JP6692347B2 - Methods for assessing blood fluidity - Google Patents

Methods for assessing blood fluidity Download PDF

Info

Publication number
JP6692347B2
JP6692347B2 JP2017509837A JP2017509837A JP6692347B2 JP 6692347 B2 JP6692347 B2 JP 6692347B2 JP 2017509837 A JP2017509837 A JP 2017509837A JP 2017509837 A JP2017509837 A JP 2017509837A JP 6692347 B2 JP6692347 B2 JP 6692347B2
Authority
JP
Japan
Prior art keywords
pressure
blood
pressing
pressing member
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017509837A
Other languages
Japanese (ja)
Other versions
JPWO2016158585A1 (en
Inventor
芳樹 山越
芳樹 山越
精一郎 茂木
精一郎 茂木
一夫 止境
一夫 止境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma University NUC
Adtex Inc
Original Assignee
Gunma University NUC
Adtex Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma University NUC, Adtex Inc filed Critical Gunma University NUC
Publication of JPWO2016158585A1 publication Critical patent/JPWO2016158585A1/en
Application granted granted Critical
Publication of JP6692347B2 publication Critical patent/JP6692347B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow

Description

本願は日本で出願された特願2015-71055に基づいており、その内容は参照することにより本明細書に包含される。
本発明は、外部から簡単に血液の流動性を評価することのできる方法及び装置に関する。
This application is based on Japanese Patent Application No. 2015-71055 filed in Japan, the contents of which are incorporated herein by reference.
TECHNICAL FIELD The present invention relates to a method and a device capable of easily evaluating blood fluidity from the outside.

血液の流動性を客観的に知ることで、健康維持に役立てたいという要望が最近では強い。しかし、血液の流動性を知るためには、一般的には採血して検査しなくてはならず、簡単には実施できない。   Recently, there is a strong demand to help maintain health by objectively knowing the fluidity of blood. However, in order to know the fluidity of blood, it is generally necessary to collect blood and examine it, which is not easy to carry out.

従来、血液の流動性を知るためではないが、生体の末梢循環状態を客観的に測定することにより、心臓の機能や血圧、動脈の硬化状態などを評価する試みがなされている。特許文献1に記載のこの種の装置は、生体の所定部位を虚血させるために該所定部位を押圧する押圧装置と、押圧装置の押圧が解除されたときに生体の所定部位に対する血液の復帰量を光学的に検出する血液復帰量検出装置と、血液復帰量検出装置により検出された血液の復帰量の変化を所定の時間軸に沿って経時的にグラフ表示する血液復帰量表示手段と、を具備しており、虚血状態から復帰する際の血流の戻りの速さにより、機能の評価を行うようにしている。   Heretofore, attempts have been made to evaluate the function of the heart, blood pressure, arteriosclerosis, etc. by objectively measuring the peripheral circulation state of the living body, but not for knowing the fluidity of blood. The device of this type described in Patent Document 1 is a pressing device that presses a predetermined region of a living body to cause ischemia, and a return of blood to the predetermined region of the living body when the pressing of the pressing device is released. A blood return amount detection device that optically detects the amount, and a blood return amount display means that graphically displays a change in the return amount of blood detected by the blood return amount detection device along a predetermined time axis along with time, In order to evaluate the function, the blood flow returns when returning from the ischemic state.

特開平11−89808号公報JP, 11-89808, A

特許文献1に記載の技術のように、圧迫を解除したときの血流変化を測定する場合、圧迫解除時には全ての血管系に血液が一斉に充満することになるので、たとえ光の波長や光学素子の間隔を最適化したとしても、動脈系と毛細血管系の完全な区別が難しい。また心臓から送り出される血液の圧力、いわゆる血圧の影響を受け、血圧は刻々と変化するため校正は困難である。さらに血圧は心臓の鼓動に応じ脈動するので脈動成分を除去せねばならないが、除去は困難である。従って、血液の流動性評価のためには毛細血管系だけの血流データが欲しいにも拘わらず、計測したデータの中には動脈等の余計な情報が含まれてしまうため、感度の良い流動性評価を行うことは無理であった。   When measuring the blood flow change when the compression is released as in the technique described in Patent Document 1, all the vascular systems are simultaneously filled with blood when the compression is released. Even if the element spacing is optimized, it is difficult to completely distinguish the arterial system from the capillary system. Further, the pressure of blood sent from the heart, which is so-called blood pressure, affects the blood pressure and the calibration is difficult. Furthermore, since blood pressure pulsates according to the heartbeat, it is necessary to remove the pulsating component, but it is difficult to remove it. Therefore, even though blood flow data of only the capillary system is required for blood fluidity evaluation, extraneous information such as arteries is included in the measured data. It was impossible to evaluate the sex.

本発明は、上記事情を考慮し、簡単に感度良く血液の流動性を評価することができ、多様な血管状態、血流状態の被験者の態様を明瞭に検出し得る方法及び装置を提供することを目的とする。   The present invention provides a method and apparatus capable of easily and sensitively evaluating the fluidity of blood in consideration of the above circumstances and capable of clearly detecting aspects of a subject having various blood vessel states and blood flow states. With the goal.

