JP6695610B2 - Laser processing apparatus and laser processing method - Google Patents

Laser processing apparatus and laser processing method Download PDF

Info

Publication number
JP6695610B2
JP6695610B2 JP2015129652A JP2015129652A JP6695610B2 JP 6695610 B2 JP6695610 B2 JP 6695610B2 JP 2015129652 A JP2015129652 A JP 2015129652A JP 2015129652 A JP2015129652 A JP 2015129652A JP 6695610 B2 JP6695610 B2 JP 6695610B2
Authority
JP
Japan
Prior art keywords
laser beam
laser
laser processing
diffraction grating
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015129652A
Other languages
Japanese (ja)
Other versions
JP2017013081A (en
Inventor
直彦 杣
直彦 杣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WIRED CO., LTD.
Original Assignee
WIRED CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WIRED CO., LTD. filed Critical WIRED CO., LTD.
Priority to JP2015129652A priority Critical patent/JP6695610B2/en
Publication of JP2017013081A publication Critical patent/JP2017013081A/en
Application granted granted Critical
Publication of JP6695610B2 publication Critical patent/JP6695610B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Laser Beam Processing (AREA)

Description

本発明は、レーザを利用する孔開けなどの加工方法、及び、そのような加工に用いることができるレーザ加工装置に関する。   The present invention relates to a processing method such as drilling using a laser, and a laser processing apparatus that can be used for such processing.

繰り返し速度の速いレーザは、1ショット当たりのエネルギーが低く、ワーク(被加工物)に1つの孔を開けるために数十〜数百回、ショットを繰り返さなければならない。   A laser having a high repetition rate has low energy per shot, and shots must be repeated several tens to several hundreds of times in order to make one hole in a work (workpiece).

従来、レーザによる多孔加工には図9に示すようにガルバノミラーを利用して、ワークの所定箇所に焦点が来るように調整していた。すなわち、従来のレーザ加工装置では光源Sからのレーザ光線Lを2つのガルバノミラー10及び11(それぞれの鏡部が軸10a及び11aを軸として回動駆動・制御される)により所定の光路となるように制御して集光レンズ(「fθレンズ」と呼ばれることもある。)12によりワークWの表面ないしその近傍に焦点を結ばせる構造となっており、ガルバノミラー10及び11の位置を定めた後にレーザを必要数ショットする。しかし、ガルバノミラーは動作が遅いと云う欠点がある。   Conventionally, in the perforation processing by the laser, a galvanometer mirror was used as shown in FIG. 9, and adjustment was made so that the focus was on a predetermined portion of the work. That is, in the conventional laser processing apparatus, the laser beam L from the light source S has a predetermined optical path by the two Galvano mirrors 10 and 11 (the respective mirrors are rotationally driven and controlled about the axes 10a and 11a). The focusing lens 12 (also referred to as “fθ lens”) is controlled so as to focus on the surface of the work W or its vicinity, and the positions of the galvano mirrors 10 and 11 are determined. After that, the required number of laser shots are taken. However, the galvanometer mirror has a drawback that it operates slowly.

ここで、回折格子をレーザ光線の光路に配置し、同時に複数個の貫通孔を設ける技術が提案されている(特許文献1)。しかしながら、さらなる加工のスピードアップが可能となるレーザ加工装置、および、レーザ加工方法が求められていた。   Here, a technique has been proposed in which a diffraction grating is arranged in the optical path of a laser beam and a plurality of through holes are simultaneously provided (Patent Document 1). However, there has been a demand for a laser processing apparatus and a laser processing method that can further speed up processing.

特開2002−113711号公報JP, 2002-113711, A

本発明は、上記した従来の問題点を改善する、すなわち、加工速度の向上を図ることが可能なレーザ加工装置、および、レーザ加工方法を提供することを目的とする。   It is an object of the present invention to provide a laser processing apparatus and a laser processing method capable of improving the above conventional problems, that is, improving the processing speed.

