JP6692132B2 - Displacement measuring method and displacement measuring system - Google Patents

Displacement measuring method and displacement measuring system Download PDF

Info

Publication number
JP6692132B2
JP6692132B2 JP2015162475A JP2015162475A JP6692132B2 JP 6692132 B2 JP6692132 B2 JP 6692132B2 JP 2015162475 A JP2015162475 A JP 2015162475A JP 2015162475 A JP2015162475 A JP 2015162475A JP 6692132 B2 JP6692132 B2 JP 6692132B2
Authority
JP
Japan
Prior art keywords
point
measuring
staff
displacement
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015162475A
Other languages
Japanese (ja)
Other versions
JP2017040560A (en
Inventor
卓也 谷
卓也 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2015162475A priority Critical patent/JP6692132B2/en
Publication of JP2017040560A publication Critical patent/JP2017040560A/en
Application granted granted Critical
Publication of JP6692132B2 publication Critical patent/JP6692132B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

本発明は、変位測定方法および変位測定システムに関する。   The present invention relates to a displacement measuring method and a displacement measuring system.

トンネル施工中の地表面や、盛土等の人工的な地盤等では、定期的に測量を行い、地盤の変位(沈下や隆起)を測定する必要がある。
地盤の変位測量は、地表面に設けられた測点の標高または基準点との高低差を、レベルと標尺を利用したいわゆるレベル測量により測定するのが一般的である。ところが、レベル測量による沈下測量は、基準点を適宜移設する作業が必要となる。そのため、高低差や距離が大きくなると、測量に手間と時間がかかる。
そのため、特許文献1には、測量器の移設を省略した計測方法として、測点となる反射体を地表面に設置して、この反射体をトータルステーションにより計測する計測方法が開示されている。
On the ground surface during construction of a tunnel or artificial ground such as embankment, it is necessary to regularly measure and measure the displacement (subsidence or uplift) of the ground.
In the ground displacement measurement, it is general to measure a height difference between an elevation of a measurement point provided on the ground surface or a reference point by so-called level measurement using a level and a staff. However, the settlement measurement by leveling requires the work to move the reference point appropriately. Therefore, when the height difference or the distance becomes large, it takes time and effort for the survey.
Therefore, Patent Document 1 discloses a measurement method in which a reflector serving as a measuring point is installed on the ground surface and a total station measures the reflector, as a measurement method in which relocation of a surveying instrument is omitted.

特開平05−071960号公報Japanese Patent Laid-Open No. 05-071960

特許文献1に記載の計測方法では、各測点を視認可能な位置にトータルステーションを設置する必要があるが、必ずしもトータルステーションを所定の位置に設置することができるとは限らない。特に、山間部のトンネルの地表面における沈下測量では、測点が坑口からは見通しが悪いため、測量時にトンネルの上方にトータルステーションを据え付ける必要があり、作業に手間がかかる。   In the measurement method described in Patent Document 1, the total station needs to be installed at a position where each measurement point can be visually recognized, but the total station cannot always be installed at a predetermined position. In particular, in subsidence surveying on the ground surface of a tunnel in a mountainous area, since the measurement point is not clearly visible from the wellhead, it is necessary to install a total station above the tunnel at the time of surveying, which requires a lot of work.

このような観点から、本発明は、見通しが悪い位置の地盤の変位測量を簡易に行うことを可能とした変位測定方法および変位測定システムを提案することを課題とする。   From such a viewpoint, it is an object of the present invention to propose a displacement measuring method and a displacement measuring system capable of easily performing displacement measurement of the ground at a position with poor visibility.

