JP6690819B2 - Computed tomography equipment - Google Patents

Computed tomography equipment Download PDF

Info

Publication number
JP6690819B2
JP6690819B2 JP2016075452A JP2016075452A JP6690819B2 JP 6690819 B2 JP6690819 B2 JP 6690819B2 JP 2016075452 A JP2016075452 A JP 2016075452A JP 2016075452 A JP2016075452 A JP 2016075452A JP 6690819 B2 JP6690819 B2 JP 6690819B2
Authority
JP
Japan
Prior art keywords
subject
roi
appearance
display means
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016075452A
Other languages
Japanese (ja)
Other versions
JP2017167113A (en
Inventor
弘典 大門
弘典 大門
富澤 雅美
雅美 富澤
山本 輝夫
輝夫 山本
純一 岩澤
純一 岩澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba IT and Control Systems Corp
Original Assignee
Toshiba IT and Control Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba IT and Control Systems Corp filed Critical Toshiba IT and Control Systems Corp
Priority to JP2016075452A priority Critical patent/JP6690819B2/en
Priority to KR1020170020319A priority patent/KR101904788B1/en
Priority to CN201710130621.5A priority patent/CN107202802B/en
Publication of JP2017167113A publication Critical patent/JP2017167113A/en
Application granted granted Critical
Publication of JP6690819B2 publication Critical patent/JP6690819B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/467Arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B6/469Arrangements for interfacing with the operator or the patient characterised by special input means for selecting a region of interest [ROI]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Optics & Photonics (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Description

本発明は被検体の断層像を撮像するコンピュータ断層撮影装置(以下、CT(Computed Tomography)装置という。)に関する。  The present invention relates to a computer tomography apparatus (hereinafter, referred to as CT (Computed Tomography) apparatus) that captures a tomographic image of a subject.

図7は従来のCT装置の(A)平面図と(B)正面図と(C)ブロック図である。ブロック図は制御処理部P1と入力部P2と表示部P3で構成される。X線源1(放射線源)と二次元的なX線検出器2(放射線検出手段)との間に被検体3を載置するためのテーブル5が配置されている。被検体3の断層像を生成するときは、X線源1から被検体3に向けてX線ビームB(放射線)を照射すると共に、被検体3を載置したテーブル5の回転軸Cを回転させ、当該被検体3の多方向から透過してくるコーン状のX線ビームBをX線検出器2で検出し多数の透過像(透過データ)を収集する。前記の操作をスキャンと呼ぶ。収集された透過データは再構成部P1−5(再構成手段)で再構成と呼ばれる演算により、被検体3の三次元画像(多数の断層像)を生成することができる。通常、断層像の再構成演算には、フィルタ補正逆投影法(FBP(Filtered Back Projection)法)が用いられている。  FIG. 7 is a plan view (A), a front view (B) and a block diagram (C) of a conventional CT apparatus. The block diagram includes a control processing unit P1, an input unit P2, and a display unit P3. A table 5 for placing the subject 3 is arranged between the X-ray source 1 (radiation source) and the two-dimensional X-ray detector 2 (radiation detection means). When a tomographic image of the subject 3 is generated, the X-ray beam B (radiation) is emitted from the X-ray source 1 toward the subject 3, and the rotation axis C of the table 5 on which the subject 3 is placed is rotated. Then, the X-ray detector 2 detects the cone-shaped X-ray beam B transmitted from multiple directions of the subject 3 and collects a large number of transmission images (transmission data). The above operation is called scanning. The collected transmission data can generate a three-dimensional image (a large number of tomographic images) of the subject 3 by a calculation called reconstruction by the reconstruction unit P1-5 (reconstruction means). Usually, a filtered back projection method (FBP (Filtered Back Projection) method) is used for the reconstruction calculation of the tomographic image.

テーブル5は、回転機構6(回転手段)、昇降機構7及びXY移動機構8上に配置されている。回転機構6の回転軸CはX線源1のX線焦点FとX線検出器2のスキャン面Lで交差する。昇降機構7は被検体3を上下方向へ移動できるため、被検体3のスキャンする位置をスキャン面Lまで移動させることができる。XY移動機構8は、テーブル5の回転軸Cを移動させることができる。XY移動機構8により、X線焦点Fと回転軸Cの撮影距離FCD(Focus to rotation Center Distance)を連続的に変更できる。また、X線検出器移動機構9の移動により、X線焦点FとX線検出器入力面Dの検出距離FDD(Focus to Detector Distance)も連続的に変更できる。図7の構成は、撮影距離FCDと検出距離FDDを常に変更できるので、被検体3の大きさや目的に応じて幾何倍率(=FDD/FCD)が自由に設定できる。  The table 5 is arranged on a rotating mechanism 6 (rotating means), a lifting mechanism 7 and an XY moving mechanism 8. The rotation axis C of the rotation mechanism 6 intersects the X-ray focal point F of the X-ray source 1 and the scan plane L of the X-ray detector 2. Since the elevating mechanism 7 can move the subject 3 in the vertical direction, the scanning position of the subject 3 can be moved to the scan plane L. The XY moving mechanism 8 can move the rotation axis C of the table 5. The XY moving mechanism 8 can continuously change the imaging distance FCD (Focus to rotation Center Distance) between the X-ray focus F and the rotation axis C. Further, by moving the X-ray detector moving mechanism 9, the detection distance FDD (Focus to Detector Distance) between the X-ray focus F and the X-ray detector input surface D can be continuously changed. In the configuration of FIG. 7, since the imaging distance FCD and the detection distance FDD can be constantly changed, the geometric magnification (= FDD / FCD) can be freely set according to the size and purpose of the subject 3.

図8は通常スキャンのスキャン領域を示す概念図である。通常スキャンの撮像領域FOV(Field Of View)は、回転平面上(x−y平面)で、回転軸Cを中心として、X線ビームBに包含される領域で、z軸方向に厚みをもった円柱領域である。原理的に撮影領域FOVは幾何倍率が大きくなると小さくなる。従来のCT装置では、X線焦点Fの大きさがX線検出器の分解能に比べると十分小さいため分解能の高い断層像を生成するには、幾何倍率を上げて撮像領域FOVを小さくして撮影する。つまり、被検体3を精度よく撮影するには、被検体3がちょうど収まる撮影領域FOVで撮影する必要がある。  FIG. 8 is a conceptual diagram showing a scan area of a normal scan. An imaging area FOV (Field Of View) of a normal scan is an area that is included in the X-ray beam B about the rotation axis C on the rotation plane (xy plane) and has a thickness in the z-axis direction. It is a cylindrical region. In principle, the shooting area FOV becomes smaller as the geometric magnification increases. In the conventional CT apparatus, the size of the X-ray focal point F is sufficiently smaller than the resolution of the X-ray detector, and therefore, in order to generate a high-resolution tomographic image, the geometric magnification is increased and the imaging region FOV is reduced to perform imaging. To do. That is, in order to accurately image the subject 3, it is necessary to take an image in the imaging area FOV in which the subject 3 fits.

