JP6693995B2 - Pressure sensor - Google Patents

Pressure sensor Download PDF

Info

Publication number
JP6693995B2
JP6693995B2 JP2018078704A JP2018078704A JP6693995B2 JP 6693995 B2 JP6693995 B2 JP 6693995B2 JP 2018078704 A JP2018078704 A JP 2018078704A JP 2018078704 A JP2018078704 A JP 2018078704A JP 6693995 B2 JP6693995 B2 JP 6693995B2
Authority
JP
Japan
Prior art keywords
hole
tubular portion
flow path
pressure
support wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018078704A
Other languages
Japanese (ja)
Other versions
JP2019184529A (en
Inventor
清隆 小山内
清隆 小山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2018078704A priority Critical patent/JP6693995B2/en
Publication of JP2019184529A publication Critical patent/JP2019184529A/en
Application granted granted Critical
Publication of JP6693995B2 publication Critical patent/JP6693995B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Description

本発明は、感圧素子がハウジングに組み込まれた構造の圧力センサに関する。   The present invention relates to a pressure sensor having a structure in which a pressure sensitive element is incorporated in a housing.

従来から、ガス、液体等の圧力媒体(流体)の圧力を測定する圧力センサは、圧力媒体の圧力に応じて電気信号を出力する感圧素子(センサチップ)と、圧力媒体を感圧素子まで導入するための管状部が形成されたハウジングとを有する構成のものが多く提供されている(例えば特許文献1)。
この種の圧力センサにおいて、感圧素子はハウジングの管状部内側の貫通孔の片端に配置してハウジングに組み込まれる。感圧素子はその感圧部の中心をハウジングの管状部内側の貫通孔の中心軸線に位置合わせしてハウジングに組み込まれることが一般的である。
BACKGROUND ART Conventionally, a pressure sensor that measures the pressure of a pressure medium (fluid) such as gas or liquid has a pressure-sensitive element (sensor chip) that outputs an electric signal according to the pressure of the pressure medium and a pressure-sensitive element that detects the pressure medium. A large number of structures having a housing having a tubular portion for introduction are provided (for example, Patent Document 1).
In this type of pressure sensor, the pressure sensitive element is arranged in one end of the through hole inside the tubular portion of the housing and is incorporated in the housing. The pressure-sensitive element is generally incorporated in the housing with the center of the pressure-sensitive portion aligned with the central axis of the through hole inside the tubular portion of the housing.

特開2003−130749号公報JP, 2003-130749, A

しかしながら、圧力媒体の流体中には微細な異物(例えば微細な砂粒、金属粉等の粉体など)が含まれることがある。このため、従来構成の圧力センサでは、長期間使用した場合に感圧素子の感圧部に異物が堆積して測定機能(測定精度等)が低下することがある。
また、圧力媒体中の異物が高速で感圧素子の感圧部に衝突した場合には、その衝撃によって感圧部が損傷、破壊されることもある。
However, the fluid of the pressure medium may contain fine foreign matter (for example, fine sand grains, powder such as metal powder). For this reason, in the pressure sensor of the conventional configuration, when used for a long period of time, foreign matter may accumulate on the pressure-sensitive portion of the pressure-sensitive element and the measurement function (measurement accuracy or the like) may deteriorate.
Further, when foreign matter in the pressure medium collides with the pressure sensitive portion of the pressure sensitive element at high speed, the impact may damage or destroy the pressure sensitive portion.

本発明の態様が解決しようとする課題は、感圧素子の寿命延長を実現できる圧力センサを提供することである。   The problem to be solved by the embodiments of the present invention is to provide a pressure sensor capable of extending the life of the pressure-sensitive element.

上記課題を解決するために、本発明では以下の態様を提供する。
第1の態様の圧力センサは、ハウジングと、前記ハウジングに設けられた感圧素子とを有し、前記ハウジングは、前記感圧素子を支持する素子支持壁と、前記素子支持壁の前記感圧素子が配置される素子配置面とは逆側の面から突出された管状部とを有し、前記素子支持壁には、前記素子支持壁を貫通して圧力媒体が通される前記管状部内側の流路孔に連通する貫通孔が形成され、前記感圧素子は前記素子支持壁の前記貫通孔の前記素子配置面側の開口部を塞ぐように配置され、前記流路孔の流路は前記管状部の突端に開口する開口端を有し且つその軸線方向全長にわたって一定断面寸法で延在形成され、前記貫通孔は前記流路孔に比べて小さい断面寸法で形成され、前記貫通孔の前記流路孔側の開口部は前記流路孔の軸線を回避した位置に形成され、前記貫通孔の前記流路孔側の開口部は、前記流路孔の軸線とは逆側の全体が前記素子支持壁における前記流路孔の内周面に対応する所に位置して前記流路孔の内周面に沿って延在し、前記流路孔の内周面周方向に沿う方向の寸法が前記流路孔の軸線に垂直の方向の寸法に比べて大きい細長形状の矩形状で前記流路孔におけるその内周面付近のみに連通するように形成されている。
前記貫通孔の前記流路孔側の開口部は、前記流路孔の軸線に対して、前記流路孔におけるその軸線から前記流路孔内周面までの最小離間距離の20%以上の離間距離を確保して、前記流路孔の軸線から離間させて形成されていても良い。
前記貫通孔の前記流路孔側の開口部は、前記管状部流路孔の軸線回り方向に前記管状部流路孔の軸線を中心とする10〜45度の角度範囲内に存在するように形成されていても良い。
In order to solve the above problems, the present invention provides the following aspects.
A pressure sensor according to a first aspect includes a housing and a pressure-sensitive element provided in the housing, the housing including an element support wall that supports the pressure-sensitive element, and the pressure-sensitive element of the element support wall. An element placement surface on which the element is placed, and a tubular portion protruding from a surface opposite to the element placement wall, wherein the element support wall has a tubular portion inside through which the pressure medium passes through the element support wall. A through hole communicating with the flow path hole is formed, the pressure-sensitive element is arranged so as to close the opening on the element placement surface side of the through hole of the element support wall, and the flow path of the flow path hole is The tubular portion has an opening end that opens to the projecting end and extends over the entire length in the axial direction of the tubular portion with a constant cross-sectional dimension, and the through hole is formed with a smaller cross-sectional dimension than the flow path hole. The opening on the side of the flow path hole is located at a position avoiding the axis of the flow path hole. The passage-side opening of the through-hole is located at a position where the entire side opposite to the axis of the passage hole corresponds to the inner peripheral surface of the passage hole in the element support wall. And an elongated shape extending along the inner peripheral surface of the flow path hole and having a dimension in the circumferential direction of the inner peripheral surface of the flow path hole larger than a dimension in a direction perpendicular to the axis of the flow path hole. The rectangular shape is formed so as to communicate only with the vicinity of the inner peripheral surface of the flow path hole.
The opening of the through hole on the side of the flow path is separated from the axis of the flow path by 20% or more of the minimum separation distance from the axis of the flow path to the inner peripheral surface of the flow path. It may be formed so as to secure a distance and be separated from the axis of the flow path hole.
The opening of the through hole on the side of the flow path hole is present in an angular range of 10 to 45 degrees around the axis of the flow path hole of the tubular portion in the direction around the axis of the flow path hole of the tubular portion. It may be formed.

本発明の態様に係る圧力センサによれば、管状部の流路孔に連通する支持壁の貫通孔の流路孔側の開口部が流路孔の軸線を回避した位置に形成されている構成により、管状部の流路孔から支持壁の貫通孔への異物の進入を少なく抑えることができる。また、管状部の流路孔に連通する支持壁の貫通孔の流路孔側の開口部が流路孔の軸線を回避した位置に形成されている構成であれば、流路孔の断面(流路孔軸線に垂直の断面)中央を高速で移動する異物が感圧素子に衝突することを回避できる。
このため、本発明の態様に係る圧力センサによれば、圧力媒体中の異物の堆積や衝突による感圧素子の機能低下や機能喪失を防ぐことができ、感圧素子の寿命延長を容易に実現できる。
According to the pressure sensor of the aspect of the present invention, the opening on the side of the flow path of the through hole of the support wall communicating with the flow path of the tubular portion is formed at a position avoiding the axis of the flow path. Thus, it is possible to suppress the entry of foreign matter into the through hole of the support wall from the flow path hole of the tubular portion. Further, if the configuration is such that the opening on the side of the flow path of the through hole of the support wall communicating with the flow path of the tubular portion is formed at a position avoiding the axis of the flow path, the cross section of the flow path ( It is possible to prevent foreign matter moving at high speed in the center of the cross section perpendicular to the axis of the flow path hole from colliding with the pressure sensitive element.
Therefore, according to the pressure sensor of the aspect of the present invention, it is possible to prevent the function deterioration or the function loss of the pressure sensitive element due to the accumulation or collision of the foreign matter in the pressure medium, and easily realize the extension of the life of the pressure sensitive element. it can.

本発明の1実施形態に係る圧力センサを示す正面図である。It is a front view showing a pressure sensor concerning one embodiment of the present invention. 図1の圧力センサの内部構造を示す側断面図である。It is a sectional side view which shows the internal structure of the pressure sensor of FIG. 図1の圧力センサを示す平面図である。It is a top view which shows the pressure sensor of FIG. 図1の圧力センサを示す下面図である。It is a bottom view which shows the pressure sensor of FIG. 図1の圧力センサの素子支持壁の貫通孔の変形例を示す平面図である。It is a top view which shows the modification of the through-hole of the element support wall of the pressure sensor of FIG. 図1の圧力センサの管状部流路孔の変形例を示す平面図である。It is a top view which shows the modification of the tubular part flow path hole of the pressure sensor of FIG. 図1の圧力センサの支持壁貫通孔の変形例を示す側断面図である。It is a sectional side view which shows the modification of the support wall through-hole of the pressure sensor of FIG.