前記課題を解決するために、本発明の変位測定方法は、地表面に設けられた測点の変位量を測定するものであって、不動点である基準点から中継点の変位量を測定する中継点測定作業と、前記測点に設けられた標尺に向けて前記中継点から水平方向にレーザー光を照射するとともに前記レーザー光が照射された前記標尺の数値を読み取る測点測定作業とを備え、前記中継点測定作業では、前記中継点に設けた第二の標尺に向けて前記基準点から照射方向が固定されたレーザー光を照射し、前記レーザー光の到達点における前記第二の標尺の数値を読み取り、前記測点測定作業では、前記中継点において、前記レーザー光を照射するレーザー照準器が設置された回転台座上で前記レーザー照準器に並設されたカメラにより前記標尺の数値を撮影することを特徴としている。 In order to solve the above-mentioned problems, the displacement measuring method of the present invention is for measuring the amount of displacement of a measuring point provided on the ground surface, and measuring the amount of displacement of a relay point from a reference point which is a fixed point. A relay point measurement operation and a measurement point measurement operation of horizontally irradiating a laser beam from the relay point toward a staff provided at the measuring point and reading a numerical value of the staff irradiated with the laser light are provided. In the relay point measurement work, a laser beam whose irradiation direction is fixed from the reference point is radiated toward the second staff provided at the relay point, and the second staff at the arrival point of the laser light of the second staff. read-numeric, wherein in the measuring point measuring operation, at the relay point, the value of the staff by a camera laser sight for irradiating the laser beam is arranged in the laser sight on the installed rotary seat Shooting It is characterized in that that.

かかる変位測定方法によれば、各測点の標尺に向けてレーザー光を照射し、レーザー光の到達点における標尺の数値を読み取るのみで中継点を基準とした測点の変位量を測定することができるため、簡易に沈下測量を行うことができる。また、基準点から変位量を測定することで中継点の変位量を測定するため、中継点に変位が生じた場合であっても、各測点および中継点の変位量を簡易に測定することができる。したがって、基準点からは見通しが悪い測点の沈下測量を簡易に行うことができる。   According to such a displacement measuring method, the laser beam is irradiated toward the staff of each measuring point, and the displacement amount of the measuring point with the relay point as a reference is measured only by reading the numerical value of the staff at the arrival point of the laser light. Therefore, settlement measurement can be performed easily. Also, since the displacement amount of the relay point is measured by measuring the displacement amount from the reference point, even if the displacement occurs at the relay point, the displacement amount of each measuring point and relay point can be easily measured. You can Therefore, it is possible to easily perform subsidence measurement of a station that has poor visibility from the reference point.

前記中継点にカメラが設けられているため、前記測点測定作業において前記カメラにより前記標尺の数値を撮影することで、測点の変位量を離れた位置からでも確認することができる。 Because not the camera is provided on the relay point, by taking a value of the staff by the camera at the measuring point the measuring operation can be confirmed even from a position away the displacement of the measurement point.

また、本発明の変位測定システムは、測点に立設された標尺と、中継点に設けられた回転台座上から前記標尺にレーザー光を照射するレーザー照準器と、前記回転台座上において前記レーザー照準器と並設されて前記標尺を撮影するカメラと、前記中継点に設けられた第二の標尺と、不動点である基準点から前記第二の標尺に対して照射方向が固定されたレーザー光を照射する第二のレーザー照準器とを備えていることを特徴としている。 Further, the displacement measuring system of the present invention comprises a staff standing on a measuring point, a laser sighting device for irradiating the staff with laser light from a rotary pedestal provided at a relay point, and the laser on the rotary pedestal. A camera which is installed in parallel with a sighting device to photograph the staff, a second staff provided at the relay point, and a laser whose irradiation direction is fixed to the second staff from a reference point which is a fixed point. And a second laser sighting device for irradiating light.

かかる変位測定システムは、中継点測定手段により中継点の変位量を測定するとともに、標尺に照射されたレーザー光を撮影したカメラの映像により、各測点の変位を測定することを可能としている。そのため、基準点から見通しが悪い位置の変位量の測定を簡易に行うことができる。   In such a displacement measuring system, it is possible to measure the amount of displacement of the relay point by the relay point measuring means, and to measure the displacement of each measuring point by the image of the camera that photographs the laser light irradiated on the staff. Therefore, it is possible to easily measure the displacement amount at a position where visibility is poor from the reference point.

前記レーザー照準器および前記カメラが、前記中継点に設けられた回転台座上に設けられていれば、点在する複数の測点を一つの中継点から測定することができる。
また、前記中継点測定手段が、前記中継点に立設された第二の標尺と、前記基準点に設けられて前記第二の標尺にレーザー光を照射する第二のレーザー照準器とを備えたものであれば、より簡易に中継点の変位測定を行うことができる。
If the laser sighting device and the camera are provided on a rotary pedestal provided at the relay point, a plurality of scattered measurement points can be measured from one relay point.
In addition, the relay point measuring means includes a second staff provided upright at the relay point and a second laser sighting device that is provided at the reference point and irradiates the second staff with laser light. With this configuration, the displacement of the relay point can be measured more easily.

