JP6691248B2 - 端末及び送信方法 - Google Patents

端末及び送信方法 Download PDF

Info

Publication number
JP6691248B2
JP6691248B2 JP2019013191A JP2019013191A JP6691248B2 JP 6691248 B2 JP6691248 B2 JP 6691248B2 JP 2019013191 A JP2019013191 A JP 2019013191A JP 2019013191 A JP2019013191 A JP 2019013191A JP 6691248 B2 JP6691248 B2 JP 6691248B2
Authority
JP
Japan
Prior art keywords
subframe
terminal
pdcch
signal
subframes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019013191A
Other languages
English (en)
Other versions
JP2019080353A (ja
Inventor
哲矢 山本
哲矢 山本
中尾 正悟
正悟 中尾
星野 正幸
正幸 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Corp of America
Original Assignee
Panasonic Intellectual Property Corp of America
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Corp of America filed Critical Panasonic Intellectual Property Corp of America
Publication of JP2019080353A publication Critical patent/JP2019080353A/ja
Application granted granted Critical
Publication of JP6691248B2 publication Critical patent/JP6691248B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/004Orthogonal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • H04J13/18Allocation of orthogonal codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1858Transmission or retransmission of more than one copy of acknowledgement message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

本開示は、端末及び送信方法に関する。
3GPP LTE(3rd Generation Partnership Project Long Term Evolution)では、下りリンクの通信方式として直交周波数分割マルチアクセス(OFDMA:Orthogonal Frequency Division Multiple Access)が採用されている。
3GPP LTEが適用された無線通信システムでは、基地局(eNBと呼ぶこともある)は、予め定められた通信リソースを用いて、同期信号(SCH: Synchronization Channel)及び報知信号(PBCH: Physical Broadcast Channel)を送信する。そして、端末(UE(User Equipment)と呼ぶこともある)は、まずSCHを捕まえることによって基地局との同期を確保する。その後、端末は、BCH情報を読むことにより基地局固有のパラメータ(例えば、周波数帯域幅など)を取得する(例えば、非特許文献1〜3を参照)。
また、端末は、基地局固有のパラメータの取得が完了した後、基地局に対して接続要求を行うことにより、基地局との通信を確立する。基地局は、通信が確立された端末に対して、必要に応じてPDCCH(Physical Downlink Control Channel)等の制御チャネルを介して制御情報を送信する。そして、端末は、受信したPDCCH信号に含まれる制御情報の復号を試みる(ブラインド判定)。すなわち、制御情報は、基地局において、送信対象端末の端末IDによってマスクされたCRC(Cyclic Redundancy Check)部分を含む。従って、端末は、受信した制御情報のCRC部分を自機の端末IDによってデマスクし、自機宛の制御情報であるか否かを判定する。このブラインド判定によってデマスクした結果、CRCの演算結果に誤りがなれば、端末は、その制御情報が自機宛であると判定する。
また、LTEでは、基地局から端末への下りリンクデータに対してHARQ(Hybrid Automatic Repeat Request)が適用される。つまり、端末は、下りリンクデータの誤り検出結果を示す応答信号を基地局へフィードバックする。端末は、下りリンクデータに対してCRCを行って、CRCの演算結果に誤りがなければ肯定応答(ACK: Acknowledgement)を、CRCの演算結果に誤りがあれば否定応答(NACK: Negative Acknowledgement)を応答信号として基地局へフィードバックする。この応答信号(つまり、ACK/NACK信号)のフィードバックには、PUCCH(Physical Uplink Control Channel)等の上りリンク制御チャネルが用いられる。
ここで、基地局から送信される上記制御情報には、基地局が端末に対して割り当てたリソースを示すリソース割当情報が含まれる。この制御情報の送信には、PDCCHが用いられる。PDCCHは、1つ又は複数のL1/L2 CCH(L1/L2 Control Channel)から構成される。各L1/L2 CCHは、1つ又は複数のCCE(Control Channel Element)から構成される。すなわち、CCEは、制御情報をPDCCHにマッピングするときの基本単位である。また、1つのL1/L2 CCHが複数のCCEから構成される場合には、そのL1/L2 CCHには連続する複数のCCEが割り当てられる。基地局は、リソース割当対象端末に対する制御情報の通知に必要なCCE数に従って、そのリソース割当対象端末に対してL1/L2 CCHを割り当てる。そして、基地局は、このL1/L2 CCHのCCEに対応する物理リソースに制御情報をマッピングして送信する。
また、各CCEは、PUCCHを構成するリソース(以下、PUCCHリソースと呼ぶ)と1対1に対応付けられている。したがって、L1/L2 CCHを受信した端末は、このL1/L2 CCHを構成するCCEに対応するPUCCHリソースを特定し、このPUCCHリソースを用いてACK/NACK信号を基地局へ送信する。ただし、L1/L2 CCHが連続する複数のCCEを占有する場合には、端末は、複数のCCEにそれぞれ対応する複数のPUCCHリソースのうち1つのリソース(例えば、インデックスが最も小さいCCEに対応するPUCCHリソース)を利用して、ACK/NACK信号を基地局へ送信する。
また、図1に示すように、端末がPUCCHを用いてACK/NACK信号を送信するタイミングは、受信したPDCCH信号及びそのPDDCH信号によりデータが割り当てられたPDSCH(Physical Downlink Shared Channel)信号を受信したサブフレーム(図1ではサブフレームn)から、Kサブフレーム後(例えばFDD(Frequency Division Duplex)ではK=4)のサブフレーム(図1ではサブフレームn+K)となる。
複数の端末からそれぞれ送信される複数のACK/NACK信号は、図2に示すように、時間軸上においてZero Auto-correlation特性を持つZAC(Zero Auto-correlation)系列によって拡散され(ZAC系列を乗算)、PUCCH内においてコード多重される。図2において、(W(0), W(1), W(2), W(3))は系列長4のウォルシュ系列を表し、(F(0),F(1),F(2))は系列長3のDFT系列を表す。
図2に示すように、端末ではACK/NACK信号は、まず周波数軸上においてZAC系列(系列長12)によって1SC-FDMA(Single-Carrier Frequency Division Multiple Access)シンボルに対応する周波数成分へ1次拡散される。つまり、系列長12のZAC系列に対して、複素数で表されるACK/NACK信号成分が乗算される。次に、1次拡散後のACK/NACK信号、及び、参照信号としてのZAC系列は、それぞれウォルシュ系列(系列長4: W(0)〜W(3))及びDFT系列(系列長3: F(0)〜F(2))によって2次拡散される。つまり、系列長12の信号(1次拡散後のACK/NACK信号、又は、参照信号としてのZAC系列)のそれぞれの成分に対して、直交符号系列(Orthogonal sequence: ウォルシュ系列又はDFT系列)の各成分が乗算される。さらに、2次拡散された信号は、逆離散フーリエ変換(IDFT: Inverse Discrete Fourier Transform。又はIFFT: Inverse Fast Fourier Transform)によって時間軸上の系列長12の信号に変換される。そして、IFFT後の信号のそれぞれに対して、サイクリックプリフィックス(CP:Cyclic Prefix)が付加され、7つのSC-FDMAシンボルからなる1スロットの信号が形成される。
PUCCHは、周波数軸においてシステム帯域の両端に配置される。また、PUCCHリソースは、サブフレーム単位で各端末に割り当てられる。また、1サブフレームは2スロットで構成され、PUCCHは前半スロットと後半スロットとで周波数ホッピング(スロット間周波数ホッピング)される。
異なる端末からのACK/NACK信号は、異なる巡回シフト量(Cyclic Shift Index)で定義されるZAC系列、及び、異なる系列番号(OC Index: Orthogonal Cover Index)に対応する直交符号系列を用いて拡散(乗算)されている。直交符号系列は、ウォルシュ系列とDFT系列との組である。また、直交符号系列は、ブロックワイズ拡散コード系列(Block-wise spreading code)と称されることもある。したがって、基地局は、逆拡散及び相関処理を用いることにより、これらのコード多重された複数のACK/NACK信号を分離することができる(例えば、非特許文献4を参照)。図3は、直交符号系列の系列番号(OC index:0〜2)及びZAC系列の巡回シフト量(Cyclic shift Index:0〜11)によって定義されるPUCCHリソースを示す。系列長4のウォルシュ系列及び系列長3のDFT系列を用いた場合、同一の時間周波数リソースにおいて、最大で3*12=36個のPUCCHリソースを定義できる。ただし、36個のPUCCHリソースをすべて利用可能とするとは限らない。例えば、図3では18個のPUCCHリソース(#0〜#17)を利用可能とした場合を示す。
ところで、今後の情報社会を支える仕組みとして、近年、ユーザの判断を介することなく機器間の自律的な通信によりサービスを実現するM2M(Machine-to-Machine)通信が期待されている。M2Mシステムの具体的な応用事例としてスマートグリッドがある。スマートグリッドは、電気又はガスなどのライフラインを効率的に供給するインフラシステムである。例えば、スマートグリッドは、各家庭又はビルに配備されるスマートメータと中央サーバとの間でM2M通信を実施して、自律的かつ効果的に資源の需要バランスを調整する。M2M通信システムの他の応用事例として、物品管理又は遠隔医療などのためのモニタリングシステム、自動販売機の在庫又は課金の遠隔管理などが挙げられる。
M2M通信システムにおいては、特に広範な通信エリアを有するセルラシステムの利用が着目されている。3GPPでは、LTE及びLTE-Advancedの規格化においてセルラネットワークを前提としたM2Mの検討が、マシンタイプ通信(MTC: Machine Type Communication)という名称で進められている。特に、スマートメータなどのMTC通信機器が、既存の通信エリアにおいて利用できない、ビルの地下などの場所に配置されている場合に対応するため、通信エリアをさらに拡大する「カバレッジエンハンスメント(Coverage Enhancement)」が検討されている(例えば、非特許文献5を参照)。
通信エリアをさらに拡大するために、MTCカバレッジエンハンスメントでは、同一信号を複数回繰り返して送信するレピティションが検討されている。具体的には、PDCCH、PDSCH及びPUCCH等の各チャネルにおいてレピティション送信を行うことが検討されている。