以下、本発明の実施形態に係る圧力センサについて、図面を参照して説明する。
図1〜図3に示す実施形態の圧力センサ10は、ハウジング11と、ハウジング11に設けられた感圧素子12及び出力制御IC13とを有する。
また、圧力センサ10は、ハウジング11に取り付けられたリードフレーム14も有している。
Hereinafter, a pressure sensor according to an embodiment of the present invention will be described with reference to the drawings.
The pressure sensor 10 of the embodiment shown in FIGS. 1 to 3 includes a housing 11, a pressure sensitive element 12 provided in the housing 11, and an output control IC 13.
The pressure sensor 10 also has a lead frame 14 attached to the housing 11.

ハウジング11は、感圧素子12を支持する素子支持壁11aと、素子支持壁11aの感圧素子12が配置される素子配置面11bとは逆側の面11c(外側主面)から突出された管状部11dとを有する。
また、ハウジング11は、素子支持壁11aの外周部全周から素子配置面11b側に突出された側壁部11eも有している。
The housing 11 is projected from an element support wall 11a that supports the pressure sensitive element 12 and a surface 11c (outer main surface) of the element support wall 11a opposite to the element disposition surface 11b on which the pressure sensitive element 12 is disposed. It has a tubular portion 11d.
The housing 11 also has a side wall portion 11e protruding from the entire outer peripheral portion of the element support wall 11a toward the element placement surface 11b.

図1〜図3に示すように、管状部11dは、素子支持壁11aの外側主面11cから外側主面11cに垂直に突出された突筒部である。
素子支持壁11aには、その厚みを貫通して管状部11d内側の流路孔11f(以下、管状部流路孔、とも言う)に連通する貫通孔11gが形成されている。
As shown in FIGS. 1 to 3, the tubular portion 11d is a projecting tubular portion that vertically projects from the outer main surface 11c of the element support wall 11a to the outer main surface 11c.
The element supporting wall 11a is formed with a through hole 11g penetrating its thickness and communicating with a channel hole 11f inside the tubular portion 11d (hereinafter, also referred to as a tubular portion channel hole).

素子支持壁11aの貫通孔11gを、以下、支持壁貫通孔とも言う。
支持壁貫通孔11gは、その延在方向片端を素子支持壁11aの管状部流路孔11fに臨む部分11h(以下、孔底形成壁部、とも言う)に開口させて形成されている。
管状部流路孔11fは、素子支持壁11aから突出する管状部11の突端に開口端を有する。孔底形成壁部11hは、管状部流路孔11fの開口端から見て管状部流路孔11fの孔奥に位置し、管状部流路孔11fの孔底面を形成する。管状部流路孔11fは、管状部11突端側の開口端から孔底形成壁部11hまで延在している。
The through hole 11g of the element support wall 11a is hereinafter also referred to as a support wall through hole.
The support wall through hole 11g is formed by opening one end in the extending direction into a portion 11h (hereinafter, also referred to as a hole bottom forming wall portion) of the element support wall 11a which faces the tubular portion flow passage hole 11f.
The tubular portion flow path hole 11f has an open end at the projecting end of the tubular portion 11 protruding from the element support wall 11a. The hole bottom forming wall portion 11h is located deep inside the tubular portion flow passage hole 11f when viewed from the opening end of the tubular portion flow passage hole 11f, and forms the hole bottom surface of the tubular portion flow passage hole 11f. The tubular portion flow passage hole 11f extends from the opening end on the protruding end side of the tubular portion 11 to the hole bottom forming wall portion 11h.

支持壁貫通孔11gは管状部流路孔11fに比べて小さい断面(各孔についてその軸線に垂直の断面。以下同)寸法で形成されている。
図1〜図3に例示した圧力センサ10の管状部流路孔11f及び支持壁貫通孔11gは断面円形で延在形成されている。支持壁貫通孔11gは管状部流路孔11fに比べて径小に形成されている。また、図1〜図3の管状部流路孔11f及び支持壁貫通孔11gは、それぞれ、軸線方向全長にわたって一定断面寸法で延在形成されている。
The support wall through hole 11g is formed to have a smaller cross section (a cross section perpendicular to the axis of each hole; the same applies hereinafter) as compared with the tubular portion flow path hole 11f.
The tubular portion flow passage hole 11f and the support wall through hole 11g of the pressure sensor 10 illustrated in FIGS. 1 to 3 are formed to extend in a circular cross section. The support wall through hole 11g is formed to have a smaller diameter than the tubular portion flow path hole 11f. In addition, the tubular portion flow passage hole 11f and the support wall through hole 11g in FIGS. 1 to 3 are each formed to have a constant cross-sectional dimension over the entire length in the axial direction.

図2、図3に例示した圧力センサ10の管状部流路孔11f及び支持壁貫通孔11gは、それぞれの軸線が互いに平行になるように形成されている。
支持壁貫通孔11gの管状部流路孔11f側の開口部(素子支持壁11aの外側主面11cに開口する開口部)は、管状部流路孔11fの軸線Pから離間され、管状部流路孔11fの断面(管状部流路孔11f軸線に垂直の断面)中心付近を回避した位置に形成されている。
The tubular portion flow path hole 11f and the support wall through hole 11g of the pressure sensor 10 illustrated in FIGS. 2 and 3 are formed such that their axes are parallel to each other.
The opening of the support wall through-hole 11g on the tubular portion flow passage hole 11f side (opening on the outer main surface 11c of the element support wall 11a) is separated from the axis P of the tubular portion flow passage hole 11f, and the tubular portion flow It is formed at a position avoiding the center of the cross section of the passage hole 11f (cross section perpendicular to the axis of the tubular portion passage hole 11f).

感圧素子12及び出力制御IC13は、素子支持壁11aの素子配置面11bに接着剤による接着固定等によって取り付けられている。
素子支持壁11aの素子配置面11bは、素子支持壁11aの外周全周に設けられた側壁部11eによって囲まれた内側に位置する。感圧素子12及び出力制御IC13は、素子支持壁11aと側壁部11eとによって囲まれた内側の領域15(素子収容領域)に配置されている。
The pressure sensitive element 12 and the output control IC 13 are attached to the element disposition surface 11b of the element support wall 11a by adhesive bonding with an adhesive or the like.
The element disposition surface 11b of the element support wall 11a is located inside the element support wall 11a surrounded by side wall portions 11e provided on the entire outer circumference of the element support wall 11a. The pressure sensitive element 12 and the output control IC 13 are arranged in an inner region 15 (element housing region) surrounded by the element support wall 11a and the side wall portion 11e.

リードフレーム14はハウジング11の側壁部11eに固定されている。リードフレーム14は側壁部11eの厚みを貫通して設けられている。
図4に示すように、リードフレーム14は側壁部11eから素子収容領域15へ突出された内側突出部14aと、側壁部11eから外側(素子収容領域15とは逆側)へ突出された外側突出部14bとを有する。
感圧素子12及び出力制御IC13は、金属ワイヤ16を介してリードフレーム14の内側突出部14aと電気的に接続されている。
感圧素子12及び出力制御IC13は、リードフレーム14の外側突出部14bに接続される電気回路等とリードフレーム14を介して電気的に接続される。
The lead frame 14 is fixed to the side wall portion 11e of the housing 11. The lead frame 14 is provided so as to penetrate through the thickness of the side wall portion 11e.
As shown in FIG. 4, the lead frame 14 has an inner protruding portion 14a protruding from the side wall portion 11e to the element accommodating region 15 and an outer protruding portion 14a protruding from the side wall portion 11e to the outer side (the side opposite to the element accommodating region 15). And a portion 14b.
The pressure sensitive element 12 and the output control IC 13 are electrically connected to the inner protruding portion 14 a of the lead frame 14 via the metal wire 16.
The pressure sensitive element 12 and the output control IC 13 are electrically connected via the lead frame 14 to an electric circuit or the like connected to the outer protruding portion 14 b of the lead frame 14.

図2、図4に示すように、感圧素子12は、板状に形成されたセンサチップであり、素子支持壁11aの貫通孔11gの素子配置面11b側の開口部を塞いで素子支持壁11aに取り付けられる。感圧素子12は、その片面の感圧部を素子支持壁11aの貫通孔11gに臨ませて素子支持壁11aに取り付けられる。
圧力センサ10は、管状部流路孔11fと支持壁貫通孔11gとで構成される圧力媒体収容領域17内の圧力媒体の圧力を感圧素子12によって測定する。
As shown in FIGS. 2 and 4, the pressure-sensitive element 12 is a sensor chip formed in a plate shape, and covers the opening of the through hole 11g of the element support wall 11a on the element placement surface 11b side to close the element support wall. It is attached to 11a. The pressure sensitive element 12 is attached to the element support wall 11a with one side of the pressure sensitive portion facing the through hole 11g of the element support wall 11a.
The pressure sensor 10 measures the pressure of the pressure medium in the pressure medium accommodating region 17 constituted by the tubular portion flow path hole 11f and the support wall through hole 11g by the pressure sensitive element 12.