本発明の変位測定方法および変位測定システムによれば、見通しが悪い位置の沈下測量を簡易に行うことが可能となる。また、計測時における斜面の上り下りや、足場の悪い立地における計測の手間を省略し、かつ、所望の計測頻度による計測が可能なため、より確実な沈下測量を行うことができる。   According to the displacement measuring method and the displacement measuring system of the present invention, it becomes possible to easily perform the subsidence measurement at a position with poor visibility. Further, since it is possible to omit the ups and downs of the slope at the time of measurement and the time and effort of measurement in a location where the scaffolding is bad and to perform measurement at a desired measurement frequency, it is possible to perform more reliable settlement measurement.

本発明の実施形態の変位測定システムの概要を示す縦断図である。It is a longitudinal section showing an outline of a displacement measuring system of an embodiment of the present invention. 図1の変位測定システムの平面図である。It is a top view of the displacement measuring system of FIG.

本実施形態では、トンネル掘削による影響を把握することを目的として、本発明の変位測定方法によりトンネルの上方の地表面の変位量を測定する場合について説明する。
本実施形態の変位測定方法は、図1および図2に示す変位測定システム1を利用する。
In the present embodiment, a case will be described in which the displacement amount of the ground surface above the tunnel is measured by the displacement measuring method of the present invention for the purpose of grasping the influence of tunnel excavation.
The displacement measuring method of the present embodiment uses the displacement measuring system 1 shown in FIGS. 1 and 2.

変位測定システム1は、測点用標尺(標尺)11と、測点用レーザー照準器(レーザー照準器)12と、カメラ13と、中継点用標尺(第二の標尺)14と、中継点用レーザー照準器(第二のレーザー照準器)15とを備えている。
測点用標尺11は、各測点3に埋め込まれた標尺基礎31に立設されている。なお、測点用標尺11の設置方法は限定されない。
測点用標尺11は、目盛が付された棒状部材であって、少なくとも目盛の上端が測点用レーザー照準器12よりも高い位置で、かつ、目盛の下端が測点用レーザー照準器12よりも低い位置となるように設けられている。
なお、測点用標尺11の構成は限定されるものではなく、いわゆる測量用スタッフや測量用ロッド等を使用すればよい。
The displacement measuring system 1 includes a measuring station staff (leveling staff) 11, a measuring point laser sighting apparatus (laser sighting apparatus) 12, a camera 13, a relay point staff (second staff) 14, and a relay point. And a laser sighting device (second laser sighting device) 15.
The station staff 11 is erected on a staff foundation 31 embedded in each station 3. The method for installing the measuring staff 11 is not limited.
The station staff 11 is a rod-shaped member with a scale, at least the upper end of the scale is higher than the laser sight 12 for the station, and the lower end of the scale is more than the laser sight 12 for the station. Is also set to be in a low position.
The configuration of the measuring staff 11 is not limited, and so-called surveying staff, surveying rods, or the like may be used.

測点3は、トンネル2の上方の地表面に複数設けられている。本実施形態では、トンネル軸に沿った任意の位置(トンネル軸の左右の所定の範囲内)に測点3を設けているが、測点3の設置個所は、測点用レーザー照準器12から照射したレーザー光LBが測点用標尺11に到達できる位置であれば、限定されるものではない。
なお、測点3は、トンネル2の掘進前から設けておいてもよいし、トンネル2の掘進に伴い、適宜増設してもよい。
A plurality of measuring points 3 are provided on the ground surface above the tunnel 2. In the present embodiment, the measuring point 3 is provided at an arbitrary position along the tunnel axis (within a predetermined range on the left and right of the tunnel axis), but the installation point of the measuring point 3 is from the laser aiming device 12 for the measuring point. It is not limited as long as the irradiated laser beam LB can reach the measuring staff 11.
The measuring points 3 may be provided before the tunnel 2 is dug, or may be added as needed as the tunnel 2 is dug.

