a circuit device that can reduce the loss in the switching element and efficiently charge the power generation output of the solar cell in the charger. 1 is proposed.

特開平6−284601号公報JP-A-6-284601

清水敏久他6名、太陽/風カエネルギー講演論文集、1996年57−60頁Toshihisa Shimizu and 6 others, Proceedings of Solar / Wind Energy, 1996, 57-60 清水敏久、FBテクニカルニュース No.56 2000年11月1日22−27頁Toshihisa Shimizu, FB Technical News No. 56 Nov. 1, 2000, pp. 22-27 清水敏久他3名、“Generation Control Circuit for Photovoltaic Modules” IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL.16, NO. 3, MAY 2001年 293−300頁Toshihisa Shimizu et al., “Generation Control Circuit for Photovoltaic Modules” IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL.16, NO. 3, MAY 2001, pp. 293-300.

複数個の太陽電池セルを直列に接続した太陽電池モジュールに於いて、上記の非特許文献1〜3に記載されている如き発電動作点制御回路装置を用いた際に得られる太陽電池モジュールの両端の出力電圧は、実質的に、各太陽電池セルがそれぞれの最大電力点にて発電している際の電圧の総和となる。従って、その複数個の直列に接続された太陽電池セルの発電電圧の総和よりも高い電圧が要求される場合、例えば、太陽電池セルの発電電圧の総和よりも高い電圧にて充電が為される充電器に対して充電をする場合など、には、太陽電池モジュールの出力電圧を昇圧する必要がある。しかしながら、上記の非特許文献1〜3にて提案されている発電動作点制御回路装置には、昇圧機能が備えられておらず、太陽電池モジュールの出力電圧を昇圧しようとすると、発電電力が低下してしまうこととなる。従って、かかる発電動作点制御回路装置の場合、太陽電池モジュールの出力電圧の昇圧のためには、発電動作点制御回路装置に加えて、更に、別途、昇圧器が必要となるところ、そうすると、システムが大きくなり、コストが増えることとなる。   In a solar cell module in which a plurality of solar cells are connected in series, both ends of the solar cell module obtained by using the power generation operating point control circuit device as described in Non-Patent Documents 1 to 3 above. The output voltage of is substantially the sum of the voltages when the respective solar cells are generating power at their respective maximum power points. Therefore, when a voltage higher than the sum of the power generation voltages of the plurality of solar cells connected in series is required, for example, charging is performed at a voltage higher than the sum of the power generation voltages of the solar cells. When charging the charger, it is necessary to boost the output voltage of the solar cell module. However, the power generation operating point control circuit devices proposed in the above Non-Patent Documents 1 to 3 do not have a boosting function, and when attempting to boost the output voltage of the solar cell module, the generated power decreases. Will be done. Therefore, in the case of such a power generation operating point control circuit device, in order to boost the output voltage of the solar cell module, a booster is additionally required in addition to the power generation operating point control circuit device. Will increase and cost will increase.

この点に関し、本発明の発明者等は、上記の発電動作点制御回路装置の構成の一部を修正するだけで、発電電力を低下させずに、太陽電池モジュールの出力電圧を昇圧することが可能であることを見出した。本発明に於いては、その知見が利用される。   In this regard, the inventors of the present invention can boost the output voltage of the solar cell module without lowering the generated power by merely modifying a part of the configuration of the power generation operating point control circuit device. I found it possible. The knowledge is utilized in the present invention.

かくして、本発明の一つの課題は、複数個の太陽電池セルを直列に接続した太陽電池モジュールに於ける個々の太陽電池セルの発電動作点を制御する発電動作点制御回路装置であって、発電電力を低下させずに、太陽電池モジュールの出力電圧の昇圧が可能な装置を提供することである。   Thus, one object of the present invention is a power generation operating point control circuit device for controlling the power generation operating point of each solar cell in a solar cell module in which a plurality of solar cells are connected in series, An object of the present invention is to provide a device capable of boosting the output voltage of a solar cell module without lowering the power.

また、上記の発電動作点制御回路装置の構成の一部を修正して太陽電池モジュールの出力電圧の昇圧機能が付与された装置の構成は、太陽電池に限らず、複数の電池、蓄電器、発電機、発電素子などの任意の電源素子が直列に接続されたモジュールに於いて、個々の電源素子の動作電圧を制御するためにも利用可能である。従って、本発明の更なる課題は、複数個の太陽電池、電源素子(電池セル、蓄電器セル、発電機、発電素子等)を直列に接続したモジュールに於ける個々のセルの動作点を制御する動作点制御回路装置であって、発電電力又は出力電力を低下させずに、モジュールの出力電圧の昇圧が可能な装置を提供することである。   Further, the configuration of the device in which a part of the configuration of the power generation operating point control circuit device is modified and a function of boosting the output voltage of the solar cell module is added is not limited to the solar cell, and a plurality of batteries, a condenser, a power generator, It can also be used to control the operating voltage of each power supply element in a module in which arbitrary power supply elements such as a machine and a power generation element are connected in series. Therefore, a further object of the present invention is to control the operating points of individual cells in a module in which a plurality of solar cells and power supply elements (battery cells, storage cells, generators, power generation elements, etc.) are connected in series. (EN) Provided is an operating point control circuit device capable of boosting an output voltage of a module without reducing generated power or output power.

本発明によれば、上記の課題は、直列接続された複数の太陽電池セルのための発電動作点制御回路装置であって、一対の出力端子と、一対の出力端子の間にて直列に接続される複数の太陽電池セルの各々の電極端子に接続される複数の電極用接続端子と、一対の出力端子の間にて、複数の太陽電池セルの各々に対して、対応する電極用接続端子を介して並列に接続されるコンデンサと、一対の出力端子の間にて、複数の太陽電池セルの各々に対して、対応する電極用接続端子とインダクタとを介して並列に接続されて、接続された一対の電極用接続端子の間を選択的に互いに導通するスイッチング手段とを含み、更に、一対の出力端子の間に於いて、直列接続される複数の太陽電池セルの一方の端側の電極用接続端子と出力端子の一方との間又は直列接続される複数の太陽電池セルのうちの隣接する二つの太陽電池セルの間の二つの電極用接続端子の間にて、前記のコンデンサに対して直列して追加のコンデンサが接続され、該追加のコンデンサに対して並列に且つ前記のスイッチング手段に対して直列して追加のスイッチング手段が接続され、スイッチング手段及び追加のスイッチング手段が、同一の所定の周期にて、それぞれ、互いに異なる時期に、接続された一対の電極用接続端子の間、接続された電極用接続端子と出力端子の一方との間及び前記の二つの電極用接続端子の間のうちの対応する端子間の導通を遮断し、且つ、常に、スイッチング手段及び追加のスイッチング手段のうちの一つが、接続された一対の電極用接続端子の間、接続された電極用接続端子と出力端子の一方との間及び前記の二つの電極用接続端子の間のうちの対応する端子間の導通を遮断し、その他のスイッチング手段及び追加のスイッチング手段が、接続された一対の電極用接続端子の間、接続された電極用接続端子と出力端子の一方との間及び前記の二つの電極用接続端子の間のうちの対応する端子間を導通するようスイッチング手段及び追加のスイッチング手段の導通が制御される装置によって達成される。   According to the present invention, the above-mentioned problem is a power generation operating point control circuit device for a plurality of solar cells connected in series, wherein a pair of output terminals are connected in series between a pair of output terminals. A plurality of electrode connection terminals connected to the respective electrode terminals of the plurality of solar cells, and a corresponding electrode connection terminal for each of the plurality of solar cells between the pair of output terminals. Between a capacitor and a pair of output terminals that are connected in parallel via each of the plurality of solar cells, are connected in parallel via the corresponding electrode connection terminals and inductors, and connected. And a switching means for selectively conducting the pair of electrode connection terminals to each other, further, between the pair of output terminals, one end side of a plurality of solar cells connected in series Between the electrode connection terminal and one of the output terminals or between the two electrode connection terminals between two adjacent solar cells of the plurality of solar cells connected in series, to the capacitor An additional capacitor is connected in series to the switching device, an additional switching device is connected in parallel to the additional capacitor and in series to the switching device, and the switching device and the additional switching device are the same. In a predetermined cycle, at different times from each other, between the pair of connected electrode connection terminals, between the connected electrode connection terminals and one of the output terminals, and the above-mentioned two electrode connection terminals. Between the corresponding terminals of the electrodes, and at least one of the switching means and the additional switching means is always connected between the pair of electrode connection terminals connected to each other, and the electrode connection connected to each other. A pair of electrodes, which cuts off the continuity between the corresponding terminal among the terminal and one of the output terminals and between the above-mentioned two electrode connection terminals, and other switching means and additional switching means are connected. Switching means and additional switching means so as to establish electrical connection between corresponding connecting terminals for electrodes, one of the connected electrode connecting terminals and one of the output terminals, and between corresponding terminals of the two connecting terminals for electrodes. Is achieved by a device whose conduction is controlled.

上記の本発明の装置は、後述の図面を参照した説明から理解される如く、基本的には、非特許文献1〜3に記載されている、多段型の昇降圧チョッパ回路を用いた直列接続された複数の太陽電池セルのための発電動作点制御回路装置と同様の回路構成を有する。しかしながら、本発明の装置の場合、上記の如く、多段型の昇降圧チョッパ回路(太陽電池セル、コンデンサ、インダクタ、スイッチング手段から成る回路)の一方の端と一方の出力端子との間或いは多段型の昇降圧チョッパ回路の段の間に、更に、追加のコンデンサと追加のスイッチング手段とが並列に接続されて成る回路部分が追加される。そして、これらのスイッチング手段の動作に於いては、上記の如く、同一の所定の周期にて、それぞれ、互いに異なる時期に、接続された一対の電極用接続端子の間、接続された電極用接続端子と出力端子の一方との間又は隣接する二つの太陽電池セルにそれぞれ接続される二つの電極用接続端子の間のうちの対応する端子間の導通を遮断し、その際、常に、スイッチング手段及び追加のスイッチング手段のうちの一つが、接続された一対の電極用接続端子の間、接続された電極用接続端子と出力端子の一方との間又は隣接する二つの太陽電池セルにそれぞれ接続される二つの電極用接続端子の間のうちの対応する端子間の導通を遮断するようスイッチング手段及び追加のスイッチング手段の導通が制御される。   As will be understood from the description with reference to the drawings described later, the above-described device of the present invention is basically connected in series using a multi-stage buck-boost chopper circuit described in Non-Patent Documents 1 to 3. It has the same circuit configuration as the power generation operating point control circuit device for the plurality of solar cells. However, in the case of the device of the present invention, as described above, between one end and one output terminal of the multi-stage buck-boost chopper circuit (circuit comprising solar cells, capacitors, inductors, and switching means) or the multi-stage type Between the stages of the buck-boost chopper circuit of (1), a circuit portion including an additional capacitor and an additional switching means connected in parallel is further added. In the operation of these switching means, as described above, at the same predetermined cycle and at different timings, the connected electrode connection terminals are connected between the pair of connected electrode connection terminals. Between the terminal and one of the output terminals, or between the corresponding terminals of the two electrode connection terminals respectively connected to the two adjacent solar cells, the conduction between the corresponding terminals is interrupted, and at that time, the switching means is always provided. And one of the additional switching means is connected between the pair of connected electrode connection terminals, between the connected electrode connection terminals and one of the output terminals, or connected to two adjacent solar cells, respectively. The conduction of the switching means and the additional switching means is controlled so as to cut off the conduction between the corresponding terminals of the two electrode connection terminals.