本発明のレーザ加工装置は、上記課題を解決するため、請求項1に記載の通り、レーザ光線を発する光源と、 前記光源から発せられるレーザ光線を反射して偏向走査させる複数のミラー面を備え回転駆動されるポリゴンミラーと、被加工物表面または当該表面近傍に前記ポリゴンミラーにより反射されるレーザ光線の焦点を結ばせる集光レンズと、前記レーザ光線の光路中に設けられて当該レーザ光線を所定の方向に直線上に分岐させる回折格子と、を少なくとも備え、前記ポリゴンミラーが回転駆動されることにより、分岐された複数の光線が前記方向に偏向され、前記被加工物に対して千鳥状に配置されるように孔開け加工することを特徴とする。 In order to solve the above problems, a laser processing apparatus of the present invention includes a light source that emits a laser beam and a plurality of mirror surfaces that reflect and scan the laser beam emitted from the light source as described in claim 1. A polygon mirror that is driven to rotate, a condenser lens that focuses the laser beam reflected by the polygon mirror on or near the surface of the workpiece, and a laser beam that is provided in the optical path of the laser beam. at least includes a diffraction grating for splitting on a straight line, in a predetermined one direction, the polygon mirror by being rotated, a plurality of light beams branched is deflected to the one direction, with respect to the workpiece The feature is that the holes are drilled so that they are arranged in a staggered pattern.

本発明のレーザ加工装置では、前記回折格子を、前記レーザ光線を同一平面内の複数の光線に分岐させる回折格子とすることができる。   In the laser processing apparatus of the present invention, the diffraction grating can be a diffraction grating that splits the laser beam into a plurality of light beams in the same plane.

また、本発明のレーザ加工装置は、シリンドリカルレンズを前記集光レンズの前記レーザ光線出射側に備えることができる。   Further, the laser processing apparatus of the present invention can include a cylindrical lens on the laser beam emitting side of the condenser lens.

本発明のレーザ加工方法は、上記のいずれか1つのレーザ加工装置を用い、前記光源が発したレーザ光線を、前記回折格子が所定の方向に直線上に分岐して孔開け加工した後、
前記被加工物を前記所定の方向に直交する方向に移動し、前記ポリゴンミラーを回転駆動することで、分岐したレーザ光線を前記方向に偏向させて、孔が千鳥状に配置されるように加工することを特徴とする。
Laser processing method of the present invention uses a laser machining apparatus of any one of the above, after the laser beam the light source is emitted to the diffraction grating is branched and hole formation in a straight line in a predetermined one direction,
The moves in the direction perpendicular to the workpiece in the predetermined direction, said by rotating the polygon mirror, deflects the laser beam branching to the one direction, as holes are arranged in a staggered manner Characterized by processing.

本発明のレーザ加工装置は、レーザ光線を発する光源と、前記光源から発せられるレーザ光線を反射して偏向走査させる複数のミラー面を備え回転駆動されるポリゴンミラーと、被加工物表面または当該表面近傍に前記ポリゴンミラーにより反射されるレーザ光線の焦点を結ばせる集光レンズと、前記レーザ光線の光路中に当該レーザ光線を複数の光線に分岐させる回折格子と、を少なくとも備えている構成により、レンズ間の収差の補正が集光レンズだけで完結するために簡素な装置構成が可能となり、また、加工スピードが一定となり、かつ、高速で加工することが可能となる。   A laser processing apparatus of the present invention includes a light source that emits a laser beam, a polygon mirror that includes a plurality of mirror surfaces that reflects and deflects and scans a laser beam emitted from the light source, and is driven to rotate. With a configuration including at least a condensing lens that focuses a laser beam reflected by the polygon mirror in the vicinity, and a diffraction grating that branches the laser beam into a plurality of beams in the optical path of the laser beam, Since the correction of the aberration between the lenses is completed only by the condensing lens, a simple device configuration becomes possible, and the processing speed becomes constant and high-speed processing becomes possible.

また、本発明のレーザ加工装置は、シリンドリカルレンズを前記集光レンズの前記レーザ光線出射側に備えることができ、そのとき、加工精度の向上を図ることが可能となる。   Further, the laser processing apparatus of the present invention can be provided with a cylindrical lens on the laser beam emitting side of the condenser lens, and at that time, it is possible to improve the processing accuracy.

本発明のレーザ加工方法は、上記のいずれかのレーザ加工装置を用いる構成により、加工速度の向上を図ることが可能となる。   The laser processing method of the present invention can improve the processing speed by using any one of the above laser processing apparatuses.