測点用レーザー照準器12は、中継点4に設けられている。本実施形態の中継点4は、トンネル2の坑口の斜面上に設けるが、中継点4の設置個所は、限定されるものではない。
測点用レーザー照準器12は、測点用標尺11に向けて、水平にレーザー光LBを照射する。本実施形態では、中継点4に設けられた回転台座16の上に測点用レーザー照準器12が設けられている。測点用レーザー照準器12は、回転台座16の回転により、鉛直軸を中心に回転する。すなわち、測点用レーザー照準器12は、水平面内で回転させることで、各測点用標尺11に向けられる。
The laser sighting device 12 for measuring points is provided at the relay point 4. The relay point 4 of the present embodiment is provided on the slope of the wellhead of the tunnel 2, but the installation location of the relay point 4 is not limited.
The measuring point laser sighting device 12 irradiates the measuring point staff 11 with the laser light LB horizontally. In the present embodiment, the laser sighting device 12 for measuring points is provided on the rotary pedestal 16 provided at the relay point 4. The laser sighting device 12 for measuring points is rotated about the vertical axis by the rotation of the rotary base 16. That is, the laser sighting device 12 for measuring points is turned to each measuring rod 11 for measuring by rotating in the horizontal plane.

カメラ13は、中継点4に設けられていて、測点用標尺11を撮影する。本実施形態のカメラ13は、回転台座16の上に測点用レーザー照準器12とともに設けられている。カメラ13は、測点用レーザー照準器12の照射方向の撮影が可能となるように設けられており、測点用レーザー照準器12とともに鉛直軸を中心に回転する。
本実施形態では、カメラ13で取得された画像データが、現場事務所のモニターに表示されるように、構成されている。つまり、カメラ13で取得された画像データは、無線または有線の通信回線を介して、図示せぬモニター(コンピュータ)に送信される。また、本実施カメラ13は、現場事務所においてズーム、ピント、方向等を遠隔操作することが可能に構成されている。
The camera 13 is provided at the relay point 4 and takes an image of the station staff 11. The camera 13 of the present embodiment is provided on the rotary base 16 together with the laser sighting device 12 for measuring points. The camera 13 is provided so as to be able to capture an image in the irradiation direction of the measuring point laser aiming device 12, and rotates around the vertical axis together with the measuring point laser aiming device 12.
In this embodiment, the image data acquired by the camera 13 is configured to be displayed on the monitor of the field office. That is, the image data acquired by the camera 13 is transmitted to a monitor (computer) (not shown) via a wireless or wired communication line. Further, the camera 13 of the present embodiment is configured so that the zoom, focus, direction, etc. can be remotely controlled in the field office.

回転台座16は、台座基礎41に立設された脚部17の上端において回転可能に支持されている。なお、回転台座16の構成は限定されるものではない。台座基礎41は、中継点4に形成されている。
また、本実施形態では、測点用レーザー照準器12およびカメラ13を、回転台座16上において上下に配置しているが、測点用レーザー照準器12とカメラ13とを左右に併設してもよく、その配置は限定されない。また、測点用レーザー照準器12およびカメラ13は、それぞれ異なる台座に設けられていてもよい。
回転台座16の高さは、測点3の標高に応じて設定する。すなわち、測点3の標高が、中継点4の標高よりも高い場合には、脚部17を長くして回転台座16の位置を高くする。
The rotary pedestal 16 is rotatably supported at the upper ends of the leg portions 17 erected on the pedestal base 41. The configuration of the rotary pedestal 16 is not limited. The pedestal base 41 is formed at the relay point 4.
Further, in the present embodiment, the laser aiming device for measuring point 12 and the camera 13 are arranged vertically on the rotary pedestal 16. However, even if the laser aiming device for measuring point 12 and the camera 13 are provided side by side. Well, the arrangement is not limited. Moreover, the laser aiming device for measuring point 12 and the camera 13 may be provided on different pedestals.
The height of the rotary pedestal 16 is set according to the altitude of the measuring point 3. That is, when the elevation of the measuring point 3 is higher than the elevation of the relay point 4, the leg 17 is lengthened to increase the position of the rotary pedestal 16.