上記の回路装置の構成によれば、追加のコンデンサとスイッチング手段とが並列に接続された回路部分の存在によって、一対の出力端子間の出力電圧を、発電電力を低下させずに、複数の太陽電池セルの全てがそれぞれの最大動作点にて発電動作をした場合の複数の太陽電池セルの発電電圧の総和よりも高い値にすることが可能となる。即ち、上記の回路装置の構成に於いては、出力端子に対して、別途、昇圧器を追加しなくても、出力端子間の電圧を昇圧することが可能となる。   According to the configuration of the above circuit device, due to the presence of the circuit portion in which the additional capacitor and the switching means are connected in parallel, the output voltage between the pair of output terminals can be increased without decreasing the generated power. It is possible to make the value higher than the total sum of the power generation voltages of the plurality of solar battery cells when all the battery cells generate power at their respective maximum operating points. That is, in the configuration of the circuit device described above, it is possible to boost the voltage between the output terminals without adding a booster to the output terminals.

この点に関し、より詳細には、既に触れた如く、太陽電池は、一般に、発電電圧に対して電流が図7(A)の如く変化する特性を有しているので、太陽電池の動作に於いては、好適には、最大電力点追従(MPPT:Maximum Power Point Tracking)を実行するMPPT制御器など電圧又は電流制御器を用いて、太陽電池の端子間の出力電圧(即ち、発電電圧)が調節される。即ち、端的に述べれば、太陽電池の端子間の出力電圧は、MPPT制御器等の電圧又は電流制御器によって設定された電圧に制御され、太陽電池セルが直列接続されてなる太陽電池モジュールの場合には、太陽電池モジュールの両端の出力電圧が電圧又は電流制御器によって制御されることとなる。その際、太陽電池セルが直列接続された回路構成に於いては、既に触れた如く、受光量のずれなどに起因して複数の太陽電池セルの間に於いて最大電力点のずれがあると、出力損失が生ずるところ、上記の如き発電動作点制御回路装置(非特許文献1〜3)を用いると、各太陽電池セルの発電電圧を個別に調節することが可能となるので、MPPT制御器等の電圧又は電流制御器による太陽電池モジュールの両端の出力電圧の調節に於いて、直列接続された太陽電池セルの全てが最大電力点にて発電する状態が実現可能となる。しかしながら、非特許文献1〜3の発電動作点制御回路装置を用いた場合であっても、太陽電池の端子間の出力電圧を各太陽電池セルの最大電力点の発電電圧の総和よりも高いに値に設定してしまうと、少なくとも一つの太陽電池セルの発電電圧が最大電力点からずれてしまうこととなり、発電電力が低下することとなる。   In this regard, in more detail, as already mentioned, the solar cell generally has a characteristic that the current changes with respect to the generated voltage as shown in FIG. Then, preferably, using a voltage or current controller such as an MPPT controller that executes Maximum Power Point Tracking (MPPT), the output voltage between the terminals of the solar cell (that is, the generated voltage) is Adjusted. That is, in short, in the case of a solar cell module in which the output voltage between terminals of the solar cell is controlled to a voltage set by a voltage or current controller such as an MPPT controller, and solar cells are connected in series. In addition, the output voltage across the solar cell module is controlled by the voltage or current controller. At that time, in the circuit configuration in which solar cells are connected in series, as already mentioned, there is a shift in the maximum power point among a plurality of solar cells due to a shift in the amount of received light. Where output loss occurs, using the power generation operating point control circuit device (Non-Patent Documents 1 to 3) as described above makes it possible to individually adjust the power generation voltage of each solar cell, so that the MPPT controller In adjusting the output voltage across the solar cell module by such voltage or current controllers, it becomes possible to realize a state in which all the solar cells connected in series generate power at the maximum power point. However, even when the power generation operating point control circuit device of Non-Patent Documents 1 to 3 is used, the output voltage between the terminals of the solar cell is set higher than the sum of the generated voltage at the maximum power point of each solar battery cell. If set to a value, the generated voltage of at least one solar battery cell will deviate from the maximum power point, and the generated power will decrease.

一方、本発明の装置の構成の場合、即ち、非特許文献1〜3の発電動作点制御回路装置の出力端子間に追加のコンデンサとスイッチング手段とが並列に接続された回路部分が追加された構成の場合、MPPT制御器等の電圧又は電流制御器によって調節された出力電圧が、直列接続された太陽電池セルの各々の最大電力点に於ける発電電圧の総和よりも高いときには、かかる電圧又は電流制御器によって調節された出力電圧と太陽電池セルの各々の最大電力点に於ける発電電圧の総和との差圧は、追加のコンデンサで保持させることが可能となる。従って、各太陽電池セルがそれぞれの最大電力点にて発電動作を実行し、且つ、太陽電池モジュールの両端の出力電圧が太陽電池セルの各々の最大電力点に於ける発電電圧の総和よりも高い電圧に保持された状態が実現される。そして、各太陽電池セルがそれぞれの最大電力点にて発電動作をしているので、発電電力が実質的に低下しない状態が可能となる。   On the other hand, in the case of the configuration of the device of the present invention, that is, the circuit portion in which the additional capacitor and the switching means are connected in parallel between the output terminals of the power generation operating point control circuit devices of Non-Patent Documents 1 to 3 is added. In the case of the configuration, when the output voltage adjusted by the voltage or current controller such as the MPPT controller is higher than the sum of the generated voltage at the maximum power points of the solar cells connected in series, the voltage or The differential pressure between the output voltage adjusted by the current controller and the sum of the generated voltage at the maximum power point of each solar cell can be held by the additional capacitor. Therefore, each solar cell performs a power generation operation at each maximum power point, and the output voltage across the solar cell module is higher than the sum of the generated voltage at each maximum power point of the solar cell. The state of being held at the voltage is realized. Then, since each solar battery cell is performing the power generation operation at each maximum power point, it is possible to substantially reduce the generated power.

上記の構成に於いて、回路構成は、所謂昇降圧チョッパ回路であり、各太陽電池セルの発電電圧と追加のコンデンサの保持電圧とは、スイッチング手段と追加のスイッチング手段に於ける導通と導通遮断とを周期的に繰り返すことにより調節され、これらの電圧の各々の高さは、スイッチング手段と追加のスイッチング手段に於ける所定の周期に対する導通を遮断する時間幅の比(オフ時間デューティ比)によって決定される。そして、後述の実施形態の欄に於いて説明される如く、各スイッチング手段のオフ時間デューティ比は、対応する太陽電池モジュールの両端の出力電圧に対する、各スイッチング手段の対応する太陽電池セルの発電電圧又は追加コンデンサの保持電圧(一対の出力端子の間の出力電圧に対する一対の出力端子の間の出力電圧から太陽電池セルの発電電圧の総和を差し引いた電圧差)となる。従って、上記の本発明の装置の構成に於いて、スイッチング手段の各々の所定の周期に対する、接続された一対の電極用接続端子の間の導通を遮断する時間幅の比が、一対の出力端子の間の出力電圧に対するスイッチング手段の各々の対応する太陽電池セルの(要求される又は好適な)発電電圧の比であり、一対の出力端子の間の出力電圧が直列接続された太陽電池セルの発電電圧の総和よりも高い電圧であるときには、追加のスイッチング手段の所定の周期に対する接続された電極用接続端子と出力端子の一方との間又は隣接する二つの太陽電池セルにそれぞれ接続される二つの電極用接続端子の間の導通を遮断する時間幅の比が、一対の出力端子の間の出力電圧に対する一対の出力端子の間の出力電圧から太陽電池セルの発電電圧の総和を差し引いた電圧差の比であるように、スイッチング手段と追加のスイッチング手段に於ける導通と導通遮断が制御されてよい。   In the above configuration, the circuit configuration is a so-called step-up / down chopper circuit, and the generated voltage of each solar cell and the holding voltage of the additional capacitor are the conduction and interruption of conduction in the switching means and the additional switching means. And the height of each of these voltages is adjusted by the ratio of the time width (off-time duty ratio) that interrupts conduction for a predetermined period in the switching means and the additional switching means. It is determined. Then, as described in the section of the embodiment below, the off-time duty ratio of each switching means is the generated voltage of the corresponding solar battery cell of each switching means with respect to the output voltage across the corresponding solar battery module. Alternatively, it is the holding voltage of the additional capacitor (the voltage difference obtained by subtracting the sum of the generated voltage of the photovoltaic cells from the output voltage between the pair of output terminals with respect to the output voltage between the pair of output terminals). Therefore, in the above-described configuration of the device of the present invention, the ratio of the time width for interrupting the conduction between the pair of connected electrode connection terminals to the predetermined cycle of each of the switching means is determined by the pair of output terminals. Is a ratio of the (required or preferred) generated voltage of the corresponding solar cell of each of the switching means to the output voltage of the solar cell in which the output voltage between the pair of output terminals is connected in series. When the voltage is higher than the sum of the generated voltage, it is connected between one of the connected electrode connection terminals and one of the output terminals for a predetermined cycle of the additional switching means or two connected solar cells, respectively. The ratio of the time width for interrupting the conduction between the two electrode connection terminals is the voltage obtained by subtracting the sum of the generated voltage of the photovoltaic cells from the output voltage between the pair of output terminals with respect to the output voltage between the pair of output terminals. The conduction and interruption in the switching means and the additional switching means may be controlled as is the ratio of the differences.

なお、上記の説明から理解される如く、太陽電池モジュールから取り出せる発電電力が最大となるのは、各太陽電池セルがそれぞれの最大電力点に於ける発電電圧にて発電しているときである。かくして、上記の本発明の装置に於いて、一対の出力端子の間の出力電圧が所望の電圧であってよく、スイッチング手段の所定の周期に対する接続された一対の電極用接続端子の間の導通を遮断する時間幅の比は、対応する太陽電池セルの発電電圧が最大動作点に於ける電圧となるよう調節されてよい。   As can be understood from the above description, the maximum generated power that can be extracted from the solar cell module is when each solar cell is generating power at the generated voltage at its maximum power point. Thus, in the above-mentioned device of the present invention, the output voltage between the pair of output terminals may be a desired voltage, and the conduction between the pair of connected electrode connection terminals for a predetermined cycle of the switching means. The ratio of the time widths for shutting off the cells may be adjusted so that the generated voltage of the corresponding solar battery cell becomes the voltage at the maximum operating point.