操作者がテーブル5に載置した被検体3を精度良くスキャンする場合、透過像表示部P3−1(透過像表示手段)で表示される透過像を確認しながら、位置指定入力部P2−1で、昇降機構7及びXY移動機構8を移動させて、被検体3が撮像領域FOV内にちょうど収まる位置までテーブル5を移動させる。  When the operator accurately scans the subject 3 placed on the table 5, the position designation input unit P2-1 is checked while confirming the transmission image displayed on the transmission image display unit P3-1 (transmission image display means). Then, the elevating mechanism 7 and the XY moving mechanism 8 are moved to move the table 5 to a position where the subject 3 is exactly within the imaging region FOV.

特開2002−310943号公報JP, 2002-310943, A 特開2005−351879号公報JP, 2005-351879, A

従来のCT装置において、被検体3を撮像領域FOV内にちょうど収める場合、表示部P3の透過像表示部P3−1で表示される透過像だけでは、撮像領域FOVが直接わからないため、何度かスキャンを行い、断層像を確認しながら位置決めする必要がある。特に、被検体3の一部を拡大してスキャンする場合や被検体3の大きさが数mmと小さい場合、撮影距離を数mm移動させるだけで大きく撮像領域FOVが変わるため、位置決めが非常に難しいという問題がある。  In the conventional CT apparatus, when the subject 3 is just placed in the imaging region FOV, the imaging region FOV cannot be directly known only by the transmission image displayed on the transmission image display unit P3-1 of the display unit P3. It is necessary to perform scanning and position while confirming the tomographic image. In particular, when a part of the subject 3 is scanned in an enlarged manner or the size of the subject 3 is as small as several mm, the imaging area FOV changes greatly only by moving the imaging distance by several mm, so that the positioning is very important. There is a problem that it is difficult.

特許文献1のCT装置では、幾何倍率を低く設定した状態で仮のスキャンを行い、仮スキャンした断層像上で操作者が任意の部位のROI(Region Of Interest、着目部分)指定を行い、このROI指定した部分が撮像領域FOVとなるよう回転軸Cの位置決めを行なっているが、操作者としては、仮のスキャンと仮の断層像の再構成の時間を要するため、使い勝手として簡便でなかった。  In the CT apparatus of Patent Document 1, a temporary scan is performed in a state where the geometric magnification is set low, and an operator designates an ROI (Region Of Interest, a target portion) of an arbitrary portion on the temporarily scanned tomographic image. Although the rotation axis C is positioned so that the ROI-designated portion becomes the imaging region FOV, the operator needs time for temporary scanning and reconstruction of a temporary tomographic image, which is not convenient for usability. .

また、特許文献2のCT装置で、外観カメラ4(撮影手段)で撮影した外観像上に撮影領域FOVを重畳して表示しているが、外観像上に表示される撮像領域FOVは、まずX線源1とX線検出器2およびテーブル5の位置関係等から定まり、その後に撮像領域FOVを希望する範囲へ調整することから、第1動作で撮像領域FOVを指定することはできない。また、図9は、被検体3の背丈が高い場合に表示部P3の外観像表示部P3−3(外観像表示手段)に表示される(A)外観表示部の例と(B)正面図を示す図で、撮像領域FOVは被検体3の高さと無関係に重畳されているため、外観カメラ4に装着したレンズの光線Kの角度影響により、表示される被検体3の外観像は、外観カメラ4に近い部分は大きく、遠い部分は小さくなる。このため操作者が意図して指示した領域と、実際に生成される断層像の領域は必ずしも一致しない問題があった。  Further, in the CT device of Patent Document 2, the photographing area FOV is displayed so as to be superimposed on the outer appearance image photographed by the outer appearance camera 4 (imaging means). However, the imaging area FOV displayed on the outer appearance image is The image pickup area FOV cannot be specified in the first operation because it is determined from the positional relationship between the X-ray source 1, the X-ray detector 2 and the table 5, and then the image pickup area FOV is adjusted to a desired range. Further, FIG. 9 shows an example (A) external appearance display section and (B) front view displayed on the external appearance image display section P3-3 (external image display means) of the display section P3 when the subject 3 is tall. In the figure, since the imaging region FOV is overlapped regardless of the height of the subject 3, the appearance image of the subject 3 displayed due to the angle effect of the light beam K of the lens attached to the appearance camera 4 is the appearance. The part close to the camera 4 is large, and the part far from it is small. Therefore, there is a problem that the area intended by the operator does not always coincide with the area of the tomographic image actually generated.

従って、本発明は、被検体3をスキャンするときの位置決めを簡単に正確に行うコンピュータ断層撮影装置を提供することを目的とする。  Therefore, it is an object of the present invention to provide a computer tomography apparatus that simply and accurately positions the subject 3 when scanning it.

前記目的を達成するため、実施形態のコンピュータ断層撮影装置は、テーブル上に載置された被検体に向けて放射線を放射する放射線源と、前記被検体を透過した放射線を検出して透過像として出力する放射線検出手段と、前記放射線と交差する回転軸に対し前記テーブルと前記放射線とを相対的に回転させる回転手段と、前記回転の多数の方向で検出された透過像から前記被検体の断層像を再構成する再構成手段を有するコンピュータ断層撮影装置において、前記被検体を前記回転軸上もしくはその近傍から撮影する撮影手段と、前記撮影手段により撮影された前記被検体の外観像を表示する外観像表示手段と、前記外観像表示手段で表示された前記被検体の外観像上で任意の着目部分を設定する着目部分設定手段と、前記着目部分設定手段で設定された着目部分の範囲を前記外観像表示手段上に表示する着目部分表示手段と、前記着目部分設定手段で設定した着目部分が前記被検体の断層像視野にちょうど包含されるように前記放射線源と前記回転軸との間の透過像撮影距離を計算する透過像撮影距離計算手段と、前記透過像撮影距離計算手段によって計算された透過像撮影距離になるように前記放射線源と前記回転軸との間の距離を調整する透過像撮影距離調整手段と、前記着目部分表示手段は、さらに前記外観像表示手段で表示される前記着目部分の縁を前記被検体の上面と底面を示す二つの縁で描画することを特徴とする。In order to achieve the above-mentioned object, the computer tomography apparatus of the embodiment is a radiation source that emits radiation toward a subject placed on a table, and detects a radiation transmitted through the subject as a transmission image. Radiation detecting means for outputting, rotating means for relatively rotating the table and the radiation with respect to a rotation axis intersecting with the radiation, and a tomographic image of the subject from transmission images detected in a number of directions of the rotation. A computer tomography apparatus having a reconstructing unit that reconstructs an image, displays an image capturing unit that captures the subject from or near the rotation axis, and an external image of the subject captured by the image capturing unit. Appearance image display means, attention portion setting means for setting an arbitrary attention portion on the appearance image of the subject displayed by the appearance image display means, and the attention portion setting hand The target part display means for displaying the range of the target part set on the external image display means, and the target part set by the target part setting means are just included in the tomographic image field of the subject. Transmission image capturing distance calculation means for calculating a transmission image capturing distance between the radiation source and the rotation axis, and the radiation source and the rotation so that the transmission image capturing distance is calculated by the transmission image capturing distance calculation means. The transmission image photographing distance adjusting means for adjusting the distance between the axis and the attention portion display means further includes an edge of the attention portion displayed by the appearance image display means for indicating the top surface and the bottom surface of the subject. Characterized by drawing with one edge .