中継点用標尺14および中継点用レーザー照準器15は、中継点4の変位量を測定する中継点測定手段を構成している。
中継点用標尺14は、回転台座16の脚部17に固定されていることで、中継点4に立設されている。なお、中継点用標尺14の設置方法は限定されるものではなく、台座基礎41により支持されていてもよい。
中継点用レーザー照準器15は、中継点用標尺14にレーザー光LBを照射することが可能な状態で、不動点である基準点5に据え付けられている。なお、中継点用レーザー照準器15は、基準点5において、照射方向が変化することがないように固定されている。
The relay point staff 14 and the relay point laser sighting device 15 constitute a relay point measuring means for measuring the displacement amount of the relay point 4.
The relay point staff 14 is erected at the relay point 4 by being fixed to the leg portions 17 of the rotary pedestal 16. The installation method of the relay point staff 14 is not limited, and may be supported by the base 41.
The relay point laser sighting device 15 is installed at the reference point 5 which is a fixed point in a state where the relay point staff 14 can be irradiated with the laser light LB. The relay point laser sighting device 15 is fixed at the reference point 5 so that the irradiation direction does not change.

変位測定システム1を利用した変位測定方法は、中継点測定作業と、測点測定作業とを備えている。
中継点測定作業では、中継点用標尺14および中継点用レーザー照準器15を利用して、基準点5から中継点4の変位量を測定する。
中継点4の変位測定は、中継点用標尺14に向けて、中継点用レーザー照準器15からレーザー光LBを照射し、レーザー光LBの到達点における中継点用標尺14の数値を読み取ることにより行う。すなわち、レーザー光LBの到達点における中継点用標尺14の数値が変化したか否かを確認する。なお、中継点用標尺14の数値の確認は、カメラにより撮影した画像を利用してもよい。
なお、中継点測定作業は、所定の時間毎に自動的に実施してもよいし、手動により実施してもよい。
The displacement measuring method using the displacement measuring system 1 includes a relay point measuring operation and a measuring point measuring operation.
In the relay point measurement work, the displacement amount from the reference point 5 to the relay point 4 is measured using the relay point staff 14 and the relay point laser sighting device 15.
The displacement of the relay point 4 is measured by irradiating the laser beam LB from the relay point laser sighting device 15 toward the relay point staff 14 and reading the numerical value of the relay point staff 14 at the arrival point of the laser light LB. To do. That is, it is confirmed whether the numerical value of the relay point staff 14 at the arrival point of the laser beam LB has changed. In addition, you may utilize the image image | photographed with the camera for confirmation of the numerical value of the staff 14 for relay points.
The relay point measurement work may be performed automatically at predetermined time intervals or may be performed manually.

測点測定作業では、各測点3,3,…の変位量を中継点4から測定する。
測点3の変位測定を行う場合には、まず、測点用標尺11に向けて測点用レーザー照準器12から水平方向にレーザー光LBを照射するとともに、カメラ13によりレーザー光LBが照射された測点用標尺11を撮影する。他の測点3の変位測定を行う場合には、回転台座16を回転させる。
測定者は、カメラ13により撮影された画像から、レーザー光LBが照射された測点用標尺11の数値を読み取ることで、トンネル2の施工に伴う測点3の変位量を測定する。
なお、中継点測定作業において中継点4の変位が確認された場合には、測点測定作業における測定結果に中継点4の変位量を反映する。
In the point measurement work, the displacement amount of each point 3, 3, ... Is measured from the relay point 4.
When measuring the displacement of the measuring point 3, first, the laser beam LB is irradiated in the horizontal direction from the measuring point laser aiming device 12 toward the measuring point staff 11, and the laser beam LB is irradiated by the camera 13. The station staff 11 is taken. When the displacement of another measuring point 3 is measured, the rotary base 16 is rotated.
The measurer measures the amount of displacement of the measuring point 3 associated with the construction of the tunnel 2 by reading the numerical value of the measuring staff 11 irradiated with the laser light LB from the image captured by the camera 13.
When the displacement of the relay point 4 is confirmed in the relay point measurement work, the displacement amount of the relay point 4 is reflected in the measurement result in the measurement point measurement work.