本発明者らが鋭意検討した結果、以下のような本発明を完成した。
(1)被験者の被験部位へ押し当て部材を一次圧の圧力で押し当て、被験部位内の血液を被験部位の周辺に流出せしめ、次いで、押し当て部材を押し当てる圧力を二次圧にまで低減して、次いで、押し当て部材を押し当てる圧力を開放し、次いで、押し当て部材を押し当てる圧力を一次圧にまで高める押し当てサイクルを複数回行って、その間の被験部位内の血液量の時間変化を光散乱を用いて計測する工程を有し、二次圧の値は複数回の押し当てサイクルにわたって少なくとも2個の相異なる値をもつ、血液流動性の評価方法。
(2)1回の押し当てサイクルに要する時間が5〜15秒である(1)の方法。
(3)上記二次圧は最大の二次圧及び最小の二次圧を含む4〜10個の相異なる値をもち、押し当てサイクルの実行に伴って、最大の二次圧から最小の二次圧へと圧力が次第に小さくなる順序で二次圧を適用し、最小の二次圧を適用した押し当てサイクルの次の押し当てサイクルでは最大の二次圧を適用する、(1)又は(2)の方法。
(4)さらに、被験者の脈拍を計測し、取得された脈拍の計測データに基づいて上記押し当て部材の駆動を制御する(1)〜(3)のいずれかの方法。
(5)一次圧を押し当てる時間を上記脈拍の計測データに基づく1〜3拍分の長さにして、二次圧を押し当てる時間を上記脈拍の計測データに基づく1〜5拍分の長さにするよう上記押し当て部材の駆動を制御する(4)の方法。
(6)被験者の被験部位への押し当てが可能な押し当て部材と、押し当て部材を制御して駆動せしめる駆動制御装置と、押し当て部材に組み込まれ被験部位に光を照射する発光素子と、押し当て部材に組み込まれ被験部位内で散乱した光を検出する受光素子と、受光素子の計測データから被験部位の血液量および血液流動性を算出する演算手段と、上記血液量と血液流動性の少なくとも一方を表示する表示手段と、を備え、上記駆動制御装置は押し当て部材を押し当てる圧力を、一次圧ならびに一次圧より低い相異なる2個以上の二次圧に設定できるよう構成されている血液流動性評価装置。
(7)被験者の被験部位とは異なる脈拍測定部位で被験者の脈拍を測定する脈拍測定手段をさらに備え、脈拍測定手段の計測データに基づいて上記駆動制御装置が押し当て部材の駆動を制御するよう構成されている(6)の装置。
As a result of intensive studies by the present inventors, the present invention as described below was completed.
(1) The pressing member is pressed against the test site of the subject with the pressure of the primary pressure, the blood in the test site is caused to flow out to the periphery of the test site, and then the pressure of pressing the pressing member is reduced to the secondary pressure. Then, the pressure for pressing the pressing member is released, and then the pressing pressure for pressing the pressing member is increased to the primary pressure. A method for evaluating blood fluidity, comprising the step of measuring changes using light scattering, wherein the secondary pressure value has at least two different values over a plurality of pressing cycles.
(2) The method according to (1), wherein the time required for one pressing cycle is 5 to 15 seconds.
(3) The secondary pressure has 4 to 10 different values including the maximum secondary pressure and the minimum secondary pressure, and with the execution of the pressing cycle, the maximum secondary pressure to the minimum secondary pressure is increased. The secondary pressure is applied to the secondary pressure in order of decreasing pressure, and the maximum secondary pressure is applied in the pressing cycle next to the pressing cycle in which the minimum secondary pressure is applied, (1) or ( Method 2).
(4) Further, the method according to any one of (1) to (3), in which the pulse of the subject is measured, and the drive of the pressing member is controlled based on the acquired measurement data of the pulse.
(5) The time for pressing the primary pressure is 1 to 3 beats based on the measurement data of the pulse, and the time for pressing secondary pressure is 1 to 5 beats based on the measurement data of the pulse. The method of (4) which controls the drive of the pressing member so as to be the same.
(6) A pressing member that can be pressed against the test site by the subject, a drive control device that controls and drives the pressing member, and a light-emitting element that is incorporated into the pressing member and irradiates the test site with light. A light-receiving element that is incorporated in the pressing member to detect light scattered in the test site, a calculation unit that calculates the blood volume and blood fluidity of the test site from the measurement data of the light-receiving element, and the blood volume and blood fluidity Display means for displaying at least one of them, and the drive control device is configured so that the pressure for pressing the pressing member can be set to the primary pressure and two or more different secondary pressures lower than the primary pressure. Blood fluidity evaluation device.
(7) A pulse measuring unit for measuring the pulse of the subject at a pulse measuring region different from the test region of the subject is further provided, and the drive control device controls the drive of the pressing member based on the measurement data of the pulse measuring unit. The device of (6) that is configured.

本発明によれば、簡便に血液の流動性を評価できる方法および装置が提供される。本発明によれば、押し当て部材には発光素子および受光素子を組み込んでいればよいので、押し当て部材の寸法を小さくすることが可能である。また、相異なる2個以上の二次圧の適用により、種々の病態に起因する血液流動状態の変化をより明瞭に捉えることができる。   According to the present invention, there is provided a method and device capable of easily evaluating blood fluidity. According to the present invention, since it is sufficient that the light emitting element and the light receiving element are incorporated in the pressing member, it is possible to reduce the size of the pressing member. Further, by applying two or more different secondary pressures, it is possible to more clearly capture changes in the blood flow state due to various pathological conditions.

本発明による血液流動性評価装置の一つの実施形態についてその概略構成を示すブロック図である1 is a block diagram showing a schematic configuration of one embodiment of a blood fluidity evaluation device according to the present invention. 本発明の評価方法における、加圧プロファイルの一例である。It is an example of a pressure profile in the evaluation method of the present invention. 本発明の別の一態様の装置による測定の模式図である。It is a schematic diagram of the measurement by the apparatus of another aspect of the present invention. 本発明の実施例で用いた装置の外観図である。It is an external view of the apparatus used in the Example of this invention. ある強皮症に関する健常者の血液流動性評価例の結果を示す。The result of the blood fluidity evaluation example of a healthy person regarding a certain scleroderma is shown. ある4名の血液流動性評価例の結果を示す。The results of four blood fluidity evaluation examples are shown.

以下、図面を参照しながら本発明を詳述する。しかし、本発明は図示された態様に限定されない。   Hereinafter, the present invention will be described in detail with reference to the drawings. However, the invention is not limited to the illustrated embodiment.

図1は本発明による血液流動性評価装置の一つの実施形態についてその概略構成を示すブロック図である。
この血液流動性評価装置は、被験者の指先などの被験部位に押し当てられる押し当て部材を有する。押し当て部材は、加圧機構および加圧力シーケンス制御部などからなる駆動制御装置の制御によって被験者の被験部位へと押し当てられたり、押し当てが解除されたりする。押し当て部材には発光素子(光源)と受光素子(光検出器)とが組み込まれている。発光素子は、押し当てられた被験部位に照射する光を発する素子である。発光素子から発せられた光は、被験部位内で散乱して、受光素子によって検出される。後述するように、発光素子からの発光と受光素子による計測データとの対比から被験部位の血液量を算出することができる。そして、押し当て部材による押し当ての程度・時間などのデータと前記血液量の経時変化から、被験部位における血液流動性を評価することができる。この血液流動性評価装置には、そのようにして血液量および血液流動性を算出する演算手段(ヘモグロビン濃度推定部等)と、それらの少なくとも一方を表示する表示部も備えられている。
FIG. 1 is a block diagram showing a schematic configuration of one embodiment of the blood fluidity evaluation device according to the present invention.
This blood fluidity evaluation device has a pressing member that is pressed against a test site such as the fingertip of the test subject. The pressing member is pressed against the test site of the subject or released by the control of the drive control device including the pressurizing mechanism and the pressing force sequence control unit. A light emitting element (light source) and a light receiving element (photodetector) are incorporated in the pressing member. The light emitting element is an element that emits light for irradiating the pressed test site. The light emitted from the light emitting element is scattered within the test site and detected by the light receiving element. As described later, the blood volume at the test site can be calculated from the comparison between the light emission from the light emitting element and the measurement data from the light receiving element. Then, the blood fluidity at the test site can be evaluated from the data such as the degree and time of pressing by the pressing member and the change with time of the blood volume. This blood fluidity evaluation device is also provided with a computing unit (a hemoglobin concentration estimation unit or the like) for calculating the blood volume and blood fluidity in this way, and a display unit for displaying at least one of them.