3GPP TS 36.211 V11.5.0, "Physical channels and modulation (Release 11)," December 2013. 3GPP TS 36.212 V11.4.0, "Multiplexing and channel coding (Release 11)," December 2013. 3GPP TS 36.213 V11.5.0, "Physical layer procedures (Release11)," December 2013. Seigo Nakao, Tomofumi Takata, Daichi Imamura, and Katsuhiko Hiramatsu, "Performance enhancement of E-UTRA uplink control channel in fast fading environments," Proceeding of 2009 IEEE 69th Vehicular Technology Conference (VTC2009-Spring), April 2009. 3GPP TR 36.888 V12.0.0, "Study on provision of low-cost Machine-Type Communications (MTC) User Equipments (UEs) based on LTE、" June 2013. R1-140501, Panasonic, "(E)PDCCH coverage enhancement for MTC, 3GPP TSG RAN WG1 Meeting #76, February 2014. R1-140641, Sharp, "Discussion on PUCCH for MTC UEs in coverage enhanced mode," 3GPP TSG RAN WG1 Meeting #76, February 2014. R1-140498, Panasonic, "Proposal of common coverage enhanced subframe length," 3GPP TSG RAN WG1 Meeting #76, February 2014.
しかしながら、MTCカバレッジエンハンスメントを行う端末(レピティション送信を行う端末、又は、MTCカバレッジエンハンスメントモードの端末、と呼ぶ)が、ACK/NACK信号を送信するPUCCHリソースについては、未だ十分な検討がなされていない。特に、PUCCHリソースは、各端末が使用するPUCCHリソース間で衝突しないように設計することが必要である。
本開示の非限定的な実施例は、MTCカバレッジエンハンスメントモードにおいて、端末間のPUCCHリソースの衝突を回避することができる端末及び送信方法を提供することである。
本開示の一態様に係る端末は、複数の第1のサブフレームに渡ってレピティションされたPhysical Downlink Control Channel(PDCCH)、及び前記PDCCHによって割り当てられたPhysical Downlink Shared Channel(PDSCH)を受信する受信部と、前記複数の第1のサブフレームに関連付けられたリソースブロックを、前記PDSCHに対する応答信号の送信に使用されるPhysical Uplink Control Channel(PUCCH)リソースとして決定する制御部と、前記決定されたPUCCHリソースを用いて、前記応答信号を複数の第2のサブフレームに渡ってレピティションする送信部と、を具備する構成を採る。
本開示の一態様に係る端末において、前記PDCCHがレピティション送信される前記複数の第1のサブフレームのうち、先頭サブフレーム又は最後尾サブフレームに関連付けられたリソースブロックが、前記PUCCHリソースとして決定される。
本開示の一態様に係る送信方法は、複数の第1のサブフレームに渡ってレピティションされたPhysical Downlink Control Channel(PDCCH)、及び前記PDCCHによって割り当てられたPhysical Downlink Shared Channel(PDSCH)を受信する工程と、前記複数の第1のサブフレームに関連付けられたリソースブロックを、前記PDSCHに対する応答信号の送信に使用されるPhysical Uplink Control Channel(PUCCH)リソースとして決定する工程と、前記決定されたPUCCHリソースを用いて、前記応答信号を複数の第2のサブフレームに渡ってレピティションする工程と、を具備する。
本開示の一態様に係る送信方法において、前記PDCCHがレピティション送信される前記複数の第1のサブフレームのうち、先頭サブフレーム又は最後尾サブフレームに関連付けられたリソースブロックが、前記PUCCHリソースとして決定される。
なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
本開示の一態様によれば、MTCカバレッジエンハンスメントモードにおいて、端末間のPUCCHリソースの衝突を回避することができる。また、本開示の一態様における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。
図1は、各チャネルの送信タイミングを示す。 図2は、応答信号及び参照信号の拡散方法を示す。 図3は、PUCCHリソースの一例を示す。 図4は、レピティション送信時の各チャネルの送信タイミングを示す。 図5は、PUCCHリソースの衝突の一例を示す。 図6は、PUCCHリソースの衝突の一例を示す。 図7は、実施の形態1に係る基地局の要部構成を示す。 図8は、実施の形態1に係る端末の要部構成を示す。 図9は、実施の形態1に係る基地局の構成を示す。 図10は、実施の形態1に係る端末の構成を示す。 図11は、実施の形態1に係るACK/NACK信号の拡散方法の一例を示す。 図12は、実施の形態1に係るPUCCHリソースを示す。 図13は、実施の形態1に係るサブフレーム間直交符号系列の一例を示す。 図14は、実施の形態1に係るレピティション送信時の各チャネルの送信タイミングを示す。 図15は、実施の形態1のバリエーション1に係るPUCCHリソースを示す。 図16は、実施の形態1のバリエーション2に係るPUCCHリソースを示す。
図4は、本開示の一態様として想定したMTCカバレッジエンハンスメントにおける各チャネルの送信タイミングを示す。図4では、PDCCHのレピティションレベルをNPDCCHとし、PDSCHのレピティションレベルをNPDSCHとし、PUCCHのレピティションレベルをNPUCCHとする。また、図4に示すように、MTCカバレッジエンハンスメントでは、PDCCHのレピティション送信後に、当該PDCCHによってデータが割り当てられたPDSCHのレピティション送信が行われる。端末でのACK/NACK信号(PUCCH)の送信タイミングは、PDSCHの受信を終えたサブフレームから、KMTCサブフレーム後となる。また、PDCCH又はPUCCHのレピティション送信において、複数回繰り返して送信される信号を同一のリソースを用いて送信することが検討されている(例えば、非特許文献6、7を参照)。なお、図4に示す各チャネルの送信タイミングは例示であり、本開示の送信タイミングは、この送信タイミングに限定されない。
MTC環境では、一つのセルに接続する端末数が増大することが予想される。このようなMTC環境においてExplicitにPUCCHリソースを割り当てることは、比較的頻繁に通信を行わない多数のMTC端末に対してPUCCHリソースをそれぞれ確保する必要があるため、PUCCHリソースの利用効率を低下させる。また、MTCカバレッジエンハンスメントにおいては、Explicitに割り当てるPUCCHリソースを通知するシグナリングに対してもレピティション送信が適用されることが考えられるため、シグナリングのオーバーヘッドが増加する。
したがって、本開示のMTCカバレッジエンハンスメントでは、PUCCHリソースの利用効率を向上させるため、通常モードの端末(レピティション送信を行わない端末)と同様に、ImplicitにPUCCHリソースを割り当てる。例えば、PUCCHリソースと、PDCCHに使用されるCCEとを1対1に対応付けて、基地局がPUCCHリソースをImplicitに通知する。
ここで、複数の通常モードの端末からそれぞれ送信される複数のACK/NACK信号は、上述したように、ZAC系列および直交符号系列(Walsh系列またはDFT系列)によって拡散され、PUCCH内においてコード多重されている。また、通常モードの端末が使用するPUCCHリソースは、PDCCHに使用されたCCEと1対1に対応付けられている。さらに、通常モードの端末が、ACK/NACK信号を送信する送信タイミングは、受信したPDCCH信号及びそのPDDCHによりデータが割り当てられたPDSCH信号を受信したサブフレームから、Kサブフレーム後(例えばFDDではK=4サブフレーム後)である。複数の通常モードの端末に対して同一サブフレームで割り当てられるPDCCHのCCEは、スケジューリングにより端末間で異なるため、複数の通常モードの端末が同一のサブフレームにおいて送信するACK/NACK信号は、互いに異なるPUCCHリソースを用いて送信される(衝突しない)。
一方、MTCカバレッジエンハンスメントモードでは、複数の端末が同一のサブフレームにおいてACK/NACK信号を送信するPUCCHリソースが、端末間で同一のCCEに対応付けられている場合がある。このため、PUCCHリソースを、PDCCHに使用されるCCEに1対1に対応付けてImplicitに通知する場合、複数の端末がそれぞれACK/NACK信号の送信に用いるPUCCHリソースが衝突する場合がある。
図5及び図6は、MTCカバレッジエンハンスメントモードの端末間でPUCCHリソースが衝突する場合の一例を示す。
図5は、上りリンク(PUCCH)に設定されたレピティションレベルと下りリンク(PDCCH及びPDSCH)に設定されたレピティションレベルとが異なる場合の一例を示す。図5では、端末1及び端末2のPDCCHのレピティションレベルをNPDCCH、端末1及び端末2のPDSCHのレピティションレベルをNPDSCHとする。また、端末1のPUCCHのレピティションレベルをNPUCCHPUCCHとし、端末2のPUCCHのレピティションレベルをNPUCCHとする。つまり、図5では、端末1の下りリンクのレピティションレベルは、端末2と下りリンクのレピティションレベルと同一であり、端末1の上りリンクのレピティションレベルは、端末2の上りリンクのレピティションレベルよりもαPUCCHだけ大きい。
また、図5において、基地局は、端末1に対して、CCE#0からCCE#3を用いてPDCCHを送信する。一方、基地局は、端末2に対して、端末1のPDCCHの送信が完了した後のサブフレームから、CCE#0からCCE#3を用いてPDCCHを送信する。つまり、基地局は、端末1及び端末2に対して、異なるサブフレームにおいて同一のCCEを用いてPDCCHをレピティション送信する。したがって、端末1及び端末2は、同一サブフレームにおいてCCE#0に対応付けられたPUCCHリソースを用いてACK/NACK信号を送信する。具体的には、図5に示すように、端末1は、NPUCCHPUCCHサブフレームに渡ってACK/NACK信号をレピティション送信し、端末2は、端末1がACK/NACK信号をNPUCCHサブフレームに渡って送信した後のサブフレームからNPUCCHサブフレームに渡ってACK/NACK信号を送信する。このため、端末1がPUCCHをレピティション送信するNPUCCHPUCCHサブフレームのうち、最後のαPUCCHサブフレームと、端末2がPUCCHをレピティション送信するNPUCCHサブフレームのうち、最初のαPUCCHサブフレームとにおいて、PUCCHリソースが端末間で衝突してしまう。
このように、上りリンクのレピティションレベルと下りリンクのレピティションレベルとが異なる場合、PDCCHの送信サブフレームが端末間で異なっていても、PUCCHの送信サブフレームが端末間で同じになり、ACK/NACK信号を送信するPUCCHリソースが端末間で衝突する場合がある。
一方、図6は、レピティションレベルが端末間で異なる場合の一例を示す。図6において、端末1のPDCCH、PDSCH、PUCCHのレピティションレベルが8であり、端末2のPDCCH、PDSCH、PUCCHのレピティションレベルが4である。
また、図6において、基地局は、端末1に対して、CCE#0からCCE#3を用いてPDCCHを送信する。一方、基地局は、端末2に対して、端末1のPDCCHの送信が完了した後のサブフレームから、CCE#0からCCE#3を用いてPDCCHを送信する。つまり、基地局は、端末1及び端末2に対して、異なるサブフレームにおいて同一のCCEを用いてPDCCHをレピティション送信する。したがって、端末1及び端末2は、同一サブフレームにおいてCCE#0に対応付けられたPUCCHリソースを用いてACK/NACK信号を送信する。
具体的には、図6に示すように、端末1は、8サブフレームに渡ってPDCCHを受信し、次の8サブフレームに渡ってPDSCHを受信する。一方、端末2は、端末1がPDCCHの受信を完了した次のサブフレームから4サブフレームに渡ってPDCCHを受信し、次の4サブフレームに渡ってPDSCHを受信する。つまり、端末1と端末2とは、PDSCHの受信完了のサブフレーム(タイミング)が同一となる。この場合、端末1と端末2とにおいて同一サブフレーム(タイミング)から、端末1は、8サブフレームに渡ってACK/NACK信号を送信し、端末2は、4サブフレームに渡ってACK/NACK信号を送信する。したがって、図6に示すように、端末1がPUCCHをレピティション送信する最初の4サブフレームと、端末2がPUCCHをレピティション送信する4サブフレームとにおいて、PUCCHリソースが端末間で衝突してしまう。
このように、レピティションレベルが端末間で異なる場合、PDCCHの送信サブフレームが端末間で異なっていても、PUCCHの送信サブフレームが端末間で同じになり、ACK/NACK信号を送信するPUCCHリソースが端末間で衝突する場合がある。
