JP6689800B2 - Anti-corruption method - Google Patents

Anti-corruption method Download PDF

Info

Publication number
JP6689800B2
JP6689800B2 JP2017168689A JP2017168689A JP6689800B2 JP 6689800 B2 JP6689800 B2 JP 6689800B2 JP 2017168689 A JP2017168689 A JP 2017168689A JP 2017168689 A JP2017168689 A JP 2017168689A JP 6689800 B2 JP6689800 B2 JP 6689800B2
Authority
JP
Japan
Prior art keywords
red light
far
test
light
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017168689A
Other languages
Japanese (ja)
Other versions
JP2019041680A (en
Inventor
和夫 原田
和夫 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Electric Power Co Inc
Original Assignee
Hokkaido Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Electric Power Co Inc filed Critical Hokkaido Electric Power Co Inc
Priority to JP2017168689A priority Critical patent/JP6689800B2/en
Publication of JP2019041680A publication Critical patent/JP2019041680A/en
Application granted granted Critical
Publication of JP6689800B2 publication Critical patent/JP6689800B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Storage Of Fruits Or Vegetables (AREA)

Description

この発明は、収穫後のカボチャ、レタス、ネギ又はナスの腐敗を抑制する方法に関する。   The present invention relates to a method for suppressing post-harvest rot of pumpkin, lettuce, leeks or eggplant.

収穫後のカボチャを低温で貯蔵すると、低温障害により表面に多数の凹みが発生する。このような低温障害を防止するため、カボチャは、約10〜13℃の範囲内の温度で貯蔵するのが適当である。しかし、約10〜13℃という比較的高温でカボチャを貯蔵した場合、カビの発生等により腐敗しやすいことが知られている。   Storage of harvested pumpkins at low temperatures results in numerous depressions on the surface due to cold damage. To prevent such cold injury, the pumpkin is suitably stored at a temperature in the range of about 10-13 ° C. However, it is known that when pumpkin is stored at a relatively high temperature of about 10 to 13 ° C., it tends to rot due to the generation of mold and the like.

カボチャの腐敗を抑制する技術として、カボチャを殺菌性の薬剤に浸漬する又はカボチャに殺菌性の薬剤を塗布する方法がある(例えば特許文献1及び2参照)。   As a technique for suppressing the rotting of pumpkin, there is a method of immersing the pumpkin in a bactericidal agent or applying a bactericidal agent to the pumpkin (for example, see Patent Documents 1 and 2).

また、カボチャ等の青果物を長期間保存する技術として、例えば特許文献3〜7に開示された方法がある。特許文献3に係る方法では、電解水や次亜塩素酸水溶液等の殺菌性の溶液で青果物を洗浄し、乾燥後、一定の強度及び一定の酸素及び二酸化炭素透過量を有する合成樹脂フィルムで青果物を包装する。また、特許文献4に係る方法では、青果物を収容した容器に脱酸素剤を入れることにより、容器内の酸素濃度を7%以下にして、青果物を冷暗所保存する。また、特許文献5に係る方法では、次亜塩素酸水溶液等の殺菌性の溶液で青果物を殺菌洗浄し、水洗及び乾燥した後、青果物を真空包装する。また、特許文献6に係る方法では、青果物を次亜塩素酸ナトリウム水溶液で殺菌洗浄し、熱風や遠赤外線を用いて乾燥させた後、青果物を粉末化して保存する。また、特許文献7に係る方法では、60〜70℃の温度範囲でかつ高湿度下において、10〜20分の時間範囲で蒸し焼きにした後、40〜250℃の温度範囲の熱風を用いて乾燥させる。   Further, as a technique for storing fruits and vegetables such as pumpkin for a long period of time, there are methods disclosed in Patent Documents 3 to 7, for example. In the method according to Patent Document 3, fruits and vegetables are washed with a sterilizing solution such as electrolyzed water or an aqueous solution of hypochlorous acid, dried, and then dried with a synthetic resin film having a certain strength and a certain amount of oxygen and carbon dioxide permeation. To package. Further, in the method according to Patent Document 4, the oxygen concentration in the container is set to 7% or less by putting a deoxidizer in the container containing the fruits and vegetables, and the fruits and vegetables are stored in a cool and dark place. Further, in the method according to Patent Document 5, fruits and vegetables are sterilized and washed with a sterilizing solution such as an aqueous solution of hypochlorous acid, washed with water and dried, and then the fruits and vegetables are vacuum-packed. In the method according to Patent Document 6, fruits and vegetables are sterilized and washed with an aqueous solution of sodium hypochlorite, dried using hot air or far infrared rays, and then the fruits and vegetables are pulverized and stored. In addition, in the method according to Patent Document 7, after steaming in a temperature range of 60 to 70 ° C. and high humidity for a time range of 10 to 20 minutes, it is dried using hot air in a temperature range of 40 to 250 ° C. Let

ここで、カボチャ以外に腐敗しやすい青果物としてネギやレタス等がある。ネギの腐敗を抑制する技術として、1000keV未満の電子線をネギ表面に照射する方法(例えば特許文献8参照)や、ネギの保存に適当な酸素透過量を有する包装体を用いて、適温で保存するModified Atomosphere保存法(例えば特許文献9参照)等がある。また、レタスの腐敗を抑制する技術として、カビや菌の発生を防止すべく、レタスをエタノール処理し、通気性及び水蒸気透過性を有する高分子フィルムで包装する方法(例えば特許文献10参照)等がある。   Here, in addition to pumpkin, greens and lettuce are other perishable fruits and vegetables. As a technique for suppressing rotting of leek, a method of irradiating the surface of leek with an electron beam of less than 1000 keV (see, for example, Patent Document 8), or a package having an oxygen permeation amount suitable for storing leek, and storing at an appropriate temperature There is a Modified Atomosphere preserving method (for example, refer to Patent Document 9). Further, as a technique for suppressing the decay of lettuce, a method of treating lettuce with ethanol and packaging it with a polymer film having air permeability and water vapor permeability in order to prevent the generation of mold and fungi (see, for example, Patent Document 10). There is.

また、収穫後のイチゴ、トマト、ブロッコリー又はブドウの腐敗抑制方法として、これらの青果物に対して、赤色光及び遠赤色光の双方を照射する方法がある(例えば特許文献11参照)。さらに、キュウリ等の葉に緑色光を照射することによって、葉に感染した灰色カビ病の発病を抑制する方法(例えば特許文献12参照)や、野菜や果物の栽培中において、野菜や果物の葉に波長740nmの近赤外光を照射することによって、葉に感染したうどんこ病の発病を抑制する方法(例えば特許文献13参照)がある。   In addition, as a method for suppressing decay of strawberries, tomatoes, broccoli, or grapes after harvest, there is a method of irradiating these fruits and vegetables with both red light and far-red light (see, for example, Patent Document 11). Furthermore, by irradiating leaves such as cucumber with green light, a method of suppressing the onset of Botrytis cinerea that infects the leaves (see, for example, Patent Document 12), and leaves of vegetables and fruits during cultivation of vegetables and fruits. There is a method for suppressing the onset of powdery mildew which infects leaves by irradiating the plant with near-infrared light having a wavelength of 740 nm (see, for example, Patent Document 13).

特開2014−12709号公報JP, 2014-12709, A 特開2010−111584号公報JP, 2010-111584, A 特開2005−178855号公報JP, 2005-178855, A 特開2009−136208号公報JP, 2009-136208, A 特開2001−578212号公報JP, 2001-578212, A 特開2006−212025号公報JP, 2006-212025, A 特開2007−53915号公報JP, 2007-53915, A 特開2001−269112号公報JP, 2001-269112, A 特開2002−27906号公報JP 2002-27906 A 特開2003−284487号公報JP, 2003-284487, A 特開2016−26484号公報JP, 2016-26484, A 国際特許出願公開2007/105599号明細書International Patent Application Publication No. 2007/105599 特開2013−230122号公報JP, 2013-230122, A

特許文献1及び2の方法では、カボチャに薬剤が残存する恐れがある。   According to the methods of Patent Documents 1 and 2, there is a possibility that the medicine remains on the pumpkin.