押し当て部材は、それ自体が例えば一軸上を前後に動くことで皮膚などの被験部位に押し当てられるよう構成されている。押し当て部材の動きは、加圧機構、加圧シーケンス制御部(駆動制御装置)などにより、アクチュエータを電気的にコントロールすることなどによって制御される。   The pressing member itself is configured to be pressed against a test site such as the skin by moving back and forth on one axis, for example. The movement of the pressing member is controlled by electrically controlling the actuator by a pressure mechanism, a pressure sequence control unit (drive control device), or the like.

押し当て部材を被験部位の所定位置に押し当てるために、被験部位(指等)を載せる所定の測定台などを用意しておくことが好ましい。その際、血流への影響を最小限にするため、測定台が被験部位に圧迫を加えないように構成されていることが好ましい。押し当て部材の被験部位への精度のより高い位置決めについては、後述する。   In order to press the pressing member against a predetermined position of the test site, it is preferable to prepare a predetermined measuring table or the like on which the test site (finger etc.) is placed. At that time, in order to minimize the influence on the blood flow, it is preferable that the measurement table is configured not to apply pressure to the test site. More accurate positioning of the pressing member to the test site will be described later.

発光素子は押し当て部材に組み込まれている。発光素子は発光素子駆動回路によって駆動制御され、受光素子の信号は、受光信号検出回路を経て必要に応じて増幅回路等(プリアンプ等)によって増幅された上で、ヘモグロビン濃度推定部に入力される。なお、発光素子の数や受光素子の個数は特に限定されるものではない。例えば、複数個の受光素子を設け、各受光素子からの複数の受光信号を平均化処理して、血液流動性の評価演算に役立ててもよい。そのようにして、測定位置等による誤差の影響を緩和できる。発光素子は指の皮膚などといった被験部位の表面に向けて光を照射し、受光素子は被験部位からの戻り光を受光するよう構成されている。   The light emitting element is incorporated in the pressing member. The light emitting element is driven and controlled by the light emitting element driving circuit, and the signal of the light receiving element is input to the hemoglobin concentration estimating unit after being amplified by the amplifying circuit or the like (preamplifier or the like) as necessary through the light receiving signal detection circuit. .. The number of light emitting elements and the number of light receiving elements are not particularly limited. For example, a plurality of light receiving elements may be provided, and a plurality of light receiving signals from the respective light receiving elements may be averaged to be used for evaluation calculation of blood fluidity. In this way, the influence of the error due to the measurement position and the like can be mitigated. The light emitting element emits light toward the surface of the test site such as the skin of a finger, and the light receiving element is configured to receive the return light from the test site.

発光素子は、青またはそれに近い短波長の波長の光を発する材質で構成されることが好ましく、受光素子としては、上述の光を受光することができる材質で構成される。   The light emitting element is preferably made of a material that emits light of blue or a short wavelength close thereto, and the light receiving element is made of a material that can receive the above-mentioned light.

ヘモグロビン濃度推定部は、受光素子の計測データから血液量を算出する。ヘモグロビン濃度推定部では、血液流動性も算出する。血液流動性は、押し当て部材が被験部位への押し当てを開始してからの血液量の時間変化から求められる。制御用PCは、発光素子駆動回路(パワーアンプ等)、受光信号増幅回路(プリアンプ等)、表示部の全てを駆動制御する。   The hemoglobin concentration estimation unit calculates the blood volume from the measurement data of the light receiving element. The hemoglobin concentration estimation unit also calculates blood fluidity. The blood fluidity is obtained from the change over time in blood volume after the pressing member starts pressing against the test site. The control PC drives and controls all of the light emitting element drive circuit (power amplifier and the like), the received light signal amplification circuit (preamplifier and the like), and the display section.

本発明によれば、駆動制御装置は押し当て部材を押し当てる圧力を、一次圧及び二次圧に設定できるように構成されている。ここで、二次圧は相異なる2個以上の圧力を持つ。一次圧は、どの二次圧よりも高圧である。   According to the present invention, the drive control device is configured so that the pressure with which the pressing member is pressed can be set to the primary pressure and the secondary pressure. Here, the secondary pressure has two or more different pressures. The primary pressure is higher than any secondary pressure.

図2は、本発明の評価方法における、加圧プロファイルの一例である。図示されたプロファイルでは、一次圧は304mmHgである。二次圧は、109mmHg、88mmHg、64mmHg、53mmHg、40mmHg、28mmHgの6個の値をもつ。二次圧は、好ましくは4〜10個の相異なる値を持つ。   FIG. 2 is an example of a pressure profile in the evaluation method of the present invention. In the profile shown, the primary pressure is 304 mmHg. The secondary pressure has six values of 109 mmHg, 88 mmHg, 64 mmHg, 53 mmHg, 40 mmHg and 28 mmHg. The secondary pressure preferably has 4 to 10 different values.

図示されるように、まず、押し当て部材を一次圧の圧力で押し当てる。これにより、被験部位内の血液を被験部位の周辺に流出せしめる。次いで、押し当て部材を押し当てる圧力を二次圧にまで低減する。さらに、押し当て部材を押し当てる圧力を開放する。次いで、押し当て部材を押し当てる圧力を一次圧にまで高める。ここまでの一連の圧力変化を1つの押し当てサイクルであるとみなす。図示されたプロファイルでは、1つの押し当てサイクルは10秒で行われる。好ましくは1回の押し当てサイクルに要する時間が5〜15秒である。1回の押し当てサイクルが行われる時間については、後述する脈拍測定との併用により定めてることが特に好ましい。例えば、一次圧を押し当てる時間を脈拍の計測データに基づく1〜3拍分の長さにして、二次圧を押し当てる時間を上記脈拍の計測データに基づく1〜5拍分の長さにすることが挙げられる。   As shown in the figure, first, the pressing member is pressed with the pressure of the primary pressure. As a result, the blood in the test site is allowed to flow out around the test site. Next, the pressure with which the pressing member is pressed is reduced to the secondary pressure. Further, the pressure applied to the pressing member is released. Then, the pressure with which the pressing member is pressed is increased to the primary pressure. The series of pressure changes up to this point is regarded as one pressing cycle. In the profile shown, one pressing cycle takes 10 seconds. Preferably, the time required for one pressing cycle is 5 to 15 seconds. It is particularly preferable that the time for which one pressing cycle is performed be determined in combination with the pulse measurement described later. For example, the time for pressing the primary pressure is set to 1 to 3 beats based on the pulse measurement data, and the time for pressing the secondary pressure is set to 1 to 5 beats based on the pulse measurement data. There are things to do.

本発明では、上述のように、一次圧、次いで、二次圧、次いで、圧力開放、次いで、一次圧、という順序による押し当てサイクルを繰り返し、二次圧として少なくとも2つの相異なる圧力値を有していればよい。   In the present invention, as described above, the pressing cycle in the order of the primary pressure, then the secondary pressure, then the pressure release, and then the primary pressure is repeated, and the secondary pressure has at least two different pressure values. All you have to do is do it.

