JP6696173B2 - Method for manufacturing power storage device module - Google Patents

Method for manufacturing power storage device module Download PDF

Info

Publication number
JP6696173B2
JP6696173B2 JP2015252169A JP2015252169A JP6696173B2 JP 6696173 B2 JP6696173 B2 JP 6696173B2 JP 2015252169 A JP2015252169 A JP 2015252169A JP 2015252169 A JP2015252169 A JP 2015252169A JP 6696173 B2 JP6696173 B2 JP 6696173B2
Authority
JP
Japan
Prior art keywords
secondary battery
storage device
power storage
module
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015252169A
Other languages
Japanese (ja)
Other versions
JP2017117666A (en
Inventor
祐樹 杉本
祐樹 杉本
厚志 南形
厚志 南形
泰有 秋山
泰有 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2015252169A priority Critical patent/JP6696173B2/en
Publication of JP2017117666A publication Critical patent/JP2017117666A/en
Application granted granted Critical
Publication of JP6696173B2 publication Critical patent/JP6696173B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、蓄電装置モジュールの製造方法に係り、詳しくは感圧式保護装置を備える蓄電装置モジュールの製造方法に関する。   The present invention relates to a method of manufacturing a power storage device module, and more particularly to a method of manufacturing a power storage device module including a pressure sensitive protection device.

二次電池やキャパシタのような蓄電装置は再充電が可能であり、繰り返し使用することができるため電源として広く利用されている。また、電気自動車やハイブリッド自動車のように走行モータの電源として二次電池を使用する場合は、大電流充電や大電流放電及び大容量化が要求されるため、複数個の二次電池からなる組電池(電池モジュール)が使用されている。   A power storage device such as a secondary battery or a capacitor is rechargeable and can be repeatedly used, and thus is widely used as a power source. Further, when a secondary battery is used as a power source of a traveling motor such as an electric vehicle or a hybrid vehicle, a large current charge, a large current discharge and a large capacity are required. A battery (battery module) is used.

組電池を構成する複数個の単電池は全てが同一ではなく、例えば、単電池ごとに容量のバラツキが生じる。組電池の全体として充電および放電が行われているにも拘らず、バラツキが生じたまま使用し続けると、単電池によっては過放電や過充電等の原因となる。   The plurality of unit cells that form the assembled battery are not all the same, and, for example, the capacity of each unit cell varies. If the assembled battery is charged and discharged as a whole, but is continuously used with variations, it may cause over-discharge or over-charge depending on the unit cell.

また、リチウムイオン二次電池では、過充電等で過電圧が印加され、正極の電位が電解液の溶媒の分解電位まで高くなると、溶媒の分解反応が起こる。この分解反応は発熱反応であるため、リチウムイオン二次電池の温度が上昇してしまう。このような発熱反応などを防止するために、リチウムイオン二次電池には、電流遮断装置が備えられているものがある。電流遮断装置として、電池のケース(電槽)内の圧力が閾値まで高くなると外部との電気的な接続を切断し、外部からの充電電流を遮断する構成の装置、即ち感圧式の電流遮断装置(感圧式保護装置)がある。   Further, in a lithium ion secondary battery, when an overvoltage is applied by overcharging or the like and the potential of the positive electrode rises to the decomposition potential of the solvent of the electrolytic solution, the decomposition reaction of the solvent occurs. Since this decomposition reaction is an exothermic reaction, the temperature of the lithium ion secondary battery rises. In order to prevent such an exothermic reaction, some lithium ion secondary batteries are equipped with a current interruption device. As a current interrupting device, a device configured to cut off the electrical connection with the outside when the pressure in the battery case (battery case) rises to a threshold value and to interrupt the charging current from the outside, that is, a pressure-sensitive current interrupting device (Pressure-sensitive protection device).

従来、走行モードによっては、ハイレートな充放電を繰り返すことによるハイレート劣化の発生が避けられないことを考慮して、組電池における各単電池のハイレート劣化によるバラツキの発生を抑制することのできる組電池が提案されている(特許文献1参照)。特許文献1の組電池は、複数個の2次電池のうち、使用時により低温となる領域に配置されている2次電池における電解液量と比較して、使用時により高温となる領域に配置されている2次電池における電解液量が多い。この組電池は、単電池のハイレート劣化の進行が、高温環境より低温環境においてより速く、また、電解液量の少ないものより電解液量の多いものでより速いという知見に基づいて製造されている。また、組電池の製造方法として、内部に収納される電解液量の異なる2次電池を用意し、電解液量の多い2次電池を使用時により高温となる領域に配置し、電解液量の少ない2次電池を使用時により低温となる領域に配置するようにしている。   Conventionally, in consideration of the fact that high-rate deterioration due to repeated high-rate charging / discharging is unavoidable depending on the driving mode, it is possible to suppress the occurrence of variations due to high-rate deterioration of individual cells in the battery pack. Has been proposed (see Patent Document 1). The assembled battery of Patent Document 1 is arranged in a region where the temperature of the secondary battery is higher than that of the secondary battery which is arranged in a region where the temperature of the secondary battery is lower than that of the secondary battery. The amount of electrolyte in the secondary battery used is large. This assembled battery is manufactured based on the knowledge that the high rate deterioration of the unit cell progresses faster in the low temperature environment than in the high temperature environment, and also in the case where the electrolytic solution amount is large compared to the case where the electrolytic solution amount is small. .. Further, as a method of manufacturing the assembled battery, prepare secondary batteries having different amounts of electrolytic solution housed therein, and arrange the secondary batteries having a large amount of electrolytic solution in a region that becomes hotter during use, A small number of secondary batteries are arranged in a region where the temperature becomes lower when used.

特開2010−170942号公報JP, 2010-170942, A

感圧式保護装置が有効に作動するためには、ケース(電槽)内に一定の空間が必要であるが、組電池(電池モジュール)を構成する単電池の製造工程においては、単電池を構成する電極組立体の体積のバラツキにより、ケースの内容積にバラツキが生じる。そのため、ケース(電槽)内に一定の空間を確保した状態に電解液を注入すると、製造される単電池の電解液量にバラツキがあり、電解液量が相対的に多い単電池と、電解液量が相対的に少ない単電池とが所定の割合で製造される。そのため、組電池を構成する単電池は、電解液量が相対的に多い単電池と、電解液量が相対的に少ない単電池とが混在する。   In order for the pressure-sensitive protective device to operate effectively, a certain space is required in the case (battery case), but in the manufacturing process of the unit cells that make up the assembled battery (battery module), the unit cells are configured. The inner volume of the case varies due to the variation in the volume of the electrode assembly. Therefore, if the electrolyte is injected in a state where a certain space is secured in the case (battery case), there will be variations in the amount of electrolyte in the manufactured cells, and there will be a large amount of electrolyte and A unit cell having a relatively small amount of liquid is manufactured at a predetermined ratio. Therefore, the unit cells that form the assembled battery include both the unit cells having a relatively large amount of electrolytic solution and the unit cells having a relatively small amount of electrolytic solution.

組電池の使用中における単電池の温度上昇は、単電池の配置位置によって異なり、例えば、使用時に強制冷却を行わない場合は、組電池の長手方向の中央に近い方が、温度が上昇し易い。また、例えば、組電池の周囲に冷却媒体を供給して強制冷却した状態で使用する場合は、冷却媒体の供給側に配置された単電池に比べて排出側に配置された単電池の方が、温度が上昇し易い。   The temperature rise of the unit cell during use of the battery pack varies depending on the arrangement position of the battery cell. For example, when forced cooling is not performed during use, the temperature tends to rise closer to the center of the battery pack in the longitudinal direction. .. Further, for example, when the cooling medium is supplied to the periphery of the assembled battery and is used in the state of being forcibly cooled, the unit cell arranged on the discharge side is more preferable than the unit cell arranged on the cooling medium supply side. , Temperature rises easily.

本願発明者は、使用中の温度が高いと電池内部からの電解液の透過(シール部からの漏洩)が生じ、電解液の透過量が閾値を超えると、単電池は急激に劣化が始まることを確認した。   The inventor of the present application has found that when the temperature during use is high, permeation of the electrolyte solution from the inside of the battery (leakage from the seal part) occurs, and when the permeation amount of the electrolyte solution exceeds a threshold value, the unit cell suddenly begins to deteriorate. It was confirmed.