感圧素子12は、素子支持壁11aとの間からの圧力媒体の漏出防止のために、例えば素子支持壁11aの素子配置面11bとの間にOリング等を挟み込んで素子配置面11bとの間のシール性を確保して素子支持壁11aに取り付けることがより好適である。   In order to prevent the pressure medium from leaking from between the pressure-sensitive element 12 and the element support wall 11a, for example, an O-ring or the like is sandwiched between the pressure-sensitive element 12 and the element placement surface 11b of the element support wall 11a so that the pressure-sensing element 12 is separated from the element placement surface 11b. It is more preferable to secure the sealing property between them and attach them to the element support wall 11a.

管状部流路孔11f内の圧力媒体は、圧力媒体収容領域17内の圧力媒体に管状部流路孔11fの開口端から作用する圧力の変動によって、管状部流路孔11f軸線方向に移動可能である。
ところで、管状部流路孔11fの開口端から作用する圧力の変動によって管状部流路孔11f内の圧力媒体が管状部流路孔11f軸線方向に移動する場合、流体力学的性質から必然的に管状部流路孔11f内周面から管状部流路孔11f軸線に向かう速度分布が生まれる。すなわち、管状部流路孔11fの開口端から作用する圧力の変動による管状部流路孔11f内の圧力媒体の管状部流路孔11f軸線方向の移動速度は、圧力媒体の管状部流路孔11f内周面と接する部分が最も遅く、管状部流路孔11f内周面から管状部流路孔11fの軸線P側に行くにしたがって速い傾向となる。
そのため管状部流路孔11f内の圧力媒体中に存在する異物は管状部流路孔11fの断面中心付近(管状部流路孔11f軸線付近)を移動する頻度が高くなる。
The pressure medium in the tubular portion flow passage hole 11f can move in the axial direction of the tubular portion flow passage hole 11f due to the fluctuation of the pressure acting on the pressure medium in the pressure medium storage area 17 from the opening end of the tubular portion flow passage hole 11f. Is.
By the way, when the pressure medium in the tubular part channel hole 11f moves in the axial direction of the tubular part channel hole 11f due to the fluctuation of the pressure acting from the opening end of the tubular part channel hole 11f, it is inevitable from the hydrodynamic property. A velocity distribution is generated from the inner peripheral surface of the tubular portion flow passage hole 11f toward the axis of the tubular portion flow passage hole 11f. That is, the moving speed of the pressure medium in the tubular part channel hole 11f in the axial direction of the tubular part channel hole 11f due to the fluctuation of the pressure acting from the open end of the tubular part channel hole 11f is the tubular part channel hole of the pressure medium. The portion in contact with the inner peripheral surface of 11f is the slowest, and tends to be faster from the inner peripheral surface of the tubular portion flow passage hole 11f toward the axis P side of the tubular portion flow passage hole 11f.
Therefore, the foreign matter existing in the pressure medium in the tubular portion flow passage hole 11f frequently moves near the cross-sectional center of the tubular portion flow passage hole 11f (near the axis of the tubular portion flow passage hole 11f).

図1〜図3に示すように、圧力センサ10の支持壁貫通孔11gは、管状部流路孔11fの軸線Pから離間され、管状部流路孔11fの断面中心付近を回避した位置に形成されている。支持壁貫通孔11gの管状部流路孔11f側の開口部は、孔底形成壁部11hの外周部に位置する。管状部流路孔11fの断面中心付近の開口端とは逆の側には孔底形成壁部11hが存在する。   As shown in FIGS. 1 to 3, the support wall through hole 11g of the pressure sensor 10 is separated from the axis P of the tubular portion flow passage hole 11f and formed at a position avoiding the vicinity of the center of the cross section of the tubular portion flow passage hole 11f. Has been done. The opening portion of the support wall through hole 11g on the tubular portion flow passage hole 11f side is located on the outer peripheral portion of the hole bottom forming wall portion 11h. A hole bottom forming wall portion 11h exists on the side opposite to the opening end near the center of the cross section of the tubular portion flow passage hole 11f.

この圧力センサ10では、管状部流路孔11f開口端から管状部流路孔11f内の圧力媒体に作用する圧力の変動によって管状部流路孔11fの断面中心付近を移動した異物は感圧素子12に衝突せず孔底形成壁部11hに衝突する。また、この圧力センサ10では、管状部流路孔11fの断面中心付近を移動した異物の感圧素子12の感圧部への付着、堆積も防ぐことができる。
このため、圧力センサ10では、管状部流路孔11fの断面中心付近を移動した異物の感圧素子12への衝突や付着、堆積による感圧素子12の機能低下や機能喪失を防ぐことができ、圧力測定機能の安定維持及び寿命延長を実現できる。
In this pressure sensor 10, the foreign matter that has moved near the center of the cross section of the tubular portion channel hole 11f due to the fluctuation of the pressure acting on the pressure medium in the tubular portion channel hole 11f from the opening end of the tubular portion channel hole 11f is a pressure sensitive element. It does not collide with 12, but collides with the hole bottom forming wall portion 11h. In addition, the pressure sensor 10 can prevent foreign matter that has moved near the center of the cross section of the tubular portion flow path hole 11f from adhering to or accumulating on the pressure-sensitive portion of the pressure-sensitive element 12.
For this reason, in the pressure sensor 10, it is possible to prevent the foreign matter that has moved near the center of the cross section of the tubular portion flow passage hole 11f from colliding with or adhering to the pressure-sensitive element 12 and from degrading or losing its function due to accumulation. It is possible to realize stable maintenance of the pressure measurement function and extension of life.

特許文献1のように感圧素子がその感圧部の中心をハウジングの管状部内側の貫通孔の中心軸線に位置合わせしてハウジングに組み込まれた従来構造の圧力センサでは、貫通孔内の圧力媒体には貫通孔の感圧素子とは逆側の開口端から作用する圧力の変動によって、貫通孔内周面から貫通孔軸線側に行くにしたがって貫通孔軸線方向への移動速度が速く(高く)なる速度分布が生じる。その結果、貫通孔内周面付近に比べて貫通孔軸線付近の方が貫通孔内の異物が移動する頻度が高くなる。しかも、貫通孔開口端から貫通孔内の圧力媒体に作用する圧力の変動による貫通孔内の圧力媒体及び異物の貫通孔軸線方向への移動速度は、貫通孔内周面付近に比べて貫通孔軸線付近の方が速い。   In the pressure sensor of the conventional structure in which the center of the pressure-sensitive element is incorporated in the housing by aligning the center of the pressure-sensitive portion with the central axis of the through-hole inside the tubular portion of the housing as in Patent Document 1, the pressure in the through-hole is reduced. Due to the fluctuation of the pressure acting on the medium from the opening end of the through-hole opposite to the pressure-sensitive element, the moving speed in the through-hole axial direction becomes faster (higher) from the inner peripheral surface of the through-hole toward the through-hole axis. ) Is generated. As a result, the foreign matter in the through hole moves more frequently in the vicinity of the through hole axis than in the vicinity of the inner peripheral surface of the through hole. Moreover, the moving speed of the pressure medium and the foreign matter in the through hole in the axial direction of the through hole due to the fluctuation of the pressure acting on the pressure medium in the through hole from the opening end of the through hole is higher than that in the vicinity of the inner peripheral surface of the through hole. Faster near the axis.

本発明者は、鋭意検証等の結果、従来構造の圧力センサにおける感圧素子の感圧部の損傷、破壊は、圧力センサを長期間使用した場合に、貫通孔軸線付近を移動する異物の感圧素子の感圧部への衝突が繰り返され、感圧素子の感圧部の貫通孔軸線上に位置する部分が局所的に損傷または破壊されることにより生じることを把握した。
また、感圧素子のその感圧部への異物の付着、堆積による圧力測定機能の低下は、圧力センサの長期間の使用により、感圧素子の感圧部の貫通孔軸線上に位置する部分への異物の付着、堆積が局所的に多くなって引き起こされる。
As a result of earnest verification, etc., the present inventor has found that damage or destruction of the pressure-sensitive portion of the pressure-sensitive element in the pressure sensor having the conventional structure is due to the detection of foreign matter moving near the axis of the through-hole when the pressure sensor is used for a long period of time. It was understood that the collision of the pressure sensitive element with the pressure sensitive portion was repeated, and the portion of the pressure sensitive element of the pressure sensitive element located on the axis of the through hole was locally damaged or destroyed.
Also, the deterioration of the pressure measurement function due to the adhesion and accumulation of foreign matter on the pressure-sensitive portion of the pressure-sensitive element is caused by the use of the pressure sensor for a long period of time at the portion located on the through-hole axis of the pressure-sensitive element. This is caused by the local increase in adhesion and deposition of foreign matter on the surface.

これに対して、本発明に係る実施形態の圧力センサ10は、図2、図3に示すように、支持壁貫通孔11gが、管状部流路孔11fの軸線Pから離間され、管状部流路孔11fの断面中心付近を回避した位置に形成されている構成を採用している。このため、圧力センサ10は、管状部流路孔11f開口端から管状部流路孔11f内の圧力媒体に作用する圧力の変動によって管状部流路孔11fの断面中心付近を移動した異物の感圧素子12への衝突を回避でき、感圧素子12の圧力測定機能を安定に維持できる。   On the other hand, in the pressure sensor 10 according to the embodiment of the present invention, as shown in FIGS. 2 and 3, the support wall through hole 11g is separated from the axis P of the tubular portion flow passage hole 11f, and the tubular portion flow is reduced. A configuration is adopted in which the passage hole 11f is formed at a position avoiding the vicinity of the center of the cross section. Therefore, the pressure sensor 10 detects the presence of foreign matter that has moved in the vicinity of the center of the cross section of the tubular portion flow passage hole 11f due to fluctuations in pressure acting on the pressure medium in the tubular portion flow passage hole 11f from the opening end of the tubular portion flow passage hole 11f. The collision with the pressure element 12 can be avoided, and the pressure measuring function of the pressure sensitive element 12 can be stably maintained.