本発明のレーザ加工装置の一例を示すモデル図である。It is a model figure which shows an example of the laser processing apparatus of this invention. 回折格子によるレーザ光線の分岐の一例をモデル的に示す図である。It is a figure which shows an example of the branch of the laser beam by a diffraction grating in model. ポリゴンミラーによるレーザ光線の偏向操作の一例をモデル的に示す図である。It is a figure which shows as a model an example of the deflection operation of the laser beam by a polygon mirror. 加工によりワークに形成された多数の孔の例を示すモデル図である。図中矢印はワークの移動方向である。It is a model figure which shows the example of many holes formed in the workpiece | work by processing. The arrow in the figure indicates the movement direction of the work. 本発明のレーザ加工装置の他の例(シリンドリカルレンズを併用する例)を示すモデル図である。It is a model figure which shows the other example (example which uses a cylindrical lens together) of the laser processing apparatus of this invention. 図6(a)シリンドリカルレンズの一例のモデル斜視図である。図6(b)シリンドリカルレンズによる焦点位置の精度向上効果を説明するモデル図である。FIG. 6A is a model perspective view of an example of a cylindrical lens. FIG. 6B is a model diagram for explaining the effect of improving the accuracy of the focal position by the cylindrical lens. 本発明のレーザ加工装置の他の例(集光レンズの入射側に回折格子が配置されている例)を示すモデル図である。It is a model figure which shows the other example (example in which the diffraction grating is arrange | positioned at the incident side of a condensing lens) of the laser processing apparatus of this invention. 本発明のレーザ加工装置の他の例(集光レンズの出射側に回折格子が配置されている例)を示すモデル図である。It is a model figure which shows the other example (example in which the diffraction grating is arrange | positioned at the output side of the condensing lens) of the laser processing apparatus of this invention. 従来のレーザ加工装置の構成を示すモデル図である。It is a model figure which shows the structure of the conventional laser processing apparatus.

本発明のレーザ加工装置の例について、図面を用いて説明する。   An example of the laser processing apparatus of the present invention will be described with reference to the drawings.

図1は本発明のレーザ加工装置の一例を示すモデル構成図である。
このレーザ加工装置は、レーザ光線を発する光源Sと、光源Sから発せられるレーザ光線Lを反射して偏向走査させる偏向体としての、回転駆動され、複数のミラー面を備えたポリゴンミラー2と、ポリゴンミラー2により反射された光線をさらに集光レンズ4に導くベンドミラー3と、被加工物Wの表面またはその近傍にレーザ光線の焦点を結ばせる集光レンズ4と、光源Sとポリゴンミラー2との間のレーザ光線Lの光路中にレーザ光線Lを複数の光線に分岐させる回折格子1と、を備えている。
FIG. 1 is a model configuration diagram showing an example of a laser processing apparatus of the present invention.
This laser processing apparatus includes a light source S that emits a laser beam, a polygon mirror 2 that is rotationally driven and has a plurality of mirror surfaces, as a deflector that reflects and deflects and scans the laser beam L emitted from the light source S. The bend mirror 3 that guides the light beam reflected by the polygon mirror 2 to the condenser lens 4, the condenser lens 4 that focuses the laser beam on or near the surface of the workpiece W, the light source S, and the polygon mirror 2. And a diffraction grating 1 for branching the laser beam L into a plurality of beams in the optical path of the laser beam L between and.

ここで、このレーザ加工装置の例で用いられている回折格子の例1についてモデル図である図2を用いて説明する。   Here, Example 1 of the diffraction grating used in the example of the laser processing apparatus will be described with reference to FIG. 2, which is a model diagram.

この回折格子1は透明なプラスチック(この例では、反射防止膜が施されている。また、プラスチックではなく、ガラスや石英により構成されていてもよい。)で形成された円盤形状をしており、一方の面からレーザ光線Lが入射すると、その一方の面に形成された極小の凹凸により、レーザ光線を回折して複数に分岐する。分岐された複数のレーザ光線は、図2でモデル的に示したようにスクリーンCに映したときに、一直線上に並ぶ。すなわち、この回折格子1は、入射するレーザ光線Lを同一平面内の複数(この例では100)の光線に分岐させる回折格子である。   The diffraction grating 1 has a disc shape made of transparent plastic (in this example, an antireflection film is applied, and may be made of glass or quartz instead of plastic). When the laser beam L is incident from one surface, the laser beam is diffracted into a plurality of branches due to the minute unevenness formed on the one surface. The plurality of branched laser beams are aligned on a straight line when projected on the screen C as shown in the model of FIG. That is, the diffraction grating 1 is a diffraction grating that splits the incident laser beam L into a plurality of (100 in this example) light beams in the same plane.