特許文献1には、内部に収納される電解液量の異なる2次電池を用意し、電解液量の多い2次電池を使用時により高温となる領域に配置し、電解液量の少ない2次電池を使用時により低温となる領域に配置する組電池の製造方法が提案されている。しかし、感圧式保護装置を備えた単電池の製造工程においては、ケース(電槽)内に一定の空間を確保した状態に電解液を注入すると、単電池の電極組立体の体積のバラツキに起因して、電解液量が相対的に多い単電池と、電解液量が相対的に少ない単電池とが所定の割合で製造されることに関しては何ら配慮がされていない。   In Patent Document 1, secondary batteries having different amounts of electrolytic solution housed therein are prepared, and secondary batteries having a large amount of electrolytic solution are arranged in a region having a higher temperature when in use, and a secondary battery having a small amount of electrolytic solution is used. A method of manufacturing an assembled battery has been proposed in which the battery is arranged in a region where the temperature is lower when it is used. However, in the process of manufacturing a cell equipped with a pressure-sensitive protection device, if the electrolyte is injected into the case (battery case) with a certain space secured, the volume of the electrode assembly of the cell may fluctuate. Then, no consideration is given to the production of a unit cell having a relatively large amount of electrolytic solution and a unit cell having a relatively small amount of electrolytic solution at a predetermined ratio.

本発明は、前記の問題に鑑みてなされたものであって、その目的は、感圧式保護装置を備える複数個の蓄電装置で構成された蓄電装置モジュールにおいて、使用中における蓄電装置の急激な劣化を起こり難くすることができる蓄電装置モジュールの製造方法を提供することにある。   The present invention has been made in view of the above problems, and an object thereof is a power storage device module including a plurality of power storage devices including a pressure-sensitive protection device, in which the power storage device rapidly deteriorates during use. An object of the present invention is to provide a method of manufacturing a power storage device module that can prevent the occurrence of the above phenomenon.

上記課題を解決する蓄電装置モジュールの製造方法は、感圧式保護装置を備える複数個の蓄電装置を組み合わせた蓄電装置モジュールの製造方法である。そして、蓄電装置モジュールの使用時において、前記蓄電装置モジュール内で相対的に高温となる領域に、蓄電装置製造工程で製造された前記蓄電装置のうち電解液量が多い蓄電装置を配置して、蓄電装置モジュールを製造する。この構成によれば、蓄電装置モジュールを構成する感圧式保護装置を備える個々の蓄電装置の電解液量にバラツキが生じても、相対的に電解液量の多い蓄電装置が、蓄電装置モジュールの使用時に高温となる領域に配置される。その結果、蓄電装置モジュールの使用時に高温となる領域に配置された蓄電装置において電解液の透過が生じても、電解液量が蓄電装置の急激な劣化を招く量まで低減し難くなる。したがって、感圧式保護装置を備える複数個の蓄電装置で構成された蓄電装置モジュールにおいて、使用中における蓄電装置の急激な劣化を起こり難くすることができる。   A method of manufacturing a power storage device module that solves the above problem is a method of manufacturing a power storage device module in which a plurality of power storage devices including a pressure-sensitive protection device are combined. Then, when the power storage device module is used, a power storage device having a large amount of electrolytic solution among the power storage devices manufactured in the power storage device manufacturing step is arranged in a region having a relatively high temperature in the power storage device module, A power storage device module is manufactured. According to this structure, even if the amount of the electrolytic solution of each power storage device including the pressure-sensitive protection device that constitutes the power storage device module varies, the power storage device having a relatively large amount of the electrolytic solution can be used as the power storage device module. It is placed in an area that is sometimes hot. As a result, even when the electrolyte solution permeates through the power storage device arranged in a region where the temperature of the power storage device module is high during use, it is difficult to reduce the amount of the electrolyte solution to an amount that causes rapid deterioration of the power storage device. Therefore, in a power storage device module including a plurality of power storage devices including a pressure-sensitive protection device, it is possible to prevent abrupt deterioration of the power storage device during use.

前記蓄電装置製造工程における前記蓄電装置の電槽内への電極組立体の配置後、電槽内容積を測定し、前記電槽内容積に応じて空き空間が一定となるように電解液を注入することが好ましい。この構成によれば、蓄電装置製造工程において製造された個々の蓄電装置内の電解液量を正確にかつ容易に確認することができ、蓄電装置製造工程で製造された蓄電装置を蓄電装置モジュールの製造工程において、蓄電装置モジュールの適切な位置に配置することが容易になる。   After arranging the electrode assembly in the battery case of the power storage device in the manufacturing process of the power storage device, the volume of the battery container is measured, and the electrolytic solution is injected so that the empty space becomes constant according to the volume of the battery container. Preferably. According to this configuration, it is possible to accurately and easily check the amount of the electrolytic solution in each power storage device manufactured in the power storage device manufacturing process, and to use the power storage device manufactured in the power storage device manufacturing process as a power storage device module. In the manufacturing process, it becomes easy to arrange the power storage device module at an appropriate position.

前記蓄電装置製造工程で製造された蓄電装置の在庫を電解液量によって複数ランクに分け、各ランクの蓄電装置から蓄電装置モジュールにおける蓄電装置の配置位置に応じて在庫を引き当てることが好ましい。蓄電装置製造工程において製造された蓄電装置内の電解液量のバラツキは、蓄電装置の数が多いほど正規分布に近くなる。そのため、蓄電装置製造工程において製造された蓄電装置を電解液量によって複数ランクに分けて一時保管すると、蓄電装置モジュールを組み立てる際に、蓄電装置モジュールを構成する予め設定した電解液量が異なる複数の蓄電装置が存在する状態で、蓄電装置モジュールの組立が可能になる。   It is preferable that the stock of the power storage devices manufactured in the power storage device manufacturing process is divided into a plurality of ranks according to the amount of the electrolytic solution, and the stock is allocated from the power storage devices of each rank according to the arrangement position of the power storage devices in the power storage device module. The variation in the amount of the electrolytic solution in the power storage device manufactured in the power storage device manufacturing process becomes closer to the normal distribution as the number of power storage devices increases. Therefore, when the power storage device manufactured in the power storage device manufacturing process is divided into a plurality of ranks according to the amount of the electrolytic solution and temporarily stored, when the power storage device module is assembled, a plurality of different preset electrolyte amounts that configure the power storage device module are used. The power storage device module can be assembled in the state where the power storage device exists.

本発明によれば、感圧式保護装置を備える複数個の蓄電装置で構成された蓄電装置モジュールにおいて、使用中における蓄電装置の急激な劣化を起こり難くすることができる。   According to the present invention, in a power storage device module including a plurality of power storage devices including a pressure-sensitive protection device, it is possible to prevent abrupt deterioration of the power storage device during use.

(a)は二次電池モジュールの模式斜視図、(b)は二次電池モジュールの二次電池を部分的に破断した模式斜視図。(A) is a schematic perspective view of a secondary battery module, (b) is a schematic perspective view in which a secondary battery of the secondary battery module is partially broken. 二次電池モジュールの二次電池の配置を示す模式図。The schematic diagram which shows the arrangement | positioning of the secondary battery of a secondary battery module. 第1の実施形態の二次電池モジュールの製造方法を説明する模式図。FIG. 3 is a schematic diagram illustrating a method of manufacturing the secondary battery module according to the first embodiment. (a)は第2の実施形態の二次電池モジュールの製造方法を説明する模式図、(b)は電解液量の近い二次電池が隣り合わない状態を説明する図。(A) is a schematic diagram explaining the manufacturing method of the secondary battery module of 2nd Embodiment, (b) is a figure explaining the state which the secondary batteries with a near electrolytic solution amount do not adjoin. 第3の実施形態の二次電池モジュールの製造方法を説明する模式図。The schematic diagram explaining the manufacturing method of the secondary battery module of 3rd Embodiment.

(第1の実施形態)
以下、本発明を蓄電装置としての二次電池(リチウムイオン二次電池)を使用した場合に具体化した第1の実施形態を図1〜図3にしたがって説明する。
(First embodiment)
Hereinafter, a first embodiment in which the present invention is embodied when a secondary battery (lithium ion secondary battery) as a power storage device is used will be described with reference to FIGS. 1 to 3.