圧力センサ10では、管状部流路孔11f開口端から管状部流路孔11f内の圧力媒体に作用する圧力の変動によって支持壁貫通孔11g内の圧力媒体の支持壁貫通孔11g軸線方向の移動も生じる。
また、管状部流路孔11f開口端から管状部流路孔11f内の圧力媒体に作用する圧力が変動したときの支持壁貫通孔11g内の圧力媒体の支持壁貫通孔11g軸線方向の移動速度は、仮に、管状部流路孔11f内において支持壁貫通孔11gの延長上に位置する領域に存在する圧力媒体の管状部流路孔11f軸線方向の移動速度が均等である場合、圧力媒体の支持壁貫通孔11g内周面と接する部分が最も遅く、支持壁貫通孔11g内周面から支持壁貫通孔11gの軸線P側に行くにしたがって速い分布を生じる。
In the pressure sensor 10, the pressure medium in the support wall through hole 11g moves in the axial direction of the support wall through hole 11g due to the fluctuation of the pressure acting on the pressure medium in the tubular part flow hole 11f from the opening end of the tubular portion flow hole 11f. Also occurs.
Further, the moving speed of the pressure medium in the support wall through hole 11g in the axial direction of the support wall through hole 11g when the pressure acting on the pressure medium in the tubular portion flow path hole 11f fluctuates from the opening end of the tubular portion flow path hole 11f. If the moving speed of the pressure medium existing in the region located on the extension of the support wall through hole 11g in the tubular portion flow passage hole 11f in the tubular portion flow passage hole 11f in the axial direction is equal, The portion in contact with the inner peripheral surface of the support wall through hole 11g is the slowest, and a faster distribution is generated from the inner peripheral surface of the support wall through hole 11g toward the axis P side of the support wall through hole 11g.

但し、管状部流路孔11f開口端から管状部流路孔11f内の圧力媒体に作用する圧力の変動による支持壁貫通孔11g内の圧力媒体の支持壁貫通孔11g軸線方向の移動速度は、管状部流路孔11f内の圧力媒体の管状部流路孔11f軸線方向の移動速度の影響を受ける。   However, the moving speed of the pressure medium in the support wall through hole 11g in the axial direction of the support wall through hole 11g due to the fluctuation of the pressure acting on the pressure medium in the tubular portion flow hole 11f from the opening end of the tubular portion flow path hole 11f is It is affected by the moving speed of the pressure medium in the tubular portion flow passage hole 11f in the axial direction of the tubular portion flow passage hole 11f.

管状部流路孔11f内において管状部流路孔11fの軸線Pを回避して形成された支持壁貫通孔11gの延長上に位置する領域を、以下、支持壁貫通孔延長領域、とも言う。
管状部流路孔11f開口端から管状部流路孔11f内の圧力媒体に作用する圧力が変動したとき、支持壁貫通孔11g内の圧力媒体の支持壁貫通孔11g軸線方向の移動速度は、具体的には、管状部流路孔11fの支持壁貫通孔延長領域に位置する圧力媒体の管状部流路孔11f軸線方向の移動速度の影響を受ける。
The region located on the extension of the support wall through hole 11g formed while avoiding the axis P of the tubular portion flow hole 11f in the tubular portion flow hole 11f is hereinafter also referred to as a support wall through hole extension region.
When the pressure acting on the pressure medium in the tubular portion flow passage hole 11f fluctuates from the opening end of the tubular portion flow passage hole 11f, the moving speed of the pressure medium in the support wall through hole 11g in the axial direction of the support wall through hole 11g is Specifically, it is affected by the moving speed of the pressure medium located in the support wall through hole extension region of the tubular portion flow passage hole 11f in the axial direction of the tubular portion flow passage hole 11f.

管状部流路孔11f開口端から管状部流路孔11f内の圧力媒体に作用する圧力が変動したとき、管状部流路孔11fの支持壁貫通孔延長領域に存在する圧力媒体の管状部流路孔11f軸線方向の移動速度は、管状部流路孔11f軸線付近の圧力媒体の管状部流路孔11f軸線方向の移動速度よりも遅い。
このため、管状部流路孔11f開口端から管状部流路孔11f内の圧力媒体に作用する圧力の変動による支持壁貫通孔11g内の圧力媒体の支持壁貫通孔11g軸線方向の移動速度は、支持壁貫通孔11gの軸線付近でも管状部流路孔11f軸線付近の圧力媒体の管状部流路孔11f軸線方向の移動速度よりも遅くなる。
When the pressure acting on the pressure medium in the tubular portion flow passage hole 11f fluctuates from the opening end of the tubular portion flow passage hole 11f, the tubular portion flow of the pressure medium existing in the support wall through hole extension region of the tubular portion flow passage hole 11f. The moving speed of the passage hole 11f in the axial direction is slower than the moving speed of the pressure medium in the vicinity of the tubular portion flow passage hole 11f axis in the tubular portion flow passage hole 11f axial direction.
Therefore, the moving speed of the pressure medium in the support wall through hole 11g in the axial direction of the support wall through hole 11g due to the fluctuation of the pressure acting on the pressure medium in the tubular portion flow hole 11f from the opening end of the tubular portion flow hole 11f is Even in the vicinity of the axis of the support wall through hole 11g, the moving speed of the pressure medium in the vicinity of the axis of the tubular portion flow passage hole 11f in the axial direction of the tubular portion flow passage hole 11f becomes slower.

図2、図3に示す圧力センサ10の支持壁貫通孔11gは、その内周面(支持壁貫通孔11g外周)が、素子支持壁11aにおける管状部流路孔11fの内周面の仮想延長に接するように形成されている。つまり、支持壁貫通孔11gの内周面(支持壁貫通孔11g外周)は、ハウジング11の孔底形成壁部11hの外周に接するように形成されている。
また、支持壁貫通孔11gの断面サイズは管状部流路孔11fの断面サイズに比べて格段に小さい。図2、図3に示す圧力センサ10の支持壁貫通孔11gの内径(直径)は管状部流路孔11fの断面半径の60%以下である。また、図2、図3に示す圧力センサ10の支持壁貫通孔11gは、管状部流路孔11fの軸線Pから、管状部流路孔11fの断面半径の40%以上の離間距離を確保して形成されている。
図2、図3に示す圧力センサ10の支持壁貫通孔11gの支持壁貫通孔延長領域は、その全体が管状部流路孔11fの外周部に位置する。
The inner peripheral surface (outer periphery of the support wall through hole 11g) of the support wall through hole 11g of the pressure sensor 10 shown in FIGS. 2 and 3 is a virtual extension of the inner peripheral surface of the tubular portion channel hole 11f in the element support wall 11a. Is formed so as to contact with. That is, the inner peripheral surface of the support wall through hole 11g (the outer periphery of the support wall through hole 11g) is formed so as to contact the outer circumference of the hole bottom forming wall portion 11h of the housing 11.
Moreover, the cross-sectional size of the support wall through hole 11g is significantly smaller than the cross-sectional size of the tubular portion flow path hole 11f. The inner diameter (diameter) of the support wall through hole 11g of the pressure sensor 10 shown in FIGS. 2 and 3 is 60% or less of the cross-sectional radius of the tubular portion flow path hole 11f. Further, the support wall through hole 11g of the pressure sensor 10 shown in FIGS. 2 and 3 secures a separation distance of 40% or more of the cross-sectional radius of the tubular portion flow passage hole 11f from the axis P of the tubular portion flow passage hole 11f. Is formed.
The entire support wall through hole extension region of the support wall through hole 11g of the pressure sensor 10 shown in FIGS. 2 and 3 is located at the outer peripheral portion of the tubular portion flow passage hole 11f.

管状部流路孔11fの外周部は、管状部流路孔11f断面において、管状部流路孔11f開口端から管状部流路孔11f内の圧力媒体に作用する圧力の変動による管状部流路孔11f内の圧力媒体の管状部流路孔11f軸線方向の移動速度が最も遅い部分を含む領域である。
このため、管状部流路孔11f開口端から管状部流路孔11f内の圧力媒体に作用する圧力の変動による支持壁貫通孔11g内の圧力媒体の支持壁貫通孔11g軸線方向の移動速度は、管状部流路孔11f軸線付近の圧力媒体の管状部流路孔11f軸線方向の移動速度よりも遅くなる。
The outer peripheral portion of the tubular portion flow passage hole 11f has a tubular portion flow passage due to a change in pressure acting on the pressure medium in the tubular portion flow passage hole 11f from the opening end of the tubular portion flow passage hole 11f in the cross section of the tubular portion flow passage hole 11f. This is a region including a portion where the moving speed of the pressure medium in the hole 11f in the tubular portion flow path hole 11f in the axial direction is the slowest.
Therefore, the moving speed of the pressure medium in the support wall through hole 11g in the axial direction of the support wall through hole 11g due to the fluctuation of the pressure acting on the pressure medium in the tubular portion flow hole 11f from the opening end of the tubular portion flow hole 11f is The moving speed of the pressure medium near the axis of the tubular portion flow passage hole 11f is slower than the moving speed of the pressure medium in the axial direction of the tubular portion flow passage hole 11f.

