JP6687828B2 - Space optical transmission device - Google Patents

Space optical transmission device Download PDF

Info

Publication number
JP6687828B2
JP6687828B2 JP2015156272A JP2015156272A JP6687828B2 JP 6687828 B2 JP6687828 B2 JP 6687828B2 JP 2015156272 A JP2015156272 A JP 2015156272A JP 2015156272 A JP2015156272 A JP 2015156272A JP 6687828 B2 JP6687828 B2 JP 6687828B2
Authority
JP
Japan
Prior art keywords
light
transmission
transmission space
mode
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015156272A
Other languages
Japanese (ja)
Other versions
JP2017038099A (en
Inventor
隆史 小薮
隆史 小薮
正輝 堀
正輝 堀
日雄 森下
日雄 森下
Original Assignee
ダイトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイトロン株式会社 filed Critical ダイトロン株式会社
Priority to JP2015156272A priority Critical patent/JP6687828B2/en
Publication of JP2017038099A publication Critical patent/JP2017038099A/en
Application granted granted Critical
Publication of JP6687828B2 publication Critical patent/JP6687828B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、空間光伝送装置に関する。   The present invention relates to a spatial light transmission device.

従来、空間光伝送装置として、情報を変調した電気信号を発光素子によって光信号に変換し、変換した光信号を空間に放出することで空間を通じて情報を送信するとともに、発光素子から放出される光信号によって空間を投光する投光器を兼ねた空間光伝送装置が提案されている(例えば、下記特許文献1、2参照)。   BACKGROUND ART Conventionally, as a spatial light transmission device, an electrical signal modulated information is converted into an optical signal by a light emitting element, and the converted optical signal is emitted into the space to transmit information through the space, and the light emitted from the light emitting element is transmitted. A spatial light transmission device that also functions as a light projector that projects a space by a signal has been proposed (see, for example, Patent Documents 1 and 2 below).

しかしながら、上記の空間光伝送装置では、光信号を放出する発光素子としてLEDが採用されており発光素子の高輝度化が困難であるため、海中や水中のような光信号が減衰しやすい伝送空間において伝送距離の長距離化を図ることが困難である。   However, in the above-mentioned spatial light transmission device, since the LED is adopted as the light emitting element that emits an optical signal and it is difficult to increase the brightness of the light emitting element, the transmission space such as undersea or underwater where the optical signal is easily attenuated. In, it is difficult to increase the transmission distance.

特開2008−154063号公報JP, 2008-154063, A 特開2013−21413号公報JP, 2013-21413, A

本発明は、上記実情に鑑みてなされたものであって、伝送距離の長距離化が可能な空間光伝送装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a spatial light transmission device capable of increasing the transmission distance.

本発明に係る空間光伝送装置は、電気信号を光信号に変換する発光部を備え、前記発光部が変換した前記光信号を水中又は海中からなる伝送空間に放出して外部機器との間で前記伝送空間を通じて情報を送信する空間光伝送装置において、前記発光部は、レーザ素子を有し、前記レーザ素子から放出された情報を含むレーザ光を有する白色光又は疑似白色光からなる光信号を前記伝送空間に放出して、前記伝送空間を通じた情報の送信と前記伝送空間の投光とを同時に行う通信投光モードと、前記伝送空間の投光が不要な前記外部機器との近接状態で実行されるモードであって、前記通信投光モードより前記レーザ素子の発光量が低く、前記レーザ素子から放出された情報を含むレーザ光を有する白色光又は疑似白色光からなる光信号を前記伝送空間に放出して前記伝送空間を通じた情報の送信を行う通信モードとを実行するものである。 A spatial light transmission device according to the present invention includes a light emitting unit that converts an electric signal into an optical signal, and emits the optical signal converted by the light emitting unit into a transmission space formed underwater or undersea to communicate with an external device. In the spatial light transmission device that transmits information through the transmission space, the light emitting unit has a laser element, and outputs an optical signal composed of white light or pseudo white light having laser light containing information emitted from the laser element. In a communication projection mode in which the information is emitted to the transmission space and information is transmitted through the transmission space and the transmission space is projected at the same time, and in a proximity state with the external device that does not need to project the transmission space. In the mode to be executed, the light emission amount of the laser element is lower than that in the communication light projecting mode, and an optical signal composed of white light or pseudo white light having laser light including information emitted from the laser element is output. And releases the feed space and executes a communication mode for transmitting the information through the transmission space.