本実施形態では、測点用レーザー照準器12、カメラ13および回転台座16を、図示せぬ制御手段を介して自動的に操作することで、各測点3の変位量を自動的に計測する。
すなわち、制御手段は、所定の時間毎に、回転台座16、測点用レーザー照準器12およびカメラ13に信号を送信する。
回転台座16が信号を受信すると、レーザー光LBの照射方向が制御手段で指定された方向となるように回転する。
また、測点用レーザー照準器12が信号を受信すると測点用レーザー照準器12がレーザー光LBを照射し、カメラ13が信号を受信するとカメラ13がレーザー光LBの照射位置を撮影する。
なお、測点用レーザー照準器12、カメラ13および回転台座16は、遠隔操作により手動で操作してもよい。
In the present embodiment, the amount of displacement of each measuring point 3 is automatically measured by automatically operating the laser sighting device for measuring point 12, the camera 13, and the rotary pedestal 16 via a control means (not shown). ..
That is, the control means transmits a signal to the rotary pedestal 16, the laser sighting device 12 for measuring points, and the camera 13 every predetermined time.
When the rotary base 16 receives the signal, the rotary base 16 rotates so that the irradiation direction of the laser beam LB becomes the direction designated by the control means.
Further, when the measuring point laser aiming device 12 receives the signal, the measuring point laser aiming device 12 irradiates the laser beam LB, and when the camera 13 receives the signal, the camera 13 photographs the irradiation position of the laser beam LB.
The laser sighting device 12 for measuring points, the camera 13, and the rotary base 16 may be manually operated by remote control.

本実施形態の変位測定システム1および変位測定方法によれば、次に示す効果を得ることができる。
各測点3の測点用標尺11に向けてレーザー光LBを照射し、このレーザー光LBの到達点における測点用標尺11の数値を読み取るのみで中継点4を基準とした測点3の変位量を測定することができる。そのため、簡易に地表面の沈下測量を行うことができる。また、基準点5から中継点4の変位量を測定するため、中継点4に変位が生じた場合であっても、各測点3および中継点4の変位量を簡易に測定することができる。
また、基準点5からは見通しが悪い測点3の沈下測量を簡易に行うことができる。
中継点4に設けられたカメラ13により測点用標尺11の数値を撮影するため、測点3から離れた位置においても測点3の変位量を確認することができる。
レーザー照準器12,15を利用することで、トータルステーション等の高価な測量機器を使用する従来の測定方法に比べて安価である。
測点3と中継点4との高低差が大きい場合であっても、測点用標尺11の長さを調整することで、測点3の変位量の測定が可能となる。
遠隔操作または自動制御により各測点の変位を測定すれば、測量時に斜面において作業を行う必要がなく、安全に変位測量を行うことができる。また、電力の供給は測量時のみでよいため経済的である。
According to the displacement measuring system 1 and the displacement measuring method of this embodiment, the following effects can be obtained.
The laser beam LB is irradiated toward the measuring point staff 11 of each measuring point 3, and only the numerical value of the measuring point staff 11 at the arrival point of this laser light LB is read, and the measuring point 3 based on the relay point 4 is measured. The amount of displacement can be measured. Therefore, it is possible to easily measure the settlement of the ground surface. Further, since the displacement amount of the relay point 4 from the reference point 5 is measured, the displacement amount of each of the measurement points 3 and the relay point 4 can be easily measured even when the displacement of the relay point 4 occurs. ..
Further, it is possible to easily perform settlement measurement of the measurement point 3 where the visibility is bad from the reference point 5.
Since the camera 13 provided at the relay point 4 captures the numerical value of the measuring station staff 11, the displacement amount of the measuring point 3 can be confirmed even at a position away from the measuring point 3.
By using the laser sights 12 and 15, it is cheaper than the conventional measuring method using expensive surveying equipment such as a total station.
Even if the height difference between the measuring point 3 and the relay point 4 is large, the displacement amount of the measuring point 3 can be measured by adjusting the length of the measuring point staff 11.
If the displacement of each measurement point is measured by remote control or automatic control, it is not necessary to work on the slope at the time of surveying, and displacement measurement can be performed safely. In addition, the power supply is economical because it only needs to be measured.