また、図1のレーザ加工装置の例で用いられているポリゴンミラー2について図3を用いて説明する(この図は、理解を容易にするために、ポリゴンミラー2に入射するレーザ光線が1つの場合について説明するモデル図である。)。ポリゴンミラー2は回転駆動されるが、その軸に対して回転対称な複数のミラー面を有している、レーザ光線Lを偏向させる偏向体である。図3中に矢印で示したように、ポリゴンミラー2をわずかに回転駆動させただけで、実線で示した位置から破線で示した位置へと反射されるレーザ光線を大きく移動させることができる。そして、ポリゴンミラー2をさらに同じ方向にわずかに回転すると次のミラー面によって、実線で示した元の位置にレーザ光線を戻すことができる。このように、ポリゴンミラー2を用いることで、ガルバノミラーを用いる場合のように回転(回動)方向を変更する必要なしに、光線の配分位置を元に戻すことができるので、迅速な偏向動作が可能となる。   Further, the polygon mirror 2 used in the example of the laser processing apparatus of FIG. 1 will be described with reference to FIG. 3 (in this figure, for easy understanding, one laser beam is incident on the polygon mirror 2). It is a model figure explaining a case.). The polygon mirror 2 is rotationally driven, but has a plurality of mirror surfaces rotationally symmetric with respect to the axis thereof, and is a deflecting body for deflecting the laser beam L. As indicated by the arrow in FIG. 3, the laser beam reflected can be largely moved from the position shown by the solid line to the position shown by the broken line by only slightly rotating the polygon mirror 2. Then, when the polygon mirror 2 is further slightly rotated in the same direction, the laser beam can be returned to the original position shown by the solid line by the next mirror surface. As described above, by using the polygon mirror 2, the distribution position of the light beam can be returned to the original position without the need to change the rotation (rotation) direction as in the case of using the galvanometer mirror. Is possible.

図1に示した例では、ポリゴンミラー2のミラー面で反射された複数のレーザ光線はベンドミラー3により集光レンズ4に導かれ、集光レンズ4により、ワークWの表面ないしその近傍に、それぞれ焦点を結ぶ。   In the example shown in FIG. 1, the plurality of laser beams reflected by the mirror surface of the polygon mirror 2 are guided to the condenser lens 4 by the bend mirror 3, and are condensed on the surface of the work W or in the vicinity thereof by the condenser lens 4. Focus on each.

本発明のレーザ加工装置は、上記例のように、ポリゴンミラーと回折格子とを備えた構成を有し、この構成により、レンズ間収差の補正が集光レンズのみで完結するので、簡素な構成が可能となり、加工スピードが一定となり、かつ、高速な加工が可能となる。   The laser processing apparatus of the present invention has a configuration including a polygon mirror and a diffraction grating as in the above example. With this configuration, the correction of the inter-lens aberration is completed only by the condensing lens, and therefore the configuration is simple. Is possible, the processing speed is constant, and high-speed processing is possible.

これに対して、ガルバノミラーを用いる構成では次のような不都合が生じる。すなわち、図9に示したような、ガルバノミラーを2つ用いる装置では収差の十分な補正ができずに加工ばらつきが生じ、また、ガルバノミラーを3つ用いる装置の場合には収差を十分に補正することが可能とはなるが、ガルバノミラーの折り返し動作が多く、加工スピードが低下する。   On the other hand, the configuration using the galvanometer mirror has the following disadvantages. That is, as shown in FIG. 9, a device using two galvanomirrors cannot sufficiently correct the aberration, resulting in processing variation, and a device using three galvanomirrors sufficiently corrects the aberration. However, the galvano mirror has many folding operations, and the processing speed is reduced.