本発明によれば、空間光伝送装置の伝送距離を長距離化することができる。   According to the present invention, the transmission distance of the spatial light transmission device can be extended.

空間光伝送装置と外部機器の構成を示す図である。It is a figure which shows the structure of a spatial light transmission device and an external device.

以下、本発明の一実施形態について図面を参照して説明する。   An embodiment of the present invention will be described below with reference to the drawings.

本実施形態に係る空間光伝送装置10は、図1に示すように、例えば、水中を航行する潜水艇に取り付けられ、海上の船舶や海中を航行する他の潜水艇に設けられた外部機器50との間で海中において可視光を用いた空間光伝送により情報を送受信するとともに、送信用の可視光により海中を照明する装置である。   As shown in FIG. 1, the spatial light transmission device 10 according to the present embodiment is attached to, for example, a submersible boat that travels underwater, and an external device 50 that is provided on a marine vessel or another submersible boat that sails underwater. Is a device that transmits and receives information to and from the sea by spatial light transmission using visible light, and illuminates the sea with visible light for transmission.

この空間光伝送装置10は、筐体11と、筐体11の内部に収納された送信部12及び受信部14を備える。外部機器50は、筐体51と、筐体51の内部に収納された送信部52及び受信部54を備える。空間光伝送装置10と外部機器50とは、送信部12が伝送空間(海中)へ放出する光信号の波長帯(第1波長帯)と、送信部52が伝送空間へ放出する光信号の波長帯(第2波長帯)とが異なっているが、他の構造は基本的に同一である。   The spatial light transmission device 10 includes a housing 11, and a transmitter 12 and a receiver 14 housed inside the housing 11. The external device 50 includes a housing 51, and a transmitter 52 and a receiver 54 housed inside the housing 51. The spatial light transmission device 10 and the external device 50 have a wavelength band (first wavelength band) of an optical signal emitted by the transmission unit 12 into the transmission space (sea) and a wavelength of an optical signal emitted by the transmission unit 52 into the transmission space. Although it is different from the band (second wavelength band), other structures are basically the same.

筐体11は、内部に送信部12及び受信部14を収納し水密状態で密閉されるものであって、外部機器50との間で送受信する可視光が透過する窓部11aを備える。   The housing 11 accommodates the transmitter 12 and the receiver 14 therein and is hermetically sealed in a watertight state, and includes a window 11a through which visible light transmitted to and received from the external device 50 is transmitted.

送信部12は、外部機器50の受信部54へ伝送する情報を光制御信号に変調する変調部16と、変調部16で生成された光制御信号が入力される発光部18とを備える。   The transmitter 12 includes a modulator 16 that modulates information to be transmitted to the receiver 54 of the external device 50 into an optical control signal, and a light emitting unit 18 to which the optical control signal generated by the modulator 16 is input.

発光部18は、光源部20と、光源部20を駆動する駆動部21と、光源部20の光軸上に配置された補正部22とを備え、変調部16から入力された光制御信号を光信号に変換する。   The light emitting unit 18 includes a light source unit 20, a drive unit 21 that drives the light source unit 20, and a correction unit 22 that is arranged on the optical axis of the light source unit 20, and outputs the light control signal input from the modulation unit 16. Convert to optical signal.

光源部20は、青色の波長帯、この例では、中心波長が430nmの第1波長帯のレーザ光を発光する青色レーザ素子からなる発光素子20aと、発光素子20aからの青色光が透過される黄色蛍光体20bを備える。光源部20は、発光素子20aからの青色光が黄色蛍光体20bを透過する際、この青色光により黄色蛍光体20bを励起させて黄色の蛍光を発生させている。これにより、光源部20では、黄色の蛍光と黄色蛍光体20bを透過する第1波長帯の青色光とが合成させることにより白色光(疑似白色光)となって出射される。   The light source unit 20 transmits a blue light from the light emitting element 20a, which is a blue laser element that emits laser light in a blue wavelength band, in this example, a first wavelength band having a central wavelength of 430 nm. The yellow phosphor 20b is provided. When the blue light from the light emitting element 20a passes through the yellow phosphor 20b, the light source unit 20 excites the yellow phosphor 20b by the blue light to generate yellow fluorescence. Thereby, in the light source unit 20, white fluorescence (pseudo white light) is emitted by combining the yellow fluorescence and the blue light of the first wavelength band that passes through the yellow phosphor 20b.