また、一般に、太陽光発電システムに於いては、太陽電池の環境条件、例えば、受光量、温度等の環境条件が変化した場合には、その変化に応じて、リアルタイムに、太陽電池の発電電圧が調節できるようになっていることが好ましく、多くの場合、MPPT制御器等の電圧又は電流制御器は、逐次的に太陽電池の発電電力をモニターして、発電電圧の調節を実行するよう構成されている。これと同様に、本発明の装置に於いても、逐次的に太陽電池モジュール内の太陽電池セルの各々の発電電圧を調節できるようになっていることが好ましい。この点に関し、既に述べた如く、本発明の装置の場合には、各太陽電池セルの発電電圧は、それぞれに並列に接続されたスイッチング手段の所定の周期に対する接続された一対の電極用接続端子の間の導通を遮断する時間幅の比によって調節される。従って、上記の本発明の装置に於いて、直列接続された太陽電池セルの発電電圧が最大動作点に於ける電圧となるようにスイッチング手段の各々の所定の周期に対する接続された一対の電極用接続端子の間の導通を遮断する時間幅の比を調節する手段が更に設けられていてよい。かかる手段は、一対の出力端子間の出力電圧を調節するMPPT制御器等の電圧又は電流制御器に於いてモニターされる発電電力の変化に基づいて、発電電力が最大となるようにスイッチング手段の各々の所定の周期に対する接続された一対の電極用接続端子の間の導通を遮断する時間幅の比を適宜変更するように構成されていてよい。   In general, in a solar power generation system, when the environmental conditions of the solar cell, for example, the environmental conditions such as the amount of received light and temperature change, the generated voltage of the solar cell is changed in real time according to the change. The voltage or current controller, such as an MPPT controller, is often configured to sequentially monitor the generated power of the solar cell and perform adjustment of the generated voltage. Has been done. Similarly, also in the device of the present invention, it is preferable that the power generation voltage of each solar battery cell in the solar battery module can be sequentially adjusted. In this regard, as described above, in the case of the device of the present invention, the generated voltage of each solar cell is such that the pair of electrode connection terminals connected to the predetermined cycle of the switching means connected in parallel to each other. It is adjusted by the ratio of the time widths that interrupt the conduction between. Therefore, in the above-mentioned device of the present invention, for the pair of electrodes connected to each predetermined cycle of the switching means so that the generated voltage of the solar cells connected in series becomes the voltage at the maximum operating point. Means may be further provided for adjusting the ratio of the time widths for interrupting the conduction between the connection terminals. Such means is based on a change in generated power monitored by a voltage or current controller such as an MPPT controller for adjusting an output voltage between a pair of output terminals, so that the generated power is maximized. It may be configured to appropriately change a ratio of time widths for interrupting conduction between a pair of connected electrode connection terminals for each predetermined cycle.

ところで、上記の本発明の装置が複数準備され、それらが並列に接続されれば、より多くの電流が得られることとなる。従って、本発明の別の態様に於いて、複数の上記の本発明の装置の一対の出力端子が互いに並列に接続されている装置が提供されてよい。   By the way, if a plurality of the above-mentioned devices of the present invention are prepared and are connected in parallel, a larger amount of current can be obtained. Accordingly, in another aspect of the invention, a device may be provided in which a pair of output terminals of a plurality of the devices of the invention described above are connected in parallel with each other.

また、上記の本発明の装置の回路構成は、太陽電池の他に、充電池(化学電池)セル、蓄電器セル、燃料電池セル、発電機或いは発電素子などの任意の電力を出力する素子(以下、太陽電池セルを含めて、任意の電力を出力する素子を「電源セル」と称する。)を直列に接続してなるモジュール、太陽電池セル、化学電池セル、蓄電器セル及び/又はその他の電源セルが混在して直列に接続してなるモジュール等に適用され、それぞれのセルの動作電圧を調節しながら、モジュールの発電及び/又は放電動作を行う場合にも利用可能である。従って、本発明の更なる別の態様に於いては、上記の本発明の装置の回路構成のうち、太陽電池の少なくとも一部が化学電池セル又は蓄電器セルに置換されてよい。   In addition, the circuit configuration of the device of the present invention is a device that outputs any electric power, such as a rechargeable battery (chemical battery) cell, a storage battery cell, a fuel battery cell, a generator or a power generation device (hereinafter, referred to as a solar battery). , Devices including solar cells that output arbitrary electric power are referred to as "power cells". Modules, solar cells, chemical cells, battery cells and / or other power cells The present invention can be applied to a module or the like in which are mixed and connected in series, and the power generation and / or discharge operation of the module is performed while adjusting the operating voltage of each cell. Therefore, in still another aspect of the present invention, in the circuit configuration of the device of the present invention described above, at least a part of the solar cell may be replaced with a chemical battery cell or a battery cell.

そして、本発明の更に一つの態様によれば、直列接続された複数の電源セルのための動作点制御回路装置であって、一対の出力端子と、一対の出力端子の間にて直列に接続される複数の電源セルの各々の電極端子に接続される複数の電極用接続端子と、一対の出力端子の間にて、複数の電源セルの各々に対して、対応する電極用接続端子を介して並列に接続されるコンデンサと、一対の出力端子の間にて、複数の電源セルの各々に対して、対応する電極用接続端子とインダクタとを介して並列に接続されて、接続された一対の電極用接続端子の間を選択的に互いに導通するスイッチング手段とを含み、更に、一対の出力端子の間に於いて、直列接続される複数の電源セルの一方の端側の電極用接続端子と出力端子の一方との間又は直列接続される複数の電源セルのうちの隣接する二つの電源セルの間の二つの電極用接続端子の間にて、前記のコンデンサに対して直列して追加のコンデンサが接続され、該追加のコンデンサに対して並列に且つ前記のスイッチング手段に対して直列して追加のスイッチング手段が接続され、スイッチング手段及び追加のスイッチング手段が、同一の所定の周期にて、それぞれ、互いに異なる時期に、接続された一対の電極用接続端子の間、接続された電極用接続端子と出力端子の一方との間及び前記の二つの電極用接続端子の間のうちの対応する端子間の導通を遮断し、且つ、常に、スイッチング手段及び追加のスイッチング手段のうちの一つが、接続された一対の電極用接続端子の間、接続された電極用接続端子と出力端子の一方との間及び前記の二つの電極用接続端子の間のうちの対応する端子間の導通を遮断し、その他のスイッチング手段及び追加のスイッチング手段が、接続された一対の電極用接続端子の間、接続された電極用接続端子と出力端子の一方との間及び前記の二つの電極用接続端子の間のうちの対応する端子間を導通するようスイッチング手段及び追加のスイッチング手段の導通が制御される装置が提供される。上記の任意の電源セルに適用される動作点制御回路装置の作動制御の構成は、太陽電池セルのための発電動作点制御回路装置の場合と同様であってよい。太陽電池の少なくとも一部が化学電池セル又は蓄電器セルに置換された装置或いは任意の電源セルに適用される動作点制御回路装置も、複数準備され、それらが並列に接続されて使用されてよい。従って、太陽電池の少なくとも一部が化学電池セル又は蓄電器セルに置換されている複数の上記の本発明の装置又は電源セルに適用される動作点制御回路装置の一対の出力端子が互いに並列に接続されている装置が提供されてよい。   According to yet another aspect of the present invention, there is provided an operating point control circuit device for a plurality of power supply cells connected in series, wherein a pair of output terminals are connected in series between the pair of output terminals. Between the plurality of electrode connection terminals connected to the respective electrode terminals of the plurality of power supply cells and the pair of output terminals, through the corresponding electrode connection terminals for each of the plurality of power supply cells. Connected in parallel between a capacitor and a pair of output terminals, each of the plurality of power supply cells is connected in parallel via a corresponding electrode connection terminal and an inductor, and is connected in a pair. And a switching means for selectively conducting the electrode connection terminals with each other, and further, between the pair of output terminals, the electrode connection terminals on one end side of the plurality of power supply cells connected in series. Between one of the output terminals and one of the output terminals, or between two electrode connection terminals between two adjacent power cells of a plurality of power cells connected in series, and added in series to the capacitor. Is connected in parallel to the additional capacitor and in series with the switching means, the additional switching means is connected, and the switching means and the additional switching means are in the same predetermined cycle. Correspondence between a pair of connected electrode connection terminals, between a connected electrode connection terminal and one of the output terminals, and between the two electrode connection terminals at different times. The connection between the connecting terminals for connecting the electrodes and the output terminal is always between one of the connecting terminals for the pair of connected electrodes, and one of the switching means and the additional switching means. Between and between the corresponding terminals of the two electrode connection terminals, other switching means and additional switching means, between the pair of electrode connection terminals connected, The conduction of the switching means and the additional switching means is controlled so that conduction is established between the connected electrode connection terminal and one of the output terminals and between the corresponding terminals of the two electrode connection terminals. A device is provided. The configuration of the operation control of the operating point control circuit device applied to any of the above power supply cells may be the same as that in the case of the power generation operating point control circuit device for a solar cell. A plurality of operating point control circuit devices applied to a device in which at least a part of a solar cell is replaced with a chemical battery cell or a battery cell or an arbitrary power supply cell may be prepared and used by connecting them in parallel. Therefore, a pair of output terminals of an operating point control circuit device applied to a plurality of the above-mentioned devices or power supply cells of the present invention in which at least a part of the solar battery is replaced with a chemical battery cell or a battery cell are connected in parallel with each other. Provided device may be provided.

かくして、上記の本発明の装置によれば、既に述べた如く、複数個の太陽電池セルを直列に接続した太陽電池モジュールの出力電圧を、発電電力を低下させずに昇圧することが可能となる。従って、作動したい機械器具や充電器の仕様により、複数の太陽電池セルがそれぞれ最大電力点にて動作している場合の発電電圧の総和よりも高い電圧が要求される場合に於いても、別途、昇圧器を必要がなくなる点で、システムのサイズ又はコストの増大が回避できることとなる。   Thus, according to the above-mentioned device of the present invention, as described above, it is possible to boost the output voltage of the solar cell module in which a plurality of solar cells are connected in series without decreasing the generated power. .. Therefore, even if a voltage higher than the sum of the generated voltage when multiple solar cells are operating at the maximum power point is required depending on the specifications of the machinery and charger to be operated, separately In addition, the need for a booster is eliminated, and an increase in system size or cost can be avoided.

ところで、上記の本発明の装置の回路構成は、端的に述べれば、非特許文献1〜3の発電動作点制御回路装置に於いて、一つの太陽電池セルを除去した構成と同様となる。既に触れた如く、非特許文献1〜3の発電動作点制御回路装置の場合には、多段型の昇降圧チョッパ回路の全ての段に太陽電池セルが接続されているので、その昇降圧チョッパ回路の両端の電圧は、全ての太陽電池セルが最大電力点にて発電した場合の発電電圧の総和と一致していないと、いずれかの太陽電池セルの発電電圧が最大電力点からずれることとなり、その太陽電池セルの発電電力が低下し、太陽電池モジュール全体で得られる発電電力が低下することとなる。例えば、n個の太陽電池セルを直列接続した太陽電池モジュールに於いて、太陽電池モジュールの出力電圧がn個の太陽電池セルが最大電力点にて発電した場合の発電電圧の総和と一致していないときには、太陽電池セルn個分の電力が得られないこととなる。一方、本発明の場合には、昇降圧チョッパ回路の両端の電圧は、全ての太陽電池セルが最大電力点にて発電した場合の発電電圧の総和よりも高くなっても、その差分は、追加のコンデンサで保持されることとなり、全ての太陽電池セルが最大電力点にて発電した状態とすることが可能となる。例えば、n個の太陽電池セルを直列接続した太陽電池モジュールの場合には、n+1段の昇降圧チョッパ回路の構成が準備されることとなるところ、太陽電池モジュールの出力電圧がn個の太陽電池セルが最大電力点にて発電した場合の発電電圧の総和より高くても、n個の太陽電池セルの全てが最大電力点にて発電した状態とすることができ、従って、太陽電池セルn個分の電力が得られることとなる。換言すれば、本発明の構成によれば、用意した太陽電池セルの全ての発電能力から得られる電力を低下させることなく、全ての太陽電池セルが最大電力点にて発電した場合の発電電圧の総和よりも高い出力電圧が得られることとなるので、全ての太陽電池セルを有効に利用することができ、太陽電池モジュールのサイズ及びコストの増大の抑制が図られることとなる。任意の電源セルに対して本発明の装置を適用する場合にも、電源セルの作動特性に依存して、同様のことが言える。   By the way, the circuit configuration of the above-mentioned device of the present invention is basically the same as the configuration in which one solar battery cell is removed in the power generation operating point control circuit devices of Non-Patent Documents 1 to 3. As already mentioned, in the case of the power generation operating point control circuit devices of Non-Patent Documents 1 to 3, the solar cells are connected to all the stages of the multi-stage buck-boost chopper circuit. If the voltage across both ends does not match the sum of the generated voltage when all the solar cells generate power at the maximum power point, the generated voltage of any of the solar cells will deviate from the maximum power point, The generated power of the solar battery cell is reduced, and the generated power obtained by the entire solar battery module is reduced. For example, in a solar battery module in which n solar battery cells are connected in series, the output voltage of the solar battery module is equal to the sum of the generated voltage when the n solar battery cells generate power at the maximum power point. If there is not, the power for n solar cells cannot be obtained. On the other hand, in the case of the present invention, even if the voltage across the buck-boost chopper circuit becomes higher than the sum of the generated voltage when all the solar cells generate power at the maximum power point, the difference is added. Since it is held by the capacitor of, all the solar cells can be in a state of generating power at the maximum power point. For example, in the case of a solar cell module in which n solar cells are connected in series, a configuration of an n + 1-stage buck-boost chopper circuit is prepared, and the output voltage of the solar cell module is n solar cells. Even if the generated voltage is higher than the sum of generated voltages when the cells generate power at the maximum power point, all n solar cells can generate power at the maximum power point. Therefore, n solar cells can be generated. The power for the minute is obtained. In other words, according to the configuration of the present invention, the generated voltage of all the solar cells generated at the maximum power point without reducing the power obtained from all the power generation capacities of the prepared solar cells. Since an output voltage higher than the sum total can be obtained, all the solar cells can be effectively used, and the increase in the size and cost of the solar cell module can be suppressed. The same applies when the device of the present invention is applied to an arbitrary power cell, depending on the operating characteristics of the power cell.