図4には、図1に示したレーザ加工装置の例により合成樹脂製シートから二次電池のセパレータを得るために、孔開け加工する状態をモデル的に示す。   FIG. 4 schematically shows a state of punching to obtain a secondary battery separator from a synthetic resin sheet by the example of the laser processing apparatus shown in FIG.

図4中、縦方向に一列に配置された孔hは、回折格子1によって複数(この例では100)に分岐されたレーザ光線によって同時に孔開け加工されたものであり、加工終了後に図中矢印方向にワークが移動されて、次の列が孔開け加工が再開する。その際にポリゴンミラー2が回転駆動されて、複数のレーザ光線は縦方向に偏向されて、孔が千鳥状に配置されるように加工される。   In FIG. 4, the holes h arranged in a line in the vertical direction are those which are simultaneously drilled by the laser beams branched into a plurality (100 in this example) by the diffraction grating 1, and the arrows in the drawing after the processing are completed. The workpiece is moved in the same direction, and the boring process for the next row is restarted. At that time, the polygon mirror 2 is rotationally driven, and the plurality of laser beams are deflected in the vertical direction so that the holes are arranged in a zigzag pattern.

図1に示したレーザ加工装置において、回折格子や集光レンズの製造精度や取り付け位置精度、あるいは、ミラーの面精度などにより、分岐された複数の光線の一部が同一平面からずれてしまう場合がある。その場合、例えば半円柱状や部分円柱状などの平凸状のシリンドリカルレンズをレーザ光路に配置することで、焦点位置を修正して精度を向上させることができる。   In the laser processing apparatus shown in FIG. 1, when a part of a plurality of branched light beams deviates from the same plane due to the manufacturing accuracy of the diffraction grating or the condenser lens, the mounting position accuracy, or the surface accuracy of the mirror There is. In that case, for example, by disposing a plano-convex cylindrical lens having a semi-cylindrical shape or a partially cylindrical shape in the laser optical path, it is possible to correct the focus position and improve the accuracy.

図5には、シリンドリカルレンズ5を集光レンズ4のレーザ光線出射側に配置したレーザ加工装置の例を示す。この例では、シリンドリカルレンズ5の凸曲面がレーザ光線入射側となり、かつ、出射側の平面がシート状のワークWの処理面に対して平行となるように、そして、シリンドリカルレンズ5の凸曲面の頭頂部の線分が分岐された複数のレーザ光線が含まれる平面に存在するようにシリンドリカルレンズ5が設けられている。   FIG. 5 shows an example of a laser processing apparatus in which the cylindrical lens 5 is arranged on the laser beam emitting side of the condenser lens 4. In this example, the convex curved surface of the cylindrical lens 5 is on the laser beam incident side, and the plane on the outgoing side is parallel to the processing surface of the sheet-shaped workpiece W, and of the convex curved surface of the cylindrical lens 5. The cylindrical lens 5 is provided so that the line segment of the parietal portion exists on a plane including a plurality of branched laser beams.

図6(a)にシリンドリカルレンズ5の斜視図を、図6(b)にその機能を説明するモデル図を、それぞれ示した。   FIG. 6A shows a perspective view of the cylindrical lens 5, and FIG. 6B shows a model diagram for explaining its function.

集光レンズから出射された複数のレーザ光線Lは、本来であれば、すべてシリンドリカルレンズ5の凸側面の頭頂部からシリンドリカルレンズ5に入射し、シリンドリカルレンズ5の影響を受けずに直進して出射し、ワークの表面ないしその付近に焦点を結ぶ。しかし、上述のように何らかの理由によって同一平面から外れたレーザ光線は、凸曲面の頭頂部よりも離れた位置からシリンドリカルレンズ5に入射し、その位置に応じてシリンドリカルレンズ5による屈折により補正され、焦点位置で一列に揃う。このようにシリンドリカルレンズ5の併用によって加工精度を向上させることが可能となる。   Normally, all of the plurality of laser beams L emitted from the condenser lens enter the cylindrical lens 5 from the top of the convex side surface of the cylindrical lens 5, and go straight without being affected by the cylindrical lens 5. Then, focus on or near the surface of the work. However, as described above, the laser beam that is off the same plane for some reason enters the cylindrical lens 5 from a position farther than the crown of the convex curved surface, and is corrected by refraction by the cylindrical lens 5 depending on the position, Aligned in line at the focal position. Thus, it is possible to improve the processing accuracy by using the cylindrical lens 5 together.