駆動部21は、光源部20を駆動する駆動電流を生成し、これを光源部20の発光素子20aへ出力することで発光素子20aにおいてレーザ光を発光させる。本実施形態では、駆動部21が、通信投光モード、投光モード、及び通信モードを切り替えて実行する。   The drive unit 21 generates a drive current for driving the light source unit 20 and outputs the drive current to the light emitting element 20a of the light source unit 20 to cause the light emitting element 20a to emit laser light. In the present embodiment, the drive unit 21 switches between the communication projection mode, the projection mode, and the communication mode for execution.

通信投光モードは、駆動部21が、変調部16から入力された光制御信号に基づいて光源部20を駆動する駆動電流を生成して伝送情報を重畳したレーザ光を発光素子20aから発光させ、光源部20より白色のレーザ光を伝送空間へ放出させる。これにより、当該レーザ光によって伝送空間を通じて情報を送信するとともに伝送空間を投光する。   In the communication projection mode, the drive unit 21 generates a drive current for driving the light source unit 20 based on the light control signal input from the modulation unit 16, and causes the light emitting element 20a to emit a laser beam on which transmission information is superimposed. The light source unit 20 emits white laser light into the transmission space. As a result, the laser light transmits information through the transmission space and projects the transmission space.

投光モードは、駆動部21が、光源部20を駆動する駆動電流として、例えば、一定周期のパルス信号を生成することで、光源部20より伝送情報を含まない白色のレーザ光を伝送空間へ放出させる。これにより、伝送情報の送信を行うことなく伝送空間を投光する。   In the light projecting mode, the drive unit 21 generates a pulse signal having a constant cycle, for example, as a drive current for driving the light source unit 20, so that the white laser light including no transmission information is transmitted from the light source unit 20 to the transmission space. To release. Thereby, the transmission space is projected without transmitting the transmission information.

通信モードは、空間光伝送装置10が外部機器50と近接状態で通信する場合のように伝送空間の投光が不要な場合に実行するモードであって、駆動部21が、変調部16から入力された光制御信号に基づいて光源部20を駆動する駆動電流を生成する。その際、駆動部21は、上記した通信投光モード及び投光モードに比べて発光素子20aの発光量を低下させて伝送情報を重畳したレーザ光を発光素子20aから発光させ、光源部20より白色のレーザ光を伝送空間へ放出させる。これにより、光源部20から放出されるレーザ光によって伝送空間を通じて情報を送信する。   The communication mode is a mode that is executed when the spatial light transmission device 10 does not need to project the transmission space, such as when the spatial light transmission device 10 communicates with the external device 50 in a close state, and the drive unit 21 inputs from the modulation unit 16. A drive current for driving the light source unit 20 is generated based on the generated light control signal. At that time, the driving unit 21 lowers the light emission amount of the light emitting element 20a as compared with the communication light projecting mode and the light projecting mode described above, and causes the light emitting element 20a to emit the laser light on which the transmission information is superimposed. White laser light is emitted into the transmission space. Accordingly, the laser light emitted from the light source unit 20 transmits information through the transmission space.

補正部22は、光源部20から放射された白色光の強度分布を水平面上で均一化するように補正した後、窓部11aから外部へ出力する。補正部22として、例えば、光源部20からの光を平行光にする凸レンズなどが用いられる。   The correction unit 22 corrects the intensity distribution of the white light emitted from the light source unit 20 so as to be uniform on the horizontal plane, and then outputs the white light to the outside through the window 11a. As the correction unit 22, for example, a convex lens that makes light from the light source unit 20 parallel light is used.

受信部14は、外部機器50の送信部52から送信される光信号を受信して電気信号に変換する受光部24と、受光部24で変換された電気信号を復調する復調部26とを備える。   The receiving unit 14 includes a light receiving unit 24 that receives an optical signal transmitted from the transmitting unit 52 of the external device 50 and converts the optical signal into an electric signal, and a demodulation unit 26 that demodulates the electric signal converted by the light receiving unit 24. .

受光部24は、外部から窓部11aを介して光が入射するフィルタ24aと、フィルタ24aを透過した光が入力される受光素子24bとを備える。   The light receiving unit 24 includes a filter 24a to which light is incident from the outside through the window 11a, and a light receiving element 24b to which the light transmitted through the filter 24a is input.