管状部流路孔11f開口端から管状部流路孔11f内の圧力媒体に作用する圧力が変動したとき、管状部流路孔11fに比べて断面サイズが小さい支持壁貫通孔11g内の圧力媒体の支持壁貫通孔11g軸線方向の移動速度は、管状部流路孔11f内の圧力媒体に比べて支持壁貫通孔11gの流路抵抗の影響を受けやすい。このため、管状部流路孔11f開口端から管状部流路孔11f内の圧力媒体に作用する圧力が変動したとき、支持壁貫通孔11g内の圧力媒体の支持壁貫通孔11g軸線方向の移動速度は、管状部流路孔11f軸線付近の圧力媒体の管状部流路孔11f軸線方向の移動速度よりも遅くなる。   When the pressure acting on the pressure medium in the tubular portion flow passage hole 11f fluctuates from the opening end of the tubular portion flow passage hole 11f, the pressure medium in the support wall through hole 11g having a smaller cross-sectional size than the tubular portion flow passage hole 11f. The moving speed in the axial direction of the support wall through hole 11g is more likely to be affected by the flow path resistance of the support wall through hole 11g than the pressure medium in the tubular portion flow path 11f. Therefore, when the pressure acting on the pressure medium in the tubular portion channel hole 11f fluctuates from the opening end of the tubular portion channel hole 11f, the pressure medium in the supporting wall through hole 11g moves in the axial direction of the supporting wall through hole 11g. The speed is lower than the moving speed of the pressure medium in the vicinity of the axis of the tubular portion flow passage hole 11f in the axial direction of the tubular portion flow passage hole 11f.

また、管状部流路孔11f内において支持壁貫通孔11gの延長上の領域に存在する圧力媒体の、管状部流路孔11f開口端から作用する圧力の変動による管状部流路孔11f軸線方向の移動速度は均等ではなく、管状部流路孔11fの軸線Pから距離が近いほど速い。
このため、管状部流路孔11f開口端から管状部流路孔11f内の圧力媒体に作用する圧力が変動したとき、支持壁貫通孔11g内の圧力媒体の支持壁貫通孔11g軸線方向の移動速度については、支持壁貫通孔11g内周面から支持壁貫通孔11g軸線に向かう速度分布が生じにくい。支持壁貫通孔11g断面における圧力媒体の移動速度のばらつきは、管状部流路孔11f断面における圧力媒体の移動速度のばらつきよりも小さい。
また、圧力センサ10を長期間使用した場合に、支持壁貫通孔11g内では、管状部流路孔11f内に比べて、軸線付近の異物の移動頻度が高くならない。支持壁貫通孔11g断面における異物の移動頻度のばらつきは、管状部流路孔11f断面における異物の移動頻度のばらつきよりも小さい。
In addition, in the tubular portion flow passage hole 11f, the axial direction of the tubular portion flow passage hole 11f due to the fluctuation of the pressure of the pressure medium existing in the region on the extension of the support wall through hole 11g inside the tubular portion flow passage hole 11f. Is not uniform, and is faster as the distance from the axis P of the tubular portion flow passage hole 11f is shorter.
Therefore, when the pressure acting on the pressure medium in the tubular portion channel hole 11f fluctuates from the opening end of the tubular portion channel hole 11f, the pressure medium in the supporting wall through hole 11g moves in the axial direction of the supporting wall through hole 11g. Regarding the speed, it is difficult to generate a speed distribution from the inner peripheral surface of the support wall through hole 11g to the axis of the support wall through hole 11g. The variation in the moving speed of the pressure medium in the cross section of the support wall through hole 11g is smaller than the variation in the moving speed of the pressure medium in the cross section of the tubular portion channel hole 11f.
Further, when the pressure sensor 10 is used for a long period of time, the frequency of movement of foreign matter in the vicinity of the axis does not become higher in the support wall through hole 11g than in the tubular portion flow path hole 11f. The variation in the movement frequency of the foreign matter in the cross section of the support wall through hole 11g is smaller than the variation in the movement frequency of the foreign matter in the cross section of the tubular portion channel hole 11f.

以上のことから、圧力センサ10では、管状部流路孔11f開口端から管状部流路孔11f内の圧力媒体に作用する圧力が繰り返し変動しても、支持壁貫通孔11g内の異物が感圧素子12の感圧部の一部に集中的に衝突を繰り返して、感圧素子12の感圧部の一部を損傷、破壊することを回避でき、感圧素子12の圧力測定機能を安定に維持できる。
また、図2、図3に示すように、支持壁貫通孔11gが管状部流路孔11fの軸線Pから離間され、管状部流路孔11fの断面中心付近を回避した位置に形成されている構成では、管状部流路孔11fの断面中心付近を移動する異物が感圧素子12の感圧部に付着、堆積することを防ぐことができる。
したがって、圧力センサ10では、管状部流路孔11fの断面中心付近を移動した異物の感圧素子12への衝突や付着、堆積による感圧素子12の機能低下や機能喪失を防ぐことができ、圧力測定機能の安定維持及び寿命延長を実現できる。
From the above, in the pressure sensor 10, even if the pressure acting on the pressure medium in the tubular portion channel hole 11f from the opening end of the tubular portion channel hole 11f repeatedly fluctuates, foreign matter in the support wall through hole 11g is detected. It is possible to avoid repeatedly damaging and destroying part of the pressure-sensitive portion of the pressure-sensitive element 12 by repeatedly repeatedly colliding with a part of the pressure-sensitive portion of the pressure-sensitive element 12, and stabilizing the pressure measuring function of the pressure-sensitive element 12. Can be maintained.
Further, as shown in FIGS. 2 and 3, the support wall through hole 11g is separated from the axis P of the tubular portion flow passage hole 11f, and is formed at a position avoiding the vicinity of the cross-section center of the tubular portion flow passage hole 11f. With the configuration, it is possible to prevent foreign matter moving near the center of the cross section of the tubular portion flow path hole 11f from adhering to and depositing on the pressure-sensitive portion of the pressure-sensitive element 12.
Therefore, in the pressure sensor 10, it is possible to prevent the foreign matter that has moved near the center of the cross section of the tubular portion flow path hole 11f from colliding with or adhering to the pressure-sensitive element 12, and the functional deterioration or loss of the pressure-sensitive element 12 due to the accumulation. Stable maintenance of the pressure measurement function and extension of the service life can be realized.

圧力センサ10の支持壁貫通孔11gは、その外周が、管状部流路孔11fの軸線P近傍に位置するように形成した構成も採用可能である。
支持壁貫通孔11gは、管状部流路孔11f軸線を回避した位置に形成されていれば、例えば支持壁貫通孔11gの流路孔11f軸線からの離間距離が微小でゼロに近くても良い。
The support wall through hole 11g of the pressure sensor 10 may have a configuration in which the outer circumference thereof is located in the vicinity of the axis P of the tubular portion flow path hole 11f.
As long as the support wall through hole 11g is formed at a position avoiding the tubular portion flow path hole 11f axis, the distance between the support wall through hole 11g and the flow path hole 11f axis may be minute and close to zero. ..

支持壁貫通孔11gの管状部流路孔11f軸線からの離間距離が微小でゼロに近くても、支持壁貫通孔11gはその全体が管状部流路孔11f軸線を回避した位置にある。このため、圧力センサ10は、長期間使用しても、管状部流路孔11f軸線付近を移動する異物の感圧素子12に対する衝突頻度を、従来構造の圧力センサにおける貫通孔軸線付近を移動する異物の感圧素子に対する衝突頻度に比べて大幅に減少できる。   Even if the distance between the support wall through hole 11g and the tubular portion flow passage hole 11f axis is small and close to zero, the entire support wall through hole 11g is in a position avoiding the tubular portion flow passage hole 11f axis line. Therefore, even if the pressure sensor 10 is used for a long period of time, the frequency of collision of foreign matter moving near the tubular portion flow path hole 11f axis with the pressure sensitive element 12 moves near the through hole axis line in the pressure sensor of the conventional structure. The frequency of collision of foreign matter with the pressure-sensitive element can be greatly reduced.

また、支持壁貫通孔11gの内周面近傍では、圧力媒体に支持壁貫通孔11g内周面との接触による流動抵抗が作用することから、管状部流路孔11f開口端から管状部流路孔11f内の圧力媒体に作用する圧力の変動による圧力媒体の移動速度が抑制される。
圧力センサ10は、管状部流路孔11fから支持壁貫通孔11gの管状部流路孔11f軸線に近い所に位置する内周面の近傍に進入した異物の、管状部流路孔11f開口端から管状部流路孔11f内の圧力媒体に作用する圧力の変動による支持壁貫通孔11g軸線方向の移動速度を、感圧素子12の損傷や破壊を生じないレベルの低速に抑えることが可能である。このため、異物の衝突による感圧素子12の損傷や破壊を防止できる。
Further, in the vicinity of the inner peripheral surface of the support wall through hole 11g, flow resistance due to contact with the inner peripheral surface of the support wall through hole 11g acts on the pressure medium, so that the tubular portion flow path hole 11f is opened to the tubular portion flow path. The moving speed of the pressure medium due to the fluctuation of the pressure acting on the pressure medium in the hole 11f is suppressed.
The pressure sensor 10 includes a tubular portion flow passage hole 11f open end of foreign matter that has entered from the tubular portion flow passage hole 11f into the vicinity of the inner peripheral surface of the support wall through hole 11g located near the axis of the tubular portion flow passage hole 11f. It is possible to suppress the moving speed in the axial direction of the support wall through hole 11g due to the fluctuation of the pressure acting on the pressure medium in the tubular portion flow path hole 11f to a low speed at which the pressure sensitive element 12 is not damaged or destroyed. is there. Therefore, it is possible to prevent damage or destruction of the pressure sensitive element 12 due to the collision of foreign matter.