図1(a)に示すように、蓄電装置モジュールとしての二次電池モジュール100は、複数の蓄電装置としての二次電池10が並列に配置されて構成されている。図1(a)では隣り合う二次電池10の厚さ方向に重なる状態で配置された二次電池10が1列に配置されている。   As shown in FIG. 1A, a secondary battery module 100 as a power storage device module is configured by arranging a plurality of secondary batteries 10 as power storage devices in parallel. In FIG. 1A, the secondary batteries 10 arranged in a state of overlapping in the thickness direction of the adjacent secondary batteries 10 are arranged in one row.

図1(b)に示すように、二次電池10は、扁平な四角箱状の電槽としてのケース11を備えている。ケース11は、開口部を有する四角箱状のケース本体12と、ケース本体12の開口部を塞いでいる平板状の蓋13とを有する。ケース本体12及び蓋13は、金属(例えばアルミニウム)製である。ケース本体12と蓋13とは、溶接されている。   As shown in FIG. 1B, the secondary battery 10 includes a case 11 as a flat rectangular box-shaped battery case. The case 11 has a rectangular box-shaped case body 12 having an opening, and a flat plate-shaped lid 13 that closes the opening of the case body 12. The case body 12 and the lid 13 are made of metal (for example, aluminum). The case body 12 and the lid 13 are welded.

図1(b)に示すように、二次電池10は、ケース11に収容されている直方体状の電極組立体14と、ケース11に収容されている図示しない電解液とを備えている。電極組立体14は、正極電極と負極電極とが間にセパレータを介在させた状態で交互に積層されて構成されている。正極電極と負極電極との間は、セパレータによって絶縁されている。   As shown in FIG. 1B, the secondary battery 10 includes a rectangular parallelepiped electrode assembly 14 housed in the case 11 and an electrolytic solution (not shown) housed in the case 11. The electrode assembly 14 is configured by alternately stacking positive electrodes and negative electrodes with a separator interposed therebetween. The positive electrode and the negative electrode are insulated by a separator.

図1(a)、(b)に示すように、二次電池10は、正極端子15及び負極端子16を有する。正極端子15及び負極端子16は軸部を有し、軸部の一部がケース11の内部から蓋13を貫通して外部に突出し、軸部に螺合されたナット17により蓋13に固定されている。   As shown in FIGS. 1A and 1B, the secondary battery 10 has a positive electrode terminal 15 and a negative electrode terminal 16. Each of the positive electrode terminal 15 and the negative electrode terminal 16 has a shaft portion, and a part of the shaft portion penetrates the lid 13 from the inside of the case 11 to the outside and is fixed to the lid 13 by a nut 17 screwed to the shaft portion. ing.

図1(a)に示すように、複数の二次電池10は、正極端子15が隣り合う二次電池10の負極端子16に、負極端子16が隣り合う二次電池10の正極端子15にそれぞれバスバー20及びボルト21を介して接続されて、電気的に直列に接続されている。ボルト21は、バスバー20を貫通した状態で、正極端子15に形成された図示しないねじ穴に螺合することにより、バスバー20と正極端子15とを締め付け固定する。これにより、バスバー20と正極端子15とは相互に連結され、電気的に接続される。また、ボルト21は、バスバー20を貫通した状態で、負極端子16に形成された図示しないねじ穴に螺合することにより、バスバー20と負極端子16とを締め付け固定する。これにより、バスバー20と負極端子16とは相互に連結され、電気的に接続される。   As shown in FIG. 1A, the plurality of secondary batteries 10 are arranged such that the positive electrode terminals 15 are connected to the negative electrode terminals 16 of the adjacent secondary batteries 10 and the negative electrode terminals 16 are connected to the positive electrode terminals 15 of the adjacent secondary batteries 10, respectively. It is connected via the bus bar 20 and the bolt 21, and is electrically connected in series. The bolt 21 penetrates the bus bar 20 and is screwed into a screw hole (not shown) formed in the positive electrode terminal 15 to tighten and fix the bus bar 20 and the positive electrode terminal 15. As a result, the bus bar 20 and the positive electrode terminal 15 are connected to each other and electrically connected. In addition, the bolt 21 is screwed into a screw hole (not shown) formed in the negative electrode terminal 16 in a state of penetrating the bus bar 20, thereby fastening and fixing the bus bar 20 and the negative electrode terminal 16. As a result, the bus bar 20 and the negative electrode terminal 16 are connected to each other and electrically connected.

そして、二次電池モジュール100を構成する各二次電池10は、一体的に移動可能に図示しないケースに収容、あるいは図示しない支持フレームで固定されている。また、二次電池モジュール100を構成する二次電池10の数は、二次電池モジュール100が必要とする出力電圧に対応して設定される。   Each of the secondary batteries 10 constituting the secondary battery module 100 is integrally movably housed in a case (not shown) or fixed by a support frame (not shown). In addition, the number of the secondary batteries 10 configuring the secondary battery module 100 is set according to the output voltage required by the secondary battery module 100.

二次電池10は、ケース11内において、蓋13の内面に感圧式保護装置としての電流遮断装置30(所謂CID)が配設されている。電流遮断装置30は、負極端子16の下部に一体化されている。電流遮断装置30は、ケース11内の圧力が閾値を超えた場合に、電極組立体14と負極端子16とを電気的に接続する通電通路を遮断して電流を遮断する。この電流遮断装置30の閾値は、図示しない圧力開放弁の開放圧よりも低く設定されている。圧力開放弁は、ケース11内に発生したガスによって作動することで、ケース11内の圧力が上昇し過ぎないようにケース11内の圧力をケース11外に開放させる。圧力開放弁の開放圧は、ケース11内の圧力がケース11自体や、ケース本体12と蓋13との接合部に亀裂や破断などが生じる前に開放し得る圧力に設定されている。   In the case 11 of the secondary battery 10, a current interrupting device 30 (so-called CID) as a pressure-sensitive protection device is provided on the inner surface of the lid 13 in the case 11. The current interrupt device 30 is integrated under the negative electrode terminal 16. When the pressure inside the case 11 exceeds a threshold value, the current interrupting device 30 interrupts the current by disconnecting the energizing passage that electrically connects the electrode assembly 14 and the negative electrode terminal 16. The threshold value of the current cutoff device 30 is set lower than the opening pressure of a pressure release valve (not shown). The pressure release valve operates by the gas generated in the case 11 to open the pressure in the case 11 to the outside of the case 11 so that the pressure in the case 11 does not rise too much. The opening pressure of the pressure release valve is set to a pressure at which the pressure inside the case 11 can be released before the case 11 itself or the joint between the case body 12 and the lid 13 is cracked or broken.

二次電池モジュール100を構成する複数の二次電池10は、二次電池モジュール100の使用時において、二次電池モジュール100内で相対的に高温となる領域に、電解液量が多い二次電池10が配置されている。この実施形態においては、二次電池モジュール組立工程での組立に使用される二次電池10の電解液量を、多い順に、特、多、並、少の4段階にランク分けしている。   When the secondary battery module 100 is used, the plurality of secondary batteries 10 constituting the secondary battery module 100 have a large amount of electrolytic solution in a region of relatively high temperature in the secondary battery module 100. Ten are arranged. In this embodiment, the amount of the electrolytic solution of the secondary battery 10 used for the assembly in the secondary battery module assembling step is classified into four ranks in the descending order of large, special, large, average, and small.

なお、ランク分けは、発生頻度と使用数に応じて設定される。発生頻度とは、二次電池10の製造時期によって、電解液量の多少の割合が変化することに対応するものである。また、使用数とは、二次電池モジュール100の製造工程において、どのような電解液量の二次電池10をどれくらいの割合で使用するかに対応するものである。   The ranking is set according to the frequency of occurrence and the number of uses. The frequency of occurrence corresponds to the fact that the proportion of the amount of the electrolytic solution changes depending on the manufacturing time of the secondary battery 10. Further, the number of uses corresponds to what kind of electrolyte solution of the secondary battery 10 is used and at what ratio in the manufacturing process of the secondary battery module 100.