フィルタ24aは、外部より入射した光のうち空間光伝送装置10の光源部20が発光する第1波長帯のレーザ光を吸収するとともに、外部機器50の送信部52から放出される第2波長帯のレーザ光を透過するバンドパスフィルタからなる。受光素子24bは、フィルタ24aで第1波長帯のレーザ光を吸収した光が入力され電気信号に変換して復調部26へ出力する。受光素子24aとしては、例えば、フォトダイオード(PD)やアバランシェフォトダイオード(APD)や光電子増倍管(PMT)などを用いることができる。特に、受光素子24aに光電子増倍管を用いると外部より入射した光が微弱な場合であってもこれを検出することができるとともに、光電子増倍管は検出した光量の変化量を出力することができるため、受光部24に入力される光信号の光量が多い場合でも検出出力が飽和することなく光信号のパルスを検出することができる。つまり、受光素子24aに光電子増倍管を用いることで、光信号の光量が少なくなる長距離の光伝送から光信号の光量が多くなる近距離の光伝送まで、検出レンジの異なる受光素子に切り替えたり減光フィルタを用いたりすることなく光信号のパルスを検出することができる。   The filter 24a absorbs the laser light of the first wavelength band emitted from the light source unit 20 of the spatial light transmission device 10 among the light incident from the outside, and the second wavelength band emitted from the transmission unit 52 of the external device 50. It is composed of a bandpass filter that transmits the laser light of. The light receiving element 24b receives the light that has absorbed the laser light in the first wavelength band by the filter 24a, converts the light into an electric signal, and outputs the electric signal to the demodulation unit 26. As the light receiving element 24a, for example, a photodiode (PD), an avalanche photodiode (APD), a photomultiplier tube (PMT), or the like can be used. In particular, if a photomultiplier tube is used for the light receiving element 24a, it is possible to detect light incident from the outside even if it is weak, and the photomultiplier tube outputs the amount of change in the detected light amount. Therefore, even if the light amount of the optical signal input to the light receiving unit 24 is large, the pulse of the optical signal can be detected without saturation of the detection output. In other words, by using a photomultiplier tube for the light receiving element 24a, switching from light receiving elements having different detection ranges from long-distance optical transmission in which the light amount of the optical signal decreases to short-distance optical transmission in which the light amount of the optical signal increases. It is possible to detect a pulse of an optical signal without using a neutral density filter or a neutral density filter.

復調部26は、受光部32から入力された電気信号を復調して、外部より入射した光から、第2波長帯の光信号によって外部機器50より送信された情報を取得する。   The demodulation unit 26 demodulates the electric signal input from the light receiving unit 32, and acquires the information transmitted from the external device 50 by the optical signal in the second wavelength band from the light incident from the outside.

外部機器50は、筐体51の内部に送信部52及び受信部54を水密状態で収納しており、可視光が透過する窓部51aを介して空間光伝送装置10との間で光信号を送受信する。   The external device 50 has a transmitter 51 and a receiver 54 housed in a housing 51 in a watertight state, and transmits an optical signal to and from the spatial light transmission device 10 through a window 51a that transmits visible light. Send and receive.

送信部52は、空間光伝送装置10の受信部14へ伝送する情報を光制御信号に変調する変調部56と、変調部56で生成された光制御信号が入力される発光部58とを備える。   The transmitter 52 includes a modulator 56 that modulates information to be transmitted to the receiver 14 of the spatial light transmission device 10 into an optical control signal, and a light emitting unit 58 to which the optical control signal generated by the modulator 56 is input. .

発光部58は、光源部60と、光源部60を駆動する駆動部61と、光源部60の光軸上に配置された補正部62とを備え、変調部56から入力された光制御信号を光信号に変換する。   The light emitting unit 58 includes a light source unit 60, a driving unit 61 that drives the light source unit 60, and a correction unit 62 that is arranged on the optical axis of the light source unit 60, and outputs the light control signal input from the modulation unit 56. Convert to optical signal.