本発明のその他の目的及び利点は、以下の本発明の好ましい実施形態の説明により明らかになるであろう。   Other objects and advantages of the present invention will be apparent from the following description of the preferred embodiments of the present invention.

図1(A)は、本発明による発電動作点制御回路装置の一つの実施形態の例示的な回路構成図であり、図1(B)は、スイッチング素子のON/OFF状態の例示的なタイムチャートを示す図である。図1(C)は、本発明による発電動作点制御回路装置の一つの実施形態の例示的な回路構成図であって、追加のコンデンサとスイッチング素子が多段の昇降圧チョッパ回路の段の間に設けられている例である。FIG. 1A is an exemplary circuit configuration diagram of one embodiment of a power generation operating point control circuit device according to the present invention, and FIG. 1B is an exemplary time of an ON / OFF state of a switching element. It is a figure which shows a chart. FIG. 1 (C) is an exemplary circuit configuration diagram of one embodiment of a power generation operating point control circuit device according to the present invention, in which an additional capacitor and a switching element are provided between stages of a multi-stage buck-boost chopper circuit. This is an example provided. 図2(A)、(B)、(C)は、図1(A)の回路構成に於いて、各スイッチング素子がOFF状態となっているときの電流の流れを示す図である。点線の矢印が電流の流れの方向を示している。2A, 2B, and 2C are diagrams showing the flow of current when each switching element is in the OFF state in the circuit configuration of FIG. 1A. Dotted arrows indicate the direction of current flow. 図3は、二つの、図1(A)に示されている如き回路構成(ユニット)を並列に接続した状態の回路構成図である。FIG. 3 is a circuit configuration diagram showing a state in which two circuit configurations (units) as shown in FIG. 1A are connected in parallel. 図4(A)は、図1(A)の本発明による発電動作点制御回路装置に於いて、太陽電池セルに置換して充電池セルを直列接続した場合の回路構成図である。図4(B)は、図1(A)の本発明による発電動作点制御回路装置に於いて、太陽電池セルに置換して蓄電器セルを直列接続した場合の回路構成図である。FIG. 4 (A) is a circuit configuration diagram of the power generation operating point control circuit device according to the present invention shown in FIG. 1 (A), in which solar cells are replaced with rechargeable battery cells connected in series. FIG. 4B is a circuit configuration diagram in the case where, in the power generation operating point control circuit device according to the present invention in FIG. 1A, the solar cells are replaced and the storage cells are connected in series. 図5(A)は、図1(A)の本発明による発電動作点制御回路装置に於いて、太陽電池セルに置換して燃料電池セル及び熱電素子(熱電発電)を直列接続した場合の回路構成図である。図5(B)は、図1(A)の本発明による発電動作点制御回路装置に於いて、太陽電池セルに置換して燃料電池セル及び発電機を直列接続した場合の回路構成図である。FIG. 5 (A) is a circuit of the power generation operating point control circuit device according to the present invention shown in FIG. 1 (A), in which a solar cell is replaced with a fuel cell and a thermoelectric element (thermoelectric power generation) connected in series. It is a block diagram. FIG. 5 (B) is a circuit configuration diagram of the power generation operating point control circuit device according to the present invention shown in FIG. 1 (A), in which a fuel cell is replaced with a fuel cell and a generator is connected in series. .. 図6は、図3と同様に、二つの図1(A)に示されている如き回路構成(ユニット)を並列に接続した状態の回路構成図であって、一方のユニットに於いて、太陽電池セルに置換して充電池セルを直列接続した場合の回路構成図である。Similar to FIG. 3, FIG. 6 is a circuit configuration diagram showing a state in which two circuit configurations (units) shown in FIG. 1 (A) are connected in parallel. It is a circuit block diagram when it replaces with a battery cell and the rechargeable battery cell is connected in series. 図7(A)は、太陽電池の発電電圧に対する発電電流と発電電力の変化を模式的に表す特性図である。図7(B)は、従来の技術に於ける発電動作点制御回路装置の回路構成の例を示す図である。図7(C)は、図7(B)の回路に於けるスイッチング素子のON/OFF状態の例示的なタイムチャートを示す図である。FIG. 7A is a characteristic diagram schematically showing changes in the generated current and the generated power with respect to the generated voltage of the solar cell. FIG. 7B is a diagram showing an example of a circuit configuration of a power generation operating point control circuit device in the conventional technique. FIG. 7C is a diagram showing an exemplary time chart of ON / OFF states of the switching elements in the circuit of FIG. 7B.

PV1〜PV6…太陽電池セル
M1〜M7…スイッチング素子(MOSFET)
C1〜C7…コンデンサ
L1〜L6…インダクタ
S1〜S7…制御入力
ct…電極用接続端子
Bt1〜Bt6…充電池(化学電池)セル
Cond1〜Cond2…蓄電器セル
PV1 to PV6 ... Solar cells M1 to M7 ... Switching element (MOSFET)
C1 to C7 ... Capacitors L1 to L6 ... Inductors S1 to S7 ... Control input ct ... Electrode connection terminals Bt1 to Bt6 ... Rechargeable battery (chemical battery) cells Cond1 to Cond2 ... Condenser cells

以下に添付の図を参照しつつ、本発明を幾つかの好ましい実施形態について詳細に説明する。図中、同一の符号は、同一の部位を示す。   The present invention will be described in detail below with reference to the accompanying drawings with reference to some preferred embodiments. In the drawings, the same reference numerals indicate the same parts.

動作点制御回路装置の構成
本発明による太陽電池セルの発電動作点制御回路装置の回路構成は、基本的には、非特許文献1〜3に記載されている多段型の昇降圧チョッパ回路の構成と同様である。具体的には、図1(A)を参照して、例えば、2個の太陽電池セルPV1、PV2を直列に接続する場合には、一対の出力端子ot+、ot−の間にて直列に接続された複数の太陽電池セルPV1、PV2の各々に対して(電極用接続端子ctを介して)、コンデンサC1、C2とスイッチング素子M1、M2とが並列に接続され、太陽電池セルPV1、PV2の各々の電極端子ctとスイッチング素子M1、M2の端子との間に於いて、インダクタL1、L2がそれぞれ装入される。しかしながら、本発明の回路構成の場合には、上記の回路構成に対して、更に、太陽電池セル列と出力端子ot−と間にて、コンデンサ列に対して直列にコンデンサC3が追加され、スイッチング素子列に対してスイッチング素子M3が追加される。かかる回路構成に於いては、一組の太陽電池セル、コンデンサ、インダクタ、スイッチング素子から成る回路が一段のチョッパ回路を構成することとなるので、端的に述べれば、本発明の回路は、n個の太陽電池セルを直列に接続する場合には、n+1段のチョッパ回路を含み、そのうちの一段には、太陽電池セルが配置されない構成となっているということができる(従って、例えば、3個の太陽電池セルが直列接続される場合には、4段のチョッパ回路が用いられることとなる。)。なお、上記の追加のコンデンサC3とスイッチング素子M3は、図1(C)に示されている如く、太陽電池セルPV1、PV2の段の間に設けられていてもよく、更に、追加のコンデンサとスイッチング素子との回路は、複数の組にて設けられてもよい(即ち、n個の太陽電池セルを直列に接続する場合には、n+m段のチョッパ回路(mは、正の整数)が用いられてもよい。)。そのような場合も本発明の範囲に含まれることは理解されるべきである。
Configuration of Operating Point Control Circuit Device The circuit configuration of the photovoltaic power generation operating point control circuit device according to the present invention is basically the configuration of a multi-stage buck-boost chopper circuit described in Non-Patent Documents 1 to 3. Is the same as. Specifically, with reference to FIG. 1A, for example, when two solar cells PV1 and PV2 are connected in series, they are connected in series between a pair of output terminals ot + and ot−. The capacitors C1 and C2 and the switching elements M1 and M2 are connected in parallel to each of the formed plurality of solar cells PV1 and PV2 (via the electrode connection terminal ct), and the solar cells PV1 and PV2 are connected. Inductors L1 and L2 are inserted between the respective electrode terminals ct and the terminals of the switching elements M1 and M2. However, in the case of the circuit configuration of the present invention, in addition to the above circuit configuration, a capacitor C3 is added in series with the capacitor array between the solar cell array and the output terminal ot-, and switching is performed. The switching element M3 is added to the element array. In such a circuit configuration, a circuit consisting of a set of solar cells, capacitors, inductors, and switching elements constitutes a single-stage chopper circuit, so to put it briefly, there are n circuits of the present invention. In the case of connecting the solar battery cells of 3 in series, it can be said that the structure includes an n + 1-stage chopper circuit, and one of the solar cells is not arranged (thus, for example, three solar cells are arranged). If the solar cells are connected in series, a four-stage chopper circuit will be used.) The additional capacitor C3 and the switching element M3 may be provided between the stages of the solar cells PV1 and PV2 as shown in FIG. 1 (C). The circuit with the switching element may be provided in a plurality of groups (that is, when n solar cells are connected in series, an n + m stage chopper circuit (m is a positive integer) is used. It may be done.) It should be understood that such a case is also included in the scope of the present invention.

上記の構成に於いて、スイッチング素子M1、M2、M3は、典型的には、通常の太陽電池セルの発電動作点制御回路装置に於いて利用されているMOSFETなどのスイッチング素子であってよい。スイッチング素子M1、M2、M3は、それぞれ、制御入力S1、S2、S3を有し、後に述べる態様にて、その制御入力S1、S2、S3の入力に応じて、図中、上下の端子間、即ち、並列に接続された対応する太陽電池セル(PV1、PV2)及びコンデンサ(C1、C2、C3)の両端の端子間を選択的に導通又は遮断する。コンデンサとインダクタとは、この分野で通常使用されている任意のものであってよい。   In the above configuration, the switching elements M1, M2, M3 may typically be switching elements such as MOSFETs used in a normal power generation operating point control circuit device for solar cells. The switching elements M1, M2, M3 have control inputs S1, S2, S3, respectively, and in a manner described later, between the upper and lower terminals in the figure, depending on the inputs of the control inputs S1, S2, S3. That is, the terminals at both ends of the corresponding solar cells (PV1, PV2) and the capacitors (C1, C2, C3) connected in parallel are selectively conducted or cut off. The capacitor and inductor may be any of those commonly used in the field.