また、支持壁貫通孔11gの管状部流路孔11f軸線からの離間距離が微小でゼロに近い場合でも、支持壁貫通孔11gは、管状部流路孔11f軸線の周囲における半分に満たない領域にしか存在しない。支持壁貫通孔11gには、管状部流路孔11fの断面中心付近を移動する異物のうち、管状部流路孔11f軸線の周囲における半分に満たない領域に位置するものしか進入しない。
また、既述の通り、管状部流路孔11f開口端から管状部流路孔11f内の圧力媒体に作用する圧力が変動したときの、支持壁貫通孔11g断面における異物の移動頻度のばらつきは、管状部流路孔11f断面における異物の移動頻度のばらつきよりも小さい。
このため、本発明に係る実施形態の圧力センサ10では、長期間使用しても、感圧素子12の感圧部の一部への異物の集中的な付着、堆積が生じにくく、圧力測定機能を安定維持でき、従来構造の圧力センサに比べて寿命を延長できる。
Further, even when the distance between the support wall through hole 11g and the tubular portion flow passage hole 11f axis is minute and close to zero, the support wall through hole 11g is less than half of the circumference of the tubular portion flow passage hole 11f axis line. It exists only in Japan. Of the foreign matters moving near the center of the cross section of the tubular portion flow passage hole 11f, only foreign substances that are located in less than half of the circumference of the tubular portion flow passage hole 11f enter the support wall through hole 11g.
Further, as described above, when the pressure acting on the pressure medium in the tubular portion flow passage 11f fluctuates from the opening end of the tubular portion flow passage hole 11f, the variation in the movement frequency of the foreign matter in the cross section of the support wall through hole 11g varies. This is smaller than the variation in the movement frequency of foreign matter in the cross section of the tubular portion flow path hole 11f.
Therefore, in the pressure sensor 10 according to the embodiment of the present invention, even if the pressure sensor 10 is used for a long period of time, it is difficult for concentrated foreign matter to adhere to or deposit on a part of the pressure-sensitive portion of the pressure-sensitive element 12, and the pressure measuring function Can be maintained stably, and the service life can be extended as compared with the conventional pressure sensor.

管状部流路孔11f開口端から管状部流路孔11f内の圧力媒体に作用する圧力の変動による、管状部流路孔11fから支持壁貫通孔11gへの異物の進入抑制の点で、支持壁貫通孔11gの管状部流路孔11f軸線付近からの離間距離は大きいほど好ましい。
支持壁貫通孔11gは、管状部流路孔11f軸線に対して、管状部流路孔11fにおけるその軸線Pから管状部流路孔11f内周面までの最小離間距離の20%以上の離間距離を確保して、管状部流路孔11f軸線の軸線から離間させて形成されていることが好ましい。管状部流路孔11fが断面円形の圧力センサ10については、支持壁貫通孔11gは、管状部流路孔11f軸線に対して、管状部流路孔11fの断面半径の20%以上の離間距離を確保して、管状部流路孔11f軸線の軸線から離間させて形成されていることが好ましい。
支持壁貫通孔11gは、管状部流路孔11f軸線に対して、管状部流路孔11fにおけるその軸線Pから管状部流路孔11f内周面までの最小離間距離の20%以上の離間距離を確保して、管状部流路孔11f軸線の軸線から離間させて形成されている構成であれば、管状部流路孔11f開口端から管状部流路孔11f内の圧力媒体に作用する圧力の変動による、管状部流路孔11f軸線付近から支持壁貫通孔11gへの異物の進入防止を容易に実現できる。
The tubular portion flow passage hole 11f is supported in terms of suppressing the entry of foreign matter from the tubular portion flow passage hole 11f into the support wall through hole 11g due to the fluctuation of the pressure acting on the pressure medium inside the tubular portion flow passage hole 11f. It is preferable that the distance between the wall through-hole 11g and the tubular portion channel hole 11f near the axis is larger.
The support wall through-hole 11g has a separation distance of 20% or more of the minimum separation distance from the axis P of the tubular portion flow passage hole 11f to the inner peripheral surface of the tubular portion flow passage hole 11f with respect to the axis of the tubular portion flow passage hole 11f. It is preferable that the space is formed so as to be separated from the axis of the tubular portion flow path hole 11f. Regarding the pressure sensor 10 having the tubular section flow passage hole 11f having a circular cross section, the support wall through hole 11g is separated from the axis of the tubular section flow passage hole 11f by a separation distance of 20% or more of the sectional radius of the tubular section flow passage hole 11f. It is preferable that the space is formed so as to be separated from the axis of the tubular portion flow path hole 11f.
The support wall through-hole 11g has a separation distance of 20% or more of the minimum separation distance from the axis P of the tubular portion flow passage hole 11f to the inner peripheral surface of the tubular portion flow passage hole 11f with respect to the axis of the tubular portion flow passage hole 11f. Of the tubular portion channel hole 11f, the pressure acting on the pressure medium in the tubular portion channel hole 11f from the opening end of the tubular portion channel hole 11f is secured. It is possible to easily prevent foreign matter from entering the support wall through hole 11g from the vicinity of the axis line of the tubular portion flow path hole 11f due to the fluctuation.

圧力センサ10の支持壁貫通孔11gは、支持壁貫通孔11g内の異物の衝突により感圧素子12の損傷、破壊、感圧素子12の感圧部の一部への異物の集中的な堆積を回避する点で、出来るだけ、その全体が、管状部流路孔11f軸線からの距離が大きい所、すなわちハウジング11の孔底形成壁部11hの外周側に位置することが好ましい。
例えば、図5に示すように、支持壁貫通孔11gは、ハウジング11の孔底形成壁部11h外周に沿う方向(管状部流路孔11f内周面周方向に沿う方向)の延在寸法が、管状部流路孔11f軸線に垂直の方向の寸法よりも大きい細長断面形状のものであっても良い。
図5の支持壁貫通孔11gに符号11iを付記する。
The support wall through hole 11g of the pressure sensor 10 is damaged or destroyed by the collision of foreign matter in the support wall through hole 11g, and the foreign matter is concentratedly deposited on a part of the pressure sensitive portion of the pressure sensitive element 12. In order to avoid the above, it is preferable that the whole is located as far as possible at a position where the distance from the axis line of the tubular part flow path 11f is large, that is, on the outer peripheral side of the hole bottom forming wall part 11h of the housing 11.
For example, as shown in FIG. 5, the support wall through hole 11g has an extension dimension in the direction along the outer circumference of the hole bottom forming wall portion 11h of the housing 11 (direction along the inner peripheral surface circumferential direction of the tubular portion channel hole 11f). Alternatively, it may have an elongated cross-sectional shape that is larger than the dimension in the direction perpendicular to the axis line of the tubular portion channel hole 11f.
Reference numeral 11i is added to the support wall through hole 11g in FIG.

図5の支持壁貫通孔11iの管状部流路孔11f軸線とは逆の側は、その全体がハウジング11の孔底形成壁部11hの外周に位置し、管状部流路孔11fの内周面に沿って延在している。
管状部流路孔11fの内周面付近では、圧力媒体に管状部流路孔11f内周面との接触による流動抵抗が作用して、管状部流路孔11f開口端から管状部流路孔11f内の圧力媒体に作用する圧力の変動による圧力媒体の移動速度が抑制される。
このため、図5のように、ハウジング11の孔底形成壁部11h外周に沿う方向の延在寸法が、管状部流路孔11f軸線に垂直の方向の寸法よりも大きい細長形状の支持壁貫通孔11iでは、例えば断面円形の支持壁貫通孔11gに比べて、その全体を管状部流路孔11f軸線から遠い所に存在させることに有利である。
The side of the support wall through hole 11i opposite to the tubular part flow path 11f axis of FIG. 5 is entirely located on the outer circumference of the hole bottom forming wall part 11h of the housing 11, and the inner circumference of the tubular part flow hole 11f. It extends along the surface.
In the vicinity of the inner peripheral surface of the tubular portion flow passage hole 11f, flow resistance due to contact with the inner peripheral surface of the tubular portion flow passage hole 11f acts on the pressure medium, so that the tubular portion flow passage hole 11f is opened to the tubular portion flow passage hole. The moving speed of the pressure medium due to the fluctuation of the pressure acting on the pressure medium in 11f is suppressed.
Therefore, as shown in FIG. 5, the elongated support wall penetrating through the housing 11 has a dimension extending in the direction along the outer periphery of the hole bottom forming wall portion 11h larger than a dimension perpendicular to the axis of the tubular portion flow passage hole 11f. The hole 11i is advantageous in that the whole of the hole 11i exists farther from the axis of the tubular portion flow path hole 11f than the support wall through hole 11g having a circular cross section, for example.

支持壁貫通孔11gの断面形状は、円形に限定されず、矩形、五角形、六角形、八角形等の多角形状や、楕円形等の採用可能である。
但し、支持壁貫通孔11gは、管状部流路孔11fの軸線P回り方向に管状部流路孔11f軸線を中心とする10〜45度の角度範囲内に存在するように形成することが好ましい。
The cross-sectional shape of the support wall through hole 11g is not limited to a circular shape, and a polygonal shape such as a rectangular shape, a pentagonal shape, a hexagonal shape, an octagonal shape, or an oval shape can be adopted.
However, it is preferable that the support wall through-hole 11g is formed so as to exist in an angle range of 10 to 45 degrees around the axis of the tubular portion channel hole 11f in the direction around the axis P of the tubular portion channel hole 11f. ..