光源部60は、空間光伝送装置10の光源部20に設けられた発光素子20aと異なる波長帯、この例では、中心波長が450nmの第2波長帯のレーザ光を発光する青色レーザ素子からなる発光素子60aと、発光素子60aからの青色光が透過される黄色蛍光体60bを備える。光源部60は、発光素子60aからの青色光が黄色蛍光体60bを透過する際、この青色光により黄色蛍光体60bを励起させて黄色の蛍光を発生させている。これにより、光源部60では、黄色の蛍光と黄色蛍光体60bを透過する第2波長帯の青色光とが合成させることにより白色光(疑似白色光)となって出射される。   The light source unit 60 includes a blue laser element that emits laser light in a wavelength band different from that of the light emitting element 20a provided in the light source section 20 of the spatial light transmission device 10, in this example, a second wavelength band having a central wavelength of 450 nm. The light emitting element 60a and the yellow phosphor 60b that transmits the blue light from the light emitting element 60a are provided. When the blue light from the light emitting element 60a passes through the yellow phosphor 60b, the light source unit 60 excites the yellow phosphor 60b by this blue light to generate yellow fluorescence. As a result, in the light source unit 60, the yellow fluorescence and the blue light of the second wavelength band that passes through the yellow phosphor 60b are combined to be emitted as white light (pseudo white light).

駆動部61は、光源部60を駆動する駆動電流を生成し、これを光源部60の発光素子60aへ出力することで発光素子60aにおいてレーザ光を発光させる。本実施形態では、空間光伝送装置10に設けられた駆動部21と同様、駆動部61は、伝送情報を重畳した白色のレーザ光を発光素子60aから発光させて伝送空間を通じて情報を送信するとともに伝送空間を投光する通信投光モードと、伝送情報を含まない白色のレーザ光を伝送空間へ放出させて伝送情報の送信を行うことなく伝送空間を投光する投光モードと、通信投光モード及び投光モードに比べて発光素子60aの発光量を低下させて伝送情報を重畳したレーザ光を発光素子60aから発光させて伝送空間を通じて情報を送信する通信モードとを切り替えて実行する。   The drive unit 61 generates a drive current for driving the light source unit 60, and outputs the drive current to the light emitting element 60a of the light source unit 60 to cause the light emitting element 60a to emit laser light. In the present embodiment, similarly to the drive unit 21 provided in the spatial light transmission device 10, the drive unit 61 causes the light emitting element 60a to emit white laser light on which transmission information is superimposed and transmits information through the transmission space. A communication projection mode for projecting a transmission space, a projection mode for emitting a white laser beam containing no transmission information to the transmission space and projecting the transmission space without transmitting the transmission information, and a communication projection The light emitting amount of the light emitting element 60a is reduced as compared with the mode and the light projecting mode, and a communication mode in which laser light on which transmission information is superimposed is emitted from the light emitting element 60a and information is transmitted through the transmission space is switched and executed.

補正部62は、光源部60から放射された白色光の強度分布を水平面上で均一化するように補正した後、窓部51aから外部へ出力する。補正部62として、例えば、光源部60からの光を平行光にする凸レンズなどが用いられる。   The correction unit 62 corrects the intensity distribution of the white light emitted from the light source unit 60 so as to be uniform on the horizontal plane, and then outputs the white light to the outside through the window 51a. As the correction unit 62, for example, a convex lens that makes the light from the light source unit 60 parallel light is used.

受信部54は、空間光伝送装置10の送信部12から送信される光信号を受信して電気信号に変換する受光部64と、受光部64で変換された電気信号を復調する復調部66とを備える。   The receiving unit 54 includes a light receiving unit 64 that receives an optical signal transmitted from the transmitting unit 12 of the spatial light transmission device 10 and converts the optical signal into an electric signal, and a demodulation unit 66 that demodulates the electric signal converted by the light receiving unit 64. Equipped with.

受光部64は、外部から窓部51aを介して光が入射するフィルタ64aと、フィルタ64aを透過した光が入力される受光素子64bとを備える。   The light receiving unit 64 includes a filter 64a to which light is incident from the outside through the window 51a, and a light receiving element 64b to which the light transmitted through the filter 64a is input.