図5又は図6に例示するように、レピティションレベルの設定によって、端末間でPUCCHリソースが衝突する場合がある。このような場合に、端末間でPUCCHリソースが衝突しないように、基地局側が端末のPDCCH割当を制御する(例えば、過去のサブフレームにおいて或る端末に用いられたCCEを、現在のサブフレームにおいても他の端末に割り当てない)ことが考えられる。しかし、この場合は、PDCCHリソースの利用効率が低下する又はスケジューリングの複雑度が増加する。
以下、本開示の実施の形態について図面を参照して詳細に説明する。
[通信システムの概要]
以下の説明では、FDD(Frequency Division Duplex)システムを例に説明する。
また、本開示の各実施の形態に係る通信システムは、例えば、LTE-Advancedに対応するシステムであって、基地局100及び端末200を備える。
端末200には、例えば、通常モード又はMTCカバレッジエンハンスメントモードが設定される。端末200は、例えば、MTCカバレッジエンハンスメントモードが適用される場合、PDCCH、PDSCH又はPUCCHを、複数のサブフレームに渡ってレピティションして送信する(レピティション送信)。ここで、例えば、レピティション送信は、1サブフレームを1回分として、同一の信号を複数回送信する。すなわち、端末200は、所定のレピティションレベル分の連続するサブフレームにおいて、所定のレピティションレベル分の同一の信号を繰り返し送信する。
図7は本開示の実施の形態に係る基地局100の要部構成を示すブロック図である。図7に示す基地局100において、送信部112は、複数の第1のサブフレームに渡ってレピティションされた制御信号(PDCCH)、及び、上記制御信号によって示されるリソースに割り当てられたデータ信号(PDSCH)を端末200に送信する。受信部114は、上記データ信号に対する応答信号(ACK/NACK信号)であって、端末200から、複数の第2のサブフレームに渡ってレピティションされ送信された、応答信号を受信する。当該応答信号には、互いに直交する複数の第1の系列(後述するサブフレーム間直交符号系列。サブフレーム間直交系列とも呼ぶ。)のうち、第1のサブフレームに関連付けられた1つの系列の各成分が複数の第2のサブフレーム毎に乗算されている。判定部121は、受信された応答信号(ACK/NACK信号)が、ACK又はNACKのいずれかを示しているかを判定する。
また、図8は、本開示の各実施の形態に係る端末200の要部構成を示すブロック図である。図8に示す端末200において、受信部202は、複数の第1のサブフレームに渡ってレピティションされた制御信号(PDCCH)、及び、上記制御信号によって示されるリソースに割り当てられたデータ信号(PDSCH)を受信する。ACK/NACK生成部214は、受信したデータ信号に対する応答信号(ACK/NACK信号)を複数の第2のサブフレームに渡ってレピティションし、互いに直交する複数の第1の系列(サブフレーム間直交符号系列)のうち、第1のサブフレームに関連付けられた系列の各成分を、複数の第2のサブフレーム毎の応答信号に乗算して送信信号を生成する。送信部220は、送信信号を送信する。
(実施の形態1)
[基地局の構成]
図9は、本開示の実施の形態1に係る基地局100の構成を示すブロック図である。図9において、基地局100は、制御部101と、制御信号生成部102と、制御信号符号化部103と、制御信号変調部104と、報知信号生成部105と、データ符号化部106と、再送制御部107と、データ変調部108と、信号割当部109と、IFFT部110と、CP付加部111と、送信部112と、アンテナ113と、受信部114と、CP除去部115と、PUCCH抽出部116と、系列制御部117と、レピティション信号合成受信部118と、逆拡散部119と、相関処理部120と、判定部121とを有する。
なお、図9に示す基地局100の各構成は例示であり、他の構成に置き換える、又は、省略することが可能であり、本開示を実施するにおいて必ずしも全ての構成は必要ない。
制御部101は、端末200に対して、制御情報を送信するための下りリソース(下り制御情報割当リソース)、及び、当該制御情報によって示される、下りリンクデータ(送信データ)を送信するための下りリソース(下りデータ割当リソース)を割り当てる。下り制御情報割当リソースは、PDCCH又はEPDCCH(Enhanced PDCCH)に対応するリソース内で選択される。また、下りデータ割当リソースは、PDSCHに対応するリソース内で選択される。また、端末200が複数有る場合には、制御部101は、端末200のそれぞれに異なるリソースを割り当てる。下り制御情報割当リソースは、上述したL1/L2 CCHと同等である。すなわち、下り制御情報割当リソースは、1つ又は複数のCCEから構成される。また、上述したようにPUCCHリソースがCCEを用いてImplicitに通知される場合、各CCEは、上りリンク制御チャネル領域(PUCCH領域)のPUCCHリソースと対応付けられている。
また、制御部101は、制御情報を含むPDCCHが占有するCCEに関連付けられたPUCCHリソース(周波数、及び、1次拡散/2次拡散に用いる系列)を特定する。また、制御部101は、MTCカバレッジエンハンスメントモードが設定された端末200向けのPDCCHがレピティション送信されるサブフレーム(例えば、PDCCHがレピティション送信される複数のサブフレームのうち先頭サブフレーム又は最後尾サブフレーム)に関連付けられたPUCCHリソース(サブフレーム間直交符号系列)を特定する。制御部101は、端末200から送信されるPUCCH信号(ACK/NACK信号及び参照信号)の拡散に用いられる可能性があるZAC系列及び直交符号系列(サブフレーム間直交符号系列及びサブフレーム内直交符号系列)に関する情報を、系列制御部117へ出力し、周波数に関する情報をPUCCH抽出部116へ出力する。
「サブフレーム間直交符号系列」は、MTCカバレッジエンハンスメントモードの端末200において、複数のサブフレームに渡ってレピティション送信される信号に乗算される直交符号系列である。つまり、レピティションされた各サブフレームの信号に対して、サブフレーム間直交符号系列の各成分がサブフレーム毎に乗算される。異なる端末200からのACK/NACK信号は、異なる系列番号に対応するサブフレーム間直交符号系列を用いて拡散される。
なお、サブフレーム間直交符号系列と区別するために、以下では、上述したサブフレーム内(各スロット)において用いられる直交符号系列(図1参照)を「サブフレーム内直交符号系列」と呼ぶ。各CCEは、ZAC系列及びサブフレーム内直交符号系列を含むPUCCHリソースと関連付けられている。また、レピティション送信されるPDCCHのサブフレーム(例えば、PDCCHがレピティション送信される複数のサブフレームのうち先頭サブフレーム又は最後尾サブフレーム)は、サブフレーム間直交符号系列と関連付けられている。例えば、各CCEは、PUCCHリソースと1対1で関連付けられ、レピティション送信されるPDCCHのサブフレームは、サブフレーム間直交符号系列と1対1で関連付けられている。
また、基地局100及び端末200は、PDCCHがレピティションされるサブフレームと、サブフレーム間直交符号系列との関連付けを予め保持している。
また、制御部101は、端末200に対して、制御情報を送信する際に用いる符号化率を決定し、決定した符号化率を制御信号符号化部103へ出力する。また、制御部101は、対象端末200に対して、下りリンクデータを送信する際に用いる符号化率を決定し、決定した符号化率をデータ符号化部106へ出力する。
なお、決定される符号化率に応じて制御情報のデータ量が異なるため、制御部101は、このデータ量に応じて、制御情報をマッピング可能なCCEを含む下り制御情報割当リソースを割り当てる。制御部101は、制御信号生成部102に対して、下りデータ割当リソースに関する情報を出力する。また、制御部101は、下りデータ割当リソース及び下り制御情報割当リソースに関する情報を信号割当部109に出力する。
また、制御部101は、端末200に対してMTCカバレッジエンハンスメントモードが設定される場合、当該端末200の各チャネル(PDCCH、PDSCH又はPUCCH)に対するレピティションレベル(レピティション回数)に関する情報を、制御信号生成部102及びデータ符号化部106に出力する。
また、制御部101は、報知信号生成部105に対して、予め基地局毎に決められたパラメータに基づいて報知信号を生成するように指示する。
また、制御部101は、PUCCHリソースに関する情報を生成し、制御信号生成部102へ出力する。PUCCHリソースに関する情報とは、端末200がPUCCHリソースを特定するためのパラメータである。例えば、PUCCHリソースに関する情報として、CCE番号からPUCCHリソース番号を特定する際に使用するオフセット値、又は、各PUCCH領域に配置される1リソースブロック当たりに符号多重されるPUCCHリソースの最大数に関する情報などが挙げられる。なお、PUCCHリソースに関する情報は、セル固有の値として報知情報として端末200へ通知されてもよく、上位レイヤのシグナリングとして端末200へ通知されてもよい。
制御信号生成部102は、制御部101から受け取る情報(下りデータ割当リソースに関する情報又はPUCCHのレピティションレベルに関する情報)を用いて制御信号を生成し、制御信号を制御信号符号化部103に出力する。端末200が複数ある場合、端末200を区別するために、制御信号には、端末IDが含まれる。例えば、制御信号には、端末IDによってマスキングされたCRCビットが含まれる。また、制御信号生成部102は、端末200に対してMTCカバレッジエンハンスメントモードが設定される場合、制御部101から受け取るレピティションレベルに関する情報に従って、レピティション信号を生成する。すなわち、PDCCHのレピティションレベルが1より大きい場合には、制御信号生成部102は、レピティションレベルに対応した連続する複数のサブフレームに渡って、同一の制御信号を制御信号符号化部103へ出力する。
制御信号符号化部103は、制御部101から受け取る符号化率に従って、制御信号生成部102から受け取る制御信号を符号化し、符号化後の制御信号を制御信号変調部104へ出力する。
制御信号変調部104は、制御信号符号化部103から受け取る制御信号を変調し、変調後の制御信号を信号割当部109へ出力する。
報知信号生成部105は、制御部101からの指示に従って、報知信号を生成し、報知信号を信号割当部109へ出力する。報知信号には、例えば、システム帯域幅、又は、PUCCHリソースに関する信号等が含まれている。また、報知信号には、符号化処理及び変調処理が施されてもよい。
データ符号化部106は、制御部101から受け取る符号化率に従って、送信データ(ビット系列。つまり、下りリンクデータ)を符号化し、符号化後のデータ信号を再送制御部107へ出力する。また、データ符号化部106は、端末200に対してMTCカバレッジエンハンスメントモードが設定される場合、制御部101から受け取るレピティションレベルに関する情報に従って、レピティション信号を生成する。すなわち、PDSCHのレピティションレベルが1より大きい場合には、データ符号化部106は、レピティションレベルに対応した連続する複数のサブフレームに渡って、同一のデータ信号を再送制御部107へ出力する。
再送制御部107は、初回送信時には、データ符号化部106から受け取る符号化後のデータ信号を保持するとともにデータ変調部108へ出力する。再送制御部107は、符号化後のデータ信号を、保持する。また、再送制御部107は、後述する判定部121から、送信したデータ信号に対するNACKを受け取ると、対応する保持データをデータ変調部108へ出力する。再送制御部107は、送信したデータ信号に対するACKを受け取ると、対応する保持データを削除する。
データ変調部108は、再送制御部107から受け取るデータ信号を変調して、データ変調信号を信号割当部109へ出力する。
信号割当部109は、制御信号変調部104から受け取る制御信号、報知信号生成部105から受け取る報知信号、及び、データ変調部106から受け取るデータ変調信号を、下りリソース(下りリンクデータ信号割当リソース、下りリンク制御情報割当リソース等)にマッピングし、マッピングした信号をIFFT部110へ出力する。具体的には、信号割当部109は、制御部101から受け取る下り制御情報割当リソースに示されるリソースに制御信号をマッピングし、制御部101から受け取る下りデータ割当リソースに示されるリソースにデータ変調信号をマッピングする。また、信号割当部109は、予め設定された時間・周波数リソースに報知信号をマッピングする。
IFFT部110は、信号割当部109から受け取る信号に対してIFFT処理を行うことにより、周波数領域信号を時間領域信号に変換する。IFFT部110は、時間領域信号をCP付加部111へ出力する。
CP付加部111は、IFFT部110から受け取る信号に対してCPを付加し、CP付加後の信号(OFDM信号)を送信部112へ出力する。
送信部112は、CP付加部111から受け取るOFDM信号に対してD/A(Digital-to-Analog)変換、アップコンバート等のRF(Radio Frequency)処理を行い、アンテナ113を介して端末200に無線信号を送信する。
受信部114は、アンテナ113を介して受信された端末200からの無線信号に対して、ダウンコンバート又はA/D(Analog-to-Digital)変換などのRF処理を行い、得られる受信信号をCP除去部115に出力する。
CP除去部115は、受信部114から受け取る受信信号に付加されているCPを除去し、CP除去後の信号をPUCCH抽出部116へ出力する。