管状部流路孔11fの断面形状は、円形に限定されず、矩形、五角形、六角形、八角形等の多角形状や、楕円形等の採用可能である。
図6に管状部流路孔11fの断面形状が矩形の場合を例示した。
The cross-sectional shape of the tubular portion flow path hole 11f is not limited to a circular shape, and a polygonal shape such as a rectangular shape, a pentagonal shape, a hexagonal shape, an octagonal shape, or an oval shape can be adopted.
FIG. 6 illustrates the case where the cross-sectional shape of the tubular portion flow passage hole 11f is rectangular.

素子支持壁11aを貫通する貫通孔(支持壁貫通孔)は、管状部流路孔11fの軸線と平行な軸線を中心に素子支持壁11aの素子配置面11b側と管状部流路孔11f側とに開口するように形成された構成に限定されない。
図7に示すように、圧力センサは、素子支持壁11aに、管状部流路孔11fの軸線に対して傾斜した軸線を中心に延在する支持壁貫通孔11jが貫通形成された構成も採用可能である。
The through holes (support wall through holes) penetrating the element support wall 11a are provided on the element placement surface 11b side and the tubular section flow hole 11f side of the element support wall 11a around an axis parallel to the axis of the tubular section flow hole 11f. However, the structure is not limited to be formed so as to open in and.
As shown in FIG. 7, the pressure sensor also employs a configuration in which the element support wall 11a is formed with a support wall through hole 11j penetratingly extending around an axis inclined with respect to the axis of the tubular portion channel hole 11f. It is possible.

図7に示す圧力センサ10Aは、図1〜図4に示す圧力センサ10について、管状部流路孔11fの軸線と平行な軸線を中心に素子支持壁11aに貫通形成された支持壁貫通孔11gを、管状部流路孔11fの軸線に対して傾斜した軸線を中心に延在する支持壁貫通孔11jに変更したものである。
図7に示す圧力センサ10Aの支持壁貫通孔11j以外の構成は図1〜図4に示す圧力センサ10と同様である。図7中、図1〜図4に示す圧力センサ10と同様の構成部分には共通の符号を付し、その説明を簡略化する。
The pressure sensor 10A shown in FIG. 7 differs from the pressure sensor 10 shown in FIGS. 1 to 4 in that the support wall through hole 11g is formed through the element support wall 11a around an axis parallel to the axis of the tubular portion flow path hole 11f. Is changed to a support wall through hole 11j extending centering on an axis inclined with respect to the axis of the tubular portion channel hole 11f.
The structure of the pressure sensor 10A shown in FIG. 7 except for the support wall through hole 11j is the same as that of the pressure sensor 10 shown in FIGS. In FIG. 7, the same components as those of the pressure sensor 10 shown in FIGS. 1 to 4 are designated by common reference numerals to simplify the description.

感圧素子12は感圧部が位置する側の面を素子支持壁11aの素子配置面11bに当接させ、感圧部を支持壁貫通孔11jの素子配置面11b側開口部に臨ませて素子支持壁11aに取り付けられている。感圧素子12は、感圧部が位置する側の面が管状部流路孔11f軸線に垂直の向きで素子支持壁11aに支持されている。
感圧素子12は、支持壁貫通孔11jの軸線が感圧部を通るように支持壁貫通孔11jに対して位置合わせして素子支持壁11aの素子配置面11bに取り付けられている。
In the pressure sensitive element 12, the surface on the side where the pressure sensitive portion is located is brought into contact with the element disposition surface 11b of the element support wall 11a, and the pressure sensitive portion is exposed to the element disposition surface 11b side opening of the support wall through hole 11j. It is attached to the element support wall 11a. The pressure-sensitive element 12 is supported by the element support wall 11a such that the surface on the side where the pressure-sensitive portion is located is perpendicular to the axis of the tubular portion flow path 11f.
The pressure-sensitive element 12 is attached to the element disposition surface 11b of the element support wall 11a in alignment with the support-wall through hole 11j such that the axis of the support-wall through-hole 11j passes through the pressure-sensitive portion.

図7に例示した支持壁貫通孔11jは素子配置面11b側に行くにしたがって管状部流路孔11f軸線(具体的にはその仮想延長)に接近するように管状部流路孔11f軸線に対して傾斜させて形成されている。
但し、支持壁貫通孔11jの管状部流路孔11f軸線に対する傾斜方向は、図7に例示したように、素子配置面11b側に行くにしたがって管状部流路孔11f軸線(具体的にはその仮想延長)に接近する向きに限定されず、適宜変更可能である。
また、支持壁貫通孔11jの管状部流路孔11f軸線に対する傾斜角度は90度未満で適宜設定可能であるが、0度よりも大きく60度以下であることが好ましい。
The support wall through hole 11j illustrated in FIG. 7 approaches the tubular portion flow passage hole 11f axis so as to approach the tubular portion flow passage hole 11f axis (specifically, its virtual extension) as it goes to the element placement surface 11b side. Are formed to be inclined.
However, the inclination direction of the support wall through-hole 11j with respect to the tubular portion flow passage hole 11f axis line is, as illustrated in FIG. 7, the tubular portion flow passage hole 11f axis line (specifically, as shown in FIG. 7). It is not limited to the direction of approaching (virtual extension), and can be changed as appropriate.
Further, the inclination angle of the support wall through hole 11j with respect to the axis of the tubular portion flow passage hole 11f can be appropriately set to less than 90 degrees, but is preferably greater than 0 degrees and 60 degrees or less.

図7に示す圧力センサ10Aの支持壁貫通孔11jの管状部流路孔11f側の開口部は、図1〜図4に示す圧力センサ10の支持壁貫通孔11gと同様に、その外周の一部が、ハウジング11の孔底形成壁部11hの外周、すなわち孔底形成壁部11hにおける管状部流路孔11fの内周面に対応する所に位置する。
但し、支持壁貫通孔11jの管状部流路孔11f側開口部の孔底形成壁部11hにおける形成位置(管状部流路孔11f孔底面における位置)は管状部流路孔11f軸線を回避した位置であれば良く、適宜変更可能である。
Like the support wall through hole 11g of the pressure sensor 10 shown in FIGS. 1 to 4, the opening on the tubular portion flow path 11f side of the support wall through hole 11j of the pressure sensor 10A shown in FIG. The portion is located at the outer periphery of the hole bottom forming wall portion 11h of the housing 11, that is, at a position corresponding to the inner peripheral surface of the tubular portion passage hole 11f in the hole bottom forming wall portion 11h.
However, the formation position of the opening of the support wall through hole 11j on the tubular portion flow passage hole 11f side on the hole bottom forming wall portion 11h (the position on the bottom surface of the tubular portion flow passage hole 11f hole) avoids the tubular portion flow passage hole 11f axis. The position may be any position and can be changed as appropriate.

図7に例示した支持壁貫通孔11jは、孔底形成壁部11hにおいて、支持壁貫通孔11jの軸線方向中央部の断面を支持壁貫通孔11jの軸線方向に投影した領域全体に形成されている。支持壁貫通孔11jのその軸線方向両端部の間の部分は一定断面寸法で延在形成されている。
図7に示す圧力センサ10Aの支持壁貫通孔11jは管状部流路孔11fに比べて小さい断面寸法で形成されている。
また、図7に示す圧力センサ10Aの支持壁貫通孔11jの管状部流路孔11f側の開口部は、管状部流路孔11fの軸線を回避した位置に形成されている。
このため、図7に示す圧力センサ10Aは、管状部流路孔11f開口端から管状部流路孔11f内の圧力媒体に作用する圧力の繰り返し変動による、感圧素子12の感圧部への異物の付着、堆積、異物の衝突による感圧素子12の感圧部の損傷、破壊、を回避でき、感圧素子12の圧力測定機能の安定維持及び寿命延長を実現できる。
The support wall through hole 11j illustrated in FIG. 7 is formed in the entire hole bottom forming wall portion 11h by projecting the cross section of the axial center portion of the support wall through hole 11j in the axial direction of the support wall through hole 11j. There is. A portion of the support wall through hole 11j between both end portions in the axial direction is formed to have a constant cross-sectional dimension.
The support wall through hole 11j of the pressure sensor 10A shown in FIG. 7 is formed with a smaller cross-sectional dimension than the tubular portion passage hole 11f.
Further, the opening of the support wall through hole 11j of the pressure sensor 10A shown in FIG. 7 on the tubular portion flow passage hole 11f side is formed at a position avoiding the axis of the tubular portion flow passage hole 11f.
Therefore, in the pressure sensor 10A shown in FIG. 7, the pressure-sensitive element 12 is applied to the pressure-sensitive portion due to repeated fluctuations of the pressure acting on the pressure medium in the tubular-portion passage hole 11f from the opening end of the tubular-portion passage hole 11f. It is possible to avoid damage and destruction of the pressure-sensitive portion of the pressure-sensitive element 12 due to adhesion, accumulation of foreign matter, and collision of foreign matter, and it is possible to realize stable maintenance of the pressure measuring function of the pressure-sensitive element 12 and extension of the life.