図2に示すように、二次電池モジュール100は、奇数個の二次電池10が1列に配置されて構成され、中央に電解液量が4段階のうち最も多い「特」のランクの二次電池10が配置され、「特」のランクの二次電池10の両側に電解液量が2番目に多い「多」のランクの二次電池10が配置されている。「多」のランクの二次電池10の外側には、電解液量が3番目に多いに「並」のランクの二次電池10が配置され、「並」のランクの二次電池の外側には、電解液量が最も少ない「少」のランクの二次電池10が配置されている。   As shown in FIG. 2, the secondary battery module 100 is configured by arranging an odd number of secondary batteries 10 in one row, and the center of the secondary battery module 100 is the one of the “special” ranks in which the electrolyte solution amount is the largest among the four levels. The secondary battery 10 is arranged, and the secondary battery 10 of the "high" rank having the second largest amount of electrolyte is arranged on both sides of the secondary battery 10 of the "special" rank. The secondary battery 10 of the “normal” rank is arranged outside the secondary battery 10 of the “high” rank with the third largest amount of electrolyte, and is placed outside the secondary battery of the “normal” rank. Is the secondary battery 10 of the rank "small" having the smallest amount of electrolyte.

次に前記のように構成された二次電池モジュール100の製造方法を説明する。
二次電池モジュール100の製造方法は、大きく分けると、二次電池10を製造する二次電池製造工程と、二次電池製造工程で製造された二次電池10を用いて二次電池モジュール100を組み立てる二次電池モジュール製造工程とを備える。
Next, a method for manufacturing the secondary battery module 100 configured as described above will be described.
The manufacturing method of the secondary battery module 100 is roughly divided into a secondary battery manufacturing process for manufacturing the secondary battery 10 and a secondary battery module 100 using the secondary battery 10 manufactured in the secondary battery manufacturing process. And a secondary battery module manufacturing process for assembling.

二次電池製造工程における二次電池10の製造方法は、矩形シート状の正極及び矩形シート状の負極が間にセパレータが存在する状態で積層された積層型の電極組立体14を製造する電極組立体製造工程と、電極組立体製造工程で製造された電極組立体14をケース11内に収容する収容工程とを備える。収容工程において電極組立体14がケース本体12内に収容された後、閉塞工程においてケース本体12の開口が蓋13により閉塞される。蓋13は、例えば、溶接によりケース本体12に固着される。次に電極組立体14が収容配置されたケース11に、電解液注入工程において電解液が注入される。   The manufacturing method of the secondary battery 10 in the secondary battery manufacturing step is an electrode assembly for manufacturing a laminated electrode assembly 14 in which a rectangular sheet-shaped positive electrode and a rectangular sheet-shaped negative electrode are laminated in a state in which a separator is present therebetween. A three-dimensional manufacturing process and a housing process for housing the electrode assembly 14 manufactured in the electrode assembly manufacturing process in the case 11. After the electrode assembly 14 is housed in the case body 12 in the housing process, the opening of the case body 12 is closed by the lid 13 in the closing process. The lid 13 is fixed to the case body 12 by welding, for example. Next, the electrolytic solution is injected into the case 11 in which the electrode assembly 14 is housed and arranged in the electrolytic solution injection step.

電解液注入工程においては、ケース11内への電極組立体14の配置後、ケース11の内容積を測定し、ケース11の内容積に応じて空き空間が一定となるように電解液を注入する。即ち、蓄電装置製造工程における蓄電装置(二次電池10)の電槽(ケース11)内への電極組立体14の配置後、電槽内容積を測定し、電槽内容積に応じて空き空間が一定となるように電解液を注入する。なお、電槽内容積の測定は、例えば、電解液を入れる前に、ケース11内を減圧した後、ガスを入れて、入ったガス量からケース内の空間の大きさ、即ち電槽内容積を検出する。   In the electrolytic solution injecting step, after disposing the electrode assembly 14 in the case 11, the internal volume of the case 11 is measured and the electrolytic solution is injected so that the empty space becomes constant according to the internal volume of the case 11. .. That is, after the electrode assembly 14 is placed in the battery case (case 11) of the power storage device (secondary battery 10) in the power storage device manufacturing process, the internal volume of the battery cell is measured, and an empty space is determined according to the internal volume of the battery cell. The electrolyte is injected so that the temperature is constant. In addition, the volume of the battery case is measured by, for example, depressurizing the case 11 before charging the electrolytic solution, and then charging a gas, and determining the size of the space in the case from the amount of the gas, that is, the capacity of the battery case. To detect.

電解液の注入、即ち注液が行われた後の二次電池10には製造番号が付与され、各二次電池10の電解液量が製造番号とともに管理装置に記憶される。電解液の注入が完了した二次電池10は、初期充電、エージングなどの工程を経て、異常のない二次電池10は、工程内在庫として各二次電池10の電解液量が製造番号とともに管理装置に記憶される。   The manufacturing number is given to the secondary battery 10 after the injection of the electrolytic solution, that is, the injection is performed, and the amount of the electrolytic solution of each secondary battery 10 is stored in the management device together with the manufacturing number. After the injection of the electrolytic solution is completed, the secondary battery 10 undergoes processes such as initial charging and aging, and the secondary battery 10 having no abnormality is managed as an in-process inventory by controlling the amount of the electrolytic solution of each secondary battery 10 together with the manufacturing number. Stored in the device.

また、図3に示すように、二次電池10は、二次電池モジュール製造工程で二次電池モジュール100の組立に使用されるまで、例えば、貯留部40に一時的に保管される。
二次電池モジュール製造工程の前工程において製造された二次電池10の電解液量のバラツキは、ほぼ正規分布に近い状態となる。そのため、二次電池10を予め電解液量毎にランク分けして貯留部40に保管しておかなくても、二次電池10の在庫が多ければ、二次電池モジュール100の組立工程において、必要な電解液量の二次電池10は存在する状態になる。なお、この実施形態では、二次電池10は、電解液量により4ランクにランク分けされるとともに、「特」:「多」:「並」:「少」=1:2:2:2となるように各ランクの液量が設定されている。
Further, as shown in FIG. 3, the secondary battery 10 is temporarily stored in, for example, the storage section 40 until it is used for assembling the secondary battery module 100 in the secondary battery module manufacturing process.
The variation in the amount of the electrolytic solution of the secondary battery 10 manufactured in the previous process of the secondary battery module manufacturing process is in a state close to a normal distribution. Therefore, even if the secondary battery 10 is not sorted in advance according to the amount of the electrolytic solution and stored in the storage section 40, if the secondary battery 10 is in stock, it is necessary in the assembly process of the secondary battery module 100. The secondary battery 10 having a large amount of electrolyte is present. In addition, in this embodiment, the secondary battery 10 is ranked into four ranks according to the amount of the electrolytic solution, and "special": "large": "normal": "small" = 1: 2: 2: 2. The liquid amount of each rank is set so that

貯留部40に一時的に保管されている二次電池10は、電解液量のランク毎に区分けされた状態で保管されていない。しかし、各二次電池10は、電解液量のランクが管理装置に記憶されている。そして、貯留部40に保管された二次電池10は、二次電池モジュール100を組み立てる際に、「特」、「多」、「並」、「少」にランク分けされ、ランク分けされた二次電池10が二次電池モジュール100の所定のランクの位置に配置される。   The secondary battery 10 that is temporarily stored in the storage unit 40 is not stored in a state in which the secondary battery 10 is classified according to the rank of the electrolyte solution. However, for each secondary battery 10, the rank of the electrolyte solution amount is stored in the management device. Then, the secondary batteries 10 stored in the storage unit 40 are ranked into “special”, “many”, “average”, and “small” when the secondary battery module 100 is assembled, and the secondary batteries 10 are ranked. The secondary battery 10 is arranged at a predetermined rank position of the secondary battery module 100.

そして、例えば、二次電池モジュール100を構成する二次電池10の数が7個の場合、図2に示すように、4段階のうち電解液量の最も多い「特」のランクの二次電池10が中央に配置され、「特」のランクの二次電池10の両側に電解液量が2番目に多い「多」のランクの二次電池10が配置され、「多」のランクの二次電池10の外側に、電解液量が3番目に多いに「並」のランクの二次電池10が配置される。そして、「並」のランクの二次電池の外側には、電解液量が最も少ない「少」のランクの二次電池10が配置される。   Then, for example, when the number of the secondary batteries 10 constituting the secondary battery module 100 is 7, as shown in FIG. 2, the secondary battery of the “special” rank, which has the largest amount of electrolytic solution among the four stages, is used. 10 is arranged in the center, and the secondary battery 10 of the "high" rank having the second largest amount of electrolyte is arranged on both sides of the secondary battery 10 of the "special" rank. The secondary battery 10 having a rank of "normal" with the third largest amount of electrolyte is arranged outside the battery 10. Then, the secondary battery 10 of the "small" rank having the smallest amount of electrolytic solution is arranged outside the secondary battery of the "normal" rank.