フィルタ64aは、外部より入射した光のうち外部機器50の光源部60が発光する第2波長帯のレーザ光を吸収するとともに、空間光伝送装置10の送信部12から放出される第1波長帯のレーザ光を透過するバンドパスフィルタからなる。受光素子64bは、フィルタ64aで第2波長帯のレーザ光を吸収した光が入力され電気信号に変換して復調部66へ出力する。受光素子64aとしては、例えば、フォトダイオード(PD)やアバランシェフォトダイオード(APD)や光電子増倍管(PMT)などを用いることができる。なお、空間光伝送装置10の受光素子24aと同様、受光素子64も光電子増倍管を用いることが好ましい。   The filter 64a absorbs the laser light of the second wavelength band emitted from the light source unit 60 of the external device 50 among the light incident from the outside, and also the first wavelength band emitted from the transmission unit 12 of the spatial light transmission device 10. It is composed of a bandpass filter that transmits the laser light of. The light receiving element 64b receives the light that has absorbed the laser light in the second wavelength band by the filter 64a, converts the light into an electric signal, and outputs the electric signal to the demodulation unit 66. As the light receiving element 64a, for example, a photodiode (PD), an avalanche photodiode (APD), a photomultiplier tube (PMT), or the like can be used. Note that, like the light receiving element 24a of the spatial light transmission device 10, it is preferable that the light receiving element 64 also uses a photomultiplier tube.

復調部66は、受光部64から入力された電気信号を復調して、外部より入射した光から、第1波長帯の光信号によって空間光伝送装置10より送信された情報を取得する。   The demodulation unit 66 demodulates the electric signal input from the light receiving unit 64, and acquires the information transmitted from the spatial light transmission device 10 by the optical signal in the first wavelength band from the light incident from the outside.

以上のように、本実施形態の空間光伝送装置10では、発光部18において光を放出する発光素子としてレーザ素子20aが採用されているため、発光部18から放出される光の高輝度化することができ、海中や水中のような光信号が減衰しやすい伝送空間における伝送距離及び投光距離の長距離化を図ることができる。   As described above, in the spatial light transmission device 10 of the present embodiment, since the laser element 20a is adopted as the light emitting element that emits light in the light emitting section 18, the brightness of the light emitted from the light emitting section 18 is increased. Therefore, it is possible to increase the transmission distance and the projection distance in a transmission space such as undersea or underwater where an optical signal is likely to be attenuated.

また、伝送空間が海中や水中の場合、光信号の波長が長くなると伝送空間において減衰しやすくなり発光部18に使用可能な発光素子の波長帯が制限されるが、本実施形態では発光部18においてレーザ素子20aが採用され発光波長分布の小さい光信号を伝送空間に放出することができるため、異なる波長帯の信号との間で混信が発生しにくい。   Further, when the transmission space is underwater or underwater, when the wavelength of the optical signal becomes longer, the transmission space is likely to be attenuated and the wavelength band of the light emitting element that can be used for the light emitting unit 18 is limited. However, in the present embodiment, the light emitting unit 18 is used. Since the laser device 20a is adopted in the above and the optical signal having a small emission wavelength distribution can be emitted into the transmission space, interference with signals in different wavelength bands is unlikely to occur.

また、本実施形態の空間光伝送装置10では、伝送空間を通じて情報を送信するとともに伝送空間を投光する通信投光モードと、伝送情報の送信を行うことなく伝送空間を投光する投光モードと、通信投光モード及び投光モードに比べて発光素子20aの発光量を低下させて伝送空間を通じて情報を送信する通信モードとを切り替えて実行することができる。特に、空間光伝送装置10が外部機器50と近接状態で通信する場合のように伝送空間の投光が不要な場合に通信モードを実行することで、レーザ素子20aの発光量を抑えて消費電力量を抑えることができる。   Further, in the spatial light transmission device 10 of the present embodiment, a communication light projection mode for transmitting information through the transmission space and projecting the transmission space, and a light projection mode for projecting the transmission space without transmitting the transmission information. It is possible to switch between the communication projection mode and the communication mode in which the light emission amount of the light emitting element 20a is reduced as compared with the communication projection mode and information is transmitted through the transmission space. In particular, when the spatial light transmission device 10 communicates with the external device 50 in a close state, the communication mode is executed when the transmission space does not need to be projected, thereby suppressing the amount of light emitted from the laser element 20a and reducing the power consumption. The amount can be suppressed.

また、本実施形態の空間光伝送装置10では、受信部14に設けられた受光部24が第1波長帯の光を遮断するフィルタ24aを備えるため、送信部12より伝送空間へ放出された光が、伝送空間を浮遊する障害物に反射して受信部14の受光部24に戻り光として入射しても、フィルタ24aにより戻り光が遮断され受光素子24bへ入射することがなくなり、伝送距離が長くなっても安定して情報を送受信することができる。   Further, in the spatial light transmission device 10 of the present embodiment, since the light receiving unit 24 provided in the receiving unit 14 includes the filter 24a that blocks the light in the first wavelength band, the light emitted from the transmitting unit 12 to the transmission space is transmitted. However, even when reflected by an obstacle floating in the transmission space and incident on the light receiving section 24 of the receiving section 14 as return light, the return light is blocked by the filter 24a and does not enter the light receiving element 24b. It is possible to send and receive information stably even if it becomes long.