このように、少なくとも2つの相異なる圧力値を持つ二次圧を伴って、上記のように押し当てサイクルを繰り返すことにより、血液流動性評価において、以下のような利点がある。末梢血管の血管内圧に個人差があるので、相異なる2以上の二次圧を適用することにより、被験者の血管内圧が不明である場合であっても共通した測定手順を適用することができる。また、二次圧の印加時には二次圧と平衡する圧力(周囲圧)が血管周囲に印加されるので、周囲圧と血管内圧が平衡する容積まで末梢血管系には血液再充満が生じる。これは周囲圧という負荷を血管にかけたときの末梢血管系の応答を測定することであり、圧力負荷に対する末梢血管系の血液再充満能力の優劣を測定できる。   Thus, by repeating the pressing cycle as described above with the secondary pressure having at least two different pressure values, there are the following advantages in the blood fluidity evaluation. Since there are individual differences in the intravascular pressure of the peripheral blood vessels, by applying two or more different secondary pressures, the common measurement procedure can be applied even when the intravascular pressure of the subject is unknown. Further, when the secondary pressure is applied, a pressure (ambient pressure) that is in equilibrium with the secondary pressure is applied around the blood vessel, so that blood is refilled in the peripheral vascular system up to the volume where the ambient pressure and the intravascular pressure are equilibrated. This is to measure the response of the peripheral vascular system when a load of ambient pressure is applied to the blood vessel, and the superiority or inferiority of the blood refilling capacity of the peripheral vascular system to the pressure load can be measured.

好ましくは、二次圧は最大の二次圧及び最小の二次圧を含む4〜10個の相異なる値をもち、押し当てサイクルの実行に伴って、最大の二次圧から最小の二次圧へと圧力が次第に小さくなる順序で二次圧を適用し、最小の二次圧を適用した押し当てサイクルの次の押し当てサイクルでは最大の二次圧を適用する。図2のプロファイルでは、最大の二次圧が109mmHgであり、最小の二次圧が28mmHgである。そして、まず、一次圧(304mmHg)が印加され、次いで、最大の二次圧(109mmHg)、次いで、圧力開放、次いで一次圧(304mmHg)が印加され、これが最初の押し当てサイクルである。引き続き、次の押し当てサイクルが適用され、一次圧(304mmHg)が印加され、次いで、2番目に大きな二次圧(88mmHg)、次いで、圧力開放、次いで一次圧(304mmHg)が印加される。以下、押し当てサイクルが繰り返され、その際には、二次圧が次第に小さくなるように印加される。6回目の押し当てサイクルでは、一次圧(304mmHg)が印加され、次いで、最小の二次圧(28mmHg)、次いで、圧力開放、次いで一次圧(304mmHg)が印加される。7回目の押し当てサイクルでは、一次圧(304mmHg)が印加され、次いで、最大の二次圧(109mmHg)、次いで、圧力開放、次いで一次圧(304mmHg)が印加される。このように、押し当てサイクルが繰り返される。   Preferably, the secondary pressure has 4 to 10 different values including the maximum secondary pressure and the minimum secondary pressure, and the maximum secondary pressure to the minimum secondary pressure is increased as the pressing cycle is performed. The secondary pressure is applied to the pressure in the order of decreasing pressure, and the maximum secondary pressure is applied in the pressing cycle following the pressing cycle in which the minimum secondary pressure is applied. In the profile of FIG. 2, the maximum secondary pressure is 109 mmHg and the minimum secondary pressure is 28 mmHg. Then, first the primary pressure (304 mmHg) is applied, then the maximum secondary pressure (109 mmHg), then the pressure release, then the primary pressure (304 mmHg), which is the first pressing cycle. Subsequently, the next pressing cycle is applied, the primary pressure (304 mmHg) is applied, then the second largest secondary pressure (88 mmHg), then the pressure release, then the primary pressure (304 mmHg). Thereafter, the pressing cycle is repeated, and at that time, the secondary pressure is applied so as to be gradually reduced. In the sixth pressing cycle, the primary pressure (304 mmHg) is applied, then the minimum secondary pressure (28 mmHg), then the pressure release, then the primary pressure (304 mmHg). In the seventh pressing cycle, the primary pressure (304 mmHg) is applied, then the maximum secondary pressure (109 mmHg), then the pressure release, and then the primary pressure (304 mmHg). In this way, the pressing cycle is repeated.

このように、押し当てサイクルの繰り返しに伴って二次圧の圧力値を次第に下げることにより、血液流動性評価における上述の効果をよりいっそう実効あらしめることができる。   As described above, by gradually lowering the pressure value of the secondary pressure as the pressing cycle is repeated, the above-described effect in the blood fluidity evaluation can be further effectively demonstrated.

本発明の評価装置では、上記駆動制御装置により、上述のような押し当てサイクルが実現するように構成されている。具体的には、図1における、制御用PCに押し当てサイクルの時間や圧力値を格納しておき、加圧シーケンス制御部及びパワーアンプを介して加圧機構を制御すればよい。   In the evaluation device of the present invention, the drive control device is configured to realize the pressing cycle as described above. Specifically, the pressing cycle time and pressure value may be stored in the control PC in FIG. 1, and the pressurizing mechanism may be controlled via the pressurizing sequence controller and the power amplifier.

次に、脈拍測定手段との併用について説明する。
図3は、本発明の別の一態様の装置による測定の模式図である。図示された態様では、人差し指の先を被験部位100として血液流動性を評価するためのユニット10と、薬指の脈拍測定のためのユニット11が存在する。この場合は人差し指が被験部位100であり、薬指が脈拍測定部位110であると評価される。ユニット10は、上述した押し当て部材、発光素子、受光素子を備える。ユニット10とユニット11とは上述したを介して後述するように連動して動作させることができる。図3の装置は片手の異なる指に2つのユニット10、11を作動させるよう構成されているが、本発明の装置はそのような形態に限定されない。
Next, the combined use with the pulse measuring means will be described.
FIG. 3 is a schematic diagram of measurement by the apparatus according to another aspect of the present invention. In the illustrated embodiment, there is a unit 10 for evaluating blood fluidity with the tip of the index finger as the test site 100 and a unit 11 for measuring the pulse of the ring finger. In this case, the index finger is evaluated as the test site 100, and the ring finger is evaluated as the pulse measurement site 110. The unit 10 includes the pressing member, the light emitting element, and the light receiving element described above. The unit 10 and the unit 11 can be operated in conjunction with each other as described later via the above. The device of FIG. 3 is configured to actuate the two units 10, 11 on different fingers of one hand, but the device of the present invention is not limited to such a configuration.