本発明の第一の実施形態であるCT装置の(A)平面図と(B)正面図とブロック図。The (A) top view, the (B) front view, and a block diagram of a CT device which is a first embodiment of the present invention. 本発明の第一の実施形態における撮影距離計算手段の作用を示すフローチャート。6 is a flowchart showing the operation of the shooting distance calculation means in the first embodiment of the present invention. 外観像表示部P3−3で表示された被検体3の外観像に上面ROIと底面ROIを描画した図。The figure which drew the upper surface ROI and the bottom surface ROI to the appearance image of the to-be-examined object 3 displayed on the appearance image display part P3-3. 本発明の第二の実施形態であるCT装置の(A)平面図と(B)正面図とブロック図。The (A) top view, the (B) front view, and a block diagram of a CT device which is a second embodiment of the present invention. 本発明の第二の実施形態におけるxy移動機構5’の移動量を計算するフローチャート。The flowchart which calculates the moving amount of the xy moving mechanism 5'in 2nd embodiment of this invention. 本発明の第三の実施形態の作用を示すフローチャート。The flowchart which shows the effect | action of 3rd embodiment of this invention. 従来のCT装置の(A)平面図と(B)正面図と(C)ブロック図。The (A) top view, the (B) front view, and the (C) block diagram of the conventional CT device. 通常スキャンのスキャン領域を示す概念図。The conceptual diagram which shows the scan area | region of normal scan. 従来の表示部P3の外観像表示部P3−3に表示される(A)外観表示部の例と(B)正面図。The example of the (A) external appearance display part displayed on the external appearance image display part P3-3 of the conventional display part P3, and (B) front view.

(本発明の第一の実施形態の構成)
図1は、本発明の第一の実施形態であるCT装置の(A)平面図と(B)正面図とブロック図である。このブロック図を実現するには、汎用のワークステーション等の計算機が用いられ、CPU、主メモリ、ディスク、機構制御用ボード、キーボード、マウス、モニタで構成されている。なお、前述と同じ説明は省略する。
(Configuration of First Embodiment of the Present Invention)
FIG. 1 is a plan view (A), a front view (B) and a block diagram of a CT apparatus according to a first embodiment of the present invention. To realize this block diagram, a computer such as a general-purpose workstation is used, and it is composed of a CPU, a main memory, a disk, a mechanism control board, a keyboard, a mouse, and a monitor. Note that the same description as above is omitted.

図1において、X線源1としては、照射するX線ビームBのX線焦点Fが数ないし数十μmのマイクロフォーカスX線源を用い、X線放射の中心がX線検出器2方向を向くようにベース10に支持される。X線検出器2としては、複数のX線検出素子を二次元マトリックス的に配置した例えばX線フラットパネルディテクタ(FPD)が用いられ、X線検出器移動機構9に支持される。ここで、X線ビームBは、実際に測定されるX線であり、X線ビームBの外側の領域にはみ出して放射される測定されないX線は含まない。X線源1の照射は制御処理部P1のX線源制御部P1−1で行い、X線検出器の透過データの収集は制御処理部P1の検出器制御部P1−2で行う。  In FIG. 1, as the X-ray source 1, a microfocus X-ray source in which the X-ray focal point F of the X-ray beam B to be radiated is several to several tens μm is used, and the center of X-ray radiation is in the X-ray detector 2 direction. It is supported by the base 10 so as to face. As the X-ray detector 2, for example, an X-ray flat panel detector (FPD) in which a plurality of X-ray detecting elements are arranged in a two-dimensional matrix is used, and is supported by the X-ray detector moving mechanism 9. Here, the X-ray beam B is the X-ray that is actually measured, and does not include the non-measured X-ray that radiates outside the area outside the X-ray beam B. The irradiation of the X-ray source 1 is performed by the X-ray source control unit P1-1 of the control processing unit P1, and the transmission data of the X-ray detector is collected by the detector control unit P1-2 of the control processing unit P1.

図1において、テーブル5を移動するための、回転機構6、昇降機構7及びXY移動機構8の制御は制御処理部P1の機構制御部P1−3で行う。  In FIG. 1, control of the rotating mechanism 6, the lifting mechanism 7, and the XY moving mechanism 8 for moving the table 5 is performed by the mechanism control unit P1-3 of the control processing unit P1.

図1の(A)平面図のX線焦点FとX線検出器中心Dcの間をセンターラインCLと定義して、センターラインCL上を回転軸Cが移動するように、XY移動機構8の調整を行う。撮影距離FCDは回転軸Cの移動により変更することができる。検出距離FDDは検出器移動機構9の移動により変更できる。操作者がテーブル5を移動する場合、入力部P2の位置指定入力部P2−1から行う。  The center line CL is defined between the X-ray focal point F and the X-ray detector center Dc in the plan view of FIG. 1A, and the XY moving mechanism 8 of the XY moving mechanism 8 moves so that the rotation axis C moves on the center line CL. Make adjustments. The shooting distance FCD can be changed by moving the rotation axis C. The detection distance FDD can be changed by moving the detector moving mechanism 9. When the operator moves the table 5, the position designation input section P2-1 of the input section P2 is used.

操作者が被検体3のスキャンを行う場合、入力部P2のスキャン入力部P2−2から行う。スキャン入力部P2−2からスキャン指令を受けると、制御処理部P1のスキャン制御部P1−4は、X線制御部P1−1を介してX線源1にX線放射ONを、検出器制御部P1−2を介してX線検出器2に透過データの取り込みを、機構制御部P1−3を介してテーブル5の回転を、それぞれ指令する。テーブル5の回転で多方向の透過データを取り込んだ後、再構成部P1−5で、透過データの再構成演算を行う。再構成後に生成した断層像は、表示部P3の断層像表示部P3−2で確認できる。  When the operator scans the subject 3, the scan input section P2-2 of the input section P2 is used. Upon receiving a scan command from the scan input unit P2-2, the scan control unit P1-4 of the control processing unit P1 turns on the X-ray emission ON the X-ray source 1 via the X-ray control unit P1-1 and controls the detector. The X-ray detector 2 is instructed to take in transmission data via the section P1-2, and the rotation of the table 5 is instructed via the mechanism control section P1-3. After the multidirectional transparent data is fetched by the rotation of the table 5, the reconstruction unit P1-5 performs a transparent data reconstruction calculation. The tomographic image generated after the reconstruction can be confirmed on the tomographic image display portion P3-2 of the display portion P3.