(変更例1)
上記した実施形態では、発光部18の光源部20が、青色のレーザ光を発光する発光素子20aと黄色蛍光体20bとを備え、疑似白色光を伝送空間に放出する場合について説明したが、例えば、黄色蛍光体20bに換えて、あるいは黄色蛍光体20bとともに緑色光及び赤色光を発光するレーザ素子を発光素子として設けてもよい。
(Modification 1)
In the above-described embodiment, the case where the light source unit 20 of the light emitting unit 18 includes the light emitting element 20a that emits blue laser light and the yellow phosphor 20b and emits pseudo white light into the transmission space has been described. Instead of the yellow phosphor 20b, or together with the yellow phosphor 20b, a laser element that emits green light and red light may be provided as a light emitting element.

以上、本発明の実施形態を説明したが、この実施形態は例として提示したものであり、
発明の範囲を限定することを意図していない。この実施形態は、その他の様々な形態で実
施されることが可能であり、発明の趣旨を逸脱しない範囲で、種々の省略、置き換え、変
更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれると同様
に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
Although the embodiment of the present invention has been described above, this embodiment is presented as an example,
It is not intended to limit the scope of the invention. This embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. This embodiment and its modifications are included in the invention described in the claims and its equivalents, as well as included in the scope and the gist of the invention.

10…空間光伝送装置、11…筐体、11a…窓部、12…送信部、14…受信部、16…変調部、18…発光部、20…光源部、20a…発光素子、20b…黄色蛍光体、21…駆動部、22…補正部、24…受光部、24a…フィルタ、24b…受光素子、26…復調部、50…外部機器 10 ... Spatial light transmission device, 11 ... Housing, 11a ... Window part, 12 ... Transmitting part, 14 ... Receiving part, 16 ... Modulating part, 18 ... Light emitting part, 20 ... Light source part, 20a ... Light emitting element, 20b ... Yellow Phosphor, 21 ... Driving unit, 22 ... Correction unit, 24 ... Light receiving unit, 24a ... Filter, 24b ... Light receiving element, 26 ... Demodulation unit, 50 ... External device

Claims (2)

電気信号を光信号に変換する発光部を備え、前記発光部が変換した前記光信号を水中又は海中からなる伝送空間に放出して外部機器との間で前記伝送空間を通じて情報を送信する空間光伝送装置において、
前記発光部は、レーザ素子を有し、
前記レーザ素子から放出された情報を含むレーザ光を有する白色光又は疑似白色光からなる光信号を前記伝送空間に放出して前記伝送空間を通じた情報の送信と前記伝送空間の投光とを同時に行う通信投光モードと、
前記伝送空間の投光が不要な前記外部機器との近接状態で実行されるモードであって、前記通信投光モードより前記レーザ素子の発光量が低く、前記レーザ素子から放出された情報を含むレーザ光を有する白色光又は疑似白色光からなる光信号を前記伝送空間に放出して前記伝送空間を通じた情報の送信を行う通信モードとを実行する空間光伝送装置。
Spatial light that includes a light emitting unit that converts an electric signal into an optical signal, emits the optical signal converted by the light emitting unit into a transmission space formed underwater or undersea, and transmits information to an external device through the transmission space. In the transmission device,
The light emitting unit has a laser element,
At the same time, an optical signal composed of white light or pseudo-white light having laser light containing information emitted from the laser element is emitted to the transmission space to transmit information through the transmission space and project the light in the transmission space. Communication emission mode to perform,
A mode executed in a proximity state to the external device that does not need to project light in the transmission space, the amount of light emitted from the laser element is lower than that in the communication light projecting mode, and includes information emitted from the laser element. A spatial light transmission device that executes a communication mode in which an optical signal of white light or pseudo white light having a laser beam is emitted to the transmission space and information is transmitted through the transmission space.
前記レーザ素子から放出された情報を含まないレーザ光を有する白色光又は疑似白色光を前記伝送空間に放出して前記伝送空間を投光する投光モードを有し、
前記通信モードは、前記投光モードより前記レーザ素子の発光量が低く、
前記発光部が、前記通信投光モード、前記通信モード及び前記投光モードを切り換えて実行する請求項1に記載の空間光伝送装置。
A projection mode for projecting white light or pseudo-white light having laser light not containing information emitted from the laser element into the transmission space to project the transmission space;
In the communication mode, the light emission amount of the laser element is lower than that in the light projecting mode,
The spatial light transmission device according to claim 1, wherein the light emitting unit switches and executes the communication projection mode, the communication mode, and the projection mode.
JP2015156272A 2015-08-06 2015-08-06 Space optical transmission device Active JP6687828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015156272A JP6687828B2 (en) 2015-08-06 2015-08-06 Space optical transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015156272A JP6687828B2 (en) 2015-08-06 2015-08-06 Space optical transmission device