また、発電動作点制御回路装置を実際に使用する場合には、出力端子ot+、ot−の間に、負荷、例えば、任意の機械器具、装置、充電器等が接続されると伴に、出力端子間の電圧Voutを制御するMPPT制御回路又はその他の任意の電圧/電流制御器が接続される。電圧/電流制御器は、出力端子間の出力電圧を、負荷に於いて要求される電圧又は所望の電圧に保持し、更に、太陽電池セルPV1、PV2の各々の発電電圧を調節するべく選択的に導通又は遮断するための制御信号を制御入力S1、S2、S3へ与えるよう構成される。MPPT制御回路又はその他の任意の電圧/電流制御器は、太陽電池の発電制御の分野で知られている任意の形式の構成の回路又は制御器であってよい。また、負荷は、MPPT制御回路又はその他の任意の電圧/電流制御器を介して接続されるようになっていてもよい。   When the power generation operating point control circuit device is actually used, a load, for example, an arbitrary machine / appliance, device, charger, or the like is connected between the output terminals ot + and ot−, and output is generated. An MPPT control circuit or any other voltage / current controller that controls the voltage Vout across the terminals is connected. The voltage / current controller holds the output voltage between the output terminals at a voltage required or a desired voltage in the load, and further selectively adjusts the generated voltage of each of the solar cells PV1 and PV2. Is configured to provide a control signal to the control inputs S1, S2, S3 for conducting or interrupting. The MPPT control circuit or any other voltage / current controller may be any type of configured circuit or controller known in the field of solar cell power generation control. The load may also be connected via an MPPT control circuit or any other voltage / current controller.

動作点制御回路装置の作動
上記の本発明が適用される発電動作点制御回路装置の作動に於いては、基本的には、既に触れた如く、電圧/電流制御器の作動により、出力端子ot+/ot−間の出力電圧Voutが保持されるとともに、出力端子間に接続された太陽電池セル(PV1,PV2)の発電電圧(V1,V2)を調節するべくスイッチング素子の導通状態[導通(ON)/遮断(OFF)]が制御される。かかる装置は、後述の如く、所謂、多段型の昇圧チョッパ回路であり、各太陽電池セルの発電電圧の高さは、スイッチング素子のスイッチング周期に対するON/OFF状態の時間幅の比率を変更することによって、任意に制御可能であるところ、太陽電池セルは、発電電圧によって発電電力が変化する特性を有し、最大電力点が存在するので、各々の太陽電池セルの発電能力を有効に利用しようとする場合には、出力端子間の出力電圧が各太陽電池セルの最大電力点に於ける発電電圧の総和と実質的に一致させざるをえないこととなる。その場合、出力端子間の出力電圧、即ち、太陽電池セルの最大電力点に於ける発電電圧の総和よりも、負荷の要求する電圧が高いときには、別途、昇圧器を用いる必要が出てくることとなる。
Operation of Operating Point Control Circuit Device In the operation of the power generation operating point control circuit device to which the present invention is applied, basically, as already mentioned, the output terminal ot + is activated by the operation of the voltage / current controller. The output voltage Vout between the output terminals / ot- is maintained, and the conduction state of the switching element [conduction (ON) is adjusted to adjust the power generation voltage (V1, V2) of the solar cells (PV1, PV2) connected between the output terminals. ) / Interruption (OFF)] is controlled. As will be described later, such a device is a so-called multi-stage boost chopper circuit, and the height of the generated voltage of each photovoltaic cell changes the ratio of the time width of the ON / OFF state to the switching cycle of the switching element. The solar cell has a characteristic that the generated power changes depending on the generated voltage, and there is a maximum power point, so that it is possible to effectively use the power generation capacity of each solar cell. In that case, the output voltage between the output terminals has to be substantially matched with the sum of the generated voltage at the maximum power point of each solar cell. In that case, if the voltage required by the load is higher than the output voltage between the output terminals, that is, the sum of the generated voltage at the maximum power point of the solar cell, it is necessary to use a booster separately. Becomes

この点に関し、本発明の発明者等は、上記の発電動作点制御回路装置の回路構成に於いて、図1(A)に関連して説明された如く、コンデンサとスイッチング素子が並列に接続された回路部分を出力端子間に追加するだけで、換言すると、n個の太陽電池セルを直列接続する場合に、発電動作点制御回路装置の回路構成をn+1段の昇降圧チョッパ回路として、そのうちの一段については、太陽電池セルを接続しないという構成とするだけで、全ての太陽電池セルに最大電力点にて発電を行わせるとともに、出力端子間の出力電圧を太陽電池セルの最大電力点に於ける発電電圧の総和よりも高くすることが可能となることを見出した。以下、発電動作点制御回路装置の制御の原理と作動について説明する。   In this regard, the inventors of the present invention, in the circuit configuration of the power generation operating point control circuit device described above, connect a capacitor and a switching element in parallel as described with reference to FIG. In other words, when the n solar cells are connected in series, the circuit configuration of the power generation operating point control circuit device is an n + 1-stage buck-boost chopper circuit. For the first stage, simply by not connecting the solar cells, all the solar cells generate power at the maximum power point, and the output voltage between the output terminals is at the maximum power point of the solar cells. It has been found that it is possible to make it higher than the sum of the generated voltage. The control principle and operation of the power generation operating point control circuit device will be described below.

(1)発電動作点制御回路装置(非特許文献1〜3)の発電電圧制御の原理
図7(A)を参照して、既に触れた如く、太陽電池は、一般に、図示の如き発電電圧に対して電流(実線)が変化する特性を有しており、その発電電力(一点鎖線)の変化に於いて、電力が最大となる最大電力点(Pm1、Pm2)が存在する。かかる太陽電池の電流−電圧特性及び電力−電圧特性は、太陽電池の環境条件によって変化し、影などによって、受光量が低減すると、例えば、図中、電流Hにて示された特性曲線が、電流Lにて示された特性曲線へと電流が低下する方向へ変化し、従って、電力Hにて示された特性曲線も電力Lにて示された特性曲線へと変化する、といった現象が生ずる。
(1) Principle of power generation voltage control of power generation operating point control circuit device (Non-Patent Documents 1 to 3) As already mentioned with reference to FIG. 7A, a solar cell generally has a power generation voltage as illustrated. On the other hand, it has a characteristic that the current (solid line) changes, and there is a maximum power point (Pm1, Pm2) at which the power becomes maximum in the change of the generated power (dashed line). The current-voltage characteristics and power-voltage characteristics of such a solar cell change depending on the environmental conditions of the solar cell, and when the amount of received light decreases due to shadows, for example, the characteristic curve shown by the current H in the figure A phenomenon occurs in which the characteristic curve indicated by the current L changes in the direction in which the current decreases, and therefore the characteristic curve indicated by the power H also changes to the characteristic curve indicated by the power L. ..

上記の如き電流−電圧特性を有する太陽電池セルが直列に接続される場合に、例えば、一部の太陽電池セルが日陰に入るなどの要因によって、太陽電池セル間に於いて電流−電圧特性曲線のずれが生ずると、最大電力点に於ける電流に差が生ずることとなるので、直列接続された太陽電池セルに同一の電流が流れる構成の場合では、一部の太陽電池セルを最大電力点にて発電させることができなくなる。そうすると、その状態で得られる電力は、全ての太陽電池セルの受光量に対応して得られるはずの最大の電力よりも低下してしまうこととなる。そこで、全ての太陽電池セルがそれぞれの最大電力点にて発電動作させられるように、図7(B)に例示されている如く、太陽電池セル毎に昇圧チョッパ回路が接続される発電動作点制御回路装置が用いられ、そこに於いて、太陽電池セル毎に発電電圧と電流とが調節される(非特許文献1−3)。   When the solar cells having the current-voltage characteristics as described above are connected in series, for example, due to factors such as some of the solar cells entering the shade, a current-voltage characteristic curve between the solar cells If a deviation occurs, the current at the maximum power point will have a difference.Therefore, in the case of a configuration in which the same current flows through the solar cells connected in series, some solar cells will not have the maximum power point. Will not be able to generate electricity. Then, the electric power obtained in that state will be lower than the maximum electric power that should be obtained corresponding to the amount of light received by all the solar cells. Therefore, as shown in FIG. 7 (B), a power generation operating point control in which a boost chopper circuit is connected to each solar cell so that all the solar cells can generate power at their respective maximum power points. A circuit device is used, in which the generated voltage and the current are adjusted for each solar cell (Non-Patent Documents 1-3).

上記の発電動作点制御回路装置の作動に於いては、図7(B)を参照して、まず、直列接続された太陽電池PV1、PV2の両端の電圧、即ち、発電動作点制御回路装置の出力電圧は、負荷及びMPPT制御回路等によって調節され、太陽電池セルPV1、PV2の各々の発電電圧V1、V2は、スイッチング素子M1、M2のON状態とOFF状態、即ち、導通状態と遮断状態の時間幅の比によって決定される。そして、スイッチング素子M1、M2は、図7(C)に例示されている如く、所定の周期TsにてON状態とOFF状態との切替が行われ、且つ、いずれか一つがOFF状態となり、それ以外がON状態となるように制御される。その場合、図示の如き昇圧チョッパ回路に於いては、太陽電池セルの電圧V1、V2と、出力電圧Voutとの間には、スイッチング素子の所定の周期Tsに対するOFF状態の時間幅の比であるOFF時間デューティ比D1、D2(以下、単に、「デューティ比」と称する。)を用いて、下記の関係が成立する。
Vout=V1+V2 …(1a)
V1=D1・Vout …(1b)
V2=D2・Vout …(1c)
即ち、D1+D2=1となる。
なお、ここで、Vout、D1、D2の値は、各素子の許容限界の範囲内で任意に設定可能であることは理解されるべきである。
In the operation of the power generation operating point control circuit device, referring to FIG. 7B, first, the voltages across the solar cells PV1 and PV2 connected in series, that is, the power generation operating point control circuit device The output voltage is adjusted by the load and the MPPT control circuit and the like, and the generated voltages V1 and V2 of the solar cells PV1 and PV2 are in the ON state and the OFF state of the switching elements M1 and M2, that is, in the conduction state and the cutoff state. It is determined by the ratio of time widths. Then, as illustrated in FIG. 7C, the switching elements M1 and M2 are switched between an ON state and an OFF state at a predetermined cycle Ts, and one of them is in an OFF state. Other than the above are controlled to be in the ON state. In that case, in the step-up chopper circuit as shown in the figure, between the voltages V1 and V2 of the solar battery cell and the output voltage Vout, there is a ratio of the time width of the OFF state to the predetermined cycle Ts of the switching element. The following relationship is established using the OFF time duty ratios D1 and D2 (hereinafter, simply referred to as “duty ratio”).
Vout = V1 + V2 (1a)
V1 = D1 · Vout (1b)
V2 = D2 · Vout (1c)
That is, D1 + D2 = 1.
It should be understood that the values of Vout, D1, and D2 can be set arbitrarily within the allowable limit of each element.