図1において、被検体3を上から撮影する外観カメラ4と、外観カメラ4を制御する外観カメラ制御部P1−6、操作者が外観カメラ4に撮影指令するための外観カメラ撮影部P2−3、外観カメラ4で取り込んだ外観像を表示する外観像表示部P3−3、表示した外観像のROI入力を受け付けるROI入力部P2−4(着目部分設定手段)、入力されたROIを表示するROI表示部P3−4(着目部分表示手段)、入力されたROIの大きさから、X線源1と回転位置の撮影距離を計算する撮影距離計算部P1−7(透過像撮影距離計算手段)が特徴的な構成要素である。  In FIG. 1, an external appearance camera 4 that images the subject 3 from above, an external appearance camera control unit P1-6 that controls the external appearance camera 4, and an external appearance camera imaging unit P2-3 for the operator to issue an imaging instruction to the external appearance camera 4. , An external appearance image display portion P3-3 for displaying an external appearance image captured by the external appearance camera 4, an ROI input portion P2-4 for receiving an ROI input of the displayed external appearance image (an attention portion setting means), and an ROI for displaying the input ROI. A display unit P3-4 (target portion display unit), a shooting distance calculation unit P1-7 (transmission image shooting distance calculation unit) that calculates a shooting distance between the X-ray source 1 and the rotational position from the size of the input ROI. It is a characteristic component.

図1において、外観カメラ4と被検体3は外観カメラ4のレンズの光線角度による影響があるため、外観カメラ4に近い部分は大きく、遠い部分は小さく写ってしまう。この影響を低減するには、できる限り外観カメラ4と被検体3の距離を離すことが望ましい。外観カメラ4と被検体3の距離が離せない場合は、必要に応じて、外観カメラの光線軸上に鏡を置いて、光線を折り返す機構を採用しても良い。  In FIG. 1, since the appearance camera 4 and the subject 3 are affected by the light ray angle of the lens of the appearance camera 4, a portion near the appearance camera 4 is large and a portion far from the appearance camera 4 is small. In order to reduce this influence, it is desirable to separate the appearance camera 4 and the subject 3 as much as possible. If the appearance camera 4 and the subject 3 cannot be separated from each other, a mechanism may be adopted in which a mirror is placed on the optical axis of the appearance camera and the light beam is folded back, if necessary.

(本発明の第一の実施形態の作用)
図2は、操作者が外観像上に描画したROIで包含される範囲が、断層像の視野にちょうど包含されるような、X線源と回転位置の撮影距離を計算する撮影距離計算手段の作用を示すフローチャートである。図1および図2を使って、撮影距離FCDの計算手順について説明する。
(Operation of the first embodiment of the present invention)
FIG. 2 shows an imaging distance calculation means for calculating the imaging distance between the X-ray source and the rotational position such that the range included in the ROI drawn by the operator on the appearance image is included in the visual field of the tomographic image. It is a flow chart which shows an operation. A procedure for calculating the shooting distance FCD will be described with reference to FIGS. 1 and 2.

外観像上に描画したROIが、被検体3の上面(外観カメラ4側)と底面(テーブル5側)を示す二つのROIが一度に描画できるようにするため校正を行う。昇降機構7でテーブル5を下限位置まで移動させて、テーブル底面に寸法が既知である寸法治具を置いて外観カメラ4で寸法治具の撮影を行う。寸法治具は高さの影響を受けないように薄くする。外観像に写った寸法治具の画素数を数えて治具の寸法で除した値を、底面の画素サイズAとして求める。次にテーブル5がスキャン面と同一となる位置まで上昇させて、同様に外観像に写った寸法治具の画素数を数えて治具の寸法で除した値を、上面の画素サイズBとして求める。  The ROI drawn on the appearance image is calibrated so that two ROIs showing the top surface (appearance camera 4 side) and the bottom surface (table 5 side) of the subject 3 can be drawn at one time. The table 5 is moved to the lower limit position by the elevating mechanism 7, a dimension jig whose dimensions are known is placed on the bottom surface of the table, and the appearance camera 4 photographs the dimension jig. The dimension jig should be thin so that it is not affected by height. A value obtained by counting the number of pixels of the dimension jig reflected in the external image and dividing by the dimension of the jig is obtained as the bottom pixel size A. Next, the table 5 is moved up to the same position as the scan plane, and similarly, the value obtained by counting the number of pixels of the dimension jig reflected in the external image and dividing by the dimension of the jig is obtained as the pixel size B of the upper surface. .

操作者が通常、外観像表示部P3−3においてROI入力を行うときは、上面ROIを描画する設定とし、上面ROIの外接円の径の画素数に、画素サイズBに画素サイズAを除算した値を掛けた画素数が、底面ROIの外接円として描画されるようにする。この時、ROIの形状は、円形だけでなく矩形等でも良く、画素サイズBに画素サイズAを除算した値を掛けた大きさの画素分を変更できれば良い。  When the operator normally inputs the ROI in the appearance image display portion P3-3, the upper surface ROI is set to be drawn, and the pixel size B is divided by the pixel size A into the number of pixels of the circumscribed circle of the upper surface ROI. The number of pixels multiplied by the value is rendered as a circumscribed circle of the bottom ROI. At this time, the shape of the ROI may be not only a circle but also a rectangle or the like, as long as the pixel size B can be changed by the pixel size B divided by the pixel size A.

操作者は被検体3をテーブル5に載置した後、ステップS1で、入力部P2の外観カメラ撮影部P2−3を用いて、外観カメラ制御部P1−6へ外観像の撮影指令を行う。外観カメラ制御部P1−6は、外観カメラ4で載置した被検体3を上から撮影し、その外観像を表示部P3の外観像表示部P3−3へ表示する。  After placing the subject 3 on the table 5, the operator uses the appearance camera photographing unit P2-3 of the input unit P2 to instruct the appearance camera control unit P1-6 to photograph the appearance image in step S1. The appearance camera control unit P1-6 takes an image of the subject 3 placed by the appearance camera 4 from above and displays the appearance image on the appearance image display unit P3-3 of the display unit P3.

ステップS2で、操作者は外観像表示部P3−3に表示された外観像からスキャンを行う部位をROIで描画する。この時描画されるROIは上面ROIで、底面ROIは計算により同時に描画する。図3は、外観像表示部P3−3で表示された被検体3の外観像に、上面ROIと底面ROIを描画している。  In step S2, the operator draws a region to be scanned with the ROI from the appearance image displayed on the appearance image display portion P3-3. The ROI drawn at this time is the top ROI, and the bottom ROI is drawn simultaneously by calculation. In FIG. 3, a top surface ROI and a bottom surface ROI are drawn on the appearance image of the subject 3 displayed on the appearance image display portion P3-3.