脈拍測定手段の具体的構成は特に限定はない。一例として、上述した押し当て部材、発光素子(光源)および受光素子(光検出器)を有するユニットと同様のユニットが挙げられる。このユニットで脈拍を測定する態様は以下のとおりである。脈拍測定部位110を弱い力で押しながら光を照射してその散乱する光を検出することにより脈波を検出することができる。脈波を検出する場合の押し当て圧力は、押し当てた部位の血液がその周囲に流出しにくい程度の弱い圧力であり、具体的には、好ましくは30〜60mmHg程度である。こういった脈波の検出を利用した脈拍測定手段を本発明で用いることができる。   The specific configuration of the pulse measuring means is not particularly limited. As an example, a unit similar to the unit including the pressing member, the light emitting element (light source) and the light receiving element (photodetector) described above can be mentioned. The mode of measuring the pulse with this unit is as follows. A pulse wave can be detected by irradiating light while pressing the pulse measurement site 110 with a weak force and detecting the scattered light. The pressing pressure when detecting the pulse wave is a weak pressure at which the blood at the pressed portion does not easily flow out to the surroundings, and specifically, it is preferably about 30 to 60 mmHg. The pulse measuring means utilizing such pulse wave detection can be used in the present invention.

上記のように、脈波の検出も、血液量の検出と同様に、光を用いることができるので、ユニット10において血液量を検出する際に、脈波による誤差を生じる可能性がある。例えば、押し当て部材による押し当ての開始が、被験部位100の組織に脈拍によって血液が流入された直後かあるいは流入する直前かによって組織内の血液量が厳密には異なるから、誤差の原因となり得る。この誤差を解消または軽減するために、本発明の好適態様においては、脈拍測定部位110における脈拍の計測データを利用して、血液流動性を算出する際に脈拍による算出誤差を軽減することが提案される。   As described above, since light can be used for detecting the pulse wave as in the case of detecting the blood volume, an error due to the pulse wave may occur when detecting the blood volume in the unit 10. For example, the start of pressing by the pressing member may cause an error because the amount of blood in the tissue is strictly different depending on whether the blood of the test site 100 is immediately inflowing or just before inflowing into the tissue of the test site 100. .. In order to eliminate or reduce this error, in the preferred embodiment of the present invention, it is proposed that the measurement data of the pulse at the pulse measurement site 110 be used to reduce the calculation error due to the pulse when calculating the blood fluidity. To be done.

また好ましくは、脈拍測定部位110における脈拍の計測データを用いて、血液流動性を評価するユニット10における押し付け部位の駆動を制御する。例えば、脈拍を計測するユニット11において脈波を観察しつつ、被験部位100への血液の流入が最大となる時点あるいは最小となる時点を以って押し付けを開始するなどの方法が挙げられる。この場合、図3に示すように血液流動性評価のためのユニット10とは別のユニット11において脈拍を計測してもよいし、血液流動性評価と同じユニットにおいて最初は脈拍を計測して所定時に血液流動性の計測に切替えてもよい。血液流動性の評価前の被験部位100に力を加えないという点では、血液流動性評価のためのユニット10とは別のユニット11を設けて脈拍を計測することが好ましい。   Further, preferably, the measurement data of the pulse at the pulse measurement site 110 is used to control the drive of the pressing site in the unit 10 for evaluating the blood fluidity. For example, a method of observing the pulse wave in the unit 11 for measuring the pulse and starting the pressing at the time when the inflow of the blood into the test site 100 becomes maximum or minimum can be mentioned. In this case, the pulse may be measured in a unit 11 different from the unit 10 for blood fluidity evaluation as shown in FIG. 3, or in the same unit as the blood fluidity evaluation, the pulse may be measured first and then predetermined. At times, the measurement may be switched to blood fluidity measurement. From the viewpoint that no force is applied to the test site 100 before the blood fluidity evaluation, it is preferable to provide a unit 11 different from the unit 10 for blood fluidity evaluation to measure the pulse.

また好ましくは、上記脈拍の計測データを用いて、上述した1つの押し当てサイクルの時間を設定してもよい。例えば、1つの押し当てサイクルの時間を、一次圧を押し当てる時間を1〜3拍の脈拍の長さにして、二次圧を押し当てる時間を1〜5拍の脈拍の長さにすることが挙げられる。このとき、押し当て部材を押し当てる圧力を開放する時間については脈拍数を基準にしてもよいし、例えば、3〜5秒などと時間で設定してもよい。   Further, preferably, the time of one pressing cycle described above may be set using the measurement data of the pulse. For example, the time of one pressing cycle is such that the time for pressing the primary pressure is a pulse length of 1 to 3 beats, and the time for pressing the secondary pressure is a pulse length of 1 to 5 beats. Is mentioned. At this time, the pulse rate may be used as a reference for the time for releasing the pressure applied by the pressing member, or may be set as 3 to 5 seconds.

次に、脈拍測定を利用した、被験部位の位置決め精度向上策について説明する。
血液流動性の計測に先立ち、血液流動性の評価のためのユニット10において、押し当て部材を上述した弱い力で被験部位100に押し当てて、光の吸収によって脈拍の計測データを取得する。このとき、押し当て部材と被験部位100との位置関係が不適切であると検出する脈波成分が弱くなる。したがって、押し当て部材と被験部位100との相対位置を動かしながら脈拍の計測データを計測し、その計測データが極大となる相対位置が血液流動性評価のために好ましい位置であるということができる。ヒトの指を被験部位とする場合、通常は、指先付近の5ミリ四方において脈拍の計測データが極大となる位置を求めることによって、好ましい測定位置を決定することができる。
Next, a measure for improving the positioning accuracy of the test site using the pulse measurement will be described.
Prior to the measurement of blood fluidity, in the unit 10 for evaluating blood fluidity, the pressing member is pressed against the test site 100 with the weak force described above, and pulse measurement data is acquired by light absorption. At this time, the pulse wave component that detects that the positional relationship between the pressing member and the test site 100 is inappropriate becomes weak. Therefore, it can be said that the pulse measurement data is measured while moving the relative position between the pressing member and the test site 100, and the relative position at which the measurement data becomes maximum is a preferable position for blood fluidity evaluation. When the human finger is used as the test site, usually, a preferable measurement position can be determined by obtaining a position where the measurement data of the pulse becomes maximum in a 5 mm square near the fingertip.

次に、血液の流動性測定の原理について述べる。
皮膚下の浅い位置には毛細血管があり、深い位置には動脈や静脈がある。皮膚に圧迫力が加わった場合、動脈や静脈は流路径が大きいので、血液が急速に他の部分へ流出してしまうが、毛細血管は流路径が小さく流路抵抗が大きいので、ゆっくりと血液が周囲へ流出する。また、毛細血管が圧迫された場合、血管流路が更に狭められるので、赤血球の集合化や変形能低下といった流動性の変化の影響で、さらに流出量が減っていくことになる。
Next, the principle of blood fluidity measurement will be described.
There are capillaries at a shallow position under the skin, and arteries and veins at a deep position. When pressure is applied to the skin, the flow path diameter of arteries and veins is large, so blood rapidly flows out to other parts, but capillary blood vessels have a small flow path diameter and large flow path resistance, so blood flow slowly. Spills into the surrounding area. Further, when the capillaries are compressed, the blood flow channel is further narrowed, and the outflow rate is further reduced due to the influence of the change in fluidity such as the aggregation of red blood cells and the lowering of deformability.