図1に示した例では、光源Sとポリゴンミラー2との間に回折格子1を配置したが、本発明ではこの例に限定されない。すなわち、図7にはベンドミラー3と集光レンズ4との間に、図8には集光レンズ4の出射側とワークWとの間に、それぞれ回折格子1を配置した、本発明のレーザ加工装置の例を示した。   In the example shown in FIG. 1, the diffraction grating 1 is arranged between the light source S and the polygon mirror 2, but the present invention is not limited to this example. That is, the laser of the present invention in which the diffraction grating 1 is arranged between the bend mirror 3 and the condenser lens 4 in FIG. 7 and between the emission side of the condenser lens 4 and the work W in FIG. An example of the processing device is shown.

以上、本発明について、好ましい実施形態を挙げて説明したが、本発明のレーザ加工装置、および、レーザ加工方法は、上記実施形態の構成に限定されるものではない。   The present invention has been described above with reference to the preferred embodiments, but the laser processing apparatus and the laser processing method of the present invention are not limited to the configurations of the above embodiments.

当業者は、従来公知の知見に従い、本発明のレーザ加工装置、および、レーザ加工方法を適宜改変することができる。このような改変によってもなお、本発明のレーザ加工装置、および、レーザ加工方法の構成を具備する限り、もちろん、本発明の範疇に含まれるものである。   Those skilled in the art can appropriately modify the laser processing apparatus and the laser processing method of the present invention according to the conventionally known knowledge. Such modifications are of course included in the scope of the present invention as long as they have the configurations of the laser processing apparatus and the laser processing method of the present invention.

S 光源
L レーザ光線
1 回折格子
2 ポリゴンミラー
3 ベンドミラー
4 集光レンズ
W ワーク
S light source L laser beam 1 diffraction grating 2 polygon mirror 3 bend mirror 4 condenser lens W work

Claims (4)

レーザ光線を発する光源と、
前記光源から発せられるレーザ光線を反射して偏向走査させる複数のミラー面を備え回転駆動されるポリゴンミラーと、
被加工物表面または当該表面近傍に前記ポリゴンミラーにより反射されるレーザ光線の焦点を結ばせる集光レンズと、
前記レーザ光線の光路中に設けられて当該レーザ光線を所定の方向に直線上に分岐させる回折格子と、を少なくとも備え、
前記ポリゴンミラーが回転駆動されることにより、分岐された複数の光線が前記方向に偏向され、前記被加工物に対して千鳥状に配置されるように孔開け加工することを特徴とするレーザ加工装置。
A light source that emits a laser beam,
A polygon mirror that is rotationally driven and that includes a plurality of mirror surfaces that deflect and scan the laser beam emitted from the light source.
A condenser lens for focusing the laser beam reflected by the polygon mirror on the surface of the workpiece or in the vicinity of the surface;
Comprising at least a diffraction grating for splitting on a straight line the laser beam provided in an optical path in a predetermined one direction of the laser beam,
By the polygon mirror is rotated, a laser, wherein a plurality of light beams branched is deflected to the one direction, to hole formation as staggered with respect to the workpiece Processing equipment.
前記回折格子が、前記レーザ光線を同一平面内の複数の光線に分岐させる回折格子であることを特徴とする請求項1に記載のレーザ加工装置。   The laser processing apparatus according to claim 1, wherein the diffraction grating is a diffraction grating that branches the laser beam into a plurality of light beams in the same plane. シリンドリカルレンズを前記集光レンズの前記レーザ光線出射側に備えていることを特徴とする請求項1または請求項2に記載のレーザ加工装置。   The laser processing apparatus according to claim 1 or 2, wherein a cylindrical lens is provided on the laser beam emitting side of the condenser lens. 請求項1ないし請求項3のいずれか1項に記載のレーザ加工装置を用いたレーザ加工方法であって、
前記光源が発したレーザ光線を、前記回折格子が所定の方向に直線上に分岐して孔開け加工した後、
前記被加工物を前記所定の方向に直交する方向に移動し、
前記ポリゴンミラーを回転駆動することで、分岐したレーザ光線を前記方向に偏向させて、孔が千鳥状に配置されるように加工することを特徴とするレーザ加工方法。
A laser processing method using the laser processing device according to claim 1.
After the laser beam the light source is emitted to the diffraction grating is branched and hole formation in a straight line in a predetermined one direction,
Moving the workpiece in a direction orthogonal to the predetermined direction,
Wherein by rotating the polygon mirror, deflects the laser beam branching to the one direction, the laser processing method characterized by processing such holes are arranged in a staggered manner.
JP2015129652A 2015-06-29 2015-06-29 Laser processing apparatus and laser processing method Active JP6695610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015129652A JP6695610B2 (en) 2015-06-29 2015-06-29 Laser processing apparatus and laser processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015129652A JP6695610B2 (en) 2015-06-29 2015-06-29 Laser processing apparatus and laser processing method