Publications (2)

Publication Number Publication Date
JP2017038099A JP2017038099A (en) 2017-02-16
JP6687828B2 true JP6687828B2 (en) 2020-04-28

Family

ID=58047947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015156272A Active JP6687828B2 (en) 2015-08-06 2015-08-06 Space optical transmission device

Country Status (1)

Country Link
JP (1) JP6687828B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021002093A1 (en) * 2019-07-04 2021-01-07
WO2023233968A1 (en) * 2022-05-31 2023-12-07 京セラ株式会社 Optical communication device, optical communication method, and optical communication program

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3465017B2 (en) * 2002-04-23 2003-11-10 学校法人慶應義塾 Illumination light transmitting device, illumination light receiving device, and phosphor type illumination light communication system
JP2008154063A (en) * 2006-12-19 2008-07-03 Tamura Seisakusho Co Ltd Portable illuminator with visible light communication function and information communication system
JP4678009B2 (en) * 2007-05-10 2011-04-27 Necライティング株式会社 Visible light communication apparatus and visible light communication method
JP2009176674A (en) * 2008-01-28 2009-08-06 Panasonic Electric Works Co Ltd Emergency lighting system
JP5866703B2 (en) * 2011-07-07 2016-02-17 株式会社マリンコムズ琉球 Visible light communication method and visible light communication apparatus
JP5891393B2 (en) * 2011-07-15 2016-03-23 パナソニックIpマネジメント株式会社 Illumination light communication apparatus, lighting apparatus using the same, and illumination system
JP6273651B2 (en) * 2012-07-18 2018-02-07 パナソニックIpマネジメント株式会社 Visible light communication system

Also Published As

Publication number Publication date
JP2017038099A (en) 2017-02-16

Similar Documents

Publication Publication Date Title
JP5554882B2 (en) Underwater communication apparatus using visible light and data signal underwater transmission / reception method using the same
JP4573885B2 (en) Illumination light receiving apparatus and illumination light communication system
CN102089945B (en) Eye-safe laser-based lighting
JP2020536372A5 (en)
US20150132004A1 (en) Optical Communication Systems and Methods
KR100810297B1 (en) Wireless communication interface for portable wireless terminal
US20130136453A1 (en) Visible light communication method and visible light communication system
US10613318B2 (en) Bi-directional excitation color wheel and light source system thereof
JP2010068431A (en) Visible-light communication system and visible-light communication device
JP2007043592A (en) Transmitter and receiver for optical communication, optical communication system, and communication device
JP6076691B2 (en) Visible light communication system
JP6687828B2 (en) Space optical transmission device
EP3591468A1 (en) Light source device and projection display system thereof
WO2013140691A1 (en) Solid illumination device
JP2017228889A (en) Underwater communication device and underwater radiation device
CN112688738A (en) Underwater wireless light emitting system and method and underwater wireless light communication system
KR101596471B1 (en) Visible light communications system
WO2012169248A1 (en) Illuminating system
JP7114984B2 (en) Underwater laser light source
JP2019149689A (en) Optical communication system, optical transmission module, and optical reception module
JP6674207B2 (en) Spatial optical transmission equipment
US20140177201A1 (en) Illumination apparatus using laser diode as light source
CN109981170B (en) Wireless optical communication system and method
CN215222203U (en) Underwater wireless light emitting system and underwater wireless light communication system
JP4684278B2 (en) Illumination device with light transmission mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20191008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200316

R150 Certificate of patent or registration of utility model

Ref document number: 6687828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250