この血液流出の時間変化(速さ)は、血流抵抗(その一つの要素として血液の粘度がある)に依存する。そこで、本実施形態では、毛細血管内からの血液流出の時間変化を光学的に検出することにより、血液流動性を推定することにしている。   The time change (speed) of this blood outflow depends on the blood flow resistance (one of which is the viscosity of blood). Therefore, in this embodiment, the blood fluidity is estimated by optically detecting the time change of blood outflow from the capillaries.

一般に、可視光は、生体内においてヘモグロビンやその他の生体構成物質の吸収が大きく、殆ど透過することができない。しかし、皮膚に圧力を印加することで毛細血管中から血液が流出すると、それに伴って血液(ヘモグロビン)が減り、圧印加前と比べ生体内での光の吸収が減少する。つまり、圧印加によって毛細血管中の血液が流出し、血液量(ヘモグロビン量)が少なくなるにつれて光が透過することになる。   In general, visible light has a large absorption of hemoglobin and other living body constituents in a living body, and almost cannot be transmitted. However, when pressure is applied to the skin and blood flows out from the capillaries, blood (hemoglobin) is reduced accordingly, and light absorption in the living body is reduced as compared with that before the pressure is applied. That is, the pressure causes the blood in the capillaries to flow out, and the light is transmitted as the blood volume (hemoglobin amount) decreases.

また、短波長の光は生体内を殆ど透過しない。つまり、生体に照射した短波長の光を観測することは、皮膚直下の毛細血管を伝播してきた光を観測することと考えられる。この原理を利用することによって、圧印加による毛細血管中の血液流出の様子を観測できることになり、そこから組織中におけるヘモグロビン濃度の変化を推定できることになる。   In addition, light with a short wavelength hardly penetrates through the living body. That is, it is considered that observing the short-wavelength light applied to the living body is observing the light that has propagated through the capillaries just below the skin. By utilizing this principle, the state of blood outflow in the capillaries due to the application of pressure can be observed, and from this, the change in hemoglobin concentration in the tissue can be estimated.

この場合、発光素子及び受光素子は、皮膚下の毛細血管の血液量のみを検出し、動脈や細動脈の血液量は検出しないように設定してあるのが望ましい。このため、発光素子と受光素子の相互位置を近づけて、浅い部分の血流を高感度で検出できるようにすることが好ましい。また、照射する光の波長は、赤や赤外でもよいが、好ましくは、青またはそれに近い短波長である。   In this case, it is desirable that the light emitting element and the light receiving element are set so as to detect only the blood volume of the capillaries under the skin and not the blood volume of the arteries and arterioles. Therefore, it is preferable to bring the light emitting element and the light receiving element closer to each other so that the blood flow in the shallow portion can be detected with high sensitivity. The wavelength of light to be irradiated may be red or infrared, but is preferably blue or a short wavelength close to blue.

これは、光の波長が長いほど、途中での散乱が少なく、光は深部にまで侵入する(動脈まで達する)が、光の波長が短いほど、深部には到達しない(動脈に達しない)で、浅い位置で戻って来るからである。つまり、発光素子から発せられた光は、皮膚内に侵入し、内部で散乱を繰り返し、その一部が皮膚表面に戻ってくるが、その光の経路には血管があるので、戻り光は、血液による吸収を受ける。そこで、短波長の光を使用することにより、皮膚下の深い部分にある細動脈や動脈中の血液による光の吸収の影響を受けずに、浅い部分にある毛細血管中の血液による光の吸収作用だけを受けて、光が皮膚表面に戻ってくるようにしているものである。   This is because the longer the wavelength of light, the less scattering in the middle, and the light penetrates deep (to reach the artery), but the shorter the wavelength of light, the deeper it does not reach (to reach the artery). , Because it will come back in a shallow position. In other words, the light emitted from the light emitting element enters the skin and repeatedly scatters inside, and part of it returns to the skin surface, but since there is a blood vessel in the path of that light, the return light is Be absorbed by blood. Therefore, by using short-wavelength light, the absorption of light by blood in capillaries in the shallow part is not affected by the absorption of light by arterioles and blood in the deep part under the skin. The effect is that the light returns to the skin surface.

例えば、発光素子として青色LEDを使用する場合、そこから好ましくは約3mm以内の距離に受光素子としてフォトトランジスタを配置してある。   For example, when a blue LED is used as a light emitting element, a phototransistor is arranged as a light receiving element preferably at a distance within about 3 mm from the blue LED.

次に測定方法について説明する。
測定時は、指先などの被験部位100の近傍に押し当て部材を近づける。好ましくは、被験部位100を固定できるように型取った測定台(図示せず)などを用いる。操作スイッチの操作により、押し当て装置および加圧シーケンス制御部が作動して、押し当て部材が被験部位100へ押し当たるように動き、上述したような一次圧、二次圧、圧力開放の押し当てサイクルが繰り返される。
Next, the measuring method will be described.
At the time of measurement, the pressing member is brought close to the vicinity of the test site 100 such as the fingertip. It is preferable to use a measuring table (not shown) or the like that is shaped so that the test site 100 can be fixed. When the operation switch is operated, the pressing device and the pressurization sequence control unit are operated, and the pressing member moves so as to press against the test site 100, and the primary pressure, the secondary pressure, and the pressure release as described above are pressed. The cycle repeats.

その後、上述した押し当てサイクルを繰り返しながら、押し当て部材に組み込まれた発光素子(光源)と受光素子(光検出器)によって光学的な測定が行われる。そして、時間経過に対する受光素子からの信号が増幅されてヘモグロビン濃度推定部に入力され、ここで、受光光量(受光強度)の信号の時間変化率から、毛細血管内を流動する血液の性質(血流抵抗)を示すデータが演算される。このデータには毛細血管内の血液流動性や血液粘性を示す指標が含まれており、表示部により表示される。   Then, while repeating the above-mentioned pressing cycle, optical measurement is performed by the light emitting element (light source) and the light receiving element (photodetector) incorporated in the pressing member. Then, the signal from the light receiving element with respect to the passage of time is amplified and input to the hemoglobin concentration estimation unit, where the property of blood flowing in the capillaries (blood Data indicating the flow resistance) is calculated. This data includes an index indicating blood fluidity and blood viscosity in the capillaries and is displayed by the display unit.

例えば、原理的には、血液量が多いほど、光の吸収が大きく、受光光量が少さい。血液量が少ない場合にはその逆である。よって、さらに考察すると、受光光量が多いということは、光の吸収が少なく、血液量が少なく、押し当てで血が逃げやすい、すなわち粘度が低いことを意味し、受光光量が少ないということはその逆を意味する。また、本発明では少なくとも2つの相異なる二次圧を適用するところ、二次圧の違いによる血液量の変化を調べることも、種々の病態を推察するための基礎データを得ることにつながる。   For example, in principle, the larger the blood volume, the greater the light absorption and the smaller the received light volume. The opposite is true when blood volume is low. Therefore, considering further, the fact that the amount of received light is large means that the amount of light absorbed is small, the amount of blood is small, and blood easily escapes by pressing, that is, the viscosity is low, and the small amount of received light means that Means the opposite. Further, in the present invention, when at least two different secondary pressures are applied, examining changes in blood volume due to the difference in secondary pressure also leads to obtaining basic data for inferring various pathological conditions.