Publications (2)

Publication Number Publication Date
JP2017013081A JP2017013081A (en) 2017-01-19
JP6695610B2 true JP6695610B2 (en) 2020-05-20

Family

ID=57828590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015129652A Active JP6695610B2 (en) 2015-06-29 2015-06-29 Laser processing apparatus and laser processing method

Country Status (1)

Country Link
JP (1) JP6695610B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102062164B1 (en) * 2018-01-23 2020-02-11 주식회사 이오테크닉스 Continuous Processing Device using polygon mirror and multiple incident beam
CN113523577A (en) * 2021-07-09 2021-10-22 济南森峰激光科技股份有限公司 PERC battery piece high-speed laser grooving method and device based on rotating mirror and PERC battery piece
CN113547238B (en) * 2021-09-23 2022-01-07 济南森峰激光科技股份有限公司 Method for increasing aperture of micro-hole of high-speed rotating mirror laser processing array

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243289A (en) * 1990-02-20 1991-10-30 Brother Ind Ltd Laser marking device
US8767786B2 (en) * 2008-12-17 2014-07-01 Mitsubishi Electric Corporation Laser processing apparatus, laser processing method, and manufacturing method of photovoltaic device
JP2010278051A (en) * 2009-05-26 2010-12-09 Panasonic Corp Crystallization irradiation method and crystallization irradiation device
JP2015031837A (en) * 2013-08-02 2015-02-16 学校法人東海大学 Stereoscopic image display device

Also Published As

Publication number Publication date
JP2017013081A (en) 2017-01-19

Similar Documents

Publication Publication Date Title
US6875951B2 (en) Laser machining device
KR100882967B1 (en) Laser welding apparatus and method for adjusting laser beam of the laser welding apparatus
TWI466748B (en) Laser processing apparatus
WO2009107538A1 (en) Laser processing device and laser processing method
US8022332B2 (en) Laser processing device
JP6695610B2 (en) Laser processing apparatus and laser processing method
KR102554342B1 (en) F-theta lens with diffractive optical element and optical system including the f-theta lens
KR102154285B1 (en) Drilling apparatus using laser beam
CN104379296A (en) Laser processing device
JP2018505568A (en) Line beam forming device
KR20140020776A (en) Laser machining device using fresnel zone plate and substrate cutting method using the device
KR100789279B1 (en) Laser machining apparatus
JP5221031B2 (en) Condensing optical system and laser processing apparatus
JP2013101243A (en) Multi-focal optical system and laser processing device
TW202135965A (en) Laser processing device and method for laser-processing a workpiece
JP6833117B1 (en) Laser processing machine
US9964857B2 (en) Beam exposure device
CN112099241B (en) Beam collimation system and method and laser radar
KR102524153B1 (en) Device for generating a line-like intensity distribution of a laser radiation
JP6335590B2 (en) Laser processing apparatus and lens unit
TWI792876B (en) Laser Drilling Device
KR102657008B1 (en) Laser processing device and laser processing method using a curved beam
RU2778397C1 (en) Device for manufacturing a groove and method for manufacturing a groove
KR102623097B1 (en) Laser beam drilling device
KR20190135714A (en) Apparatus and Method for Forming Fiber Bragg Grating on A Large Diameter Optical Fiber

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180328

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180420

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200415

R150 Certificate of patent or registration of utility model

Ref document number: 6695610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250