PUCCH抽出部116は、制御部101から受け取る情報に基づいて、CP除去部115から受け取る信号から上り制御チャネル信号(PUCCH)を抽出し、抽出したPUCCHをレピティション信号合成受信部118へ出力する。
系列制御部117は、制御部101から受け取るZAC系列及び直交符号系列に関する情報に基づいて、端末200から送信されるACK/NACK信号及び参照信号の拡散に用いられる可能性があるZAC系列、及び、直交符号系列を生成する。系列制御部117は、直交符号系列のうちのサブフレーム間直交符号系列をレピティション信号合成受信部118へ出力し、直交符号系列のうちのサブフレーム内直交符号系列を逆拡散部119へ出力し、ZAC系列を相関処理部120へ出力する。
なお、互いに異なる循環シフト量で定義される系列であれば、ZAC系列以外の系列でもよい。また、互いに直交する直交符号系列であれば、ウォルシュ系列以外の系列でもよい。
レピティション信号合成受信部118は、複数サブフレームに渡ってレピティション送信されたPUCCH(ACK/NACK信号及び参照信号)に対して、系列制御部117から受け取るサブフレーム間直交符号系列を用いて、ACK/NACK信号及び参照信号に相当する部分の信号を同相合成して合成信号を生成する。レピティション信号合成受信部118は、同相合成後の信号を逆拡散部119へ出力する。
逆拡散部119は、系列制御部117から受け取るサブフレーム内直交符号系列(端末200が2次拡散で用いるべき直交符号系列)を用いて、レピティション信号合成受信部118から受け取る信号のうちACK/NACK信号に相当する部分の信号を逆拡散し、逆拡散後の信号を相関処理部120に出力する。また、逆拡散部119は、サブフレーム内直交符号系列を用いて、レピティション信号合成受信部118から受け取る信号のうち参照信号に相当する部分の信号を逆拡散し、逆拡散後の信号を相関処理部120に出力する。
相関処理部120は、系列制御部117から入力されるZAC系列(端末200が1次拡散で用いる可能性のあるZAC系列)と、逆拡散部119から入力される信号(ACK/NACK信号又は参照信号)との相関値を求める。相関処理部120は、ACK/NACK信号の相関値を判定部121に出力する。
判定部121は、相関処理部120から受け取る相関値に基づいて、端末200から送信されたACK/NACK信号が、送信されたデータに対してACK又はNACKのいずれかを示しているかを判定する。判定部121は、判定結果を再送制御部107に出力する。
[端末の構成]
図10は、本開示の実施の形態1に係る端末200の構成を示すブロック図である。図10において、端末200は、アンテナ201と、受信部202と、CP除去部203と、FFT(Fast Fourier Transform)部204と、抽出部205と、報知信号受信部206と、制御信号復調部207と、制御信号復号部208と、判定部209と、データ復調部210と、データ復号部211と、CRC部212と、制御部213と、ACK/NACK生成部214と、変調部215と、1次拡散部216と、2次拡散部217と、IFFT部218と、CP付加部219と、送信部220とを有する。
なお、図10に示す端末200の各構成は例示であり、他の構成に置き換える、又は、省略することが可能であり、本開示を実施するにおいて必ずしも全ての構成は必要ない。
受信部202は、アンテナ201を介して受信された、基地局100からの無線信号に対してダウンコンバート又はAD変換などのRF処理を行い、ベースバンドのOFDM信号を得る。受信部202は、OFDM信号をCP除去部203へ出力する。
CP除去部203は、受信部202から受け取るOFDM信号に付加されているCPを除去し、CP除去後の信号をFFT部204へ出力する。
FFT部204は、CP除去部203から受け取る信号に対してFFT処理を行うことにより、時間領域信号を周波数領域信号に変換する。FFT部204は、周波数領域信号を抽出部205へ出力する。
抽出部205は、FFT部204から受け取る信号から報知信号を抽出して、報知信号受信部206へ出力する。ここで、報知信号がマッピングされるリソースは予め決まっているので、抽出部205は、そのリソースにマッピングされている情報を抽出することにより、報知信号を得る。抽出された報知信号には、例えば、システム帯域幅、又は、PUCCHリソースに関する信号等が含まれている場合がある。
また、抽出部205は、FFT部204から受け取る信号から、下り制御チャネル信号(PDCCH信号)を抽出し、制御信号復調部207へ出力する。また、抽出部205は、判定部209から受け取る、自端末宛の下りデータ割当リソースに関する情報に基づいて、FFT部204から受け取る信号から下りリンクデータ(PDSCH信号)を抽出し、データ復調部210へ出力する。PDCCH信号には、例えば、下りデータ割当リソースに関する情報、PUCCHのレピティションレベルに関する情報などが含まれている。
また、抽出部205は、自装置に対してMTCカバレッジエンハンスメントモードが設定され、PDCCH信号がレピティション送信されている場合、複数のサブフレームに渡ってレピティション送信されたPDCCH信号に対して同相合成して、PDCCH信号を抽出する。同様に、抽出部205は、下りリンクデータ(PDSCH信号)がレピティション送信されている場合には、複数のサブフレームに渡ってレピティション送信されたPDSCH信号に対して同相合成して、下りリンクデータを抽出する。
報知信号受信部206は、抽出部205から受け取る報知信号から、システム帯域幅、又は、PUCCHリソースに関する情報などを得る。報知信号受信部206は、報知信号に符号化処理及び変調処理が施されている場合、復調処理及び復号処理を施す。報知信号受信部206は、得られた報知信号を判定部209又は制御部213へ出力する。
制御信号復調部207は、抽出部205から受け取るPDCCH信号を復調し、復調後のPDCCH信号を制御信号復号部208へ出力する。
制御信号復号部208は、制御信号復調部207から受け取るPDCCH信号を復号して、復号結果を判定部209に出力する。
判定部209は、制御信号復号部208から受け取る復号結果に含まれる制御情報が自端末宛ての制御情報であるか否かを判定(ブラインド判定)する。例えば、判定部209は、自端末の端末IDによって制御情報に含まれるCRCビットをデマスキングし、CRCの演算結果に誤りがなければ、自端末宛ての制御情報であると判定する。そして、判定部209は、自装置宛の制御情報に含まれる下りデータ割当リソースに関する情報を抽出部205へ出力する。また、判定部209は、自装置宛の制御情報がマッピングされていたCCEを特定し、特定したCCEの識別情報(CCE番号)を制御部213へ出力する。また、判定部209は、自装置宛ての制御情報(PDCCH)がレピティション送信されたサブフレーム(例えば、PDCCHがレピティション送信される複数のサブフレームのうち、先頭(又は最後尾)のサブフレーム)を特定し、特定したサブフレーム情報を制御部213へ出力する。
データ復調部210は、抽出部205から受け取る下りリンクデータを復調し、復調後の下りリンクデータをデータ復号部211へ出力する。
データ復号部211は、データ復調部210から受け取る下りリンクデータを復号し、復号後の下りリンクデータをCRC部212へ出力する。
CRC部212は、データ復号部211から受け取る下りリンクデータに対して、CRCを用いて誤り検出を行い、誤り検出結果をACK/NACK生成部214へ出力する。また、CRC部212は、誤り検出の結果、誤りなしと判定した下りリンクデータを受信データとして出力する。
制御部213は、報知信号又は上位レイヤシグナリングによって基地局100から端末200に対して通知されたPUCCHリソースに関する情報(CCE番号からPUCCHリソース番号を特定する際に使用されるオフセット値、又は、各PUCCH領域に配置される1リソースブロックあたりに符号多重されるPUCCHリソースの最大数など)、及び、レピティションレベルに関する情報を予め保持する。
制御部213は、PUCCHリソースに関する情報、判定部209から受け取るCCEの識別情報及びサブフレーム情報を用いて、CCEの識別情報に対応するPUCCHリソース(周波数、及び、1次拡散/2次拡散に用いる系列)、及び、サブフレーム情報に対応するPUCCHリソース(サブフレーム間直交符号系列)を特定する。すなわち、制御部213は、CCEの識別情報及びPDCCHが送信されたサブフレーム情報に基づいて上り制御チャネルのPUCCHリソースを特定する。
制御部213は、使用すべきPUCCHリソースに対応する循環シフト量で定義されるZAC系列を生成し、1次拡散部216へ出力する。また、制御部213は、使用すべきPUCCHリソースに対応するサブフレーム間直交符号系列をACK/NACK生成部214へ出力し、使用すべきPUCCHリソースに対応するサブフレーム内直交符号系列を2次拡散部217へ出力する。また、制御部213は、使用すべきPUCCHリソースに対応する周波数リソース(サブキャリア)をIFFT部218へ出力する。
また、制御部213は、自端末がMTCカバレッジエンハンスメントモードである場合、PUCCHのレピティションレベルに関する情報をACK/NACK生成部214へ出力する。
ACK/NACK生成部214は、CRC部212から受け取る誤り検出結果に基づいて、受信した下りリンクデータ(データ信号)に対するACK/NACK信号を生成する。具体的には、ACK/NACK生成部214は、誤りが検出された場合にはNACKを生成し、誤りが検出されない場合にはACKを生成する。ACK/NACK生成部214は、生成したACK/NACK信号を変調部215へ出力する。
また、ACK/NACK生成部214は、自端末がMTCカバレッジエンハンスメントモードである場合、制御部213から受け取るレピティションレベルに関する情報に従って、ACK/NACK信号をレピティションする。すなわち、PUCCHのレピティションレベルが1より大きい場合には、ACK/NACK生成部214は、レピティションレベルに対応した連続する複数のサブフレーム(レピティション回数分に相当する複数のサブフレーム)に渡って、同一のACK/NACK信号を変調部215へ出力する。また、ACK/NACK生成部214は、自端末がMTCカバレッジエンハンスメントモードである場合、制御部213から受け取ったサブフレーム間直交符号系列を、レピティションレベルに対応した連続する複数のサブフレームに渡ってACK/NACK信号に乗算する。具体的には、ACK/NACK生成部214は、互いに直交する複数のサブフレーム間直交符号系列のうち、PDCCHがレピティションされたサブフレーム(例えば、PDCCHがレピティション送信される複数のサブフレームのうち、先頭又は最後尾のサブフレーム)に関連付けられたサブフレーム間直交符号系列の各成分を、ACK/NACK信号がレピティションされる複数のサブフレーム毎のACK/NACK信号に乗算して送信信号を生成する。
変調部215は、ACK/NACK生成部214から受け取るACK/NACK信号を変調して、変調後のACK/NACK信号を1次拡散部216へ出力する。
1次拡散部216は、制御部213によって設定された循環シフト量で定義されたZAC系列を用いて、参照信号、及び、変調部215から受け取るACK/NACK信号を1次拡散し、1次拡散後のACK/NACK信号及び参照信号を2次拡散部217へ出力する。
2次拡散部217は、制御部213によって設定されたサブフレーム内直交符号系列を用いてACK/NACK信号及び参照信号を2次拡散し、2次拡散後の信号をIFFT部218へ出力する。
IFFT部218は、制御部213によって設定された周波数リソースを用いて、2次拡散部217から受け取るACK/NACK信号及び参照信号に対してサブキャリアへのマッピング、及び、IFFT処理を行うことにより時間領域信号を生成する。IFFT部218は、生成した信号をCP付加部219へ出力する。
CP付加部219は、IFFT部218から受け取る信号に対してCPを付加し、CP付加後の信号を送信部220へ出力する。
送信部220は、CP付加部219から受け取る信号に対してD/A変換、アップコンバート等のRF処理を行い、アンテナ201を介して基地局100に無線信号を送信する。
[基地局100及び端末200の動作]
以上の構成を有する基地局100及び端末200の動作について説明する。
なお、以下では、基地局100のセル内に、MTCカバレッジエンハンスメントモードが設定された複数の端末200が存在している場合について説明する。
また、以下の説明では、各チャネル(PDCCH、PDSCH、及び、PUCCH)の信号のレピティション送信を開始する先頭のサブフレームは、予め定められたセル固有のサブフレーム長(Common Subframe length)X(例えば、X= 4 or 5)の周期とし、レピティションレベルをXの整数倍とする(例えば、非特許文献8を参照)。以下では、PUCCHのレピティションレベルをNRepと表す。
すなわち、端末200は、NRep回のレピティションを行う場合、1サブフレームの信号をNRepサブフレームに渡って繰り返して送信する。
端末200は、レピティション送信されるACK/NACK信号に対して、レピティションが行われるサブフレーム毎にサブフレーム間直交符号系列の各成分を乗算する。例えば、図11は、レピティションレベルが4(NRep=4)であり、サブフレーム間直交符号系列の系列長が4(NSF=4)である場合の一例を示す。図11に示すように、端末200は、連続する4サブフレームに渡ってレピティションされたACK/NACK信号に対して、サブフレーム間直交符号系列の各成分(C(0)〜C(3))をサブフレーム毎にそれぞれ乗算する。