本発明では、被験部位100の表面を押し当てたときの毛細血管内からの血液流出の時間変化に基づいて血流抵抗の評価を行う。毛細血管よりも更に深い位置にある動脈や静脈等の血流の影響を受けずに、感度良く血液の流動性(例えば血液の粘性など)を評価することができる。つまり、動脈や静脈は元々血管抵抗が毛細血管に比べて低く、押し当てた時には急速に血液が流出するので、それらの影響を受けずに、毛細血管系に残る血液の流出のみの測定が可能である。そして、その測定に基づいて精度良く血液の流動性を評価することができる。特に皮膚下残存血液量の変化を、ヘモグロビンによる光の吸収を利用して外部から光学的に測定することによって、測定構造の簡略化が図れる。   In the present invention, the blood flow resistance is evaluated based on the time change of blood outflow from the capillaries when the surface of the test site 100 is pressed. The fluidity of blood (for example, the viscosity of blood) can be evaluated with high sensitivity without being affected by the blood flow of arteries and veins located deeper than capillaries. In other words, arteries and veins originally have lower vascular resistance than capillaries, and when they are pressed, blood flows out rapidly, so it is possible to measure only the outflow of blood that remains in the capillary system without being affected by them. Is. Then, the fluidity of blood can be accurately evaluated based on the measurement. In particular, the measurement structure can be simplified by externally optically measuring the change in the amount of blood remaining under the skin by utilizing the absorption of light by hemoglobin.

以下、本発明による実施例を示すが、本発明はこれらの実施例に限定されるわけではない。   Examples according to the present invention will be shown below, but the present invention is not limited to these examples.

一次圧を304mmHgから309mmHgに変えたこと以外は、図2に示す測定プロファイルに従って、血液流動性の評価を行った。測定は、図4に記載の評価装置を製造しておこなった。該装置は、測定用センサ21と拍動同期用光センサ22を備える。前述のとおり一次圧は309mmHg、二次圧は、図2に示すとおり、109mmHg、88mmHg、64mmHg、53mmHg、40mmHg及び28mmHgとした。最初の押し当てサイクル(10秒間)では1次圧、次いで、最大の二次圧(109mmHg)、次いで、圧力開放、次いで、1次圧とし、次の押し当てサイクルからは、二次圧を順次下げていった。最小の二次圧を適用する押し当てサイクルの次の押し当てサイクルでは、再び、最大の二次圧を適用した。   Blood fluidity was evaluated according to the measurement profile shown in FIG. 2 except that the primary pressure was changed from 304 mmHg to 309 mmHg. The measurement was performed by manufacturing the evaluation device shown in FIG. The apparatus includes a measurement sensor 21 and a beat synchronization optical sensor 22. As described above, the primary pressure was 309 mmHg, and the secondary pressure was 109 mmHg, 88 mmHg, 64 mmHg, 53 mmHg, 40 mmHg and 28 mmHg as shown in FIG. In the first pressing cycle (10 seconds), the primary pressure, then the maximum secondary pressure (109 mmHg), then the pressure release, then the primary pressure, and the secondary pressure is sequentially applied from the next pressing cycle. I lowered it. The maximum secondary pressure was applied again in the next pressing cycle following the minimum secondary pressure applied cycle.

図5はある強皮症に関する健常者の血液流動性評価例の結果を示す。(A)〜(F)は順に、最大の二次圧を適用する押し当てサイクルにおける結果から、最小の二次圧を適用する押し当てサイクルにおける結果を示す。被験部位内の血液量の時間変化を光散乱を用いて計測した結果を図5に示している。二次圧の低下にともなって、血液量が増加していることが示されている。   FIG. 5 shows a result of an example of blood fluidity evaluation of a healthy person regarding a certain scleroderma. (A)-(F) shows the result in the pushing cycle which applies the maximum secondary pressure to the result in the pushing cycle which applies the minimum secondary pressure in order. FIG. 5 shows the result of measuring the time change of the blood volume in the test site using light scattering. It has been shown that blood volume increases with a decrease in secondary pressure.

図6はある4名の血液流動性評価例の結果を示す。測定プロファイルは上記と同様である。図6には、測定者ごとに、種々の二次圧を適用した時の血液量の時間変化を同一のグラフにプロットしている。健常者A、健常者Bは、二次圧の値に応じて、血液量の変化が顕著に確認されるのに対して、強皮症患者C、強皮症患者Dは、二次圧の値を変化させても、血液量の変化が微小であり、この測定により、強皮症の判別が極めて明瞭に成し得ることが判明した。   FIG. 6 shows the results of a blood fluidity evaluation example of 4 persons. The measurement profile is the same as above. In FIG. 6, the time change of the blood volume when various secondary pressures are applied is plotted in the same graph for each measurer. In the healthy subjects A and B, the change in blood volume is remarkably confirmed depending on the value of the secondary pressure, whereas in the scleroderma patient C and the scleroderma patient D, the secondary pressure It was found that even if the value was changed, the change in blood volume was minute, and by this measurement, discrimination of scleroderma could be made very clearly.

本発明によれば、外部から簡単に血液の流動性を評価でき、健康維持に役立てたいという要望に応えることができる。
以上、本発明の例示的な実施形態を詳細に説明した。本発明の精神と範囲を逸脱することなく種々の改変及び追加を行うことができる。従って、上記の記載は例示によるものであり、本発明の範囲を制限するためのものではない。
According to the present invention, the fluidity of blood can be easily evaluated from the outside, and it is possible to meet the demand for helping to maintain health.
The exemplary embodiments of the present invention have been described above in detail. Various modifications and additions can be made without departing from the spirit and scope of the present invention. Therefore, the above description is illustrative and not intended to limit the scope of the invention.