また、図7に示す圧力センサ10Aでは、支持壁貫通孔11jの管状部流路孔11f軸線に対する傾斜方向及び傾斜角度、管状部流路孔11f孔底面における支持壁貫通孔11jの管状部流路孔11f側開口部の位置によって、素子配置面11bにおける感圧素子12の設置位置を調整できる。
このため、図7に示す圧力センサ10Aは、図1〜図4の圧力センサに比べて、感圧素子12及び出力制御IC13のサイズに応じた設計自由度を向上できる。
Further, in the pressure sensor 10A shown in FIG. 7, the inclination direction and the inclination angle of the support wall through hole 11j with respect to the axis line of the tubular portion flow path hole 11f, the tubular portion flow path of the support wall through hole 11j on the bottom surface of the tubular portion flow path hole 11f. The position of the pressure sensitive element 12 on the element placement surface 11b can be adjusted by the position of the opening on the hole 11f side.
Therefore, the pressure sensor 10A shown in FIG. 7 can improve the degree of freedom in design according to the sizes of the pressure sensitive element 12 and the output control IC 13 as compared with the pressure sensor of FIGS.

なお、支持壁貫通孔11jの断面形状は、図1〜図6に例示した圧力センサの支持壁貫通孔11g、11iにて採用可能なものを適用できる。
また、管状部流路孔11f孔底面における支持壁貫通孔11jの管状部流路孔11f側開口部は、管状部流路孔11fの軸線P回り方向に管状部流路孔11f軸線を中心とする10〜45度の角度範囲内に存在するように形成することが好ましい。
The cross-sectional shape of the support wall through hole 11j may be the one that can be adopted for the support wall through holes 11g and 11i of the pressure sensor illustrated in FIGS.
Further, the opening of the support wall through hole 11j on the bottom surface of the tubular portion flow passage hole 11f on the tubular portion flow passage hole 11f side is centered on the axis of the tubular portion flow passage hole 11f in the direction around the axis P of the tubular portion flow passage hole 11f. It is preferable to form it so that it exists within an angle range of 10 to 45 degrees.

以上、本発明を最良の形態に基づいて説明してきたが、本発明は上述の最良の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。   Although the present invention has been described above based on the best mode, the present invention is not limited to the above-described best mode, and various modifications can be made without departing from the gist of the present invention.

10、10A…圧力センサ、11…ハウジング、11a…素子支持壁、11b…素子配置面、11c…外側主面、11d…管状部、11e…(ハウジングの)側壁部、11f…管状部流路孔、11g…(素子支持壁の)貫通孔、11h…孔底形成壁部、11i…(素子支持壁の)貫通孔、11j…(素子支持壁の)貫通孔、12…感圧素子、13…出力制御IC、14…リードフレーム、14a…(リードフレームの)内側突出部、14b…(リードフレームの)外側突出部、15…素子収容領域、16…金属ワイヤ、17…圧力媒体収容領域、P…(管状部流路孔の)軸線。   10, 10A ... Pressure sensor, 11 ... Housing, 11a ... Element support wall, 11b ... Element placement surface, 11c ... Outer main surface, 11d ... Tubular part, 11e ... Side wall part (of housing), 11f ... Tubular part channel hole , 11g ... Through hole (on element supporting wall), 11h ... Hole bottom forming wall portion, 11i ... Through hole (on element supporting wall), 11j ... Through hole (on element supporting wall), 12 ... Pressure sensitive element, 13 ... Output control IC, 14 ... Lead frame, 14a ... Inner protrusion (of lead frame), 14b ... Outer protrusion (of lead frame), 15 ... Element accommodating region, 16 ... Metal wire, 17 ... Pressure medium accommodating region, P ... Axis (of the tubular part channel hole).

Claims (3)

ハウジングと、前記ハウジングに設けられた感圧素子とを有し、
前記ハウジングは、前記感圧素子を支持する素子支持壁と、前記素子支持壁の前記感圧素子が配置される素子配置面とは逆側の面から突出された管状部とを有し、
前記素子支持壁には、前記素子支持壁を貫通して圧力媒体が通される前記管状部内側の流路孔に連通する貫通孔が形成され、
前記感圧素子は前記素子支持壁の前記貫通孔の前記素子配置面側の開口部を塞ぐように配置され、
前記流路孔の流路は前記管状部の突端に開口する開口端を有し且つその軸線方向全長にわたって一定断面寸法で延在形成され、
前記貫通孔は前記流路孔に比べて小さい断面寸法で形成され、前記貫通孔の前記流路孔側の開口部は前記流路孔の軸線を回避した位置に形成され、
前記貫通孔の前記流路孔側の開口部は、前記流路孔の軸線とは逆側の全体が前記素子支持壁における前記流路孔の内周面に対応する所に位置して前記流路孔の内周面に沿って延在し、前記流路孔の内周面周方向に沿う方向の寸法が前記流路孔の軸線に垂直の方向の寸法に比べて大きい細長形状の矩形状で前記流路孔におけるその内周面付近のみに連通するように形成されている圧力センサ。
A housing, and a pressure-sensitive element provided in the housing,
The housing has an element support wall that supports the pressure-sensitive element, and a tubular portion that is projected from a surface of the element support wall opposite to an element-arrangement surface on which the pressure-sensitive element is arranged,
The element supporting wall is formed with a through hole that communicates with a flow path hole inside the tubular portion through which the pressure medium passes through the element supporting wall.
The pressure-sensitive element is arranged so as to close the opening of the through hole of the element support wall on the element placement surface side,
The flow path of the flow path hole has an open end that opens to the projecting end of the tubular portion, and is formed to extend with a constant cross-sectional dimension over the entire axial length thereof.
The through hole is formed with a smaller cross-sectional size than the flow path hole, the opening of the through hole on the flow path hole side is formed at a position avoiding the axis of the flow path hole,
The opening of the through hole on the side of the flow path hole is located at a position corresponding to the inner peripheral surface of the flow path hole in the element support wall, on the side opposite to the axis of the flow path hole. An elongated rectangular shape extending along the inner peripheral surface of the passage hole and having a dimension in the circumferential direction of the inner peripheral surface of the flow passage hole larger than the dimension in the direction perpendicular to the axis of the flow passage hole. The pressure sensor formed so as to communicate with only the vicinity of the inner peripheral surface of the flow path hole.
請求項1に記載の圧力センサにおいて、
前記貫通孔の前記流路孔側の開口部は、前記流路孔の軸線に対して、前記流路孔におけるその軸線から前記流路孔内周面までの最小離間距離の20%以上の離間距離を確保して、前記流路孔の軸線から離間させて形成されている圧力センサ。
The pressure sensor according to claim 1,
The opening of the through hole on the side of the flow path is separated from the axis of the flow path by 20% or more of the minimum separation distance from the axis of the flow path to the inner peripheral surface of the flow path. A pressure sensor formed to secure a distance and be separated from the axis of the flow path hole.
請求項1または2に記載の圧力センサにおいて、
前記貫通孔の前記流路孔側の開口部は、前記管状部流路孔の軸線回り方向に前記管状部流路孔の軸線を中心とする10〜45度の角度範囲内に存在するように形成されている圧力センサ。
The pressure sensor according to claim 1 or 2,
The opening of the through hole on the side of the flow path hole is present in an angular range of 10 to 45 degrees around the axis of the flow path hole of the tubular portion in the direction around the axis of the flow path hole of the tubular portion. The formed pressure sensor.
JP2018078704A 2018-04-16 2018-04-16 Pressure sensor Active JP6693995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018078704A JP6693995B2 (en) 2018-04-16 2018-04-16 Pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018078704A JP6693995B2 (en) 2018-04-16 2018-04-16 Pressure sensor

Publications (2)

Publication Number Publication Date
JP2019184529A JP2019184529A (en) 2019-10-24
JP6693995B2 true JP6693995B2 (en) 2020-05-13

Family

ID=68340877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018078704A Active JP6693995B2 (en) 2018-04-16 2018-04-16 Pressure sensor

Country Status (1)

Country Link
JP (1) JP6693995B2 (en)

Also Published As

Publication number Publication date
JP2019184529A (en) 2019-10-24

Similar Documents

Publication Publication Date Title
US8117920B2 (en) Pressure sensor
US7685874B2 (en) Thermal type flow sensor with a constricted measuring passage
JP4404104B2 (en) Air flow measurement device
JP5895006B2 (en) Thermal flow meter
US7640807B2 (en) Semiconductor Sensor
US9816881B2 (en) Single diaphragm transducer structure
US10215772B2 (en) Micromechanical structure for an acceleration sensor
JP6332549B2 (en) Capacitive transducer and acoustic sensor
JP5826360B1 (en) Flow measuring device
CN109417671B (en) MEMS structure, and capacitive sensor, piezoelectric sensor, and acoustic sensor having the same
CN112050995B (en) Pressure sensor assembly with protective pressure features
TW201411104A (en) External force detecting device and external force detecting sensor
JP6693995B2 (en) Pressure sensor
JP6288410B2 (en) Capacitive transducer, acoustic sensor and microphone
JP4350600B2 (en) Capacitive tilt angle sensor
KR20190104896A (en) Mems assembly
JP2003177168A (en) Magnetic sensor
JP5294089B2 (en) Piezoelectric device
JP3809599B2 (en) Accelerometer
JP7408370B2 (en) Acceleration sensor
EP3376178A1 (en) Ultrasonic flowmeter
KR102252221B1 (en) Capacitive vacuum gauge
JPH0524185Y2 (en)
JPH02231571A (en) High-sensitivity acceleration sensor
JP6531078B2 (en) Pressure sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200416

R151 Written notification of patent or utility model registration

Ref document number: 6693995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250