ステップS3で描画した上面ROIを包含する外接円の上面ROI半径(ROI_R)を(1)式で計算する。
ROI_R=(画素サイズB×画素数N)/2・・・(1)
ここで、画素数Nは、上面ROIを包含する外接円径の画素数である。
The upper surface ROI radius (ROI_R) of the circumscribed circle including the upper surface ROI drawn in step S3 is calculated by the equation (1).
ROI_R = (pixel size B × number of pixels N) / 2 (1)
Here, the number of pixels N is the number of pixels of the circumscribed circle diameter including the upper surface ROI.

ステップS4で、計算したROI_Rと、検出器距離FDDと検出器有効幅Lwから、移動後の撮影距離ROI_FCDを(2)式で計算する。
ROI_FCD=ROI_R/sin(arctan(Lw/FDD))・・・(2)
In step S4, the photographing distance ROI_FCD after movement is calculated from the calculated ROI_R, the detector distance FDD, and the detector effective width Lw by the formula (2).
ROI_FCD = ROI_R / sin (arctan (Lw / FDD)) (2)

上記は校正を行って画素サイズAと画素サイズBを求め上面ROIと底面ROIを描画したが、校正を行わなくても描画できる方法を以下に述べる。  In the above, the calibration was performed to obtain the pixel size A and the pixel size B, and the upper surface ROI and the bottom surface ROI were drawn. However, a method of drawing without the calibration will be described below.

通常、昇降機構7はテーブル5の位置(高さ)を測定するためのリニアゲージやエンコーダ等の位置センサを備えており、テーブル5の位置を把握することができる。従って、外観カメラ4からテーブル5までの距離である撮影距離を把握することができる。また外観カメラ4はカメラレンズと内部に備える撮像素子から画角が仕様上、一意に定まるため、この画角と撮影距離を使ってテーブル5の現在位置における撮影視野を求めることができる。撮影視野は、撮影距離が長くなればテーブル5の面全体を広く表示するため撮影視野は大きくなり(外観像表示部P3−3の表示では縮小方向)、逆に撮影距離が短くなれば撮影視野は狭く(外観像表示部P3−3の表示では拡大方向)なる。  Normally, the elevating mechanism 7 is provided with a position sensor such as a linear gauge or an encoder for measuring the position (height) of the table 5, and the position of the table 5 can be grasped. Therefore, the shooting distance, which is the distance from the external camera 4 to the table 5, can be grasped. In addition, since the view angle of the external appearance camera 4 is uniquely determined by the camera lens and the image pickup device provided inside due to the specifications, the view field at the current position of the table 5 can be obtained using this view angle and the shooting distance. When the shooting distance is long, the entire surface of the table 5 is displayed wide, so that the shooting field becomes large (reducing direction in the display of the external image display unit P3-3). Conversely, when the shooting distance becomes short, the shooting field of view becomes large. Becomes narrower (in the enlargement direction in the display of the appearance image display portion P3-3).

ここで、上面ROIは、テーブル5を下限位置にした場合の仕様上最大許容高さの被検体上面でのROIを描画するようにする。操作者がテーブル5下限位置での底面ROIを目的の大きさに描画すると、それに相応する被検体3の上面ROIの大きさを、外観カメラ4の撮影距離(既知)から決まる撮影視野を計算して自動的に描画する。テーブル5の高さが任意の位置にある場合には、その下限位置から上昇した距離だけ撮影距離が短くなり、その撮影視野は拡大され、その大きさはテーブル5の高さから一意に計算することができる。そのテーブル5の位置におけるテーブル面上で操作者が底面ROIを設定すると、上面ROIは前述の通りテーブル5を下限位置にした場合の仕様上最大許容高さの被検査物上面におけるROIの大きさを計算してその上面ROIも描画する。  Here, as the upper surface ROI, the ROI on the upper surface of the subject having the maximum allowable height in the specifications when the table 5 is set to the lower limit position is drawn. When the operator draws the bottom ROI at the lower limit position of the table 5 to a desired size, the size of the upper surface ROI of the subject 3 corresponding to the size is calculated from the imaging field of view determined by the imaging distance (known) of the external camera 4. And draw automatically. When the height of the table 5 is at an arbitrary position, the shooting distance is shortened by the distance raised from the lower limit position, the shooting field of view is expanded, and its size is uniquely calculated from the height of the table 5. be able to. When the operator sets the bottom surface ROI on the table surface at the position of the table 5, the upper surface ROI is the size of the ROI on the upper surface of the inspection object having the maximum allowable height in the specifications when the table 5 is at the lower limit position as described above. Is calculated and the upper surface ROI is also drawn.

この場合、テーブル5が下限位置にある程、上面ROIと底面ROIとの大きさの差異が大きく(上面ROIの方が大きくなる)、テーブル5が上限位置にある程、上面ROIと底面ROIの大きさは同じに近くなる。被検体3の断層像は上面ROIと底面ROIの間の範囲で得られることなり、校正をしなくても希望する断層像を得ることができる。  In this case, as the table 5 is at the lower limit position, the difference in size between the upper surface ROI and the bottom surface ROI is larger (the upper surface ROI is larger), and as the table 5 is at the upper limit position, the upper surface ROI and the bottom surface ROI are larger. The size is close to the same. The tomographic image of the subject 3 is obtained in the range between the upper ROI and the bottom ROI, and a desired tomographic image can be obtained without calibration.

前述の校正の有無にかかわらず、さらに希望する断層像を得るため、透過像表示部P3−1に表示された被検体3の透過像を見ながらROIを設定することで、被検体3の高さ方向の位置も加味したROIを設定することができる。すなわち、操作者は透過像表示部P3−1で表示された被検体3の側面からの透過像にてCT撮影したい高さの中心位置を指定し、そのときのテーブル5の高さから外観カメラ4の撮影視野が計算され、そのテーブル5の位置および操作者が指定したCT撮影したい高さの中心位置において操作者が底面ROI(上面ROI)を設定すれば、操作者が指定したCT撮影したい高さの中心位置における上面ROI(底面ROI)の大きさを計算してその上面ROI(底面ROI)も描画することができる。  In order to obtain a further desired tomographic image regardless of the presence or absence of the above-described calibration, the ROI is set while observing the transmission image of the subject 3 displayed on the transmission image display portion P3-1. The ROI can be set in consideration of the position in the vertical direction. That is, the operator designates the center position of the height at which CT imaging is desired in the transmission image from the side surface of the subject 3 displayed on the transmission image display portion P3-1, and the height of the table 5 at that time determines the appearance camera. If the operator sets the bottom ROI (upper surface ROI) at the position of the table 5 and the center position of the height specified by the operator for CT imaging, the operator wants to perform CT imaging specified by the operator. The size of the upper surface ROI (bottom ROI) at the center position of the height can be calculated and the upper surface ROI (bottom ROI) can also be drawn.

なお、ROI表示部P3−4で表示されるROIは、色、太さ、線種を使い分けることでさらに操作者に分かり易いものとなる。例えば、上面ROIと底面ROIとで異なる色、異なる線の太さ、異なる線種を使っても良い。  The ROI displayed on the ROI display portion P3-4 can be more easily understood by the operator by using different colors, thicknesses, and line types. For example, different colors, different line thicknesses, and different line types may be used for the top ROI and bottom ROI.