このように、各端末200は、互いに直交する複数のサブフレーム間直交符号系列のうちの1つの系列の各成分を、複数のサブフレーム毎のACK/NACK信号に乗算して送信信号を生成する。つまり、端末200は、PUCCHにおいて送信するACK/NACK信号に対して、循環シフト量で定義されるZAC系列を用いた1次拡散、及び、サブフレーム内直交符号系列を用いた2次拡散に加え、サブフレーム間直交符号系列を用いた拡散処理を行う。
ここで、異なる端末200から送信されるACK/NACK信号は、異なる直交符号系列番号(Inter-subframe(SF) OC Index)に対応するサブフレーム間直交符号系列を用いてそれぞれ拡散される。
一方、基地局100は、端末200からの信号(ACK/NACK信号を含む)を受信する。MTCエンハンスメントモードが設定された端末200から送信されるACK/NACK信号は複数のサブフレームに渡ってレピティションされている。また、ACK/NACK信号には、サブフレーム間直交符号系列の各成分がサブフレーム毎に乗算されている。この場合、基地局100は、まず、サブフレーム間直交符号系列に関する逆拡散及び相関処理を行い、その後、サブフレーム内直交符号系列及びZAC系列に関する逆拡散及び相関処理を行う。これにより、基地局100では、コード多重された複数のACK/NACK信号を分離することができる。
なお、各端末200がACK/NACK信号を送信するPUCCHリソース(巡回シフト量、サブフレーム内直交符号系列及びサブフレーム間直交符号系列)の決定方法の詳細については後述する。
図12は、ZAC系列の循環シフト量(Cyclic shift Index)、サブフレーム内直交符号(OC Index)及びサブフレーム間直交符号(Inter-SF OC Index)によって定義されるPUCCHリソースの一例を示す。図12では、12の循環シフト量、サブフレーム間直交符号系列として系列長4の4つのウォルシュ系列、サブフレーム内直交符号系列として系列長4の3つのウォルシュ系列を用いた例を示す。この場合、NSF=4のレピティション送信に用いられるサブフレームに対して、最大で4*3*12=144個のPUCCHリソースが利用可能となる。図12に示すPUCCHリソース数は、図2に示すOC Index及びCyclic shift Indexによって定義されるPUCCHリソース数と比較して、サブフレーム間直交符号系列の系列長(系列数)倍だけ増加している。ただし、図12に示す144個のPUCCHリソースをすべて利用可能とするとは限らない。
また、サブフレーム間直交符号系列について、系列長が2のべき乗である場合にはウォルシュ系列を用いることができる。例えば、系列長NSF=4の場合、サブフレーム間直交符号系列(C0,C1,C2,C3)は、(1,1,1,1)、(1,-1,1,-1)、(1,1,-1,-1)及び(1,-1,-1,1)の4つとなる。一方、サブフレーム間直交符号系列について、系列長が2のべき乗ではない場合には複素拡散符号を用いることができる。例えば、系列長NSF=5の場合、サブフレーム間直交符号系列(C0,C1,C2,C3,C4)は、(1,1,1,1,1)、(1,ej2π/5,ej4π/5,ej6π/5,ej8π/5)、(1,ej8π/5,ej6π/5,ej4π/5,ej2π/5)、(1,ej4π/5,ej8π/5,ej2π/5,ej6π/5)、(1,ej6π/5,ej2π/5,ej8π/5,ej4π/5)の5つとなる。
次に、サブフレーム間直交符号系列の系列長NSFについて説明する。
本実施の形態では、サブフレーム間直交符号系列の系列長NSFは、予め定められたセル固有又はグループ固有の値であるCommon Subframe length(X)と同数に設定される。ただし、サブフレーム間直交符号系列の系列長は、Common Subframe length(X)と同数に限定されるものではない。
図13は、系列長NSF=X=4であり、端末1のレピティションレベルNRep (1)=4であり、端末2のレピティションレベルNRep (2)=8である場合を示す。すなわち、図13では、サブフレーム間直交符号系列の系列セットとして、(1,1,1,1)、(1,-1,1,-1)、(1,1,-1,-1)及び(1,-1,-1,1)が予め設定されている。
各端末200には、端末200のレピティションレベルに依らず、同一の系列セットの中から使用する一つのサブフレーム間直交符号系列が割り当てられる。
図13に示すように、レピティションレベルNRep (1)=4である端末1には、系列セットの中から、サブフレーム間直交符号系列(1,1,1,1)が割り当てられる。
一方、図13に示すように、レピティションレベルNRep (2)=8である端末2には、系列セットの中から、サブフレーム間直交符号系列(1,-1,1,-1)が割り当てられる。なお、レピティションレベルがサブフレーム間直交符号系列の系列長よりも大きい場合、図13に示すように、同一のサブフレーム間直交符号系列が繰り返して割り当てられてもよく、Common Subframe length(図13ではX=4)毎に異なるサブフレーム間直交符号系列が割り当てられてもよい。
サブフレーム間直交符号系列によってコード多重可能な端末数は、最大でNSF=X個(図13では4個)である。
このように、レピティションレベルに依らず、セル固有の(一定の)系列長(Common Subframe length単位の拡散率)のサブフレーム間直交符号系列を用いることにより、端末200間においてPUCCHのレピティション送信を行うサブフレームが部分的に重なっている場合でも、PUCCHリソース間の直交性を保つことができる。
次に、各端末200がACK/NACK信号を送信するPUCCHリソース(循環シフト量、サブフレーム内直交符号系列及びサブフレーム間直交符号系列)の決定方法の詳細について説明する。
上述したように、PDCCHを構成する各CCEは、PUCCHリソース(循環シフト量及びサブフレーム内直交符号系列)と1対1に対応付けられている。したがって、PDCCHを受信した端末200は、PDCCHを構成するCCEに対応するPUCCHリソースを特定する。具体的には、端末200は、PDCCHを構成するCCEと1対1に対応付けられているPUCCHリソースに対応する循環シフト量、及び、サブフレーム内直交符号系列を特定する。
本実施の形態では、更に、複数のサブフレームに渡ってレピティション送信されるPDCCHのサブフレーム(例えば、PDCCHがレピティション送信される複数のサブフレームのうち、先頭又は最後尾サブフレーム)と、サブフレーム間直交符号系列とが対応付けられている。よって、MTCカバレッジエンハンスメントモードが設定された端末200は、レピティション送信されたPDCCHを受信すると、PDCCHがレピティション送信されたサブフレームに関連付けられているサブフレーム間直交符号系列を特定する。例えば、サブフレーム間直交符号系列は、レピティション送信されるPDCCHのサブフレーム(例えば、PDCCHがレピティション送信される複数のサブフレームのうち、先頭又は最後尾のサブフレーム)に1対1で関連付けられている。
図14は、本実施の形態に係る各チャネルの送信タイミングを示す。
図14では、端末1及び端末2のPDCCH、PDSCH及びPUCCHのレピティションレベルをそれぞれNPDCCH、NPDSCH、NPUCCHとする。また、図14では、NPDCCH=NPDSCH=4であり、NPUCCH=8である。すなわち、図14では、下りリンクのレピティションレベルと上りリンクのレピティションレベルとが異なる。
また、図14では、所定の周期毎のサブフレーム(例えば、Common Subframe length周期毎のサブフレーム)に、サブフレーム間直交符号系列を特定するためのインデックス(subframe group index)が付されている。例えば、図14では、4サブフレーム毎のレピティション送信する複数のサブフレームのうちの先頭サブフレームと、複数のサブフレーム間直交符号系列とが1対1で関連付けられている。
なお、レピティション送信する複数のサブフレームのうちの先頭サブフレームではなく、最後尾サブフレームに、サブフレーム間直交符号系列を関連付けてよい。また、レピティション送信する複数のサブフレーム全体(図14では、4サブフレーム)に、サブフレーム間直交符号系列を関連付けてよい。さらに、レピティションレベル(レピティション回数)の最小単位毎(図14では、4サブフレーム)にサブフレームをグループ化してサブフレームグループを形成し、サブフレームグループに、サブフレーム間直交符号系列を関連付けてよい。
例えば、図14では、基地局100は、端末1に対して、subframe group index#0に関連付けられたサブフレームにおいて、CCE#0からCCE#3を用いてPDCCHのレピティション送信を開始する。一方、基地局100は、端末2に対して、端末1へのPDCCHの送信が完了した後のサブフレームであるsubframe group index#1に関連付けられたサブフレームにおいて、CCE#0からCCE#3を用いてPDCCHのレピティション送信を開始する。
この場合、図14に示すように、端末1は、NPUCCH(=8)サブフレームに渡ってACK/NACK信号をレピティション送信する。その際、端末1は、PDCCHに使用されたCCEのうち最小のインデックスを有するCCE#0に対応付けられた循環シフト量で定義されるZAC系列、及びサブフレーム内直交符号系列を用いる。また、端末1は、PDCCHのレピティション送信を開始した先頭サブフレームに対応付けられたサブフレーム間直交符号系列(subframe group index #0に対応する系列)を用いてACK/NACK信号をレピティション送信する。
一方、図14に示すように、端末2は、端末1がACK/NACK信号をNPUCCH(=4)サブフレームに渡ってレピティション送信した後のサブフレームからNPUCCH(=8)サブフレームに渡ってACK/NACK信号をレピティション送信する。その際、端末2は、PDCCHに使用されたCCEのうち最小のインデックスを有するCCE#0に対応付けられた循環シフト量で定義されるZAC系列及びサブフレーム内直交符号系列を用いる。また、端末2は、PDCCHのレピティション送信を開始した先頭サブフレームに対応付けられたサブフレーム間直交符号系列(subframe group index #1に対応する系列)を用いてACK/NACK信号をレピティション送信する。
つまり、図14では、端末1及び端末2において、CCE番号に対応付けられたリソース(循環シフト量で定義されるZAC系列及びサブフレーム内直交符号系列)は同一であるが、PDCCHのレピティション送信を開始した先頭サブフレームに関連付けられたサブフレーム間直交符号系列は異なる。したがって、PUCCHのレピティション送信に使用されるPUCCHリソースは、端末1及び端末2の双方において互いに異なるため、端末1と端末2との間でのPUCCHリソースは衝突しない。
なお、図14では、下りリンクのレピティションレベルと上りリンクのレピティションレベルとが異なる場合について説明した。しかし、図6のように、端末1のレピティションレベルと端末2のレピティションレベルとが異なる場合についても同様である。すなわち、PDCCHの送信サブフレームが端末200間で異なっている場合には、ACK/NACK信号の送信に用いる循環シフト量及びサブフレーム内直交符号系列が同一のCCEに対応付けられていたとしても、ACK/NACK信号に乗算されるサブフレーム間直交符号系列は端末200間で異なるため、当該端末200間でPUCCHリソースは衝突しない。
このように、本実施の形態によれば、MTCカバレッジエンハンスメントモードの端末200は、ACK/NACK信号に対して、1次拡散及び2次拡散に加え、サブフレーム間直交符号系列を用いた拡散処理を行う。この際、端末200は、複数のサブフレームに渡ってレピティション送信されるACK/NACK信号に対して、当該ACK/NACK信号に対応する下りリンクデータのリソース割当を示す制御信号(PDCCH)のレピティション送信に使用されるサブフレームに対応付けられたサブフレーム間直交符号系列の各成分を、複数のサブフレーム毎に乗算する。これにより、同一サブフレームで複数の端末200からACK/NACK信号が送信される場合でも、各端末200には、互いに異なるサブフレーム間直交符号系列が割り当てられるので、端末200間のPUCCHリソースの衝突を回避することができる。
また、本実施の形態では、レピティションレベルに依らず、一定(同一)の系列長(拡散率)のサブフレーム間直交符号系列を用いる。これにより、端末200間においてPUCCHのレピティション送信を行うサブフレームが部分的に重なっている場合(端末間でPUCCHのレピティションレベルが異なる場合)でも、PUCCHリソース間の直交性を保つことができる。
さらに、本実施の形態では、PUCCHリソースを構成するサブフレーム間直交符号系列と、PDCCHがレピティション送信されるサブフレーム(例えば、PDCCHがレピティション送信される複数のサブフレームのうち先頭又は最後尾のサブフレーム)とが対応付けられている。こうすることで、基地局100は、端末200に対して、PUCCHリソース(サブフレーム間直交符号系列)をImplicitに通知することができる。よって、本実施の形態によれば、PUCCHリソースを通知するためのシグナリングが不要となり、シグナリングのオーバーヘッドの増加を防ぐことができる。また、上述したように、各端末200においてPDCCHのレピティション送信に使用されるサブフレームに基づいてPUCCHリソースを特定することにより、PUCCHリソースの衝突を回避するので、PDCCHリソースの利用効率の低下又はスケジューリングの複雑度が増加することはない。
[バリエーション1]