かくして、図示の回路に於いて、出力電圧Voutが全ての太陽電池セルの最大電力点に於ける発電電圧の総和に等しいとき、即ち、
Vout=V1_pm+V2_pm …(2a)
であるとき(V1_pm、V2_pmは、それぞれ、太陽電池セルの最大電力点に於ける発電電圧)、デューティ比D1、D2を
D1=V1_pm/Vout …(2b)
D2=V2_pm/Vout …(2c)
となるように調節すると、全ての太陽電池セルが、それぞれ、最大電力点に於ける発電電圧にて発電することとなり、全ての太陽電池セルの受光量に対応して得られるはずの最大の電力が得られることとなる。なお、上記の回路に於いて、Vout、D1、D2の値の実際の設定に於いては、MPPT制御回路がVout、D1、D2を変更しながら出力端子間の電圧と電流とをモニターして、発電電力を計測し、最大の電力を与えるVout、D1、D2の条件が決定され、使用されることとなる。
Thus, in the illustrated circuit, when the output voltage Vout is equal to the sum of the generated voltage at the maximum power point of all the solar cells, that is,
Vout = V1_pm + V2_pm (2a)
(V1_pm and V2_pm are the generated voltage at the maximum power point of the solar cell, respectively), the duty ratios D1 and D2 are D1 = V1_pm / Vout (2b)
D2 = V2_pm / Vout (2c)
If adjusted so that all solar cells will generate power at the power generation voltage at the maximum power point, the maximum power that should be obtained corresponding to the amount of light received by all solar cells. Will be obtained. In the above circuit, in the actual setting of the values of Vout, D1 and D2, the MPPT control circuit monitors the voltage and current between the output terminals while changing Vout, D1 and D2. , The generated power is measured, and the conditions of Vout, D1 and D2 that give the maximum power are determined and used.

ところで、出力電圧Voutが全ての太陽電池セルの最大電力点に於ける発電電圧の総和より大きい場合(負荷及びMPPT制御回路等の調節によって、そのように設定することが可能である。)、即ち、
Vout=V1_pm+V2_pm+ΔV …(3a)
であるときでも、式(1a)〜(1c)が成立するので、例えば、式(2b)が成立するとき、即ち、
V1=V1_pm=D1・Vout …(3b)
が成立するときには、V2は、
V2=V2_pm+ΔV=D2・Vout …(3c)
に決定される。即ち、この場合、太陽電池セルPV2の発電電圧は、その最大電力点での発電電圧V2_pmからずれることとなる。そうすると、例えば、図7(A)の特性曲線電力Lを参照して理解される如く、太陽電池セルPV2の発電電力は、V2のずれΔVに伴って、最大電力点の場合に比して低下することとなる(動作点が黒点の位置から白点の位置へ変化する)。即ち、図7(B)の如く、昇圧チョッパ回路の全てに太陽電池セルが接続されている構成に於いては、要求される出力電が全ての太陽電池セルの最大電力点に於ける発電電圧の総和より大きいときに、全ての太陽電池セルを最大電力点にて発電させて受光量に対応して最大の電力を得るためには、出力端子ot+、ot−間に、別途、昇圧器の装入が必要となる。
By the way, when the output voltage Vout is larger than the sum of the power generation voltages at the maximum power points of all the solar cells (which can be set by adjusting the load and the MPPT control circuit), that is, ,
Vout = V1_pm + V2_pm + ΔV (3a)
Since the expressions (1a) to (1c) are satisfied even when, the expression (2b) is satisfied, that is,
V1 = V1_pm = D1 · Vout (3b)
When is satisfied, V2 is
V2 = V2_pm + ΔV = D2 · Vout (3c)
Is decided. That is, in this case, the power generation voltage of the photovoltaic cell PV2 deviates from the power generation voltage V2_pm at the maximum power point. Then, for example, as understood with reference to the characteristic curve power L of FIG. 7 (A), the generated power of the solar battery cell PV2 decreases with the deviation ΔV of V2 as compared with the case of the maximum power point. (The operating point changes from the position of the black point to the position of the white point). That is, as in FIG. 7 (B), is at the configuration in which all the solar cell of the step-up chopper circuit is connected, in the maximum power point of the required output voltage of all of the solar cell power generation When the total voltage is higher than the sum of the voltages, all the solar cells are generated at the maximum power point to obtain the maximum power corresponding to the amount of received light. In order to obtain the maximum power, a booster is separately provided between the output terminals ot + and ot-. It is necessary to charge.

(2)本発明による発電動作点制御回路装置の発電電圧制御の改良
一方、本発明に於いては、既に述べた如く、上記の発電動作点制御回路装置の回路構成に於いて、コンデンサとスイッチング素子とを追加することにより、要求される出力電が全ての太陽電池セルの最大電力点に於ける発電電圧の総和より大きいときでも、全ての太陽電池セルを最大電力点にて発電させた状態が実現可能となる。
(2) Improvement of power generation voltage control of power generation operating point control circuit device according to the present invention On the other hand, in the present invention, as described above, in the circuit configuration of the power generation operating point control circuit device, a capacitor and a switching element are used. the addition of elements, an output voltage that is required even when greater than the sum of the in the power generation voltage to the maximum power point of all of the solar cells were generated all the solar cell at the maximum power point The state becomes feasible.

具体的には、再度、図1(A)を参照して、本発明による発電動作点制御回路装置の回路構成は、図7(B)の多段型昇圧チョッパ回路に対して太陽電池セルが接続されていない段が一つ追加された構成となる。かかる構成に於いて、太陽電池セルが接続されていない段には、それ自身に発電能を持った素子が存在していないが、コンデンサC3が電荷を蓄積して電圧を保持することができるため、出力電圧Voutと太陽電池セルが接続された段の電圧(V1+V2)との差が生ずる場合には、その差分の電圧が保持されることとなる。かくして、図1(A)の構成に於いては、スイッチング素子が一つ追加されるので、スイッチング素子M1、M2、M3は、図1(B)に例示されている如く、所定の周期TsにてON状態とOFF状態との切替が行われ、且つ、いずれか一つがOFF状態となり、それ以外がON状態となるように制御される。その場合、図示の如き昇圧チョッパ回路に於いては、昇圧チョッパ回路の各段の電圧V1、V2、V3と、出力電圧Voutとの間には、スイッチング素子のデューティ比D1、D2、D3を用いて、下記の関係が成立する。
Vout=V1+V2+V3 …(4a)
V1=D1・Vout …(4b)
V2=D2・Vout …(4c)
V3=D3・Vout …(4d)
即ち、D1+D2+D3=1 …(4e)
となる。
Specifically, referring to FIG. 1 (A) again, the circuit configuration of the power generation operating point control circuit device according to the present invention is such that a solar cell is connected to the multi-stage boost chopper circuit of FIG. 7 (B). This is a configuration in which one stage that has not been added is added. In such a configuration, in the stage to which the solar cell is not connected, there is no element having power generation capability by itself, but the capacitor C3 can accumulate charge and hold the voltage. If a difference occurs between the output voltage Vout and the voltage (V1 + V2) of the stage to which the solar cell is connected, the difference voltage is held. Thus, in the configuration of FIG. 1 (A), one switching element is added, so that the switching elements M1, M2, M3 have a predetermined cycle Ts as illustrated in FIG. 1 (B). Then, the ON state and the OFF state are switched, and one of them is controlled to be in the OFF state and the other is controlled to be in the ON state. In that case, in the step-up chopper circuit shown in the figure, the duty ratios D1, D2, D3 of the switching elements are used between the voltages V1, V2, V3 of the respective stages of the step-up chopper circuit and the output voltage Vout. Then, the following relationship is established.
Vout = V1 + V2 + V3 (4a)
V1 = D1 · Vout (4b)
V2 = D2 · Vout (4c)
V3 = D3 · Vout (4d)
That is, D1 + D2 + D3 = 1 (4e)
Becomes

そして、上記の回路の場合も、Vout、D1、D2、D3の値は、各素子の許容限界の範囲内で任意に設定可能であり、式(4a)〜(4d)は、常に成立する。従って、まず、出力電圧Voutが全ての太陽電池セルの最大電力点に於ける発電電圧の総和に等しいとき、即ち、
Vout=V1_pm+V2_pm …(5a)
であるとき、デューティ比D1、D2、D3を
D1=V1_pm/Vout …(5b)
D2=V2_pm/Vout …(5c)
D3=0/Vout …(5d)
となるように調節すると、全ての太陽電池セルが、それぞれ、最大電力点に於ける発電電圧にて発電する状態が実現されることとなる。更に、出力電圧Voutが全ての太陽電池セルの最大電力点に於ける発電電圧の総和より大きくした場合、即ち、
Vout=V1_pm+V2_pm+ΔV …(6a)
であるときには、デューティ比D1、D2は、式(4e)を満たす範囲で任意に設定可能なので、D1、D2、D3を
D1=V1_pm/Vout …(5b)
D2=V2_pm/Vout …(5c)
D3=ΔV/Vout …(5d)
となるように調節することが可能となる。即ち、既に述べた如く、図1(A)の回路構成の場合には、コンデンサC3にΔVを保持させることが可能となるため、式(5b)、(5c)の如く、全ての太陽電池セルが最大電力点に於ける発電電圧にて発電を実行する状態が実現可能となる。
Also in the case of the above circuit, the values of Vout, D1, D2, and D3 can be arbitrarily set within the allowable limit of each element, and the formulas (4a) to (4d) are always established. Therefore, first, when the output voltage Vout is equal to the sum of the generated voltage at the maximum power point of all the solar cells, that is,
Vout = V1_pm + V2_pm (5a)
, The duty ratios D1, D2, D3 are D1 = V1_pm / Vout (5b)
D2 = V2_pm / Vout (5c)
D3 = 0 / Vout (5d)
When adjusted so that all the solar cells will generate power at the power generation voltage at the maximum power point. Furthermore, when the output voltage Vout is set to be larger than the sum of the generated voltage at the maximum power point of all the solar cells, that is,
Vout = V1_pm + V2_pm + ΔV (6a)
, The duty ratios D1 and D2 can be arbitrarily set within the range that satisfies the expression (4e), so that D1, D2, and D3 are set to D1 = V1_pm / Vout (5b).
D2 = V2_pm / Vout (5c)
D3 = ΔV / Vout (5d)
It becomes possible to adjust so that. That is, as already described, in the case of the circuit configuration of FIG. 1 (A), it becomes possible to hold ΔV in the capacitor C3, and therefore, as shown in equations (5b) and (5c), It becomes possible to realize a state in which the power generation is executed at the power generation voltage at the maximum power point.

なお、コンデンサC3がΔVを保持するための電荷は、スイッチング素子のON/OFF状態の変化過程に於けるインダクタからの電流の流入によって与えられることとなる。図2を参照して、スイッチング素子動作中の電流の流れに於いて、コンデンサC3に於いては、対応するスイッチ素子がON状態にあるときには、他段のインダクタから電流が流入し、対応するスイッチ素子がOFF状態にあるときには、コンデンサC3から電流が流出することとなる。その際、出力電圧がVoutに保持されているので、時間平均に於いて、コンデンサC3の電圧は、出力電圧Voutから太陽電池セル発電電圧の総和を差し引いた電圧となる。   The electric charge for the capacitor C3 to hold ΔV is given by the inflow of current from the inductor during the change process of the ON / OFF state of the switching element. Referring to FIG. 2, in the current flow during the operation of the switching element, in the capacitor C3, when the corresponding switching element is in the ON state, the current flows from the inductor of the other stage and the corresponding switch When the element is in the OFF state, current will flow from the capacitor C3. At that time, since the output voltage is held at Vout, the voltage of the capacitor C3 is the voltage obtained by subtracting the sum of the photovoltaic cell generated voltages from the output voltage Vout in the time average.

かくして、上記の本発明による発電動作点制御回路装置に於いては、出力電圧Voutが全ての太陽電池セルの最大電力点に於ける発電電圧の総和より大きい場合には、その差分の電圧がコンデンサC3によって保持されるため、上記の如く、要求される出力電が全ての太陽電池セルの最大電力点に於ける発電電圧の総和より大きいときでも、全ての太陽電池セルを最大電力点にて発電させた状態が実現可能となり、従って、全ての太陽電池セルを最大電力点にて発電させて受光量に対応して最大の電力を得ることが可能となる。なお、上記の回路に於いて、D1、D2、D3の値の実際の設定に於いては、MPPT制御回路が任意の値のVoutを保持した状態で、D1、D2、D3の値を変更しながら出力端子間の電圧と電流とをモニターして、発電電力を計測し、最大の電力を与えるD1、D2、D3の条件が決定され、使用されることとなる。
Thus, in the power generation operating point control circuit device according to the present invention, when the output voltage Vout is larger than the sum of the power generation voltages at the maximum power points of all the solar cells, the difference voltage is the capacitor. to be retained by C3, as described above, when the output voltage required is greater than the sum of the maximum in the generated voltage to the power point of all the solar cells also all the solar cell at the maximum power point It is possible to realize a state in which power is generated, and thus it is possible to generate power at all solar cells at the maximum power point and obtain maximum power corresponding to the amount of received light. In the above circuit, when actually setting the values of D1, D2, and D3, the values of D1, D2, and D3 are changed while the MPPT control circuit holds Vout of an arbitrary value. However, the voltage and current between the output terminals are monitored, the generated power is measured, and the conditions of D1, D2, and D3 that give the maximum power are determined and used.

本発明による発電動作点制御回路装置の並列接続
上記の本発明による発電動作点制御回路装置は、図3に例示されている如く、二つ以上のユニットU1、U2をそれらの出力端子に於いて並列に接続した状態で使用されてよい。かかる並列接続の構成に於いては、それぞれのユニットU1、U2の出力電圧を一致させる必要があるところ、本発明による発電動作点制御回路装置の場合には、上記の如く、ユニットの出力電圧は、任意に設定できるので、ユニットU1、U2の出力電圧を一致させるための昇高圧手段を別途準備する必要がない点で有利である。
Parallel Connection of Power Generation Operating Point Control Circuit Device According to the Present Invention The power generation operating point control circuit device according to the present invention described above has two or more units U1 and U2 at their output terminals, as illustrated in FIG. It may be used in a state of being connected in parallel. In such a configuration of parallel connection, it is necessary to make the output voltages of the units U1 and U2 equal to each other. However, in the case of the power generation operating point control circuit device according to the present invention, the output voltage of the units is as described above. Since it can be arbitrarily set, it is advantageous in that it is not necessary to separately prepare a boosting voltage unit for matching the output voltages of the units U1 and U2.

本発明による発電動作点制御回路装置のその他の電源素子への応用
上記の本発明による発電動作点制御回路装置の構成は、太陽電池の他に、図4、図5に例示されている如く、化学電池セル、蓄電器セル、燃料電池セル(固形酸化物型燃料電池であってもよい。)、熱電発電素子、発電機セル(風力、水力、潮力、エンジン等による任意の発電機であってよい。)など、任意の電源セルを直列接続する際に適用されてよい。直列接続される電源セルの各々の最適な動作電圧が異なる場合、本発明による回路構成を使用すれば、それぞれのセルを最適な動作電圧にて動作させることが可能となる。また、上記の本発明による発電動作点制御回路装置の構成は、直列接続される電源の種類が異なる場合に適用されてもよい。例えば、図3に例示されている如き本発明による回路構成を有する複数のユニットを並列接続の構成は、図6に例示されている如く、直列接続される電源セルが互いに異なる複数のユニット(例えば、太陽電池セルが直列接続されているユニットと、充電池(化学電池)セルが直列接続されているユニット)を並列に接続した状態で使用されてよい。
Application of the power generation operating point control circuit device according to the present invention to other power supply elements The configuration of the power generation operating point control circuit device according to the present invention is as shown in FIGS. 4 and 5 in addition to the solar cell. Chemical battery cells, power storage cells, fuel battery cells (may be solid oxide fuel cells), thermoelectric power generation elements, generator cells (wind power, water power, tidal power, any generator such as engine, , Etc.) may be applied when an arbitrary power supply cell is connected in series. When the optimum operating voltage of each power supply cell connected in series is different, the circuit configuration according to the present invention can be used to operate each cell at the optimum operating voltage. Further, the configuration of the power generation operating point control circuit device according to the present invention may be applied when the types of power supplies connected in series are different. For example, in a configuration in which a plurality of units having a circuit configuration according to the present invention as illustrated in FIG. 3 are connected in parallel, as illustrated in FIG. , Units in which solar cells are connected in series and units in which rechargeable battery (chemical battery) cells are connected in series) may be used in parallel.

また、直列接続される電源セルが互いに異なる複数のユニットを並列接続する構成に於いて、図6に例示されている如く、各ユニットの出力端子に適宜スイッチング素子S8、S9、S10が設けられていてもよい。図6の場合、太陽電池の発電電力を充電池へ適宜充電することも可能となる。   Further, in a configuration in which a plurality of units whose power supply cells connected in series are different from each other are connected in parallel, switching elements S8, S9, S10 are appropriately provided at the output terminals of each unit, as illustrated in FIG. May be. In the case of FIG. 6, the rechargeable battery can be appropriately charged with the electric power generated by the solar battery.

例えば、図示の例の作動に於いては、スイッチング素子S8、S9、S10のON/OFF状態によって、下記の如き、種々の運転モードが実現される。
(a)S8=ON、S9=ON、S10=OFFのとき
太陽電池で発電した電力を充電池に充電するモード
(b)S8=ON、S9=ON、S10=ONのとき
太陽電池で発電した電力を出力しながら、余剰な電力を充電池に充電するモード
(c)S8=OFF、S9=ON、S10=ONのとき
充電池の電力だけを出力するモード
(d)S8=ON、S9=OFF、S10=ONのとき
太陽電池の電力だけを出力するモード
かかる構成によれば、太陽電池やその他の電源間で適宜エネルギーの授受ができるので、システムとしてエネルギー効率の良い状態で電力を出力できることとなる。例えば、太陽電池を搭載した電気自動車(EV)に適用すると、走行中は太陽電池で発電した電力と充電池を併用して走行し、駐車中は、太陽電池の発電した電力を出力せずに充電池に蓄電するなどの構成が実現される。
For example, in the operation of the illustrated example, various operating modes as described below are realized depending on the ON / OFF states of the switching elements S8, S9 and S10.
(A) When S8 = ON, S9 = ON, S10 = OFF Mode for charging the rechargeable battery with the power generated by the solar cell (b) When S8 = ON, S9 = ON, S10 = ON Mode in which surplus power is charged to the rechargeable battery while outputting power (c) When S8 = OFF, S9 = ON, S10 = ON Mode in which only rechargeable battery power is output (d) S8 = ON, S9 = When OFF, S10 = ON Mode in which only the electric power of the solar cell is output According to this configuration, energy can be appropriately transferred between the solar cell and other power sources, so that the system can output electric power in an energy-efficient state. Becomes For example, when applied to an electric vehicle (EV) equipped with a solar cell, it travels using both the electric power generated by the solar cell and the rechargeable battery while traveling, and does not output the electric power generated by the solar cell during parking. A configuration such as storing electricity in a rechargeable battery is realized.

上記の一連の作動に於いて有利な点は、本発明による発電動作点制御回路装置に於いては、出力電圧が全ての太陽電池セル又はその他の電源セルが最適に動作する場合の電圧の総和より大きいときでも、それらの太陽電池セル又はその他の電源セルから取得な可能な最大の電力を、昇圧器等を使用せずに、利用できるという点である。   The advantage of the above series of operations is that in the power generation operating point control circuit device according to the present invention, the output voltage is the sum of the voltages when all the solar cells or other power supply cells operate optimally. Even if it is larger, the maximum power that can be obtained from those solar cells or other power supply cells can be used without using a booster or the like.

以上の説明は、本発明の実施の形態に関連してなされているが、当業者にとつて多くの修正及び変更が容易に可能であり、本発明は、上記に例示された実施形態のみに限定されるものではなく、本発明の概念から逸脱することなく種々の装置に適用されることは明らかであろう。   Although the above description is made in connection with the embodiments of the present invention, many modifications and changes can be easily made by those skilled in the art, and the present invention is limited to the embodiments illustrated above. It will be apparent that the present invention is not limited but applies to various devices without departing from the inventive concept.

Claims (8)

直列接続された複数の太陽電池セルのための発電動作点制御回路装置であって、
一対の出力端子と、
前記一対の出力端子の間にて直列に接続される複数の太陽電池セルの各々の電極端子に接続される複数の電極用接続端子と、
前記一対の出力端子の間にて、前記複数の太陽電池セルの各々に対して、対応する前記電極用接続端子を介して並列に接続されるコンデンサと、
前記一対の出力端子の間にて、前記複数の太陽電池セルの各々に対して、対応する前記電極用接続端子とインダクタとを介して並列に接続されて、前記接続された一対の前記電極用接続端子の間を選択的に互いに導通するスイッチング手段と
を含み、
更に、前記一対の出力端子の間に於いて、前記直列接続される複数の太陽電池セルの一方の端側の前記電極用接続端子と前記出力端子の一方との間又は前記直列接続される複数の太陽電池セルのうちの隣接する二つの太陽電池セルの間の二つの前記電極用接続端子の間にて、前記コンデンサに対して直列して追加のコンデンサが接続され、該追加のコンデンサに対して並列に且つ前記スイッチング手段に対して直列して追加のスイッチング手段が接続され、前記追加のコンデンサ及び前記追加のスイッチング手段に対して太陽電池セルが並列に接続されておらず、
前記スイッチング手段及び前記追加のスイッチング手段が、同一の所定の周期にて、それぞれ、互いに異なる時期に、前記接続された一対の電極用接続端子の間、前記接続された電極用接続端子と前記出力端子の一方との間及び前記二つの電極用接続端子の間のうちの対応する端子間の導通を遮断し、且つ、常に、前記スイッチング手段及び前記追加のスイッチング手段のうちの一つが、前記接続された一対の電極用接続端子の間、前記接続された電極用接続端子と前記出力端子の一方との間及び前記二つの電極用接続端子の間のうちの対応する端子間の導通を遮断し、その他の前記スイッチング手段及び前記追加のスイッチング手段が、前記接続された一対の電極用接続端子の間、前記接続された電極用接続端子と前記出力端子の一方との間及び前記二つの電極用接続端子の間のうちの対応する端子間を導通するよう前記スイッチング手段及び前記追加のスイッチング手段の導通が制御される装置。
A power generation operating point control circuit device for a plurality of solar cells connected in series, comprising:
A pair of output terminals,
A plurality of electrode connection terminals connected to each electrode terminal of the plurality of solar cells connected in series between the pair of output terminals,
Between the pair of output terminals, for each of the plurality of solar cells, a capacitor connected in parallel via the corresponding electrode connection terminal,
Between the pair of output terminals, for each of the plurality of solar cells, are connected in parallel via the corresponding electrode connection terminals and inductors, and for the pair of connected electrodes. And a switching means for selectively conducting between the connection terminals,
Further, between the pair of output terminals, between the electrode connection terminal and one of the output terminals on one end side of the plurality of solar cells connected in series, or the plurality of series connected. An additional capacitor is connected in series with the capacitor between the two electrode connection terminals between two adjacent solar cells of the solar cell of In parallel and in series with the switching means additional switching means is connected , solar cells are not connected in parallel to the additional capacitor and the additional switching means,
The switching means and the additional switching means are in the same predetermined cycle and at different times, respectively, between the connected pair of electrode connection terminals, and the connected electrode connection terminal and the output. The connection between one of the terminals and the corresponding terminal of the two electrode connection terminals is interrupted, and one of the switching means and the additional switching means is always connected to the connection. The connection between the corresponding electrode connection terminals, between the connected electrode connection terminal and one of the output terminals, and between the corresponding terminals of the two electrode connection terminals. , The other switching means and the additional switching means, between the connected pair of electrode connection terminals, between the connected electrode connection terminal and one of the output terminals, and for the two electrodes A device in which the conduction of the switching means and the additional switching means is controlled so as to conduct between corresponding terminals of the connection terminals.
請求項1の装置であって、前記スイッチング手段の各々の前記所定の周期に対する前記接続された一対の電極用接続端子の間の導通を遮断する時間幅の比が前記一対の出力端子の間の出力電圧に対する前記スイッチング手段の各々の対応する前記太陽電池セルの発電電圧の比であり、前記一対の出力端子の間の出力電圧が前記直列接続された太陽電池セルの発電電圧の総和よりも高い電圧であるときには、前記追加のスイッチング手段の前記所定の周期に対する前記接続された電極用接続端子と前記出力端子の一方との間又は前記二つの電極用接続端子の間の導通を遮断する時間幅の比が前記一対の出力端子の間の出力電圧に対する前記一対の出力端子の間の出力電圧から前記太陽電池セルの発電電圧の総和を差し引いた電圧差の比である装置。   2. The device according to claim 1, wherein a ratio of a time width for interrupting conduction between the pair of connected electrode connection terminals for the predetermined period of each of the switching means is between the pair of output terminals. It is the ratio of the generated voltage of the corresponding solar cells of each of the switching means to the output voltage, the output voltage between the pair of output terminals is higher than the sum of the generated voltage of the solar cells connected in series. When it is a voltage, a time width for interrupting conduction between the connected electrode connection terminal and one of the output terminals or between the two electrode connection terminals for the predetermined cycle of the additional switching means. Is the ratio of the voltage difference obtained by subtracting the sum of the generated voltage of the photovoltaic cells from the output voltage between the pair of output terminals with respect to the output voltage between the pair of output terminals. 請求項2の装置であって、前記一対の出力端子の間の出力電圧が所望の電圧であり、前記スイッチング手段の前記所定の周期に対する前記接続された一対の電極用接続端子の間の導通を遮断する時間幅の比が前記対応する太陽電池セルの発電電圧が最大動作点に於ける電圧となるよう調節されている装置。   3. The device according to claim 2, wherein the output voltage between the pair of output terminals is a desired voltage, and conduction between the pair of connected electrode connection terminals for the predetermined period of the switching means is established. A device in which the ratio of the time widths of interruption is adjusted so that the generated voltage of the corresponding solar battery cell becomes the voltage at the maximum operating point. 請求項3の装置であって、前記直列接続された太陽電池セルの発電電圧が前記最大動作点に於ける電圧となるように前記スイッチング手段の各々の前記所定の周期に対する前記接続された一対の電極用接続端子の間の導通を遮断する時間幅の比を調節する手段を更に含む装置。   4. The apparatus according to claim 3, wherein the pair of connected switching means for each of the predetermined cycles of each of the switching means is such that a generated voltage of the solar cells connected in series becomes a voltage at the maximum operating point. The device further comprising means for adjusting a ratio of time widths for interrupting conduction between the electrode connection terminals. 複数の請求項1乃至4のいずれかの装置の一対の出力端子が互いに並列に接続されている装置。   An apparatus in which a pair of output terminals of a plurality of the apparatus according to any one of claims 1 to 4 are connected in parallel with each other. 請求項1の装置であって、前記太陽電池セルの少なくとも一部が化学電池セル又は蓄電器セルに置換されている装置。   The device according to claim 1, wherein at least a part of the solar battery cells is replaced with a chemical battery cell or a battery cell. 複数の請求項6の装置の一対の出力端子が互いに並列に接続されている装置。   An apparatus in which a pair of output terminals of a plurality of the apparatus of claim 6 are connected in parallel with each other. 直列接続された複数の電源セルのための動作点制御回路装置であって、
一対の出力端子と、
前記一対の出力端子の間にて直列に接続される複数の電源セルの各々の電極端子に接続される複数の電極用接続端子と、
前記一対の出力端子の間にて、前記複数の電源セルの各々に対して、対応する前記電極用接続端子を介して並列に接続されるコンデンサと、
前記一対の出力端子の間にて、前記複数の電源セルの各々に対して、対応する前記電極用接続端子とインダクタとを介して並列に接続されて、前記接続された一対の前記電極用接続端子の間を選択的に互いに導通するスイッチング手段と
を含み、
更に、前記一対の出力端子の間に於いて、前記直列接続される複数の電源セルの一方の端側の前記電極用接続端子と前記出力端子の一方との間又は前記直列接続される複数の電源セルのうちの隣接する二つの電源セルの間の二つの前記電極用接続端子の間にて、前記コンデンサに対して直列して追加のコンデンサが接続され、該追加のコンデンサに対して並列に且つ前記スイッチング手段に対して直列して追加のスイッチング手段が接続され、前記追加のコンデンサ及び前記追加のスイッチング手段に対して電源セルが並列に接続されておらず、
前記スイッチング手段及び前記追加のスイッチング手段が、同一の所定の周期にて、それぞれ、互いに異なる時期に、前記接続された一対の電極用接続端子の間、前記接続された電極用接続端子と前記出力端子の一方との間及び前記二つの電極用接続端子の間のうちの対応する端子間の導通を遮断し、且つ、常に、前記スイッチング手段及び前記追加のスイッチング手段のうちの一つが、前記接続された一対の電極用接続端子の間、前記接続された電極用接続端子と前記出力端子の一方との間及び前記二つの電極用接続端子の間のうちの対応する端子間の導通を遮断し、その他の前記スイッチング手段及び前記追加のスイッチング手段が、前記接続された一対の電極用接続端子の間、前記接続された電極用接続端子と前記出力端子の一方との間及び前記二つの電極用接続端子の間のうちの対応する端子間を導通するよう前記スイッチング手段及び前記追加のスイッチング手段の導通が制御される装置。
An operating point control circuit device for a plurality of power supply cells connected in series,
A pair of output terminals,
A plurality of electrode connection terminals connected to each electrode terminal of the plurality of power supply cells connected in series between the pair of output terminals,
Between the pair of output terminals, for each of the plurality of power supply cells, a capacitor connected in parallel via the corresponding electrode connection terminal,
Between the pair of output terminals, each of the plurality of power supply cells is connected in parallel via the corresponding electrode connection terminal and the inductor, and the pair of connected electrode connections is connected. And a switching means for selectively conducting between the terminals,
Further, between the pair of output terminals, between the electrode connection terminal on one end side of the plurality of power supply cells connected in series and one of the output terminals, or the plurality of series-connected output terminals. An additional capacitor is connected in series to the capacitor between two connection terminals for the electrodes between two adjacent power cells of the power cells, and the additional capacitor is connected in parallel to the additional capacitor. And the additional switching means is connected in series to the switching means, the power supply cell is not connected in parallel to the additional capacitor and the additional switching means,
The switching means and the additional switching means are in the same predetermined cycle and at different times, respectively, between the connected pair of electrode connection terminals, and the connected electrode connection terminal and the output. The connection between one of the terminals and the corresponding terminal of the two electrode connection terminals is interrupted, and one of the switching means and the additional switching means is always connected to the connection. The connection between the corresponding electrode connection terminals, between the connected electrode connection terminal and one of the output terminals, and between the corresponding terminals of the two electrode connection terminals. , The other switching means and the additional switching means, between the connected pair of electrode connection terminals, between the connected electrode connection terminal and one of the output terminals, and for the two electrodes A device in which the conduction of the switching means and the additional switching means is controlled so as to conduct between corresponding terminals of the connection terminals.
JP2016083307A 2015-04-28 2016-04-19 Operating point control circuit device for series connected solar cells or other power sources Active JP6696819B6 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/139,453 US9602049B2 (en) 2015-04-28 2016-04-27 Operating point control circuit device for series-connected photovoltaic cells or other electric sources

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015092148 2015-04-28
JP2015092148 2015-04-28

Publications (3)

Publication Number Publication Date
JP2016214061A JP2016214061A (en) 2016-12-15
JP6696819B2 true JP6696819B2 (en) 2020-05-20
JP6696819B6 JP6696819B6 (en) 2020-06-17

Family

ID=57552072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016083307A Active JP6696819B6 (en) 2015-04-28 2016-04-19 Operating point control circuit device for series connected solar cells or other power sources

Country Status (1)

Country Link
JP (1) JP6696819B6 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017229186A (en) 2016-06-23 2017-12-28 トヨタ自動車株式会社 Solar power generation apparatus
US10483763B2 (en) 2016-08-25 2019-11-19 Toyota Jidosha Kabushiki Kaisha Photovoltaic device and operating point control circuit device for photovoltaic cells or other power supply elements connected in series
JP6825460B2 (en) * 2017-04-03 2021-02-03 株式会社豊田中央研究所 Power supply
JP7096194B2 (en) * 2019-04-04 2022-07-05 トヨタ自動車株式会社 Operating point control circuit device for series-connected solar cells or other power sources

Also Published As

Publication number Publication date
JP2016214061A (en) 2016-12-15
JP6696819B6 (en) 2020-06-17

Similar Documents

Publication Publication Date Title
KR101520981B1 (en) Localized Power Point Optimizer for Solar Cell Installations
JP6696819B2 (en) Operating point control circuit device for series connected solar cells or other power sources
WO2005112551A2 (en) Method for compensating for partial shade in photovoltaic power system
KR102308628B1 (en) Hybrid Power Conversion System and Method for Determining Maximum Efficiency Using the Same
US9602049B2 (en) Operating point control circuit device for series-connected photovoltaic cells or other electric sources
Khatab et al. An electric vehicle battery charger based on zeta converter fed from a PV array
JPWO2014147771A1 (en) Solar power system
Patil et al. Design and development of MPPT algorithm for high efficient DC-DC converter for solar energy system connected to grid
US20170085088A1 (en) Electric power generation operation point control circuit device and multi-stage electric power generation operation point control circuit device
JP5915619B2 (en) Photovoltaic power generation device and control method of solar power generation device
US20170033678A1 (en) Power converter for eliminating ripples
JP6289714B2 (en) Power control device, power control system, power control method, and storage battery
KR20160075054A (en) Maximum power point tracking apparatus and method
JP6386433B2 (en) Power generation operating point control circuit device for solar cells connected in series
US9774256B2 (en) Dual source DC to DC converter
JP6307334B2 (en) Solar cell control device
CN107394856B (en) Parallel battery charging circuit and charging method thereof
JP7096194B2 (en) Operating point control circuit device for series-connected solar cells or other power sources
KR101065247B1 (en) Photovoltaic generation system and method of control the same
KR20060091672A (en) Photovoltaic generation by parallel driving of modified buck-boost converter
JP2021035264A (en) Operating point control circuit device for solar cells connected in series or other power supply
Wu et al. Dual-input DC-DC power converter for solar battery charger
JP2015154517A (en) PV power conditioner
Ramya et al. A novel multi input DC–DC converter for integrated wind, PV renewable energy generated system
KR20140104130A (en) Hybrid charger system and Method for controlling charge for solar battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200303

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200423

R151 Written notification of patent or utility model registration

Ref document number: 6696819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250