前記のように構成された二次電池モジュール100は、二次電池モジュール100を構成する電流遮断装置30を備える個々の二次電池10の電解液量にバラツキが生じても、相対的に電解液量の多い二次電池10が、二次電池モジュール100の使用時に高温となる領域に配置されている。その結果、二次電池モジュール100の使用時に高温となる領域に配置された二次電池10の電解液の透過が生じても、電解液量が二次電池10の急激な劣化を招く量まで低減し難くなる。   The secondary battery module 100 configured as described above is configured such that even if the amount of the electrolytic solution of each of the secondary batteries 10 including the current cutoff device 30 that configures the secondary battery module 100 varies, the electrolytic solution is relatively discharged. A large amount of secondary battery 10 is arranged in a region where the secondary battery module 100 has a high temperature when it is used. As a result, even if the electrolytic solution of the secondary battery 10 arranged in a region where the secondary battery module 100 has a high temperature during use is permeated, the amount of the electrolytic solution is reduced to an amount that causes rapid deterioration of the secondary battery 10. Hard to do.

この実施形態によれば、以下に示す効果を得ることができる。
(1)二次電池モジュール100(蓄電装置モジュール)の製造方法は、電流遮断装置30(感圧式保護装置)を備える複数個の二次電池10(蓄電装置)を組み合わせた二次電池モジュール100の製造方法である。そして、二次電池モジュール100の使用時において、二次電池モジュール100内で相対的に高温となる領域に、蓄電装置製造工程で製造された二次電池10のうち電解液量が多い二次電池10を配置して、二次電池モジュール100を製造する。したがって、電流遮断装置30を備える複数個の二次電池10で構成された二次電池モジュール100において、使用中における二次電池10の急激な劣化を起こり難くすることができる。
According to this embodiment, the following effects can be obtained.
(1) The method of manufacturing the secondary battery module 100 (power storage device module) is a method of manufacturing a secondary battery module 100 in which a plurality of secondary batteries 10 (power storage devices) each including a current cutoff device 30 (pressure sensitive protection device) are combined. It is a manufacturing method. Then, when the secondary battery module 100 is used, a secondary battery having a large amount of electrolytic solution among the secondary batteries 10 manufactured in the power storage device manufacturing process is provided in a region having a relatively high temperature in the secondary battery module 100. 10 is arranged and the secondary battery module 100 is manufactured. Therefore, in the secondary battery module 100 including the plurality of secondary batteries 10 including the current cutoff device 30, it is possible to prevent abrupt deterioration of the secondary battery 10 during use.

(2)二次電池製造工程(蓄電装置製造工程)における二次電池10のケース11(電槽)内への電極組立体14の配置後、ケース11の内容積を測定し、ケース11の内容積に応じて空き空間が一定となるように電解液を注入する。したがって、各二次電池10には感圧式の電流遮断装置30(感圧式保護装置)が支障なく作動するために必要な内部空間が確保された状態で、各二次電池10毎の電解液量を把握することができ、二次電池モジュール100を構成する各二次電池10を適正な位置に配置することができる。   (2) In the secondary battery manufacturing process (power storage device manufacturing process), after disposing the electrode assembly 14 in the case 11 (battery case) of the secondary battery 10, the internal volume of the case 11 is measured to determine the contents of the case 11. The electrolyte is injected so that the empty space becomes constant according to the product. Therefore, the amount of the electrolyte solution for each secondary battery 10 is ensured in each secondary battery 10 in a state in which the internal space required for the pressure-sensitive current interrupt device 30 (pressure-sensitive protection device) to operate without trouble is secured. Therefore, each secondary battery 10 forming the secondary battery module 100 can be arranged at an appropriate position.

(3)二次電池製造工程(蓄電装置製造工程)において製造された各二次電池10は、製造番号と電解液量のランクが管理装置に記憶された状態で貯留部40に一時的に在庫として保管される。したがって、保管時にランク分けした状態でランク毎に所定の保管場所を設定しなくても、二次電池モジュール100を製造する際に、各二次電池10を二次電池モジュール100の所定のランク位置に配置することができる。   (3) Each of the secondary batteries 10 manufactured in the secondary battery manufacturing process (power storage device manufacturing process) is temporarily stored in the storage unit 40 in a state in which the manufacturing number and the rank of the electrolyte solution are stored in the management device. Stored as. Therefore, when the secondary battery module 100 is manufactured, each secondary battery 10 is installed in a predetermined rank position of the secondary battery module 100 without having to set a predetermined storage place for each rank in a state in which the storage battery is divided into ranks. Can be placed at.

(第2の実施形態)
次に、第2の実施形態を図4(a)及び図4(b)にしたがって説明する。
この実施形態においては、二次電池製造工程(蓄電装置製造工程)で製造された二次電池10(蓄電装置)の在庫を、電解液量によって複数ランクに分けて貯留部40に保管する点が前記第1の実施形態と異なっている。第1の実施形態と同一部分は同一符号を付して詳しい説明を省略する。
(Second embodiment)
Next, a second embodiment will be described with reference to FIGS. 4 (a) and 4 (b).
In this embodiment, the inventory of the secondary battery 10 (power storage device) manufactured in the secondary battery manufacturing process (power storage device manufacturing process) is divided into a plurality of ranks according to the amount of the electrolytic solution and stored in the storage section 40. This is different from the first embodiment. The same parts as those in the first embodiment are designated by the same reference numerals and detailed description thereof will be omitted.

図4(a)に示すように、貯留部40は、前工程で製造されて電解液量が測定された二次電池10を、電解液量の多い順に、特、多、並、少の4段階にランク分けして保管する4個の保管部41,42,43,44を備えている。また、各保管部41,42,43,44は、それぞれ上下に区画された2個の保管区画41a,41b,42a,42b,43a,43b,44a,44bで構成されている。そして、二次電池10は、同じランクであっても、そのランクの中で電解液量の多いものと少ないものとに分けられて保管されている。この実施形態では、電解液量の多い二次電池10は、保管区画41a〜44aに保管され、少ない二次電池10は保管区画41b〜44bに保管されている。二次電池10は、各保管区画41a,41b,42a,42b,43a,43b,44a,44bに、製造時期の古い順に取り出し可能に保管されている。   As shown in FIG. 4 (a), the storage section 40 includes the secondary batteries 10 manufactured in the previous step and measured for the amount of the electrolytic solution, in the order of increasing amount of the electrolytic solution: special, large, average, and small. It is provided with four storage units 41, 42, 43, and 44 which are classified into stages and stored. Further, each storage unit 41, 42, 43, 44 is composed of two storage sections 41a, 41b, 42a, 42b, 43a, 43b, 44a, 44b, which are respectively partitioned vertically. Even if the secondary battery 10 has the same rank, the secondary battery 10 is divided into those having a large amount of electrolyte solution and those having a small amount of electrolyte solution and stored. In this embodiment, the secondary battery 10 having a large amount of electrolyte is stored in the storage compartments 41a to 44a, and the small secondary battery 10 is stored in the storage compartments 41b to 44b. The secondary battery 10 is stored in each of the storage compartments 41a, 41b, 42a, 42b, 43a, 43b, 44a, 44b so that the secondary batteries 10 can be taken out in the order of oldest manufacturing date.

この実施形態においては、二次電池モジュール製造工程で二次電池モジュール100の組立を行う場合は、在庫のうち最も古い二次電池10を最初に引き当てる。例えば、最も古い二次電池10が「少」ランクの保管部41の上側の保管区画41aに保管されたものである場合は、保管区画41aから「少」ランクの二次電池10が取り出されて使用される。「少」ランクの二次電池10は2個必要なため、保管区画41aから2個の二次電池10が取り出されて、二次電池モジュール100の最も外側の位置に配置される。   In this embodiment, when the secondary battery module 100 is assembled in the secondary battery module manufacturing process, the oldest secondary battery 10 in stock is allocated first. For example, when the oldest secondary battery 10 is stored in the upper storage compartment 41a of the "small" rank storage unit 41, the "small" secondary battery 10 is taken out from the storage compartment 41a. used. Since two secondary batteries 10 of “small” rank are required, two secondary batteries 10 are taken out from the storage compartment 41a and placed in the outermost position of the secondary battery module 100.