(第一の実施の形態の効果)
第一の実施の形態によれば、計算した撮影距離ROI_FCDが、X線源1やX線検出器2と干渉しない範囲であれば、計算した撮影距離ROI_FCDまでテーブル5をXY移動機構8(透過像撮影距離調整手段)で移動する。撮影距離ROI_FCDでスキャンを行えば、描画した上面ROIで包含される範囲で断層像が生成される。
(Effects of the first embodiment)
According to the first embodiment, if the calculated imaging distance ROI_FCD is in a range that does not interfere with the X-ray source 1 or the X-ray detector 2, the table 5 is moved up to the XY movement mechanism 8 (transmission) to the calculated imaging distance ROI_FCD. Image capturing distance adjusting means). When scanning is performed at the photographing distance ROI_FCD, a tomographic image is generated in the range included in the drawn upper surface ROI.

また、操作者は被検体の外観像上にROIを囲むだけで、囲んだROIの中心と、断層像の中心が一致する被検体の移動量の計算を行うため、計算した移動量分だけX線源1及びX線検出器2の組と被検体3とを相対移動させ、容易に被検体3を断層像の中心位置へ移動できる。  Further, since the operator only needs to enclose the ROI on the appearance image of the subject and calculates the amount of movement of the subject where the center of the enclosed ROI and the center of the tomographic image coincide with each other, only the calculated amount of movement is X. The set of the radiation source 1 and the X-ray detector 2 and the subject 3 can be relatively moved to easily move the subject 3 to the center position of the tomographic image.

また、上面ROIとして描画した大きさに応じた撮影距離ROI_FCDまでしか移動しないため、操作者が光線角度の影響を考慮しないでROIを描画して、被検体3がX線源1やX線検出器2へ衝突することを避けることができる。  Further, since the operator moves only up to the photographing distance ROI_FCD corresponding to the size drawn as the upper surface ROI, the operator draws the ROI without considering the influence of the ray angle, and the subject 3 detects the X-ray source 1 and the X-ray detection. It is possible to avoid collision with the vessel 2.

また、予め、外観カメラ4で寸法が既知である治具の撮影を行い、治具が底面にある場合の大きさと、治具が上面にある場合の大きさの比を求めておき、描画したROIに対して、求めた比に応じた大きさの異なる底面ROIと上面ROIの描画を同時に行うことで、外観像上に写った被検体3の高さやテーブル5の昇降の影響を含んだROIを描画できる。  In addition, an image of a jig whose dimensions are known is photographed in advance by the appearance camera 4, and the ratio between the size when the jig is on the bottom surface and the size when the jig is on the top surface is obtained and drawn. By simultaneously drawing the bottom ROI and the top ROI having different sizes according to the obtained ratio to the ROI, the ROI including the influence of the height of the subject 3 reflected on the appearance image and the elevation of the table 5 is included. Can be drawn.

また、上面ROIで包含された範囲が断層像視野としてちょうど包含される撮影距離の計算を行い、計算した撮影距離まで回転軸Cの移動を行うことで、スキャン前の位置決めの時間を短縮することができる。なお、上面ROIを描画するフローを説明してきたが、設定により底面ROIから上面ROIを描画してもよい。  Further, by calculating the imaging distance in which the range included in the upper surface ROI is exactly included in the tomographic image field and moving the rotation axis C to the calculated imaging distance, the positioning time before scanning can be shortened. You can Although the flow of drawing the upper surface ROI has been described, the upper surface ROI may be drawn from the bottom surface ROI depending on the setting.

(本発明の第二の実施形態の構成)
本発明の第二の実施形態のCT装置の(A)平面図と(B)正面図と(C)ブロック図を図4に示す。図1との違いは、テーブル5の上にxy移動機構5’(移動手段)を配置したことと、xy移動機構5’の移動量を計算する移動量計算部P1−8(移動量計算手段)を制御処理部P1に追加したことである。また外観カメラ4の中心座標は、テーブル5の回転軸上と一致するよう予め調整しておく。
(Configuration of Second Embodiment of the Present Invention)
FIG. 4 shows (A) a plan view, (B) a front view, and (C) a block diagram of a CT device according to a second embodiment of the present invention. The difference from FIG. 1 is that an xy moving mechanism 5 ′ (moving means) is arranged on the table 5, and a moving amount calculating unit P1-8 (moving amount calculating means) for calculating the moving amount of the xy moving mechanism 5 ′. ) Is added to the control processing unit P1. Further, the center coordinates of the appearance camera 4 are adjusted in advance so as to coincide with the rotation axis of the table 5.

(本発明の第二の実施形態の作用)
図5は、操作者が外観像上に描画した上面ROIの中心位置が、断層像の中心に合うように、xy移動機構5’の移動量を計算するフローチャートである。図4および図5を使って、xy移動機構5’のx及びy方向の移動量の計算について説明する。
(Operation of the second embodiment of the present invention)
FIG. 5 is a flowchart for calculating the movement amount of the xy moving mechanism 5 ′ so that the center position of the upper surface ROI drawn by the operator on the appearance image matches the center of the tomographic image. Calculation of the amount of movement of the xy moving mechanism 5 ′ in the x and y directions will be described with reference to FIGS. 4 and 5.

第一の実施形態の作用と異なる点は、ステップS7とステップS8である。ステップS7では、入力した上面ROIの中心座標(X_ROI,Y_ROI)を計算するステップである。円形ROIなら中心座標、矩形ROIなら対角線の1/2の座標となる。  The difference from the operation of the first embodiment is step S7 and step S8. Step S7 is a step of calculating the center coordinates (X_ROI, Y_ROI) of the input upper surface ROI. A circular ROI has center coordinates, and a rectangular ROI has half the diagonal line.

ステップS8では、ステップS7で求めた中心座標(X_ROI,Y_ROI)と、外観像の中心座標(Xc,Yc)と、上面ROI上の画素サイズBからx方向の移動量とy方向の移動量の計算を行う。
x方向の移動量=Xc−X_ROI×画素サイズB・・(3)
y方向の移動量=Yc−Y_ROI×画素サイズB・・(4)
なお、描画するROIが底面ROIである場合は、底面ROI上の画素サイズAから、x方向の移動量とy方向の移動量をそれぞれ計算する。
In step S8, the center coordinates (X_ROI, Y_ROI) obtained in step S7, the center coordinates (Xc, Yc) of the appearance image, and the movement amount in the x direction and the movement amount in the y direction from the pixel size B on the upper surface ROI are calculated. Calculate.
Amount of movement in x direction = Xc−X_ROI × pixel size B ... (3)
Amount of movement in y direction = Yc−Y_ROI × pixel size B ... (4)
When the ROI to be drawn is the bottom ROI, the movement amount in the x direction and the movement amount in the y direction are calculated from the pixel size A on the bottom ROI.