10 血液流動性を評価するためのユニット
11 脈拍測定のためのユニット
100 被験部位
110 脈拍測定部位
21 測定用センサ
22 拍動同期用光センサ
10 unit for evaluating blood fluidity 11 unit for pulse measurement 100 test site 110 pulse measurement site 21 measurement sensor 22 pulse synchronization optical sensor

Claims (7)

血液流動性を評価するための方法であって、
被験者の被験部位へ押し当て部材を一次圧の圧力で押し当て、被験部位内の血液を被験部位の周辺に流出せしめ、次いで、押し当て部材を押し当てる圧力を二次圧にまで低減して、次いで、押し当て部材を押し当てる圧力を開放し、次いで、押し当て部材を押し当てる圧力を一次圧にまで高める押し当てサイクルを複数回行って、その間の被験部位内の血液量の時間変化を光散乱を用いて計測する工程を有し、
二次圧の値は複数回の押し当てサイクルにわたって少なくとも2個の相異なる値をもつ、
方法
A method for assessing blood fluidity, comprising:
The pressing member is pressed against the test site of the subject with the pressure of the primary pressure, the blood in the test site is allowed to flow out to the periphery of the test site, and then the pressure of pressing the pressing member is reduced to the secondary pressure, Then, the pressure for pressing the pressing member is released, and then the pressing pressure for pressing the pressing member is increased to the primary pressure. Has a step of measuring using scattering,
The secondary pressure value has at least two different values over multiple pressing cycles,
Way .
1回の押し当てサイクルに要する時間が5〜15秒である請求項1記載の方法。   The method according to claim 1, wherein the time required for one pressing cycle is 5 to 15 seconds. 上記二次圧は最大の二次圧及び最小の二次圧を含む4〜10個の相異なる値をもち、押し当てサイクルの実行に伴って、最大の二次圧から最小の二次圧へと圧力が次第に小さくなる順序で二次圧を適用し、最小の二次圧を適用した押し当てサイクルの次の押し当てサイクルでは最大の二次圧を適用する、請求項1記載の方法。   The secondary pressure has 4 to 10 different values including the maximum secondary pressure and the minimum secondary pressure, and from the maximum secondary pressure to the minimum secondary pressure with the execution of the pressing cycle. 2. The method of claim 1, wherein the secondary pressures are applied in decreasing order of pressure, and the maximum secondary pressure is applied in the pressing cycle following the pressing cycle that applied the minimum secondary pressure. さらに、被験者の脈拍を計測し、取得された脈拍の計測データに基づいて上記押し当て部材の駆動を制御する請求項1記載の方法。   The method according to claim 1, further comprising measuring the pulse of the subject and controlling the driving of the pressing member based on the acquired pulse measurement data. 被験部位へ押し当て部材を一次圧の圧力で押し当てる時間を上記脈拍の計測データに基づく1〜3拍分の長さにして、被験部位へ押し当て部材を二次圧の圧力で押し当てる時間を上記脈拍の計測データに基づく1〜5拍分の長さにするよう上記押し当て部材の駆動を制御する請求項4項記載の方法。 The time to press the pressing member to the test site with the pressure of the primary pressure is set to a length of 1 to 3 beats based on the measurement data of the pulse, and the time to press the pressing member to the test site with the pressure of the secondary pressure. 5. The method according to claim 4, wherein the driving of the pressing member is controlled so that the length is 1 to 5 beats based on the pulse measurement data. さらに、被験者の脈拍を計測し、取得された脈拍の計測データに基づいて上記押し当て部材の駆動を制御する請求項3記載の方法。   The method according to claim 3, further comprising measuring the pulse of the subject and controlling the driving of the pressing member based on the acquired pulse measurement data. 被験部位へ押し当て部材を一次圧の圧力で押し当てる時間を上記脈拍の計測データに基づく1〜3拍分の長さにして、被験部位へ押し当て部材を二次圧の圧力で押し当てる時間を上記脈拍の計測データに基づく1〜5拍分の長さにするよう上記押し当て部材の駆動を制御する請求項6項記載の方法。 The time to press the pressing member to the test site with the pressure of the primary pressure is set to a length of 1 to 3 beats based on the measurement data of the pulse, and the time to press the pressing member to the test site with the pressure of the secondary pressure. 7. The method according to claim 6, wherein the driving of the pressing member is controlled so that the length becomes 1 to 5 beats based on the measurement data of the pulse.
JP2017509837A 2015-03-31 2016-03-22 Methods for assessing blood fluidity Active JP6692347B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015071055 2015-03-31
JP2015071055 2015-03-31
PCT/JP2016/059054 WO2016158585A1 (en) 2015-03-31 2016-03-22 Blood fluidity evaluation method and evaluation device

Publications (2)

Publication Number Publication Date
JPWO2016158585A1 JPWO2016158585A1 (en) 2018-02-01
JP6692347B2 true JP6692347B2 (en) 2020-05-13

Family

ID=57007116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017509837A Active JP6692347B2 (en) 2015-03-31 2016-03-22 Methods for assessing blood fluidity

Country Status (2)

Country Link
JP (1) JP6692347B2 (en)
WO (1) WO2016158585A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021013404A (en) * 2017-11-01 2021-02-12 アルプスアルパイン株式会社 Biological information measuring apparatus, information processing apparatus, biological information measuring method, and program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008183257A (en) * 2007-01-31 2008-08-14 Citizen Holdings Co Ltd Blood viscosity measuring device
JP2008206900A (en) * 2007-02-28 2008-09-11 Nippon Seimitsu Sokki Kk Blood fluidity evaluation device
JP2011050696A (en) * 2009-09-04 2011-03-17 Adtex:Kk Method and device for evaluating blood fluidity

Also Published As

Publication number Publication date
WO2016158585A1 (en) 2016-10-06
JPWO2016158585A1 (en) 2018-02-01

Similar Documents

Publication Publication Date Title
US9788727B2 (en) Physiological information measuring apparatus
KR102409382B1 (en) Method and apparatus for detecting information of the living body
KR102390369B1 (en) Apparatus for detecting information of the living body
US20150126865A1 (en) Ultrasonic probe and ultrasonic measuring device
US20170290537A1 (en) Capillary refill time diagnostic apparatus and methods
KR102407140B1 (en) Apparatus and method for analyzing information of the living body
JP2006068491A (en) Method and apparatus for evaluating fluidity of blood
JP6597410B2 (en) Biological information measuring device and biological information measuring method
JP5504477B2 (en) Fingertip pulse wave analyzer and vascular endothelial function evaluation system using the same
JP2016112277A (en) Blood pressure measurement device, electronic apparatus and blood pressure measurement method
EP3485807A1 (en) Measurement device, measurement method, and measurement program
EP3028630B1 (en) Measuring system for evaluating condition of patient
JP2017153875A (en) Biological information measurement device and biological information measurement method
US20150327779A1 (en) System and method for monitoring blood flow condition in region of interest in patient's body
US20140316291A1 (en) Measurement device, evaluating method, and evaluation program
KR20100018127A (en) Apparatus and method for measuring blood pressure
JP6692347B2 (en) Methods for assessing blood fluidity
JP2008161492A (en) Method and apparatus for evaluating fluidity of blood
JP5471736B2 (en) Pulse wave measuring device and pulse wave measuring method
JP2008161493A (en) Method and apparatus for evaluating fluidity of blood
JP2011050696A (en) Method and device for evaluating blood fluidity
JP2008206900A (en) Blood fluidity evaluation device
US20140243691A1 (en) Measurement device, index calculating method, and index calculating program
US20190059797A1 (en) Optical measuring apparatus and non-transitory computer readable medium
US20190150757A1 (en) Information obtaining apparatus and control method for signal processing apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200414

R150 Certificate of patent or registration of utility model

Ref document number: 6692347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250