また、「少」以外のランクの二次電池10は、「少」ランクの二次電池10が取り出された保管区画41aと対応する上側の各保管区画42a,43a,44aに保管されている二次電池10が使用される。そのため、図4(a)に示すように、保管区画42aから「並」ランクの2個の二次電池10が取り出されて、二次電池モジュール100の「少」ランクの内側の位置に配置され、保管区画43aから「多」ランクの2個の二次電池10が取り出されて、二次電池モジュール100の「多」ランクの内側の位置に配置される。そして、保管区画44aから「特」ランクの1個の二次電池10が取り出されて、二次電池モジュール100の中央の位置に配置される。   The secondary batteries 10 of ranks other than "low" are stored in the upper storage compartments 42a, 43a, 44a corresponding to the storage compartment 41a from which the secondary battery 10 of "low" rank is taken out. The secondary battery 10 is used. Therefore, as shown in FIG. 4 (a), two secondary batteries 10 of “rank” rank are taken out from the storage section 42 a and placed at a position inside the “small” rank of the secondary battery module 100. The two secondary batteries 10 having the “many” rank are taken out from the storage section 43a, and are placed inside the “many” rank of the secondary battery module 100. Then, one secondary battery 10 of “special” rank is taken out from the storage section 44a and placed in the center position of the secondary battery module 100.

また、最も古い二次電池10が「少」ランクの保管部41の下側の保管区画41bに保管されたものである場合は、「少」以外のランクの二次電池10は、「少」ランクの二次電池10が取り出された保管区画41bと対応する下側の各保管区画42b,43b,44bに保管されている二次電池10が使用される。   In addition, when the oldest secondary battery 10 is stored in the storage compartment 41b below the storage unit 41 having the "low" rank, the secondary batteries 10 having the ranks other than "low" are "low". The secondary battery 10 stored in each of the lower storage compartments 42b, 43b, 44b corresponding to the storage compartment 41b from which the secondary battery 10 of the rank has been taken out is used.

二次電池モジュール100を組み立てるため、各二次電池10が各保管部41〜44から取り出される際、例えば、保管部41の保管区画41aから二次電池10が取り出されると、他の保管部42〜44からは保管区画41aに対応する保管区画42a〜44aから二次電池10がそれぞれ取り出される。また、保管部41の保管区画41bから二次電池10が取り出されると、他の保管部42〜44からは保管区画41bに対応する保管区画42b〜44bから二次電池10がそれぞれ取り出される。   In order to assemble the secondary battery module 100, when each secondary battery 10 is taken out from each storage unit 41 to 44, for example, when the secondary battery 10 is taken out from the storage section 41a of the storage unit 41, another storage unit 42 is obtained. To 44, the secondary batteries 10 are taken out from the storage compartments 42a to 44a corresponding to the storage compartment 41a, respectively. When the secondary battery 10 is taken out from the storage compartment 41b of the storage unit 41, the secondary battery 10 is taken out of the other storage sections 42 to 44 from the storage compartments 42b to 44b corresponding to the storage compartment 41b.

各保管部41〜44から取り出される二次電池10の組み合わせを、図4(b)に示すように、二次電池10の電解液量のバラツキと対応させて例示すると、二次電池10を保管区画41a〜44aから取り出した場合は、図4(b)に丸印で示す上側の列になる。二次電池10を保管区画41b〜44bから取り出した場合は、図4(b)に丸印で示す下側の列になる。図4(b)において、二点鎖線は各保管部41〜44の電解液量の境界を示している。   As shown in FIG. 4B, the combination of the secondary batteries 10 taken out from each of the storage units 41 to 44 is illustrated in association with the variation in the amount of the electrolytic solution of the secondary batteries 10, and the secondary batteries 10 are stored. When it is taken out from the sections 41a to 44a, it becomes an upper row indicated by a circle in FIG. When the secondary batteries 10 are taken out from the storage compartments 41b to 44b, the lower row shown by circles in FIG. In FIG. 4 (b), the two-dot chain line indicates the boundary of the amount of electrolyte in each storage unit 41 to 44.

1個の二次電池モジュール100を構成する二次電池10が、各保管部41〜44の電解液量の多い保管区画41a〜44aから取り出されたり、電解液量の少ない保管区画41b〜44bから取り出されたりする場合は、二次電池10の組み合わせは、図4(b)の上側の列の丸印と下側の列の丸印とが混在する状態となる。その結果、二次電池モジュール100を構成する隣り合う二次電池10の電解液量の差の近い部分が生じ、隣り合う二次電池10の電解液量の有意な差を付けることができない場合がある。   The secondary battery 10 configuring one secondary battery module 100 is taken out from the storage compartments 41a to 44a having a large amount of electrolyte solution in each storage section 41 to 44, or from the storage compartments 41b to 44b having a small amount of electrolyte solution. When it is taken out, the combination of the secondary batteries 10 is in a state in which the circles in the upper row and the circles in the lower row in FIG. 4B are mixed. As a result, there is a case where the difference in the amount of electrolytic solution between the adjacent secondary batteries 10 forming the secondary battery module 100 is close to each other, and it may not be possible to make a significant difference in the amount of electrolytic solution between the adjacent secondary batteries 10. is there.

しかし、この実施形態では、1個の二次電池モジュール100を構成する二次電池10が、各保管部41〜44の電解液量の多い保管区画41a〜44aからのみ取り出されるか、あるいは、電解液量の少ない保管区画41b〜44bからのみ取り出されるため、二次電池10の組み合わせは、図4(b)の上側の丸印の列あるいは下側の丸印の列になる。その結果、二次電池モジュール100を構成する隣り合う二次電池10の電解液量の有意な差を付けやすい。   However, in this embodiment, the secondary battery 10 which constitutes one secondary battery module 100 is taken out only from the storage compartments 41a to 44a having a large amount of electrolyte in each of the storage portions 41 to 44, or the secondary batteries 10 are electrolyzed. Since the secondary batteries 10 are taken out only from the storage compartments 41b to 44b having a small amount of liquid, the combination of the secondary batteries 10 is the row of the upper circles or the row of the lower circles in FIG. 4B. As a result, it is easy to make a significant difference in the amount of the electrolytic solution between the adjacent secondary batteries 10 forming the secondary battery module 100.

この実施形態では、第1の実施形態の(1)及び(2)と同様の効果が得られる他、次の効果が得られる。
(4)貯留部40は、前工程で製造されて電解液量が測定された二次電池10を、電解液量の多い順に、特、多、並、少の4段階にランク分けして保管する4個の保管部41,42,43,44を備えている。そして、電解液量が測定された二次電池10は、電解液量に対応したランクの保管部41,42,43,44に保管される。そのため、前記実施形態と異なり、貯留部40に保管された二次電池10から二次電池モジュール製造工程で二次電池モジュール100の組立に必要な電解液量のランクの二次電池10を取り出すために、各二次電池10の電解液量を管理装置で管理する必要がない。
In this embodiment, the same effects as (1) and (2) of the first embodiment are obtained, and the following effects are obtained.
(4) The storage unit 40 stores the secondary battery 10 manufactured in the previous step and having the measured amount of the electrolytic solution in four stages of extra, large, average, and small in the order of the large amount of the electrolytic solution. 4 storage units 41, 42, 43, 44 are provided. Then, the secondary battery 10 for which the amount of electrolytic solution has been measured is stored in the storage units 41, 42, 43, 44 having ranks corresponding to the amount of electrolytic solution. Therefore, unlike the above-described embodiment, in order to take out the secondary battery 10 of the rank of the electrolytic solution amount required for assembling the secondary battery module 100 in the secondary battery module manufacturing process from the secondary battery 10 stored in the storage unit 40. In addition, it is not necessary to manage the amount of electrolytic solution of each secondary battery 10 with the management device.