(本発明の第二の実施形態の効果)
計算したx方向の移動量とy方向の移動量が、xy移動機構5’のストローク範囲内であれば、xy移動機構5’で移動を行う。xy移動機構5’でX線源1及びX線検出器2の組と被検体3とを相対的に移動させるため、上面ROIで被検体を囲むだけで、短時間に被検体3が断層像の中央となる位置へ移動することができる。
(Effect of the second embodiment of the present invention)
If the calculated x-direction moving amount and y-direction moving amount are within the stroke range of the xy moving mechanism 5 ′, the xy moving mechanism 5 ′ moves. Since the set of the X-ray source 1 and the X-ray detector 2 and the subject 3 are relatively moved by the xy moving mechanism 5 ′, the subject 3 is tomographically imaged in a short time only by surrounding the subject with the upper surface ROI. You can move to a central position.

(本発明の第三の実施形態の構成)
第三の実施形態の構成は、図4の表示部P3に移動方向表示部P3−5(移動方向表示手段)を設けた点で異なっている。図6は本発明の第三の実施形態の作用を示すフローチャートで図2のフローチャート終了後を起点とする。ステップS9で現在の撮影距離FCDと計算したROI_FCDの比較を行う点が異なっている。
(Configuration of Third Embodiment of the Present Invention)
The configuration of the third embodiment is different in that a moving direction display portion P3-5 (moving direction display means) is provided in the display portion P3 of FIG. FIG. 6 is a flowchart showing the operation of the third embodiment of the present invention, which starts after the end of the flowchart of FIG. The difference is that the current shooting distance FCD and the calculated ROI_FCD are compared in step S9.

(本発明の第三の実施形態の作用)
ステップS9で、現在の撮影距離FCDとROIの半径ROI_RIから求めた、移動後の撮影距離ROI_FCDの比較を行っている。FCDよりもROI_FCDの距離が小さければ、テーブル5はX線検出器2側へ進むので、表示部P3の移動方向表示部P3−5はX線検出器2側へ進む表示を行う。FCDよりもROI_FCDの距離が大きければ、移動方向表示部P3−5はX線源1側へ進む表示を行う。
(Operation of the third embodiment of the present invention)
In step S9, the moving distance ROI_FCD obtained from the current shooting distance FCD and the ROI radius ROI_RI is compared. If the distance of ROI_FCD is smaller than that of FCD, the table 5 moves to the X-ray detector 2 side, and therefore the moving direction display portion P3-5 of the display portion P3 displays to move to the X-ray detector 2 side. If the distance of ROI_FCD is larger than that of FCD, the moving direction display portion P3-5 displays to advance to the X-ray source 1 side.

(本発明の第三の実施形態の効果)
操作者は、移動方向表示部P3−5を確認するだけで、被検体3の進行方向を確認できるため、被検体3とX線源1やX線検出器2との衝突を防止する効果がある。
(Effect of the third embodiment of the present invention)
Since the operator can confirm the traveling direction of the subject 3 simply by checking the moving direction display portion P3-5, the effect of preventing a collision between the subject 3 and the X-ray source 1 or the X-ray detector 2 is obtained. is there.

F…X線焦点、
B…X線ビーム、
C…回転軸
D…X線検出器入力面
Dc…X線検出器中心
L…スキャン面
CL…センターライン、
K…外観カメラのレンズ光線
1…X線源、
2…X線検出器、
3…被検体、
4…外観カメラ、
5…テーブル、
5’…xy移動機構、
6…回転機構、
7…昇降機構、
8…XY移動機構、
9…X線検出器移動機構、
10…ベース、
P1…制御処理部、
P1−1…X線源制御部、
P1−2…検出器制御部、
P1−3…機構制御部、
P1−4…スキャン制御部、
P1−5…再構成部、
P1−6…外観カメラ制御部、
P1−7…撮影距離計算部、
P1−8…移動量計算部、
P2…入力部、
P2−1…位置指定入力部、
P2−2…スキャン入力部、
P2−3…外観カメラ撮影部、
P2−4…ROI入力部、
P3…表示部、
P3−1…透過像表示部、
P3−2…断層像表示部、
P3−3…外観像表示部、
P3−4…ROI表示部、
P3−5…移動方向表示部
F ... X-ray focus,
B ... X-ray beam,
C ... Rotation axis D ... X-ray detector input surface Dc ... X-ray detector center L ... Scan plane CL ... Center line,
K ... Appearance camera lens ray 1 ... X-ray source,
2 ... X-ray detector,
3 ... Subject,
4 ... Appearance camera,
5 ... table,
5 '... xy moving mechanism,
6 ... rotation mechanism,
7 ... Lifting mechanism,
8 ... XY movement mechanism,
9 ... X-ray detector moving mechanism,
10 ... base,
P1 ... Control processing unit,
P1-1 ... X-ray source control unit,
P1-2 ... Detector control unit
P1-3 ... Mechanism control unit,
P1-4 ... Scan control unit,
P1-5 ... Reconstruction unit,
P1-6 ... Appearance camera control unit,
P1-7 ... Shooting distance calculation unit,
P1-8 ... Moving amount calculation unit,
P2 ... Input section,
P2-1 ... Position designation input section,
P2-2 ... Scan input section,
P2-3 ... Appearance camera shooting section,
P2-4 ... ROI input section,
P3 ... Display,
P3-1 ... Transmission image display unit,
P3-2 ... tomographic image display unit,
P3-3 ... Appearance image display section,
P3-4 ... ROI display section,
P3-5 ... Moving direction display

Claims (4)

テーブル上に載置された被検体に向けて放射線を放射する放射線源と、前記被検体を透過した放射線を検出して透過像として出力する放射線検出手段と、前記放射線と交差する回転軸に対し前記テーブルと前記放射線とを相対的に回転させる回転手段と、前記回転の多数の方向で検出された透過像から前記被検体の断層像を再構成する再構成手段を有するコンピュータ断層撮影装置において、
前記被検体を前記回転軸上もしくはその近傍から撮影する撮影手段と、
前記撮影手段により撮影された前記被検体の外観像を表示する外観像表示手段と、
前記外観像表示手段で表示された前記被検体の外観像上で任意の着目部分を設定する着目部分設定手段と、
前記着目部分設定手段で設定された着目部分の範囲を前記外観像表示手段上に表示する着目部分表示手段と、
前記着目部分設定手段で設定した着目部分が前記被検体の断層像視野にちょうど包含されるように前記放射線源と前記回転軸との間の透過像撮影距離を計算する透過像撮影距離計算手段と、
前記透過像撮影距離計算手段によって計算された透過像撮影距離になるように前記放射線源と前記回転軸との間の距離を調整する透過像撮影距離調整手段と、
前記着目部分表示手段は、さらに前記外観像表示手段で表示される前記着目部分の縁を前記被検体の上面と底面を示す二つの縁で描画することを特徴とするコンピュータ断層撮影装置。
A radiation source that emits radiation toward a subject placed on a table, a radiation detection unit that detects the radiation transmitted through the subject and outputs it as a transmission image, and a rotation axis that intersects the radiation. In a computer tomography apparatus having a rotating unit that relatively rotates the table and the radiation, and a reconstructing unit that reconstructs a tomographic image of the subject from transmission images detected in multiple directions of the rotation,
A photographing means for photographing the subject from the rotation axis or the vicinity thereof;
An appearance image display means for displaying an appearance image of the subject imaged by the imaging means,
Attention portion setting means for setting an arbitrary attention portion on the appearance image of the subject displayed by the appearance image display means,
A target portion display means for displaying the range of the target portion set by the target portion setting means on the appearance image display means,
Transmission image capturing distance calculation means for calculating a transmission image capturing distance between the radiation source and the rotation axis so that the target portion set by the target portion setting means is exactly included in the tomographic image field of the subject. ,
Transmission image capturing distance adjusting means for adjusting the distance between the radiation source and the rotation axis so that the transmission image capturing distance calculated by the transmission image capturing distance calculating means is obtained;
The computerized tomography apparatus according to claim 1, wherein the target portion display means further draws an edge of the target portion displayed by the appearance image display means with two edges indicating a top surface and a bottom surface of the subject .
請求項1に記載のコンピュータ断層撮影装置において、
前記透過像を表示する透過像表示手段と、
前記外観像表示手段で表示された外観像と前記透過像表示手段で表示された透過像から前記被検体の前記着目部分を設定するコンピュータ断層撮影装置。
The computer tomography apparatus according to claim 1 ,
A transmission image display means for displaying the transmission image;
A computer tomography apparatus for setting the part of interest of the subject from the appearance image displayed by the appearance image display means and the transmission image displayed by the transmission image display means.
請求項1または請求項2に記載のコンピュータ断層撮影装置において、
前記着目部分の中心位置が前記断層像の中心に合うように前記被検体の移動量を計算する移動量計算手段と、
前記移動量計算手段によって計算された移動量になるように前記放射線源および前記放射線検出器の組と前記被検体とを相対的に移動させる移動手段を有するコンピュータ断層撮影装置。
The computer tomography apparatus according to claim 1 or 2 ,
Movement amount calculation means for calculating the movement amount of the subject so that the center position of the portion of interest matches the center of the tomographic image,
A computer tomography apparatus having a moving unit that relatively moves the set of the radiation source and the radiation detector and the subject so that the moving amount is calculated by the moving amount calculating unit.
請求項1乃至請求項3のいずれか1項に記載のコンピュータ断層撮影装置において、
前記透過像撮影距離調整手段により動作する前記テーブルの移動方向を表示する移動方向表示手段を有するコンピュータ断層撮影装置。
The computer tomography apparatus according to any one of claims 1 to 3 ,
A computer tomography apparatus having moving direction display means for displaying a moving direction of the table operated by the transmission image photographing distance adjusting means.
JP2016075452A 2016-03-16 2016-03-16 Computed tomography equipment Active JP6690819B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016075452A JP6690819B2 (en) 2016-03-16 2016-03-16 Computed tomography equipment
KR1020170020319A KR101904788B1 (en) 2016-03-16 2017-02-15 Computed tomography apparatus
CN201710130621.5A CN107202802B (en) 2016-03-16 2017-03-07 Computer tomography apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016075452A JP6690819B2 (en) 2016-03-16 2016-03-16 Computed tomography equipment

Publications (2)

Publication Number Publication Date
JP2017167113A JP2017167113A (en) 2017-09-21
JP6690819B2 true JP6690819B2 (en) 2020-04-28

Family

ID=59904884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016075452A Active JP6690819B2 (en) 2016-03-16 2016-03-16 Computed tomography equipment

Country Status (3)

Country Link
JP (1) JP6690819B2 (en)
KR (1) KR101904788B1 (en)
CN (1) CN107202802B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6995653B2 (en) * 2018-01-31 2022-01-14 東芝Itコントロールシステム株式会社 Radiation inspection equipment and radiation inspection method
KR102286358B1 (en) * 2018-08-10 2021-08-05 도시바 아이티 앤 콘트롤 시스템 가부시키가이샤 X-ray imaging apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2593157Y2 (en) 1990-11-29 1999-04-05 ジーイー横河メディカルシステム 株式会社 X-ray CT system
DE102005036527B4 (en) * 2005-08-03 2008-05-21 Yxlon International X-Ray Gmbh X-ray CT test system and CT method for testing objects
JP5045134B2 (en) * 2007-02-06 2012-10-10 株式会社島津製作所 X-ray CT system
JP4697642B2 (en) * 2009-01-26 2011-06-08 東芝Itコントロールシステム株式会社 CT equipment
JP5648898B2 (en) * 2010-05-28 2015-01-07 東芝Itコントロールシステム株式会社 CT equipment
JP5600272B2 (en) * 2010-07-16 2014-10-01 富士フイルム株式会社 Radiation imaging apparatus and method, and program
JP2014195642A (en) * 2013-03-08 2014-10-16 株式会社東芝 X-ray diagnostic apparatus

Also Published As

Publication number Publication date
KR101904788B1 (en) 2018-10-08
JP2017167113A (en) 2017-09-21
CN107202802A (en) 2017-09-26
CN107202802B (en) 2021-02-12
KR20170107893A (en) 2017-09-26

Similar Documents

Publication Publication Date Title
JP6123984B2 (en) Method and apparatus for generating a three-dimensional model of a target area using an image forming system
JP6658578B2 (en) X-ray equipment
US11783479B2 (en) Methods and systems for a field-of-view preview
JP2016097296A (en) X-ray diagnostic apparatus, medical image processing method and medical image processing program
JP6711410B2 (en) Imaging magnification calibration method for radiation tomography apparatus
CN112294344B (en) Method and system for correcting X-ray detector tilt in X-ray imaging
JP2015106262A (en) Image processing apparatus, medical treatment system, and image processing method
JP6153105B2 (en) CT equipment
JP6690819B2 (en) Computed tomography equipment
JP2006322799A (en) X-ray imaging system
JP6687394B2 (en) X-ray diagnostic device and X-ray detector
CN110301924A (en) Handle the method, device and equipment of image
JP5045134B2 (en) X-ray CT system
JP4697642B2 (en) CT equipment
JP2019164008A (en) Measurement x-ray ct measurement plan generation method and device
JP2012042340A (en) X-ray ct equipment
US20130216023A1 (en) Method and c-arm system for acquisition of a two-dimensional, x-ray projection image
JP2018031759A (en) CT apparatus
WO2018190092A1 (en) X-ray inspection device
JP2022010384A (en) X-ray CT device
JP5544636B2 (en) Tomography equipment
JP2009014710A (en) X-ray ct apparatus
WO2019124160A1 (en) Image processing device, image processing method, and program
JP2006214841A (en) X-ray ct apparatus
CN118056530A (en) Augmented reality-centric cone beam computed tomography

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200326

R150 Certificate of patent or registration of utility model

Ref document number: 6690819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250