上記実施の形態では、図12及び図14に示すように、循環シフト量とCCEとが1対1で対応付けられ、PDCCHをレピティション送信するサブフレームとサブフレーム間直交符号系列と対応付けられている。つまり、循環シフト量及びサブフレーム内直交符号系列と、サブフレーム間直交符号系列とが、CCEとPDCCHをレピティション送信するサブフレームとにそれぞれ別々に関連付けている。
これに対して、本バリエーションでは、PDCCHの送信に用いられるCCE、及び、PDCCHをレピティション送信するサブフレーム(例えば、PDCCHがレピティション送信される複数のサブフレームのうち先頭又は最後尾のサブフレーム)から得られる仮想CCE番号を定義する。そして、循環シフト量(又は、循環シフト量から定義される系列)、サブフレーム内直交符号系列及びサブフレーム間直交符号系列から成るPUCCHリソースと、仮想CCE番号とを対応付ける。例えば、循環シフト量、サブフレーム内直交符号系列及びサブフレーム間直交符号系列から成るPUCCHリソースと、仮想CCE番号とは、1対1で対応付けられる。
端末200は、PDCCH(L1/L2 CCH)を受信すると、このPDCCHを構成するCCEと、このPDCCHを受信したサブフレーム(例えば、PDCCHがレピティション送信される複数のサブフレームのうち先頭又は最後尾のサブフレーム)とによって定義される仮想CCEに対応付けられたPUCCHリソース(循環シフト量、サブフレーム内直交符号系列及びサブフレーム間直交符号系列)を特定する。そして、端末200は、特定したPUCCHリソースを用いてACK/NACK信号を送信する。
例えば、仮想CCE番号n~CCEは、次式(1)によって定義される。
Figure 0006691248
ここで、nCCEはPDCCHの送信に用いられたCCE番号を示し、iPDCCH_RepはPDCCHがレピティション送信されたサブフレーム(例えば、PDCCHがレピティション送信される複数のサブフレームのうちの先頭又は最後尾のサブフレーム)を表すインデックスを示し、NCCEはPDCCH内のCCEの総数を示す。iPDCCH_Repは、例えば、図14に示すように、Common Subframe length周期でサブフレームに付された番号(subframe group index)を示す。
なお、iPDCCH_Repは、PDCCHをレピティション送信する複数のサブフレームのうちの先頭サブフレームに対応付けた番号であってもよいし、最後尾サブフレームに対応付けた番号であってもよい。また、iPDCCH_Repは、レピティション送信する複数のサブフレーム全体(図14では、4サブフレーム)に、対応付けた番号であってもよい。さらに、レピティションレベル(レピティション回数)の最小単位毎(図14では、4サブフレーム)にサブフレームをグループ化してサブフレームグループを形成し、iPDCCH_Repは、サブフレームグループに対応付けた番号であってもよい。
MTCカバレッジエンハンスメントモードが設定された端末200に対する仮想PUCCHリソース番号n~PUCCH_MTCは、次式(2)によって算出される。
Figure 0006691248
ここで、n~CCEは仮想CCE番号を示し、N~(1) PUCCH_MTCは、仮想CCE番号から仮想PUCCHリソース番号を特定する場合に使用されるオフセット値を示す。
図15は、仮想PUCCHリソース番号を用いた場合のPUCCHリソースの一例を示す。図15では、系列長4のサブフレーム間直交符号系列を用いる場合、最大で4*3*12=144個のPUCCHリソースが利用可能となる。ただし、図15では、144個のPUCCHリソースのうち、72個のPUCCHリソースを利用可能とする場合の一例を示す。
図15に示すように、循環シフト量(Cyclic Shift Index (0〜11))、サブフレーム内直交符号系列(Orthogonal Cover (OC) Index (0〜2))及びサブフレーム間直交符号系列(Inter-subframe OC Index (0〜3))によって、仮想PUCCHリソース番号#0〜#71が設定されている。つまり、図15では、PUCCHリソース(循環シフト量、サブフレーム内直交符号系列及びサブフレーム間直交符号系列)が、CCEとPDCCHがレピティション送信されるサブフレームとの組み合わせ(当該組み合わせによって定義される仮想CCE)に関連付けて、Implicitに通知される。
例えば、図15では、端末200は、仮想PUCCHリソース番号n~PUCCH_MTCから、ZAC系列の巡回シフト量nCS、サブフレーム内直交符号系列nOC、及び、サブフレーム間直交符号系列nOCinterを次式(3)〜(6)に従って特定する。
Figure 0006691248
Figure 0006691248
Figure 0006691248
Figure 0006691248
ここで、Δshift PUCCHは、一つのサブフレーム内直交符号系列に対して用いられる循環シフト量(インデックス)間の差を表し、図15の例では、2である。また、Nocinterは、サブフレーム間直交符号系列の系列数を表し、図15の例では、4である。
このように、本バリエーションでは、PDCCHのレピティション送信に使用されるCCE及びサブフレームの組み合わせに基づいて、PUCCHリソースが一意に特定される。この場合でも、上記実施の形態1と同様、基地局100は、端末200に対して、PUCCHリソースをImplicitに通知することができる。また、PDCCHリソースの利用効率の低下又はスケジューリングの複雑度の増加を発生させることなく、MTCカバレッジエンハンスメントモードが設定された端末200間のPUCCHリソースの衝突を回避することができる。
[バリエーション2]
上記実施の形態では、PDCCHをレピティション送信するサブフレームと、サブフレーム間直交符号系列とを対応付けることにより、MTCカバレッジエンハンスメントモードの端末間のPUCCHリソースの衝突を回避させる場合について説明した。
これに対して、本バリエーションでは、上記実施の形態において用いられていた、サブフレーム間直交符号系列の乗算を必ずしも用いなくてもよい。端末200は、PUCCHにおいて送信するACK/NACK信号に対して、循環シフト量で定義される系列を用いた1次拡散、及び、サブフレーム内直交符号系列を用いた2次拡散に加え、サブフレーム間直交符号系列を用いた拡散処理を行なってもよく、行わなくてもよい。
上述したように、PDCCHを構成する各CCEは、PUCCHリソースと1対1に対応付けられている。したがって、PDCCHを受信した端末200は、PDCCHを構成するCCEに対応するPUCCHリソースを特定する。具体的には、端末200は、PDCCHの送信に用いられたCCEと1対1に対応付けられているPUCCHリソースに対応する循環シフト量、及び、サブフレーム内直交符号系列を特定する。
本バリエーションでは、更に、複数のサブフレームに渡ってレピティション送信されるPDCCHのサブフレーム(例えば、PDCCHがレピティション送信される複数のサブフレームのうち先頭サブフレーム又は最後尾サブフレーム))と、PUCCHを送信するリソースブロックとが対応付けられている。よって、MTCカバレッジエンハンスメントモードが設定された端末200は、レピティション送信されたPDCCHを受信すると、PDCCHがレピティション送信されたサブフレームに関連付けられているリソースブロックを特定する。つまり、本バリエーションでは、上記実施の形態において用いられたサブフレーム間直交符号系列の代わりに、リソースブロックが用いられる。なお、例えば、PDCCHがレピティション送信されたサブフレームとリソースブロックとは、1対1で対応付けられている。
図16は、本バリエーションに係るPUCCHリソースの一例を示す。図16に示すように、PDCCHをレピティション送信したサブフレームに付された番号(例えば、subframe group index)に対応付けられた複数のリソースブロック(PRB:Physical Resource Block)に、 PUCCHリソースが設定されている。つまり、図16では、PUCCHリソース(循環シフト量及びサブフレーム内直交符号系列)が、PDCCHが送信されたCCEに関連付けてImplicitに通知され、PUCCHを送信するリソースブロックが、PDCCHが送信されたサブフレームに関連付けてImplicitに通知される。
なお、PUCCHを送信するリソースブロックは、PDCCHをレピティション送信する複数のサブフレームのうちの先頭サブフレームに対応付けてもよいし、最後尾サブフレームに対応付けてもよい。また、PUCCHを送信するリソースブロックは、レピティション送信する複数のサブフレーム全体(図14では、4サブフレーム)に対応付けてもよい。さらに、レピティションレベル(レピティション回数)の最小単位毎(図14では、4サブフレーム)にサブフレームをグループ化してサブフレームグループを形成し、サブフレームグループに、PUCCHを送信するリソースブロックを対応付けてもよい。
本バリエーションによれば、PDCCHの送信サブフレームが端末200間で異なっている場合には、ACK/NACK信号の送信に用いる循環シフト量及びサブフレーム内直交符号系列が同一のCCEと対応付けられていたとしても、ACK/NACK信号に割り当てられるリソースブロックが端末200間で異なるため、当該端末200間でPUCCHリソースは衝突しない。
以上、本開示の各実施の形態について説明した。
なお、上記実施の形態では、本開示の一態様をハードウェアで構成する場合を例にとって説明したが、本開示はハードウェアとの連携においてソフトウェアで実現することも可能である。
また、上記実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。集積回路は、上記実施の形態の説明に用いた各機能ブロックを制御し、入力と出力を備えてもよい。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。
さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
本開示の端末は、複数の第1のサブフレームに渡ってレピティションされた制御信号、及び、前記制御信号によって示されるリソースに割り当てられたデータ信号を受信する受信部と、前記データ信号に対する応答信号を複数の第2のサブフレームに渡ってレピティションし、互いに直交する複数の第1の系列のうち、前記第1のサブフレームに関連付けられた1つの第1の系列の各成分を、前記複数の第2のサブフレーム毎の前記応答信号に乗算して送信信号を生成する生成部と、前記送信信号を送信する送信部と、を具備する構成を採る。
本開示の端末において、前記第1の系列の系列長は、前記レピティションの回数に依らず、一定である。
本開示の端末において、前記レピティションの回数は、前記レピティション送信を開始するサブフレーム周期の整数倍であり、前記第1の系列の系列長は、前記サブフレーム周期と同じである。
本開示の端末において、前記レピティションの回数は、前記レピティション送信を開始するサブフレーム周期の整数倍であり、前記サブフレーム周期毎のサブフレームと、前記第1の系列とが1対1で関連付けられている。
本開示の基地局は、複数の第1のサブフレームに渡ってレピティションされた制御信号、及び、前記制御信号によって示されるリソースに割り当てられたデータ信号を送信する送信部と、複数の第2のサブフレームに渡ってレピティションされた、前記データ信号に対する応答信号を受信し、前記応答信号には、互いに直交する複数の第1の系列のうち、前記第1のサブフレームに関連付けられた1つの第1の系列の各成分が前記複数の第2のサブフレーム毎に乗算されている、受信部と、を具備する構成を採る。
本開示の送信方法は、複数の第1のサブフレームに渡ってレピティションされた制御信号、及び、前記制御信号によって示されるリソースに割り当てられたデータ信号を受信する受信工程と、前記データ信号に対する応答信号を複数の第2のサブフレームに渡ってレピティションし、互いに直交する複数の第1の系列のうち、前記第1のサブフレームに関連付けられた1つの第1の系列の各成分を、前記複数の第2のサブフレーム毎の前記応答信号に乗算して送信信号を生成する生成工程と、前記送信信号を送信する送信工程と、を具備する構成を採る。
本開示の受信方法は、複数の第1のサブフレームに渡ってレピティションされた制御信号、及び、前記制御信号によって示されるリソースに割り当てられたデータ信号を送信する送信工程と、複数の第2のサブフレームに渡ってレピティションされた、前記データ信号に対する応答信号を受信し、前記応答信号には、互いに直交する複数の第1の系列のうち、前記第1のサブフレームに関連付けられた1つの第1の系列の各成分が前記複数の第2のサブフレーム毎に乗算されている、受信工程と、を具備する構成を採る。
本開示の一態様は、移動通信システムに有用である。
100 基地局
200 端末
101,213 制御部
102 制御信号生成部
103 制御信号符号化部
104 制御信号変調部
105 報知信号生成部
106 データ符号化部
107 再送制御部
108 データ変調部
109 信号割当部
110,218 IFFT部
111,219 CP付加部
112,220 送信部
113,201 アンテナ
114,202 受信部
115,203 CP除去部
116 PUCCH抽出部
117 系列制御部
118 レピティション信号合成受信部
119 逆拡散部
120 相関処理部
121,209 判定部
204 FFT部
205 抽出部
206 報知信号受信部
207 制御信号復調部
208 制御信号復号部
210 データ復調部
211 データ復号部
212 CRC部
214 ACK/NACK生成部
215 変調部
216 1次拡散部
217 2次拡散部

Claims (14)

  1. 複数の第1のサブフレームに渡ってレピティションされたPhysical Downlink Control Channel(PDCCH)、及び前記PDCCHによって割り当てられたPhysical Downlink Shared Channel(PDSCH)を受信する受信部と、
    前記複数の第1のサブフレームに関連付けられたリソースブロックを決定する制御部と、
    前記決定されたリソースブロックを用いて、前記PDSCHに対する応答信号を複数の第2のサブフレームに渡ってレピティションする送信部と、
    を具備する端末。
  2. 前記制御部は、前記PDCCHがレピティション送信される前記複数の第1のサブフレームのうち、先頭サブフレーム又は最後尾サブフレームに関連付けられた前記リソースブロックを特定する
    請求項1に記載の端末。
  3. 前記端末は、MTCカバレッジエンハンスメントモードが設定された端末である、
    請求項1に記載の端末。
  4. 前記PDCCHがレピティション送信された前記複数の第1のサブフレームの各サブフレームと前記リソースブロックとは、1対1で対応付けられている、
    請求項1に記載の端末。
  5. 前記複数の第1のサブフレームに付された番号にそれぞれ前記リソースブロックが対応付けられる、
    請求項1に記載の端末。
  6. 前記リソースブロックは、前記PDCCHが送信されたサブフレームに関連付けてImplicitに通知される、
    請求項1に記載の端末。
  7. 前記制御部は、前記PDCCHに関連付けられた、循環シフト量とサブフレーム内直交符号系列との組を特定し、
    前記送信部は、前記特定された循環シフト量及び前記サブフレーム内直交符号系列に基づいて、前記応答信号を送信する、
    請求項1に記載の端末。
  8. 複数の第1のサブフレームに渡ってレピティションされたPhysical Downlink Control Channel(PDCCH)、及び前記PDCCHによって割り当てられたPhysical Downlink Shared Channel(PDSCH)を受信する工程と、
    前記複数の第1のサブフレームに関連付けられたリソースブロックを決定する工程と、
    前記決定されたリソースブロックを用いて、前記PDSCHに対する応答信号を複数の第2のサブフレームに渡ってレピティションする工程と、
    を具備する送信方法。
  9. 前記PDCCHがレピティション送信される前記複数の第1のサブフレームのうち、先頭サブフレーム又は最後尾サブフレームに関連付けられたリソースブロックが特定される
    請求項に記載の送信方法。
  10. 前記送信方法を実行する端末は、MTCカバレッジエンハンスメントモードが設定された端末である、
    請求項に記載の送信方法。
  11. 前記PDCCHがレピティション送信された前記複数の第1のサブフレームの各サブフレームと前記リソースブロックとは、1対1で対応付けられている、
    請求項に記載の送信方法。
  12. 前記複数の第1のサブフレームに付された番号にそれぞれ前記リソースブロックが対応付けられる、
    請求項に記載の送信方法。
  13. 前記リソースブロックは、前記PDCCHが送信されたサブフレームに関連付けてImplicitに通知される、
    請求項に記載の送信方法。
  14. 前記PDCCHに関連付けられた、循環シフト量とサブフレーム内直交符号系列との組を特定し、
    前記特定された循環シフト量及び前記サブフレーム内直交符号系列に基づいて、前記応答信号を送信する、
    請求項8に記載の送信方法。
JP2019013191A 2014-08-27 2019-01-29 端末及び送信方法 Active JP6691248B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014172540 2014-08-27
JP2014172540 2014-08-27

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016544912A Division JP6474823B2 (ja) 2014-08-27 2015-07-03 端末、基地局、送信方法及び受信方法

Publications (2)

Publication Number Publication Date
JP2019080353A JP2019080353A (ja) 2019-05-23
JP6691248B2 true JP6691248B2 (ja) 2020-04-28

Family

ID=55399038

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016544912A Active JP6474823B2 (ja) 2014-08-27 2015-07-03 端末、基地局、送信方法及び受信方法
JP2019013191A Active JP6691248B2 (ja) 2014-08-27 2019-01-29 端末及び送信方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016544912A Active JP6474823B2 (ja) 2014-08-27 2015-07-03 端末、基地局、送信方法及び受信方法

Country Status (4)

Country Link
US (3) US10194428B2 (ja)
EP (2) EP3188560B1 (ja)
JP (2) JP6474823B2 (ja)
WO (1) WO2016031115A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6474823B2 (ja) * 2014-08-27 2019-02-27 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 端末、基地局、送信方法及び受信方法
JP2019106564A (ja) * 2016-04-19 2019-06-27 シャープ株式会社 送信装置および受信装置
JP6914924B2 (ja) 2016-05-20 2021-08-04 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 基地局及び通信方法
FI3499828T3 (fi) * 2016-08-10 2023-03-20 Ntt Docomo Inc Käyttäjäterminaali ja langaton kommunikaatiomenetelmä
WO2018028775A1 (en) * 2016-08-10 2018-02-15 Huawei Technologies Co., Ltd. Common synchronization signal for a new radio carrier supporting different subcarrier spacing
WO2018127998A1 (ja) * 2017-01-06 2018-07-12 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 端末、基地局及び通信方法
CN108306720B (zh) * 2017-01-13 2022-06-21 北京三星通信技术研究有限公司 一种传输uci信息的方法和设备
WO2018137188A1 (zh) * 2017-01-25 2018-08-02 华为技术有限公司 一种用于覆盖增强的资源配置方法及装置
JP2020065093A (ja) * 2017-02-03 2020-04-23 株式会社Nttドコモ ユーザ装置、及び基地局
US11272484B2 (en) 2017-05-31 2022-03-08 Ntt Docomo, Inc. Radio base station and radio communication method
US11444743B2 (en) * 2019-07-03 2022-09-13 Qualcomm Incorporated Deactivating resources for repetitions of periodic communications
US11917603B2 (en) * 2020-05-21 2024-02-27 Qualcomm Incorporated Encoding repetitions of a physical uplink control channel (PUCCH)

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0817330A2 (pt) * 2007-09-25 2015-03-24 Panasonic Corp Método de propagação de sinal de resposta e dispositivo de comunicação por rádio.
CN101816145B (zh) * 2007-10-02 2015-06-03 三星电子株式会社 通信系统中信号的重复传输
US9065646B2 (en) * 2008-02-04 2015-06-23 Nokia Solutions And Networks Oy ACK/NACK channelization for resource blocks containing both ACK/NACK and CQI
US8184579B2 (en) * 2008-02-15 2012-05-22 Texas Instruments Incorporated ACK/NAK repetition schemes in wireless networks
KR101165643B1 (ko) * 2010-12-20 2012-07-17 엘지전자 주식회사 Ack/nack 전송방법 및 사용자기기와, ack/nack 수신방법 및 기지국
US9350509B2 (en) * 2011-05-02 2016-05-24 Nokia Solutions And Networks Oy Scheduling request enhancements
KR101809918B1 (ko) * 2011-08-04 2017-12-20 삼성전자주식회사 무선통신 시스템에서 하향링크 하이브리드 자동 재전송 요청 정보 전송 방법 및 장치
US9065545B2 (en) * 2012-03-12 2015-06-23 Blackberry Limited Handling scheduling request collisions with an ACK/NACK repetition signal
US9055569B2 (en) * 2012-06-29 2015-06-09 Samsung Electronics Co., Ltd. Uplink hybrid acknowledgement signaling in wireless communications systems
US9515781B2 (en) * 2012-08-09 2016-12-06 Lg Electronics Inc. Method and apparatus for transmitting acknowledgement
WO2014109621A1 (ko) * 2013-01-14 2014-07-17 엘지전자 주식회사 하향링크 신호 수신 방법 및 사용자기기와 하향링크 신호 전송 방법 및 기지국
US9451639B2 (en) * 2013-07-10 2016-09-20 Samsung Electronics Co., Ltd. Method and apparatus for coverage enhancement for a random access process
KR101904572B1 (ko) * 2013-09-27 2018-10-08 주식회사 케이티 단말을 위한 상향 링크 제어 채널 자원 설정 방법 및 장치
WO2015056947A1 (ko) * 2013-10-14 2015-04-23 엘지전자 주식회사 무선 통신 시스템에서의 커버리지 개선 방법 및 이를 위한 장치
US9667386B2 (en) * 2013-11-13 2017-05-30 Samsung Electronics Co., Ltd Transmission of control channel and data channels for coverage enhancements
WO2015083994A1 (en) * 2013-12-04 2015-06-11 Lg Electronics Inc. Method and apparatus for performing random access procedure for coverage enhancement user equipments in wireless communication system
WO2015084093A1 (ko) * 2013-12-05 2015-06-11 엘지전자 주식회사 기계타입통신을 지원하는 무선 접속 시스템에서 상향링크 전송 전력을 제어하는 방법 및 장치
CN104767595A (zh) * 2014-01-07 2015-07-08 中兴通讯股份有限公司 Harq-ack反馈信息的传输方法、系统及终端和基站
KR102470913B1 (ko) * 2014-01-29 2022-11-28 인터디지탈 패튼 홀딩스, 인크 커버리지 향상 무선 송신을 위한 액세스 및 링크 적응 방법
EP3879733A1 (en) * 2014-01-31 2021-09-15 Panasonic Intellectual Property Corporation of America Base station and communication method
EP3128797B1 (en) * 2014-03-30 2020-12-02 LG Electronics Inc. Method for transmitting/receiving downlink control information in wireless communication system supporting device-to-device communication and apparatus therefor
US20160050667A1 (en) * 2014-08-18 2016-02-18 Samsung Electronics Co., Ltd. Communication on licensed and unlicensed bands
JP6474823B2 (ja) * 2014-08-27 2019-02-27 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 端末、基地局、送信方法及び受信方法
WO2016033737A1 (en) * 2014-09-02 2016-03-10 Panasonic Intellectual Property Corporation Of America Wireless communication method and wireless communication device
WO2016165123A1 (en) * 2015-04-17 2016-10-20 Mediatek Singapore Pte. Ltd. Enhancement for harq with channel repetitions

Also Published As

Publication number Publication date
EP3188560A4 (en) 2017-09-20
US10194428B2 (en) 2019-01-29
JP2019080353A (ja) 2019-05-23
JP6474823B2 (ja) 2019-02-27
EP3188560B1 (en) 2019-01-23
US10667246B2 (en) 2020-05-26
EP3188560A1 (en) 2017-07-05
EP3480979A1 (en) 2019-05-08
US20200252927A1 (en) 2020-08-06
WO2016031115A1 (ja) 2016-03-03
US20190110288A1 (en) 2019-04-11
EP3480979B1 (en) 2020-04-01
US11477768B2 (en) 2022-10-18
US20170156138A1 (en) 2017-06-01
JPWO2016031115A1 (ja) 2017-06-08

Similar Documents

Publication Publication Date Title
JP6691248B2 (ja) 端末及び送信方法
US12114333B2 (en) Integrated circuit
KR102473793B1 (ko) 통신 단말 및 송신 방법
US10122502B2 (en) Communication device, transmitting method, and receiving method
JPWO2015170435A1 (ja) 端末、基地局、送信方法及び受信方法
JP6667532B2 (ja) 端末、基地局、送信方法及び受信方法
JP7016047B2 (ja) 基地局、通信方法及び集積回路
JP6590267B2 (ja) 基地局、通信方法及び集積回路
JP2020005292A (ja) 端末、通信方法及び集積回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190129

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190717

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200409

R150 Certificate of patent or registration of utility model

Ref document number: 6691248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150