(5)二次電池10を電解液量によりランク分けして保管する保管部41等は、それぞれ上下に区画された2個の保管区画41a,41b等で構成されている。そして、同じランクであっても、そのランクの中で電解液量の多いものと少ないものとに分けられて保管される。貯留部40に保管された二次電池10から二次電池モジュール100の組立に必要な電解液量のランクの二次電池10を取り出す際、例えば、上の保管区画41aの二次電池10が「少」のランクの二次電池10として最初に取り出されると、他のランクの二次電池10も全て上の保管区画42a等の二次電池10が使用される。したがって、二次電池モジュール100を構成する隣り合う二次電池10の電解液量の有意な差を付けやすい。   (5) The storage unit 41 and the like for storing the secondary battery 10 by ranking it according to the amount of the electrolyte solution is composed of two storage compartments 41a, 41b and the like, which are divided into upper and lower portions, respectively. Even if the ranks are the same, the ranks are sorted into those having a large amount of electrolyte solution and those having a small amount of electrolyte solution. When taking out the secondary battery 10 of the rank of the amount of electrolyte required for assembling the secondary battery module 100 from the secondary battery 10 stored in the storage section 40, for example, the secondary battery 10 in the upper storage section 41a is “ When the secondary battery 10 of the “low” rank is first taken out, the secondary battery 10 such as the storage compartment 42a above the secondary batteries 10 of all the other ranks is used. Therefore, it is easy to make a significant difference in the amount of the electrolytic solution between the adjacent secondary batteries 10 constituting the secondary battery module 100.

(6)二次電池10を貯留部40の各保管区画41a,41b〜44a,44bから取り出す際、最も古い二次電池10を最初に取り出し、他の保管区画の二次電池10も最初に取り出された二次電池10と同じ側の保管区画から取り出される。そのため、古い二次電池10がいつまでも使用されずに貯留部40に残る虞がない。   (6) When the secondary battery 10 is taken out from each storage compartment 41a, 41b to 44a, 44b of the storage section 40, the oldest secondary battery 10 is taken out first, and the secondary batteries 10 in other storage compartments are also taken out first. The secondary battery 10 is taken out from the storage compartment on the same side. Therefore, there is no possibility that the old secondary battery 10 will not be used forever and will remain in the storage section 40.

(第3の実施形態)
次に、第3の実施形態を図5にしたがって説明する。この実施形態においては、二次電池製造工程(蓄電装置製造工程)で製造された二次電池10(蓄電装置)を、二次電池モジュール製造工程での1回分の組立に必要な組数より多い在庫を貯留部40に保管した後、二次電池モジュール製造工程に供給するのではなく、前工程から1モジュール分の二次電池10が送られてくる。この状態では、図5の左側に示すように、二次電池10の電解液量には特に規則性はない。次に、1モジュール分の二次電池10を、図5の右側に示すように、二次電池10をモジュール組立工程における液量の順に並べ替え行う。そして、その状態で、1モジュール分の二次電池10がモジュール組立工程へ供給される。
(Third Embodiment)
Next, a third embodiment will be described with reference to FIG. In this embodiment, the number of secondary batteries 10 (power storage device) manufactured in the secondary battery manufacturing process (power storage device manufacturing process) is larger than the number of sets required for one assembly in the secondary battery module manufacturing process. After storing the stock in the storage unit 40, the secondary battery 10 for one module is sent from the previous process rather than being supplied to the secondary battery module manufacturing process. In this state, as shown on the left side of FIG. 5, there is no particular regularity in the amount of the electrolytic solution of the secondary battery 10. Next, as shown in the right side of FIG. 5, the secondary batteries 10 for one module are rearranged in order of the liquid amount in the module assembling process. Then, in that state, the secondary battery 10 for one module is supplied to the module assembly process.

したがって、この実施形態においては、1モジュール分の二次電池10をその都度電解液量に対応した状態でモジュール製造工程に順次供給すればよく、前記各実施形態と異なり複数モジュール分の二次電池10を保管する保管部が不要となる。しかし、前工程で製造される二次電池10における電解液量のバラツキにより、隣り合う二次電池10の電解液量に有意な差を付けることができない状態となる場合もある。   Therefore, in this embodiment, the secondary battery 10 for one module may be sequentially supplied to the module manufacturing process in a state corresponding to the amount of the electrolytic solution each time. A storage unit for storing 10 is unnecessary. However, in some cases, due to variations in the amount of electrolyte solution in the secondary batteries 10 manufactured in the previous step, it becomes impossible to make a significant difference in the amount of electrolyte solution in adjacent secondary batteries 10.

実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ 二次電池モジュール100(蓄電装置モジュール)は、二次電池モジュール100内で相対的に高温となる領域に、蓄電装置製造工程で製造された二次電池10(蓄電装置)のうち電解液量が多い二次電池10を配置して、二次電池モジュール100を製造すればよく、電解液量のランクは4ランクに限らず、2ランク以上であればよい。
The embodiment is not limited to the above, and may be embodied as follows, for example.
The secondary battery module 100 (power storage device module) has an amount of electrolyte solution in the secondary battery 10 (power storage device) manufactured in the power storage device manufacturing process in a region where the temperature is relatively high in the secondary battery module 100. The secondary battery module 100 may be manufactured by arranging the secondary batteries 10 having a large number of electrolytes.

○ 第2の実施形態のように、蓄電装置製造工程で製造された二次電池10の在庫を電解液量によって複数ランクに分け、各ランクの二次電池10から二次電池モジュール100における二次電池10の配置位置に応じて在庫を引き当てる場合、電解液量の特、多、並、少の4段階に応じた各保管部41〜44を2区画に分けずに1区画としてもよい。   As in the second embodiment, the stock of the secondary battery 10 manufactured in the power storage device manufacturing process is divided into a plurality of ranks according to the amount of the electrolytic solution, and the secondary batteries 10 to the secondary batteries in the secondary battery module 100 of each rank. When allocating the inventory according to the arrangement position of the battery 10, the storage units 41 to 44 corresponding to the four stages of the amount of the electrolytic solution, that is, special, large, ordinary, and small, may not be divided into two, but may be divided into one.

○ 第2の実施形態において、各保管部41〜44の保管区画41a,41b〜44a,44b内の二次電池10の取り出しを、二次電池10の古さにかかわりなく、上側の保管区画41a〜44aと、下側の保管区画41b〜44bから交互に取り出すようにしてもよい。   In the second embodiment, the secondary battery 10 is taken out from the storage compartments 41a, 41b to 44a, 44b of each of the storage sections 41 to 44 regardless of how old the secondary battery 10 is. ~ 44a and the lower storage compartments 41b to 44b may be taken out alternately.

○ 二次電池モジュール100を構成する二次電池10の数は前記各実施形態で述べた7個に限らず、二次電池モジュール100に要求される出力電圧及び容量によって適宜設定されてもよい。   The number of the secondary batteries 10 constituting the secondary battery module 100 is not limited to seven described in each of the above embodiments, and may be appropriately set depending on the output voltage and the capacity required for the secondary battery module 100.

○ 二次電池モジュール100は、複数の二次電池10が直列に接続された構成に限らず、並列に接続された構成であってもよい。
○ 二次電池モジュール100は、複数の二次電池10が複数列に接続され、各列の二次電池10は直列に接続され、直列に接続された二次電池10の列が並列に接続されてもよい。
The secondary battery module 100 is not limited to the configuration in which the plurality of secondary batteries 10 are connected in series, but may be configured to be connected in parallel.
In the secondary battery module 100, the plurality of secondary batteries 10 are connected in a plurality of columns, the secondary batteries 10 in each column are connected in series, and the columns of the secondary batteries 10 connected in series are connected in parallel. May be.

○ 二次電池モジュール100の使用時に高温となる位置は、二次電池モジュール100の使用条件によって異なり、二次電池モジュール100が強制冷却されない状態では中央部が高温になるが、強制冷却される場合は、強制冷却に使用される冷媒の移動方向の下流側が高温になる。   The position where the temperature of the secondary battery module 100 becomes high during use varies depending on the usage conditions of the secondary battery module 100. When the secondary battery module 100 is not forcibly cooled, the central part becomes hot, but when it is forcibly cooled. Becomes high temperature on the downstream side in the moving direction of the refrigerant used for forced cooling.

○ 第1の実施形態において、貯留部40を設けて前工程で製造された二次電池10を貯留部40に在庫として保管する代わりに、初期充電工程、エージング工程等の前工程に存在する二次電池10を在庫として扱い、前工程の完了した二次電池10を貯留部40を経ずに二次電池モジュール製造工程に供給するようにしてもよい。   In the first embodiment, instead of providing the storage section 40 and storing the secondary battery 10 manufactured in the previous step in the storage section 40 as an inventory, the secondary battery 10 exists in the previous step such as the initial charging step and the aging step. The secondary battery 10 may be treated as an inventory, and the secondary battery 10 that has completed the previous process may be supplied to the secondary battery module manufacturing process without passing through the storage section 40.