また、特許文献3〜7の方法では、青果物の洗浄、乾燥、包装又は真空処理に労力及びコストがかかるという問題がある。さらに、特許文献6又は7の方法では、青果物を粉末化又は蒸し焼きするため、青果物の形状が損なわれるという問題がある。   In addition, the methods of Patent Documents 3 to 7 have a problem that labor and cost are required for washing, drying, packaging, or vacuum processing of fruits and vegetables. Furthermore, in the method of patent document 6 or 7, since the fruits and vegetables are powdered or steamed, there is a problem that the shape of the fruits and vegetables is impaired.

また、特許文献8〜10の方法では、使用する装置又は包装資材にコストがかかるという問題がある。   In addition, the methods of Patent Documents 8 to 10 have a problem that the device or the packaging material used is expensive.

また、特許文献11の方法は、イチゴ、トマト、ブロッコリー又はブドウの軟化抑制又は変色抑制に関する方法であり、カボチャ等の他の青果物に関する腐敗抑制効果については確認されていない。   In addition, the method of Patent Document 11 is a method for suppressing softening or discoloration of strawberries, tomatoes, broccoli, or grapes, and has not been confirmed for a spoilage suppressing effect for other fruits and vegetables such as pumpkin.

また、特許文献12及び13の方法は、栽培中における野菜等に対し、特定の病気を抑制する方法であり、収穫後のカボチャ等に関する腐敗抑制効果については確認されていない。   Further, the methods of Patent Documents 12 and 13 are methods for suppressing a specific disease with respect to vegetables and the like during cultivation, and the effect of suppressing decay of pumpkin and the like after harvest has not been confirmed.

この発明は、上述の問題点に鑑みてなされたものであり、この発明の目的は、収穫後の例えば貯蔵時において、カボチャ、レタス、ネギ又はナスの腐敗抑制をより簡便に行う方法を提供することにある。   The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a method for more easily suppressing spoilage of pumpkin, lettuce, leeks, or eggplants, for example, during storage after harvesting. Especially.

発明者らが検討を行ったところ、収穫後のカボチャ、レタス、ネギ又はナスに対して、赤色光及び遠赤色光の双方を照射することで、腐敗を抑制できることを見出した。   As a result of the inventors' investigation, they found that post-harvest pumpkin, lettuce, leeks, or eggplants could be inhibited from decay by irradiating them with both red light and far-red light.

そこで、上述した目的を達成するために、この発明の腐敗抑制方法は、カボチャ、レタス、ネギ又はナスに対して、赤色光及び遠赤色光の双方を照射する。   Therefore, in order to achieve the above-mentioned object, the method for inhibiting decay of the present invention irradiates pumpkin, lettuce, leeks or eggplant with both red light and far-red light.

この発明の腐敗抑制方法によれば、赤色光及び遠赤色光の双方を照射することで、カボチャ、レタス、ネギ又はナスの腐敗を抑制することができる。   According to the spoilage suppressing method of the present invention, it is possible to suppress spoilage of pumpkin, lettuce, leek or eggplant by irradiating both red light and far-red light.

実施例1における各試験区の日持ち日数を示す図である。FIG. 5 is a diagram showing the number of days that each test plot has a shelf life in Example 1. 実施例2における各試験区の日持ち日数を示す図である。FIG. 8 is a diagram showing the number of days that each test plot has a shelf life in Example 2. 実施例3における各試験区の日持ち日数を示す図である。FIG. 7 is a diagram showing the number of days that each test plot has a shelf life in Example 3; 実施例4における各試験区の日持ち日数を示す図である。FIG. 8 is a diagram showing the number of days that each test plot has a shelf life in Example 4;

以下、この発明の実施形態について説明するが、数値的条件などは、単なる好適例にすぎない。従って、この発明は以下の実施形態に限定されるものではなく、この発明の構成の範囲を逸脱せずにこの発明の効果を達成できる多くの変更を行うことができる。   Embodiments of the present invention will be described below, but numerical conditions and the like are merely suitable examples. Therefore, the present invention is not limited to the following embodiments, and many modifications that can achieve the effects of the present invention can be made without departing from the scope of the configuration of the present invention.

この発明の腐敗抑制方法は、腐敗抑制対象の青果物に赤色光及び遠赤色光の双方を照射する過程を備える。ここでは、赤色光は、波長が約660nmの波長域の光である。また、遠赤色光は、波長が約760nmの波長域の光である。なお、赤色光と遠赤色光とを同時に、又は赤色光と遠赤色光とを交互に照射することができる。   The spoilage suppressing method of the present invention comprises a process of irradiating fruits and vegetables for spoilage suppression with both red light and far-red light. Here, the red light is light having a wavelength range of about 660 nm. The far-red light is light in the wavelength range of about 760 nm. Note that red light and far-red light can be emitted simultaneously, or red light and far-red light can be alternately emitted.

ここでの青果物は、収穫後のカボチャ、レタス、ネギ又はナスである。これらの青果物は、収穫後における貯蔵時等に常温下に置かれると、腐敗が生じ、商品価値が低下する。このとき、赤色光及び遠赤色光を照射すると、腐敗が抑制されることにより商品価値が維持される。   Fruits and vegetables here are post-harvest pumpkins, lettuce, leeks or eggplants. If these fruits and vegetables are put at room temperature after storage such as after harvesting, they will rot and their commercial value will decrease. At this time, when the red light and the far-red light are irradiated, decay is suppressed and the commercial value is maintained.

従って、赤色光及び遠赤色光の双方を照射することによって、収穫後のカボチャ、レタス、ネギ又はナスの、貯蔵されている間に発生する腐敗を抑えることができる。   Therefore, by irradiating with both red light and far-red light, it is possible to suppress the putrefaction of post-harvest pumpkin, lettuce, leeks or eggplant during storage.

(実施例1)
実施例1は、14℃に設定した貯蔵庫内における、赤色光及び遠赤色光の照射によるカボチャの腐敗抑制効果を調べる試験である。
(Example 1)
Example 1 is a test for investigating the putrefaction-inhibiting effect of pumpkin by irradiation with red light and far-red light in a storage set at 14 ° C.

試験区−1〜5を設定し、各試験区には、縦、横、高さが、それぞれ40cm、56cm、32cmのダンボール製容器(以下、単に容器とも称する。)を設置した。カボチャの検体として直径15〜16cmの範囲内、重量900g程度の「えびす」及び「くりりん」を各3個ずつ、試験区−1〜5の各容器内にそれぞれ収容した。そして、容器上部に設置した光源を用いて光照射を行った。ここでは、収穫後、涼しい場所で約1ヶ月間保管されていた「えびす」及び「くりりん」を生産者から入手して11月初旬から試験を行った。なお、試験区−2、4及び5の検体については、容器に収容する前に、電解水(pH:2.9、有効塩素濃度:23ppm)処理による表皮の殺菌を行った。これら試験区−2、4及び5の検体は、電解水に5分間浸漬することによって電解水処理し、その後、風乾してから容器に収容した。   Test sections-1 to 5 were set, and a cardboard container (hereinafter, also simply referred to as a container) having a height, a width, and a height of 40 cm, 56 cm, and 32 cm was installed in each test section. As pumpkin specimens, three pieces of "Ebisu" and "Kuririn" each having a diameter of 15 to 16 cm and a weight of about 900 g were stored in each of the containers of test sections -1 to 5. And light irradiation was performed using the light source installed in the upper part of the container. Here, "Ebisu" and "Kuririn", which had been stored in a cool place for about one month after harvest, were obtained from the producer and tested from the beginning of November. In addition, about the specimens of the test sections-2, 4 and 5, the epidermis was sterilized by treatment with electrolytic water (pH: 2.9, effective chlorine concentration: 23 ppm) before being stored in the container. The specimens of these test sections-2, 4 and 5 were treated with electrolyzed water by immersing in electrolyzed water for 5 minutes, then air-dried and then stored in a container.

試験区−1〜5における、照射条件を表1に示す。   Table 1 shows the irradiation conditions in the test groups -1 to 5.

Figure 0006689800
Figure 0006689800

試験区−1及び2は、照射を行わない試験区であり、暗所とした。   Test plots 1 and 2 were test plots that were not irradiated and were set in the dark.

また、試験区−3及び4は、赤色光及び遠赤色光を交互に単独照射する試験区である。赤色光及び遠赤色光の光源としてそれぞれLEDを用いた。分光分析装置(LI−COR社製のLI−1800)を用いて、使用した光源の分光特性を評価した。赤色光は、約660nmにピークを示した。また、遠赤色光は、約760nmにピークを示した。赤色光及び遠赤色光の光強度は、光源直下の容器中央付近の底面において各2W/m、容器外周付近の最も弱い箇所において各0.4W/mとした。 Moreover, the test plots 3 and 4 are test plots in which the red light and the far-red light are alternately and independently irradiated. LEDs were used as light sources of red light and far-red light, respectively. The spectral characteristics of the light source used were evaluated using a spectroscopic analyzer (LI-1800 manufactured by LI-COR). The red light showed a peak at about 660 nm. Further, far-red light showed a peak at about 760 nm. The light intensities of the red light and the far-red light were 2 W / m 2 at the bottom near the center of the container directly below the light source, and 0.4 W / m 2 at the weakest point near the outer circumference of the container.

試験区−3及び4では、1日の照射時間を、赤色光と遠赤色光とをこの順に12時間ずつ交互に単独で照射する合計24時間とし、暗所とする時間を設けなかった。   In the test groups 3 and 4, the irradiation time per day was set to 24 hours in which the red light and the far-red light were alternately irradiated in this order for 12 hours each independently, and the dark time was not provided.

また、試験区−5は、赤色光及び遠赤色光の同時照射を行う試験区である。赤色光及び遠赤色光の光源としてそれぞれLEDを用いた。分光分析装置を用いて、使用した光源の分光特性を評価した。赤色光は、約660nmにピークを示した。また、遠赤色光は、約760nmにピークを示した。赤色光及び遠赤色光の光強度は、光源直下の容器中央付近の底面において各2W/m(合わせて4W/m)、容器外周付近の最も弱い箇所において各0.4W/m(合わせて0.8W/m)とした。 Moreover, the test section-5 is a test section in which the red light and the far-red light are simultaneously irradiated. LEDs were used as light sources of red light and far-red light, respectively. The spectroscopic characteristics of the light source used were evaluated using a spectroscopic analyzer. The red light showed a peak at about 660 nm. Further, far-red light showed a peak at about 760 nm. The light intensity of red light and far-red light was 2 W / m 2 (4 W / m 2 in total) at the bottom near the center of the container directly below the light source, and 0.4 W / m 2 (4 W / m 2 at the weakest point near the outer circumference of the container). The total was 0.8 W / m 2 .

試験区−5では、1日の照射時間を、赤色光及び遠赤色光の同時照射で12時間連続とし、残りの12時間は暗所とした。   In the test section-5, the irradiation time for one day was 12 hours continuously by simultaneous irradiation with red light and far-red light, and the remaining 12 hours was in the dark.

試験期間中の試験区−1〜5では、温度が約12〜15℃の範囲で、及び湿度が約35〜75%の範囲で推移しており、各試験区間での差は見られなかった。   In the test sections -1 to 5 during the test period, the temperature was in the range of approximately 12 to 15 ° C and the humidity was in the range of approximately 35 to 75%, and no difference was found between the test sections. .

このような条件において、試験開始後の日持ち日数を確かめた。日持ち日数は、腐敗発生の日までとした。腐敗は、凹みやカビの発生等を目視で評価した。結果を図1に示す。なお、ここでは、各試験区に収容した「えびす」及び「くりりん」各3個の平均日持ち日数を示してある。   Under such conditions, the number of days that can be stored after the start of the test was confirmed. The number of days of storage was set to the date of corruption. The decay was visually evaluated for the occurrence of dents and mold. The results are shown in Fig. 1. In addition, here, the average number of days of storage of three "Ebisu" and "Kuririn" stored in each test area is shown.

図1に示すように、赤色光及び遠赤色光の照射を行った試験区−3〜5の検体は、「えびす」及び「くりりん」ともに、暗所とした試験区−1及び2の検体と比べて日持ち日数が長くなった。このことから、赤色光及び遠赤色光の双方を照射することによってカボチャの腐敗が抑制されることが確認された。特に赤色光と遠赤色光とを交互に単独照射した試験区−3及び4の検体は、赤色光及び遠赤色光を同時照射した試験区−5と比べ、日持ち日数の向上が顕著であった。   As shown in FIG. 1, the specimens of the test plots -3 to 5 which were irradiated with the red light and the far-red light were the specimens of the test plots 1 and 2 which were in the dark place for both "Ebisu" and "Kuririn". It has a longer shelf life than. From this, it was confirmed that the pumpkin spoilage was suppressed by irradiating both red light and far-red light. In particular, the specimens in the test groups-3 and 4 in which the red light and the far-red light were alternately irradiated individually had a remarkable improvement in the number of days of storage as compared with the test group-5 in which the red light and the far-red light were simultaneously irradiated. .

また、日持ち日数が最も向上した試験区−3及び4の「えびす」及び「くりりん」のそれぞれの検体中、最も日持ち日数が長かった個体につき、試験開始時及び貯蔵最終日(腐敗発生の日)の果肉硬度及び果肉糖度を測定した。この結果、「えびす」では、試験開始時の果肉硬度が約815gであったのに対して、貯蔵最終日の果肉硬度が約805gであった。一方、「くりりん」では、試験開始時の果肉硬度が約830gであったのに対して、貯蔵最終日の果肉硬度が約820gであった。このように、試験区−3及び4の検体では、「えびす」及び「くりりん」ともに、果肉硬度の低下は僅かであった。また、「えびす」では、試験開始時の果肉糖度が約7%であったのに対して、貯蔵最終日の果肉糖度が約13.5%であった。一方、「くりりん」では、試験開始時の果肉糖度が約6%であったのに対して、貯蔵最終日の果肉糖度が約14.5%であった。このように、試験区−3及び4の検体では、「えびす」及び「くりりん」ともに、貯蔵中のでんぷんの分解に伴う果肉糖度の上昇が見られ、光照射に基づく果肉糖度の低下は生じなかった。さらに、これらの検体を炒めて食味評価を行ったところ、甘みがあり美味であることが確認された。なお、試験区−5の検体における果肉硬度及び果肉糖度の測定結果並びに食味評価の結果についても、試験区−3及び4と同様であった。   In addition, among the specimens of “Ebisu” and “Kuririn” in Test Zones 3 and 4 with the longest number of days of storage, the individuals with the longest number of days of storage were tested at the beginning of the test and the last day of storage (the date of the occurrence of decay). ), The pulp hardness and pulp sugar content were measured. As a result, in "Ebisu", the flesh hardness at the start of the test was about 815 g, whereas the flesh hardness on the last day of storage was about 805 g. On the other hand, in "Kuririn", the flesh hardness at the start of the test was about 830 g, whereas the flesh hardness on the last day of storage was about 820 g. As described above, in the samples of the test groups 3 and 4, both the "Ebisu" and "Kuririn" showed a slight decrease in the pulp hardness. Further, in "Ebisu", the flesh sugar content at the start of the test was about 7%, whereas the flesh sugar content on the last day of storage was about 13.5%. On the other hand, with "Kuririn", the sugar content in the pulp at the start of the test was about 6%, whereas the sugar content on the last day of storage was about 14.5%. As described above, in the test samples of Test Groups 3 and 4, both “Ebisu” and “Kuririn” showed an increase in the sugar content in the pulp due to the decomposition of starch during storage, and a decrease in the sugar content in the pulp due to light irradiation occurred. There wasn't. Furthermore, when these samples were fried and the taste was evaluated, it was confirmed that they were sweet and delicious. The measurement results of the flesh hardness and flesh sugar content and the taste evaluation results of the samples of Test Group-5 were the same as those of Test Groups-3 and 4.

(実施例2)
実施例2は、13℃に設定した貯蔵庫内における、赤色光及び遠赤色光の照射によるカボチャの腐敗抑制効果を調べる試験である。
(Example 2)
Example 2 is a test for investigating the putrefaction-suppressing effect of pumpkin by irradiation with red light and far-red light in a storage set at 13 ° C.

試験区−1〜3を設定し、各試験区には、縦、横、高さが、それぞれ40cm、56cm、32cmのダンボール製容器(以下、単に容器とも称する。)を設置した。カボチャの検体として直径16〜17cmの範囲内、重量1200g程度の「くりりん」を3個ずつ、試験区−1〜3の各容器内にそれぞれ収容した。そして、容器上部に設置した光源を用いて光照射を行った。ここでは、収穫後、涼しい場所で約2.5ヶ月間保管されていた「くりりん」を生産者から入手して12月中旬から試験を行った。なお、試験区−1〜3のいずれの検体についても、上述した電解水処理による表皮の殺菌を行わなかった。   Test sections -1 to 3 were set, and a cardboard container (hereinafter, also simply referred to as a container) having a height, width, and height of 40 cm, 56 cm, and 32 cm was installed in each test section. As pumpkin specimens, three pieces of "Kuririn" each having a diameter of 16 to 17 cm and a weight of about 1200 g were housed in each of the containers of the test groups -1 to 3. And light irradiation was performed using the light source installed in the upper part of the container. Here, after harvesting, "Kuririn", which had been stored in a cool place for about 2.5 months, was obtained from the producer and tested from mid-December. The epidermis was not sterilized by the above-mentioned electrolyzed water treatment for any of the test samples 1 to 3.

試験区−1〜3における、照射条件を表2に示す。   Table 2 shows the irradiation conditions in the test groups -1 to 3.

Figure 0006689800
Figure 0006689800

試験区−1は、照射を行わない試験区であり、暗所とした。   Test section-1 is a test section in which irradiation is not performed and is a dark place.

また、試験区−2は、赤色光の単独照射を行う試験区である。赤色光の光源としてLEDを用いた。分光分析装置を用いて、使用した光源の分光特性を評価した。赤色光は、約660nmにピークを示した。赤色光の光強度は、光源直下の容器中央付近の底面において4W/m、容器外周付近の最も弱い箇所において0.8W/mとした。 Moreover, the test section-2 is a test section in which the red light is independently irradiated. An LED was used as a red light source. The spectroscopic characteristics of the light source used were evaluated using a spectroscopic analyzer. The red light showed a peak at about 660 nm. Light intensity of the red light, 4W / m 2 at the bottom near the vessel center directly below the light source, it was 0.8 W / m 2 at the weakest point in the vicinity of the container periphery.

試験区−2では、1日の照射時間を、赤色光の単独照射で12時間連続とし、残りの12時間は暗所とした。   In the test group-2, the irradiation time for one day was 12 hours continuously with the single irradiation of red light, and the remaining 12 hours was in the dark.

また、試験区−3は、赤色光及び遠赤色光を交互に単独照射する試験区である。赤色光及び遠赤色光の光源としてそれぞれLEDを用いた。分光分析装置を用いて、使用した光源の分光特性を評価した。赤色光は、約660nmにピークを示した。また、遠赤色光は、約760nmにピークを示した。赤色光及び遠赤色光の光強度は、光源直下の容器中央付近の底面において各2W/m、容器外周付近の最も弱い箇所において各0.4W/mとした。 In addition, test section-3 is a test section in which red light and far-red light are alternately and independently irradiated. LEDs were used as light sources of red light and far-red light, respectively. The spectroscopic characteristics of the light source used were evaluated using a spectroscopic analyzer. The red light showed a peak at about 660 nm. Further, far-red light showed a peak at about 760 nm. The light intensities of the red light and the far-red light were 2 W / m 2 at the bottom near the center of the container directly below the light source, and 0.4 W / m 2 at the weakest point near the outer circumference of the container.

試験区−3では、1日の照射時間を、赤色光と遠赤色光とをこの順に12時間ずつ交互に単独で照射する合計24時間とし、暗所とする時間を設けなかった。   In test section-3, the irradiation time for one day was set to 24 hours in total, in which the red light and the far-red light were alternately irradiated in this order for 12 hours alternately in total, and no time for darkness was provided.

試験期間中の試験区−1〜3では、温度が約12〜14.5℃の範囲で、及び湿度が約30〜70%の範囲で推移しており、各試験区間での差は見られなかった。   In the test sections -1 to 3 during the test period, the temperature is in the range of about 12 to 14.5 ° C and the humidity is in the range of about 30 to 70%, and the difference in each test section can be seen. There wasn't.

このような条件において、試験開始後の日持ち日数を確かめた。日持ち日数は、腐敗発生の日までとした。腐敗は、凹みやカビの発生等を目視で評価した。結果を図2に示す。なお、ここでは、各試験区に収容した検体3個の平均日持ち日数を示してある。   Under such conditions, the number of days that can be stored after the start of the test was confirmed. The number of days of storage was set to the date of corruption. The decay was visually evaluated for the occurrence of dents and mold. The results are shown in Figure 2. In addition, here, the average number of days of storage of three specimens stored in each test section is shown.

図2に示すように、赤色光の単独照射又は赤色光及び遠赤色光双方の照射を行った試験区−2及び3の検体は、暗所とした試験区−1の検体と比べて日持ち日数が長くなった。このことから、赤色光の単独照射又は赤色光及び遠赤色光双方の照射によってカボチャの腐敗が抑制されることが確認された。特に赤色光と遠赤色光とを交互に単独照射した試験区−3の検体は、赤色光を単独照射した試験区−2と比べ、日持ち日数の向上が顕著であった。   As shown in FIG. 2, the specimens of the test plots 2 and 3 which were irradiated with the red light alone or with the red light and the far-red light were stored in a dark place in comparison with the specimen of the test plot-1. Has become longer. From this, it was confirmed that red light alone irradiation or irradiation of both red light and far-red light suppressed pumpkin decay. In particular, the samples of the test group-3 in which the red light and the far-red light were alternately irradiated individually showed a remarkable improvement in the number of days of storage as compared with the test group-2 in which the red light was independently irradiated.

なお、この実施例2における試験区−3の検体の日持ち日数は、同様の照射条件である上述した実施例1における試験区−3の検体よりも短くなった。これは、試験開始時期の違いや、使用した検体の、保管時の保存状態や試験開始時の果肉糖度の違いに起因するものと考えられる。   In addition, the number of days of storage of the sample of the test section-3 in this Example 2 was shorter than that of the sample of the test section-3 in the above-mentioned Example 1 under the same irradiation conditions. This is considered to be due to the difference in the test start time, the preservation state of the used sample during storage, and the difference in the sugar content in the pulp at the start of the test.

また、日持ち日数が最も向上した試験区−3の検体中、最も日持ち日数が長かった個体につき、試験開始時及び貯蔵最終日(腐敗発生の日)の果肉硬度及び果肉糖度を測定した。この結果、試験開始時の果肉硬度が約840gであったのに対して、貯蔵最終日の果肉硬度が約870gであった。このように、試験区−3の検体では、果肉硬度の低下は生じなかった。また、試験開始時の果肉糖度が約12%であったのに対して、貯蔵最終日の果肉糖度が約14%であった。このように、試験区−3の検体では、果肉糖度の低下は生じなかった。さらに、この検体を炒めて食味評価を行ったところ、甘みがあり美味であることが確認された。なお、この実施例2では、検体の試験開始時の果肉糖度が、実施例1における検体の試験開始時の果肉糖度と比べて上昇していた。これは、実施例1では、収穫後約1ヶ月間保管された検体を使用したのに対し、実施例2では、収穫後約2.5ヶ月間保管された検体を使用したことに起因すると考えられる。   In addition, among the specimens of the test group-3 having the longest number of days to be stored, the flesh hardness and the sugar content of the flesh at the start of the test and the last day of storage (the day when rot occurred) were measured for the individual having the longest number of days. As a result, the flesh hardness at the start of the test was about 840 g, while the flesh hardness on the last day of storage was about 870 g. As described above, in the sample of the test section-3, the pulp hardness did not decrease. The sugar content at the beginning of the test was about 12%, while the sugar content on the last day of storage was about 14%. As described above, in the sample of the test section-3, the decrease in the sugar content of the pulp did not occur. Furthermore, when this sample was fried and the taste was evaluated, it was confirmed to be sweet and delicious. In this Example 2, the sugar content of the flesh of the sample at the start of the test was higher than that of the sample of the Example at the start of the test. It is considered that this is because in Example 1, the sample stored for about 1 month after harvest was used, whereas in Example 2, the sample stored for about 2.5 months after harvest was used. To be

(実施例3)
実施例3は、13℃に設定した貯蔵庫内における、赤色光及び遠赤色光の照射によるカボチャの腐敗抑制効果を調べる試験である。
(Example 3)
Example 3 is a test for investigating the putrefaction-inhibiting effect of pumpkin by irradiation with red light and far-red light in a storage set at 13 ° C.

試験区−1〜4を設定し、各試験区には、縦、横、高さが、それぞれ40cm、56cm、32cmのダンボール製容器(以下、単に容器とも称する。)を設置した。カボチャの検体として直径約9cm、重量430g程度の「いっちゃん」を3個ずつ、試験区−1〜4の各容器内にそれぞれ収容した。そして、容器上部に設置した光源を用いて光照射を行った。ここでは、試験開始日(12月中旬)に小売店に入荷した「いっちゃん」を購入して試験を行った。なお、試験区−1〜4のいずれの検体についても、上述した電解水処理による表皮の殺菌を行わなかった。   Test sections-1 to 4 were set, and a cardboard container (hereinafter, also simply referred to as a container) having a height of 40 cm, a width of 56 cm, and a height of 32 cm was installed in each test section. As pumpkin specimens, three "Icchan" with a diameter of about 9 cm and a weight of about 430 g were housed in each of the containers of the test sections-1 to 4. And light irradiation was performed using the light source installed in the upper part of the container. Here, Icchan, which arrived at a retail store on the test start date (mid December), was purchased and tested. It should be noted that the epidermis was not sterilized by the above-described electrolyzed water treatment for any of the test sections-1 to 4 samples.

試験区−1〜4における、照射条件を表3に示す。   Table 3 shows the irradiation conditions in the test sections-1 to 4.

Figure 0006689800
Figure 0006689800

試験区−1は、照射を行わない試験区であり、暗所とした。   Test section-1 is a test section in which irradiation is not performed and is a dark place.

また、試験区−2は、赤色光の単独照射を行う試験区である。赤色光の光源としてLEDを用いた。分光分析装置を用いて、使用した光源の分光特性を評価した。赤色光は、約660nmにピークを示した。赤色光の光強度は、光源直下の容器中央付近の底面において4W/m、容器外周付近の最も弱い箇所において0.8W/mとした。 Moreover, the test section-2 is a test section in which the red light is independently irradiated. An LED was used as a red light source. The spectroscopic characteristics of the light source used were evaluated using a spectroscopic analyzer. The red light showed a peak at about 660 nm. Light intensity of the red light, 4W / m 2 at the bottom near the vessel center directly below the light source, it was 0.8 W / m 2 at the weakest point in the vicinity of the container periphery.

試験区−2では、1日の照射時間を、赤色光の単独照射で12時間連続とし、残りの12時間は暗所とした。   In the test group-2, the irradiation time for one day was 12 hours continuously with the single irradiation of red light, and the remaining 12 hours was in the dark.

また、試験区−3は、赤色光及び遠赤色光の同時照射を行う試験区である。赤色光及び遠赤色光の光源としてそれぞれLEDを用いた。分光分析装置を用いて、使用した光源の分光特性を評価した。赤色光は、約660nmにピークを示した。また、遠赤色光は、約760nmにピークを示した。赤色光及び遠赤色光の光強度は、光源直下の容器中央付近の底面において各2W/m(合わせて4W/m)、容器外周付近の最も弱い箇所において各0.4W/m(合わせて0.8W/m)とした。 Moreover, the test section-3 is a test section in which the red light and the far-red light are simultaneously irradiated. LEDs were used as light sources of red light and far-red light, respectively. The spectroscopic characteristics of the light source used were evaluated using a spectroscopic analyzer. The red light showed a peak at about 660 nm. Further, far-red light showed a peak at about 760 nm. The light intensity of red light and far-red light was 2 W / m 2 (4 W / m 2 in total) at the bottom near the center of the container directly below the light source, and 0.4 W / m 2 (4 W / m 2 at the weakest point near the outer circumference of the container). The total was 0.8 W / m 2 .

試験区−3では、1日の照射時間を、赤色光及び遠赤色光の同時照射で12時間連続とし、残りの12時間は暗所とした。   In test group-3, the irradiation time for one day was 12 hours in a row with simultaneous irradiation of red light and far-red light, and the remaining 12 hours was in the dark.

また、試験区−4は、赤色光及び遠赤色光を交互に単独照射する試験区である。赤色光及び遠赤色光の光源としてそれぞれLEDを用いた。分光分析装置を用いて、使用した光源の分光特性を評価した。赤色光は、約660nmにピークを示した。また、遠赤色光は、約760nmにピークを示した。赤色光及び遠赤色光の光強度は、光源直下の容器中央付近の底面において各2W/m、容器外周付近の最も弱い箇所において各0.4W/mとした。 In addition, test section-4 is a test section in which red light and far-red light are alternately and independently irradiated. LEDs were used as light sources of red light and far-red light, respectively. The spectroscopic characteristics of the light source used were evaluated using a spectroscopic analyzer. The red light showed a peak at about 660 nm. Further, far-red light showed a peak at about 760 nm. The light intensity of the red light and the far-red light was 2 W / m 2 at the bottom surface near the center of the container directly below the light source, and 0.4 W / m 2 at the weakest point near the outer circumference of the container.

試験区−4では、1日の照射時間を、赤色光と遠赤色光とをこの順に12時間ずつ交互に単独で照射する合計24時間とし、暗所とする時間を設けなかった。   In test section-4, the irradiation time for one day was set to 24 hours in total, in which the red light and the far-red light were alternately irradiated in this order for 12 hours each independently for a total of 24 hours, and no time was set for a dark place.

試験期間中の試験区−1〜4では、温度が約12〜14.5℃の範囲で、及び湿度が約30〜70%の範囲で推移しており、各試験区間での差は見られなかった。   In the test sections-1 to 4 during the test period, the temperature was in the range of approximately 12 to 14.5 ° C and the humidity was in the range of approximately 30 to 70%, and a difference was observed in each test section. There wasn't.

このような条件において、試験開始後の日持ち日数を確かめた。日持ち日数は、腐敗発生の日までとした。腐敗は、凹みやカビの発生等を目視で評価した。結果を図3に示す。なお、ここでは、各試験区に収容した検体3個の平均日持ち日数を示してある。   Under such conditions, the number of days that can be stored after the start of the test was confirmed. The number of days of storage was set to the date of corruption. The decay was visually evaluated for the occurrence of dents and mold. The results are shown in Fig. 3. In addition, here, the average number of days of storage of three specimens stored in each test section is shown.

図3に示すように、赤色光の単独照射又は赤色光及び遠赤色光双方の照射を行った試験区−2〜4の検体は、暗所とした試験区−1の検体と比べて日持ち日数が長くなった。このことから、赤色光の単独照射又は赤色光及び遠赤色光双方の照射によってカボチャの腐敗が抑制されることが確認された。そして、赤色光及び遠赤色光双方を照射した試験区−3及び4の検体は、赤色光を単独照射した試験区−2と比べ、日持ち日数が長くなった。従って、赤色光の単独照射と比べて、赤色光及び遠赤色光双方の照射は、カボチャの腐敗抑制の効果が大きいことが確認された。特に赤色光と遠赤色光とを交互に単独照射した試験区−4の検体は、他の試験区と比べ、日持ち日数の向上が顕著であった。   As shown in FIG. 3, the specimens of the test plots 2 to 4 which were irradiated with the red light alone or the red light and the far-red light were irradiated, respectively, had a longer shelf life than the specimen of the test plot 1 in the dark place. Has become longer. From this, it was confirmed that red light alone irradiation or irradiation of both red light and far-red light suppressed pumpkin decay. And the specimens of the test plots 3 and 4 which were irradiated with both red light and far-red light had longer shelf life than the test plots 2 which were individually irradiated with red light. Therefore, it was confirmed that the irradiation of both the red light and the far-red light had a greater effect of suppressing the decay of the pumpkin than the irradiation of the red light alone. In particular, the specimens of the test group-4 in which the red light and the far-red light were alternately irradiated individually showed a remarkable improvement in the number of days of storage as compared with the other test groups.

また、日持ち日数が最も向上した試験区−4の検体中、最も日持ち日数が長かった個体につき、試験開始時及び貯蔵最終日(腐敗発生の日)の果肉硬度及び果肉糖度を測定した。この結果、試験開始時の果肉硬度が約850gであったのに対して、貯蔵最終日の果肉硬度が約870gであった。このように、試験区−4の検体では、果肉硬度の低下は生じなかった。また、試験開始時の果肉糖度が約12%であったのに対して、貯蔵最終日の果肉糖度が約13%であった。このように、試験区−4の検体では、果肉糖度の低下は生じなかった。さらに、この検体を炒めて食味評価を行ったところ、甘みがあり美味であることが確認された。   In addition, among the specimens of the test group-4 having the longest number of days to be stored, the flesh hardness and the sugar content of the flesh at the start of the test and the last day of storage (the day when rot occurred) were measured for the individual having the longest number of days. As a result, the flesh hardness at the start of the test was about 850 g, while the flesh hardness on the last day of storage was about 870 g. As described above, in the sample of the test group-4, the pulp hardness did not decrease. The sugar content at the beginning of the test was about 12%, while the sugar content on the last day of storage was about 13%. As described above, in the sample of the test section-4, the decrease in the sugar content of the pulp did not occur. Furthermore, when this sample was fried and the taste was evaluated, it was confirmed to be sweet and delicious.

(実施例4)
実施例4は、13℃に設定した貯蔵庫内における、赤色光及び遠赤色光の照射によるカボチャの腐敗抑制効果を調べる試験である。
(Example 4)
Example 4 is a test for investigating the putrefaction-suppressing effect of pumpkin by the irradiation of red light and far-red light in a storage set at 13 ° C.

試験区−1及び2を設定し、各試験区には、縦、横、高さが、それぞれ40cm、56cm、32cmのダンボール製容器(以下、単に容器とも称する。)を設置した。カボチャの検体として直径約7cm、重量約200gの「坊ちゃん」を3個ずつ、試験区−1及び2の各容器内にそれぞれ収容した。そして、容器上部に設置した光源を用いて光照射を行った。ここでは、収穫後、涼しい場所で保管されていた「坊ちゃん」を生産者から入手して試験を行った。なお、試験区−1及び2のいずれの検体についても、上述した電解水処理による表皮の殺菌を行わなかった。   Test sections 1 and 2 were set, and a cardboard container (hereinafter, also simply referred to as a container) having a height of 40 cm, a width of 56 cm, and a height of 32 cm was installed in each test section. As a sample of pumpkin, three "Bocchan" having a diameter of about 7 cm and a weight of about 200 g were stored in each of the containers of the test sections -1 and 2. And light irradiation was performed using the light source installed in the upper part of the container. Here, after the harvest, "Bocchan" stored in a cool place was obtained from the producer and tested. In addition, the test specimens 1 and 2 were not sterilized by the electrolyzed water treatment.

試験区−1及び2における、照射条件を表4に示す。   Table 4 shows the irradiation conditions in the test plots 1 and 2.

Figure 0006689800
Figure 0006689800

試験区−1は、遠赤色光の単独照射を行う試験区である。遠赤色光の光源としてLEDを用いた。分光分析装置を用いて、使用した光源の分光特性を評価した。遠赤色光は、約760nmにピークを示した。遠赤色光の光強度は、光源直下の容器中央付近の底面において4W/m、容器外周付近の最も弱い箇所において0.8W/mとした。 Test section-1 is a test section in which far-red light is independently irradiated. An LED was used as a light source of far-red light. The spectroscopic characteristics of the light source used were evaluated using a spectroscopic analyzer. Far-red light showed a peak at about 760 nm. Light intensity of the far-red light, 4W / m 2 at the bottom near the vessel center directly below the light source, it was 0.8 W / m 2 at the weakest point in the vicinity of the container periphery.

試験区−1では、1日の照射時間を、遠赤色光の単独照射で12時間連続とし、残りの12時間は暗所とした。   In test group-1, the irradiation time for one day was 12 hours in a row by irradiation with far-red light alone, and the remaining 12 hours was in the dark.

また、試験区−2は、赤色光及び遠赤色光を交互に単独照射する試験区である。赤色光及び遠赤色光の光源としてそれぞれLEDを用いた。分光分析装置を用いて、使用した光源の分光特性を評価した。赤色光は、約660nmにピークを示した。また、遠赤色光は、約760nmにピークを示した。赤色光及び遠赤色光の光強度は、光源直下の容器中央付近の底面において各2W/m、容器外周付近の最も弱い箇所において各0.4W/mとした。 Moreover, the test section-2 is a test section in which the red light and the far-red light are alternately irradiated independently. LEDs were used as light sources of red light and far-red light, respectively. The spectroscopic characteristics of the light source used were evaluated using a spectroscopic analyzer. The red light showed a peak at about 660 nm. Further, far-red light showed a peak at about 760 nm. The light intensity of the red light and the far-red light was 2 W / m 2 at the bottom surface near the center of the container directly below the light source, and 0.4 W / m 2 at the weakest point near the outer circumference of the container.

試験区−2では、1日の照射時間を、赤色光と遠赤色光とをこの順に12時間ずつ交互に単独で照射する合計24時間とし、暗所とする時間を設けなかった。   In test group-2, the irradiation time for one day was set to 24 hours in total, in which the red light and the far-red light were alternately irradiated for 12 hours each in this order, and a dark place was not provided.

試験期間中の試験区−1及び2では、温度が約12〜14.5℃の範囲で、及び湿度が約30〜70%の範囲で推移しており、各試験区間での差は見られなかった。   In the test sections -1 and 2 during the test period, the temperature is in the range of about 12 to 14.5 ° C and the humidity is in the range of about 30 to 70%, and there is a difference between the test sections. There wasn't.

このような条件において、試験開始後の日持ち日数を確かめた。日持ち日数は、腐敗発生の日までとした。腐敗は、凹みやカビの発生等を目視で評価した。結果を図4に示す。なお、ここでは、各試験区に収容した検体3個の平均日持ち日数を示してある。   Under such conditions, the number of days that can be stored after the start of the test was confirmed. The number of days of storage was set to the date of corruption. The decay was visually evaluated for the occurrence of dents and mold. The results are shown in Fig. 4. In addition, here, the average number of days of storage of three specimens stored in each test section is shown.

図4に示すように、赤色光及び遠赤色光双方の照射を行った試験区−2の検体は、遠赤色光の単独照射を行った試験区−1の検体と比べて日持ち日数が長くなった。このことから、遠赤色光の単独照射と比べて、赤色光及び遠赤色光双方の照射は、カボチャの腐敗抑制の効果が大きいことが確認された。   As shown in FIG. 4, the test section-2 specimens irradiated with both red light and far-red light had a longer shelf life than the test section-1 specimens irradiated with far-red light alone. It was From this, it was confirmed that irradiation with both red light and far-red light had a greater effect of suppressing spoilage of pumpkin than irradiation with far-red light alone.

また、試験区−2の検体中、最も日持ち日数が長かった個体につき、試験開始時及び貯蔵最終日(腐敗発生の日)の果肉硬度及び果肉糖度を測定した。この結果、試験開始時の果肉硬度が約860gであったのに対して、貯蔵最終日の果肉硬度が約860gであった。このように、試験区−2の検体では、果肉硬度の低下は生じなかった。また、試験開始時の果肉糖度が約14%であったのに対して、貯蔵最終日の果肉糖度が約14%であった。このように、試験区−2の検体では、果肉糖度は、試験開始時と貯蔵最終日とで同等であり、果肉糖度の低下は生じなかった。さらに、この検体を炒めて食味評価を行ったところ、甘みがあり美味であることが確認された。   In addition, among the specimens in the test section-2, the flesh hardness and the sugar content of the flesh of the individual having the longest shelf life were measured at the start of the test and on the last day of storage (the day when rot occurred). As a result, the flesh hardness at the start of the test was about 860 g, whereas the flesh hardness on the last day of storage was about 860 g. As described above, in the sample of the test section-2, the decrease in pulp hardness did not occur. The sugar content at the start of the test was about 14%, while the sugar content on the last day of storage was about 14%. As described above, in the sample of the test section-2, the sugar content in the flesh was the same at the start of the test and the last day of the storage, and the decrease in the sugar content of the flesh did not occur. Furthermore, when this sample was fried and the taste was evaluated, it was confirmed to be sweet and delicious.

(実施例5)
実施例5は、20℃に設定した貯蔵庫内における、赤色光及び遠赤色光の照射によるレタス、ネギ及びナスの腐敗抑制効果を調べる試験である。
(Example 5)
Example 5 is a test for investigating the putrefaction-inhibiting effect of lettuce, leeks, and eggplants by irradiation with red light and far-red light in a storage set at 20 ° C.

試験区−1及び2を設定し、各試験区には、縦、横、高さが、それぞれ40cm、56cm、32cmのダンボール製容器(以下、単に容器とも称する。)を設置した。レタスの検体として「エムラップ231」を3個ずつ、ネギの検体として「北の匠」を3個ずつ、及びナスの検体として「千両2号」を4個ずつ、試験区−1及び2の各容器内にそれぞれ収容した。そして、容器上部に設置した光源を用いて光照射を行った。ここでは、試験開始日(9月上旬)に小売店に入荷したレタス、ネギ及びナスを購入して試験を行った。なお、この実施例5では、フィルム又は袋に包装された、購入時の状態の各検体を使用した。また、試験区−1及び2のいずれの検体についても、上述した電解水処理による表皮の殺菌を行わなかった。   Test sections 1 and 2 were set, and a cardboard container (hereinafter, also simply referred to as a container) having a height of 40 cm, a width of 56 cm, and a height of 32 cm was installed in each test section. Three "Emlap 231" as lettuce specimens, three "Kita no Takumi" as leek specimens, and four "Senryo No. 2" as eggplant specimens, respectively in test sections -1 and 2. Each was housed in a container. And light irradiation was performed using the light source installed in the upper part of the container. Here, lettuce, leeks, and eggplants purchased at a retail store on the test start date (early September) were purchased and tested. In addition, in Example 5, each sample in the state at the time of purchase, which was packaged in a film or a bag, was used. In addition, the specimens of Test Sections 1 and 2 were not sterilized by the electrolyzed water treatment.

試験区−1及び2における、照射条件を表5に示す。   Table 5 shows the irradiation conditions in the test plots 1 and 2.

Figure 0006689800
Figure 0006689800

試験区−1は、照射を行わない試験区であり、暗所とした。   Test section-1 is a test section in which irradiation is not performed and is a dark place.

また、試験区−2は、赤色光及び遠赤色光を交互に単独照射する試験区である。赤色光及び遠赤色光の光源としてそれぞれLEDを用いた。分光分析装置を用いて、使用した光源の分光特性を評価した。赤色光は、約660nmにピークを示した。また、遠赤色光は、約760nmにピークを示した。赤色光及び遠赤色光の光強度は、光源直下の容器中央付近の底面において各2W/m、容器外周付近の最も弱い箇所において各0.3W/mとした。 Moreover, the test section-2 is a test section in which the red light and the far-red light are alternately irradiated independently. LEDs were used as light sources of red light and far-red light, respectively. The spectroscopic characteristics of the light source used were evaluated using a spectroscopic analyzer. The red light showed a peak at about 660 nm. Further, far-red light showed a peak at about 760 nm. The light intensity of the red light and the far-red light was 2 W / m 2 at the bottom surface near the center of the container directly below the light source, and 0.3 W / m 2 at the weakest point near the outer circumference of the container.

試験区−2では、1日の照射時間を、赤色光と遠赤色光とをこの順に12時間ずつ交互に単独で照射する合計24時間とし、暗所とする時間を設けなかった。   In test group-2, the irradiation time for one day was set to 24 hours in total, in which the red light and the far-red light were alternately irradiated for 12 hours each in this order, and a dark place was not provided.

試験期間中の試験区−1及び2では、温度が約17〜18℃の範囲で、及び湿度が約50〜85%の範囲で推移しており、各試験区間での差は見られなかった。   In the test sections-1 and 2 during the test period, the temperature was in the range of about 17 to 18 ° C and the humidity was in the range of about 50 to 85%, and no difference was found between the test sections. .

このような条件において、レタス及びネギについては試験開始から6日後の、ナスについては試験開始から18日後の、腐敗発生の有無を確かめた。腐敗は、葉及び検体表面の褐変や軟化等を目視で評価した。結果を表6に示す。なお、ここでは、各試験区に収容した検体のうち、いずれかに腐敗が発生した場合には、腐敗有りと判定した。   Under such conditions, the presence or absence of spoilage was confirmed 6 days after the start of the test for lettuce and leeks and 18 days after the start of the test for eggplant. The decay was visually evaluated for browning and softening of the leaves and the surface of the sample. The results are shown in Table 6. In addition, here, when any one of the specimens stored in each test section was rotted, it was determined that there was rot.

表6に示すように、暗所とした試験区−1では、試験開始から6日後のレタス及びネギ、並びに試験開始から18日後のナスに腐敗が発生した。一方、赤色光及び遠赤色光の照射を行った試験区−2では、試験開始から6日後のレタス及びネギ、並びに試験開始から18日後のナスに腐敗が発生しなかった。このことから、赤色光及び遠赤色光の双方を照射することによってレタス、ネギ及びナスの腐敗が抑制されることが確認された。   As shown in Table 6, in Test Zone-1 in the dark, decay occurred in lettuce and leeks 6 days after the start of the test, and eggplant 18 days after the start of the test. On the other hand, in the test section-2 irradiated with red light and far-red light, no decay occurred in lettuce and leeks 6 days after the start of the test, and eggplant 18 days after the start of the test. From this, it was confirmed that the irradiation of both red light and far-red light suppressed the decay of lettuce, leeks and eggplants.

Figure 0006689800
Figure 0006689800

Claims (6)

12〜18℃の範囲内の温度とした貯蔵庫内に置かれた容器に収穫後のカボチャ、レタス、ネギ又はナスを収容し、該収容されたカボチャ、レタス、ネギ又はナスに対して、赤色光及び遠赤色光の双方を照射することを特徴とする腐敗抑制方法であって、
前記赤色光はピーク波長約660nmであり、前記遠赤色光はピーク波長約760nmであり、
前記赤色光及び前記遠赤色光の光強度を、光源直下の前記容器の中央付近の底面においてそれぞれ2W/mとする
当該腐敗抑制方法。
The harvested pumpkin, lettuce, leeks or eggplants are stored in a container placed in a storage cabinet at a temperature in the range of 12 to 18 ° C. , and red light is applied to the stored pumpkins, lettuce, leeks or eggplants . And a far-red light irradiation method, which is characterized by irradiating both red light ,
The red light has a peak wavelength of about 660 nm, the far-red light has a peak wavelength of about 760 nm,
The light intensities of the red light and the far-red light are respectively set to 2 W / m 2 on the bottom surface near the center of the container directly below the light source.
The corruption suppression method.
記赤色光及び前記遠赤色光の光強度を、前記容器の外周付近においてそれぞれ0.3W/m 以上とする
ことを特徴とする請求項1に記載の腐敗抑制方法。
Rot suppression method according to claim 1, a light intensity before Symbol red light and the far red light, characterized <br/> be respectively 0.3 W / m 2 or more in the vicinity of the outer periphery of the container.
収穫後のカボチャ、レタス、ネギ又はナスに対して、赤色光及び遠赤色光を交互に単独で照射する
ことを特徴とする請求項1又は2に記載の腐敗抑制方法。
The method for inhibiting decay according to claim 1 or 2, wherein the pumpkin, lettuce, leek or eggplant after harvesting is alternately irradiated with red light and far-red light alone.
前記赤色光と前記遠赤色光とを、連続で12時間ずつ交互に単独で照射する
ことを特徴とする請求項3に記載の腐敗抑制方法。
The decay control method according to claim 3, wherein the red light and the far-red light are alternately and continuously irradiated for 12 hours each.
収穫後のカボチャに対して赤色光及び遠赤色光を同時に照射する
ことを特徴とする請求項1又は2に記載の腐敗抑制方法。
The method for suppressing decay according to claim 1 or 2, wherein the pumpkin after harvesting is irradiated with red light and far-red light at the same time.
前記赤色光及び前記遠赤色光を、1日当たり少なくとも12時間連続で同時照射する
ことを特徴とする請求項5に記載の腐敗抑制方法。
The spoilage suppression method according to claim 5, wherein the red light and the far-red light are simultaneously irradiated for at least 12 hours continuously per day.
JP2017168689A 2017-09-01 2017-09-01 Anti-corruption method Active JP6689800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017168689A JP6689800B2 (en) 2017-09-01 2017-09-01 Anti-corruption method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017168689A JP6689800B2 (en) 2017-09-01 2017-09-01 Anti-corruption method

Publications (2)

Publication Number Publication Date
JP2019041680A JP2019041680A (en) 2019-03-22
JP6689800B2 true JP6689800B2 (en) 2020-04-28

Family

ID=65813843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017168689A Active JP6689800B2 (en) 2017-09-01 2017-09-01 Anti-corruption method

Country Status (1)

Country Link
JP (1) JP6689800B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2008013126A (en) * 2006-04-11 2009-01-27 Lionel Scott Produce treatment method.
JP5889310B2 (en) * 2011-08-30 2016-03-22 株式会社四国総合研究所 How to maintain the freshness of crops
JP5779564B2 (en) * 2011-10-03 2015-09-16 北海道電力株式会社 Greening control method
US9451788B2 (en) * 2012-03-16 2016-09-27 Seung Won Lee Storage apparatus for improving food preservation
JP6078109B2 (en) * 2014-06-23 2017-02-08 北海道電力株式会社 How to keep freshness
JP6372510B2 (en) * 2015-04-01 2018-08-15 住友ベークライト株式会社 Fruit and vegetable mold growth suppression packaging bag, package containing fruits and vegetables, and method for maintaining freshness of fruits and vegetables
JP2017046618A (en) * 2015-09-01 2017-03-09 パナソニックIpマネジメント株式会社 Freshness holding method, freshness holding device, storage, and display device

Also Published As

Publication number Publication date
JP2019041680A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
Pan et al. Effect of UV-C radiation on the quality of fresh-cut pineapples
Barkai-Golan et al. Irradiation for quality improvement, microbial safety and phytosanitation of fresh produce
Hayta et al. The effect of different electrolyzed water treatments on the quality and sensory attributes of sweet cherry during passive atmosphere packaging storage
Chun et al. Effects of aqueous chlorine dioxide treatment and cold storage on microbial growth and quality of blueberries
Moreno et al. Effects of electron beam irradiation on physical, textural, and microstructural properties of “Tommy Atkins” mangoes (Mangifera indica L.)
Vivek et al. A REVIEW ON POSTHARVEST MANAGEMENT AND ADVANCES IN THE MINIMAL PROCESSING OF FRESH-CUT FRUITS AND VEGETABLES.
Dar et al. Fresh-cut products: Processing operations and equipments
Azmai et al. Efficiency of edible coating chitosan and cinnamic acid to prolong the shelf life of tomatoes.
Tapia et al. Hurdle technology principles applied in decontamination of whole and fresh‐cut produce
Priyanka et al. Opportunities and challenges in the application of ozone in food processing
JP6689800B2 (en) Anti-corruption method
CN102293244B (en) Fresh keeping method of fresh litchi fruit
Wang et al. Surface sterilisation using chemical or physical methods influence microbial growth and quality of green asparagus.
Ahmadi-Roshan et al. Effects of non-thermal processes on texture, color and sensory properties of Iranian barberry during storage
Artés‐Hernández et al. Sustainable processing of fresh‐cut fruit and vegetables
Silvera et al. Quality preservation and safety of minimally processed vegetables
Nguyen Effect of pre-treatment of peracetic acid on the physico-chemical characteristics and antioxidant properties of eggplant (Solanum melongena)
Davarynejad et al. Effect of modified atmosphere packaging on fresh sour cherry fruit quality
Kim et al. Combined Hurdle Technologies Using UVC Waterproof LED for Inactivating Foodborne Pathogens on Fresh-Cut Fruits. Foods 2021, 10, 1712
JP2022171066A (en) Preservation method of fruit and/or cut vegetable and fruit and/or cut vegetable-containing sealing container
Kambhampati Vivek et al. A review on postharvest management and advances in the minimal processing of fresh-cut fruits and vegetables.
Xuetong Irradiation of Fresh and Fresh‐Cut Fruits and Vegetables: Quality and Shelf Life
Waghmare et al. Pulsed Light: Innovative Non-Thermal Technology for Preservation of Fruits and Vegetables
US20220000128A1 (en) Method and system for creating fruit with cold resistance to enable cold quarantine
de Oliveira et al. Use of UV-C radiation and packaging to maintain the quality of minimally processed kale

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200408

R150 Certificate of patent or registration of utility model

Ref document number: 6689800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250