以上、本発明の実施形態について説明したが本発明は、前述の実施形態に限られず、前記の各構成要素については、本発明の趣旨を逸脱しない範囲で、適宜変更が可能である。
例えば、本発明の変位測定方法および変位測定システムの利用目的は、トンネル掘削時の地表面の変位測量に限定されるものではなく、薬液注入時の地盤の隆起に対する変位測量、盛土の変位測量または法面の変位測量等、他の地盤変位測量に採用してもよい。
前記実施形態では、カメラにより標尺を撮影する場合について説明したが、カメラは必要に応じて使用すればよい。
前記実施形態では、中継点測定手段として、中継点用標尺14と中継点用レーザー照準器15を採用したが、中継点測定手段の構成は限定されるものではない。例えば、中継点4に設けられたプリズムターゲットと、基準点5に据え付けられたトランシットにより構成してもよい。かかる中継点測定手段によれば、基準点5に装置を常設しておく必要はなく、変位測量を行うことができるため、基準点の周囲のスペースを有効に利用することができる。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and the respective constituent elements can be appropriately modified without departing from the spirit of the present invention.
For example, the purpose of using the displacement measuring method and the displacement measuring system of the present invention is not limited to the displacement measurement of the ground surface during tunnel excavation, and the displacement measurement for the uplift of the ground at the time of chemical injection, the displacement measurement of the embankment or It may be used for other ground displacement surveys such as slope surface surveying.
In the above-described embodiment, the case of photographing the staff with the camera has been described, but the camera may be used as necessary.
In the above embodiment, the relay point staff 14 and the relay point laser sighting device 15 are used as the relay point measuring means, but the configuration of the relay point measuring means is not limited. For example, it may be configured by a prism target provided at the relay point 4 and a transit installed at the reference point 5. According to this relay point measuring means, it is not necessary to permanently install a device at the reference point 5 and displacement measurement can be performed, so that the space around the reference point can be effectively used.

1 変位測定システム
11 測点用標尺(標尺)
12 測点用レーザー照準器(レーザー照準器)
13 カメラ
14 中継点用標尺(第二の標尺)
15 中継点用レーザー照準器(第二のレーザー照準器)
16 回転台座
2 トンネル
3 測点
4 中継点
5 基準点
LB レーザー光
1 Displacement measurement system 11 Station staff (base)
12 Laser sights for measuring points (laser sights)
13 Camera 14 Relay point staff (second staff)
15 Laser sight for relay point (second laser sight)
16 Rotation base 2 Tunnel 3 Measuring point 4 Relay point 5 Reference point LB Laser light

Claims (2)

地表面に設けられた測点の変位量を測定する変位測定方法であって、
不動点である基準点から中継点の変位量を測定する中継点測定作業と、
前記測点に設けられた標尺に向けて前記中継点から水平方向にレーザー光を照射するとともに、前記レーザー光が照射された前記標尺の数値を読み取る測点測定作業と、を備え、
前記中継点測定作業では、前記中継点に設けた第二の標尺に向けて前記基準点から照射方向が固定されたレーザー光を照射し、前記レーザー光の到達点における前記第二の標尺の数値を読み取り、
前記測点測定作業では、前記中継点において、レーザー光を照射するレーザー照準器が設置された回転台座上で前記レーザー照準器に並設されたカメラにより前記標尺の数値を撮影することを特徴とする、変位測定方法。
A displacement measuring method for measuring the amount of displacement of a measuring point provided on the ground surface,
Relay point measurement work to measure the displacement amount of the relay point from the reference point which is a fixed point,
While irradiating a laser beam in the horizontal direction from the relay point toward the staff provided at the measuring point, a measuring point measuring operation for reading the numerical value of the staff irradiated with the laser light,
In the relay point measurement work, the laser beam whose irradiation direction is fixed from the reference point is irradiated toward the second staff provided at the relay point, and the numerical value of the second staff at the arrival point of the laser light. the read-,
Wherein in the measuring point measuring operation, Oite to the relay point, the juxtaposed camera to the laser sight on a rotary pedestal laser sight is installed for irradiating a laser light to shoot a number of the staff Displacement measuring method.
測点に立設された標尺と、
中継点に設けられた回転台座上から前記標尺にレーザー光を照射するレーザー照準器と、
前記回転台座上において前記レーザー照準器と並設されて前記標尺を撮影するカメラと、
前記中継点に設けられた第二の標尺と、
不動点である基準点から前記第二の標尺に対して照射方向が固定されたレーザー光を照射する第二のレーザー照準器と、を備えていることを特徴とする変位測定システム。
A staff standing on the measuring point,
A laser sighting device for irradiating the staff with laser light from a rotating pedestal provided at a relay point,
A camera that is installed in parallel with the laser sighting device on the rotating pedestal to photograph the staff.
A second staff provided at the relay point,
A second laser sighting device for irradiating a laser beam whose irradiation direction is fixed to the second staff from a reference point which is a fixed point, and a displacement measuring system.
JP2015162475A 2015-08-20 2015-08-20 Displacement measuring method and displacement measuring system Active JP6692132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015162475A JP6692132B2 (en) 2015-08-20 2015-08-20 Displacement measuring method and displacement measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015162475A JP6692132B2 (en) 2015-08-20 2015-08-20 Displacement measuring method and displacement measuring system

Publications (2)

Publication Number Publication Date
JP2017040560A JP2017040560A (en) 2017-02-23
JP6692132B2 true JP6692132B2 (en) 2020-05-13

Family

ID=58202828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015162475A Active JP6692132B2 (en) 2015-08-20 2015-08-20 Displacement measuring method and displacement measuring system

Country Status (1)

Country Link
JP (1) JP6692132B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108007430B (en) * 2017-12-13 2020-05-12 苍南县交通建设工程有限公司 Monitoring system and method for subgrade settlement
CN109183859A (en) * 2018-08-22 2019-01-11 河南蓝特电子科技有限公司 A kind of foundation pit real-time monitoring system
CN112359806A (en) * 2020-09-27 2021-02-12 中建东设岩土工程有限公司 Device and method for monitoring influence of deep foundation pit excavation on vertical deformation of subway
CN113175859B (en) * 2021-05-08 2023-04-25 厦门泰睿坤建设工程有限公司 Monitoring device for building templates construction

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025413A (en) * 1983-07-22 1985-02-08 Asahi Seimitsu Kk Method and device for leveling rod scale detection in leveling
JP3055680B1 (en) * 1998-12-14 2000-06-26 西松建設株式会社 Ground displacement measurement method and ground displacement measurement system
JP2000234929A (en) * 1999-02-15 2000-08-29 Berutekusu:Kk Interconnecting automatic position/attitude measuring system
US6389709B1 (en) * 1999-03-08 2002-05-21 Enthios Corporation Method and apparatus for checking elevation
JP5736260B2 (en) * 2011-07-07 2015-06-17 株式会社ユアテック Survey method between transmission line support points of steel tower

Also Published As

Publication number Publication date
JP2017040560A (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6692132B2 (en) Displacement measuring method and displacement measuring system
JP6654649B2 (en) Defect detection device and program
US7079234B2 (en) Method for determining the spatial location and position of a reflector rod in relation to a marked ground point
CN108981676A (en) Geodetic surveying
JP5623227B2 (en) Measuring method and measuring device
US20050057745A1 (en) Measurement methods and apparatus
Soni et al. Structural monitoring for the rail industry using conventional survey, laser scanning and photogrammetry
EP2707745A1 (en) Calibration method for a device having a scan function
JP6899436B2 (en) Calculation system, program and target
JP6412658B2 (en) Inspection planning support system, method and program
KR100935898B1 (en) Automatic displacement detecting apparatus and method, and slop maintenance and management system and method using the same
KR101181706B1 (en) Device for image analysis and method for measuring deformation of civil structure
CN203772265U (en) Inclination detector
JP3218374U (en) Measuring device and 3D model generation system for manhole and pipe connection
KR101813206B1 (en) Operating system for digital map making system capable of real-time remote modification
CN104931021B (en) Crack multi-parameter observation device based on close-range photogrammetry
CN102735262B (en) Laser line generator's precision detection device
KR101144200B1 (en) Map data collecting system for plotting instrument
JP4012225B2 (en) Displacement measuring method and displacement measuring apparatus
JP6431995B2 (en) Improved portable prism receiver, improved portable GPS receiver, and surveying method using the same
KR101984507B1 (en) the improved portable prism receiver and the measurement method using the same
KR20180069546A (en) Construction Method of Model Based on Coordinates of Geological Information for Surface Structure
KR20200145182A (en) Apparatus for inspecting inside of manhole and method for inspecting manhole using the same
Akca et al. Photogrammetric monitoring of an artificially generated landslide
Fraštia et al. Photogrammetric observation of deformation of the vertical mining shaft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200414

R150 Certificate of patent or registration of utility model

Ref document number: 6692132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150