○ 第3の実施形態において、前工程から供給される1モジュール分の二次電池10は、初期充電が完了したエージング完了前の二次電池10であってもよい。しかし、エージング中に不良品となる二次電池10も存在するため、エージング完了後の二次電池10の方が好ましい。   In the third embodiment, the rechargeable battery 10 for one module supplied from the previous step may be the rechargeable battery 10 whose initial charging is completed and before aging is completed. However, since there are secondary batteries 10 that become defective during aging, the secondary battery 10 after completion of aging is preferable.

○ 感圧式保護装置は、例えば、特許第5395013号に開示された装置のように、ケース内の圧力が閾値を超えた場合に正極端子と負極端子とを短絡させて、端子と電極組立体との電気的連結が遮断される構成の装置であってもよい。   The pressure-sensitive protection device, for example, like the device disclosed in Japanese Patent No. 5395013, short-circuits the positive electrode terminal and the negative electrode terminal when the pressure in the case exceeds a threshold value, and thus the terminal and the electrode assembly are connected. The device may be configured so that the electrical connection thereof is cut off.

○ 蓄電装置(二次電池)が電流遮断装置を備えておらず、ケース内の圧力をケース外に開放させる圧力開放弁を備えた構成の場合は、圧力開放弁が感圧式保護装置に相当する。   ○ If the power storage device (secondary battery) does not have a current cutoff device but has a pressure release valve that releases the pressure inside the case to the outside of the case, the pressure release valve corresponds to a pressure-sensitive protective device. ..

○ 蓄電装置としての二次電池は、リチウムイオン二次電池に限らず、電解液を使用する二次電池であればよく、ニッケル水素二次電池やニッケルカドミウム二次電池、鉛電池等の他の二次電池であってもよい。   ○ The secondary battery as a power storage device is not limited to a lithium-ion secondary battery, but may be any secondary battery that uses an electrolytic solution, such as a nickel-hydrogen secondary battery, a nickel-cadmium secondary battery, or a lead battery. It may be a secondary battery.

○ 蓄電装置は、二次電池に限らず、例えば、電気二重層キャパシタやリチウムイオンキャパシタ等のようなキャパシタであってもよい。   The power storage device is not limited to the secondary battery, and may be a capacitor such as an electric double layer capacitor or a lithium ion capacitor.

10…蓄電装置としての二次電池、11…電槽としてのケース、14…電極組立体、30…感圧式保護装置としての電流遮断装置、100…蓄電装置モジュールとしての二次電池モジュール。   10 ... Secondary battery as power storage device, 11 ... Case as battery case, 14 ... Electrode assembly, 30 ... Current interruption device as pressure sensitive protection device, 100 ... Secondary battery module as power storage device module.

Claims (2)

感圧式保護装置を備える複数個の蓄電装置を組み合わせた蓄電装置モジュールの製造方法であって、
蓄電装置製造工程における前記蓄電装置の電槽内への電極組立体の配置後、電槽内容積を測定し、前記電槽内容積に応じて空き空間が一定となるように電解液を注入し、
蓄電装置モジュールの使用時において、前記蓄電装置モジュール内で相対的に高温となる領域に、前記蓄電装置製造工程で製造された前記蓄電装置のうち電解液量が多い蓄電装置を配置して、蓄電装置モジュールを製造することを特徴とする蓄電装置モジュールの製造方法。
A method for manufacturing a power storage device module, which is a combination of a plurality of power storage devices including a pressure-sensitive protection device, comprising:
After the electrode assembly is placed in the battery case of the power storage device in the manufacturing process of the power storage device, the volume of the battery container is measured, and the electrolytic solution is injected so that the empty space becomes constant according to the volume of the battery container. ,
In use of the power storage module, a region to be a relatively high temperature in said electric storage device module, by disposing the power storage device electrolyte volume is large among the prepared electricity storage device manufacturing process the electric storage device, electric storage A method of manufacturing a power storage device module, which comprises manufacturing a device module.
前記蓄電装置製造工程で製造された蓄電装置の在庫を電解液量によって複数ランクに分け、各ランクの蓄電装置から蓄電装置モジュールにおける蓄電装置の配置位置に応じて在庫を引き当てる請求項1に記載の蓄電装置モジュールの製造方法。
Divided into a plurality ranks the stock of the electric storage device power storage device manufactured in the manufacturing process by the electrolyte volume, according to claim 1, Hikiateru inventory in accordance with the position of the power storage device in the power storage device module from the storage device of each rank A method for manufacturing a power storage device module.
JP2015252169A 2015-12-24 2015-12-24 Method for manufacturing power storage device module Expired - Fee Related JP6696173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015252169A JP6696173B2 (en) 2015-12-24 2015-12-24 Method for manufacturing power storage device module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015252169A JP6696173B2 (en) 2015-12-24 2015-12-24 Method for manufacturing power storage device module

Publications (2)

Publication Number Publication Date
JP2017117666A JP2017117666A (en) 2017-06-29
JP6696173B2 true JP6696173B2 (en) 2020-05-20

Family

ID=59234813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015252169A Expired - Fee Related JP6696173B2 (en) 2015-12-24 2015-12-24 Method for manufacturing power storage device module

Country Status (1)

Country Link
JP (1) JP6696173B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019040733A (en) * 2017-08-24 2019-03-14 Fdk株式会社 Battery pack
JP2020047529A (en) * 2018-09-20 2020-03-26 Fdk株式会社 Battery pack
JP7217118B2 (en) 2018-09-26 2023-02-02 日東電工株式会社 Optical film with protective film

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3474919B2 (en) * 1994-03-25 2003-12-08 三洋電機株式会社 Stacked sealed nickel-hydride battery
JPH11185795A (en) * 1997-12-24 1999-07-09 Matsushita Electric Ind Co Ltd Electrolyte charging method for sealed lead-acid storage battery
JP2000231911A (en) * 1999-02-12 2000-08-22 Toyota Motor Corp Battery system
JP2010170942A (en) * 2009-01-26 2010-08-05 Toyota Motor Corp Battery pack, method for manufacturing the same, battery pack, battery pack module, vehicle mounting the same, and battery mounting equipment
JP2013089492A (en) * 2011-10-19 2013-05-13 Hitachi Ltd Lithium ion secondary battery, and secondary battery system
DE102011088682A1 (en) * 2011-12-15 2013-06-20 Robert Bosch Gmbh Electrolyte fluid metering device for lithium cells
JP5896218B2 (en) * 2012-02-23 2016-03-30 トヨタ自動車株式会社 Sealed non-aqueous electrolyte secondary battery
JP2015187914A (en) * 2012-08-09 2015-10-29 三洋電機株式会社 Power supply device, and electrically driven vehicle and power storage device having the same

Also Published As

Publication number Publication date
JP2017117666A (en) 2017-06-29

Similar Documents

Publication Publication Date Title
KR100914839B1 (en) Battery Module of Improved Safety and Middle or Large-sized Battery Pack Containing the Same
JP4990975B2 (en) Pouch-type secondary battery with unsealed residue
JP5575761B2 (en) Medium or large battery pack with improved safety
EP2808920B1 (en) Battery module having enhanced safety and battery pack comprising same
EP3157074B1 (en) Battery cell
US20100052616A1 (en) Secondary cell replacing method
US20130280560A1 (en) Battery pack
US10586972B2 (en) Battery pack
KR101872083B1 (en) Producing method of assembled battery
KR101836516B1 (en) Battery System having Current Interrupt Device and Operation Method thereof
US11695161B2 (en) Battery cell having structure for prevention of swelling
KR20110034346A (en) Secondary battery and manufacturing method thereof
JP6696173B2 (en) Method for manufacturing power storage device module
KR20140033585A (en) Secondary battery
KR101690575B1 (en) Secondary battery module
US11855297B2 (en) Battery unit, battery, and electric apparatus
JP5821652B2 (en) Storage element module
US11881597B2 (en) Battery module with improved safety, battery pack comprising battery module, and vehicle comprising battery pack
KR20210016296A (en) Battery module with a multifunctional end-plate
CN106463660A (en) Cell coil for a lithium-ion battery
KR20120056812A (en) Middle or Large-sized Battery Pack of Improved Safety
KR101527256B1 (en) Secondary battery
KR102623713B1 (en) Electric vehicle battery management system and method therefor
KR20140013134A (en) Secondary battery
KR102564972B1 (en) Secondary battery and secondary battery stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200406

R151 Written notification of patent or utility model registration

Ref document number: 6696173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees