JP6684848B2 - Wood structural member - Google Patents
Wood structural member Download PDFInfo
- Publication number
- JP6684848B2 JP6684848B2 JP2018083785A JP2018083785A JP6684848B2 JP 6684848 B2 JP6684848 B2 JP 6684848B2 JP 2018083785 A JP2018083785 A JP 2018083785A JP 2018083785 A JP2018083785 A JP 2018083785A JP 6684848 B2 JP6684848 B2 JP 6684848B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- stop layer
- wooden
- combustion
- load supporting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Building Environments (AREA)
Description
本発明は、木質構造部材に関する。 The present invention relates to a wooden structural member.
特許文献1には、長期荷重を支持する芯部を構成する荷重支持層と、荷重支持層の外周に配置される燃え止まり層と、燃え止まり層の外周に配置される燃え代層との三層で構成された木質集成柱が開示されている。この先行技術では、燃え止まり層は、木材単材と、木材よりも熱容量(熱吸収量)が大きなモルタル等の不燃材からなる高熱容量材とを交互に配置し、接着接合して集積したものとされている。 Patent Document 1 discloses a load supporting layer that constitutes a core portion that supports a long-term load, a non-burning layer that is disposed on the outer periphery of the load supporting layer, and a burn-up layer that is disposed on the outer periphery of the non-burning layer. A wooden laminated pillar composed of layers is disclosed. In this prior art, the flame-retardant layer is obtained by alternately arranging a single wood material and a high heat capacity material made of a non-combustible material such as mortar having a heat capacity (heat absorption amount) larger than that of wood and adhesively joining them together. It is said that.
特許文献2には、燃止層と燃代層とが一体化された外層部を心材部にビスで締結する木質構造部材が開示されている。この先行技術では、燃止層は、心材部の外周面に沿って配置される木質部とモルタル板と有している。また、モルタル板は、断面略矩形の板状に形成されており、長手方向を木質構造部材の軸方向として配置されている。 Patent Document 2 discloses a wooden structural member in which an outer layer portion in which a fuel stop layer and a burn-up layer are integrated is fastened to a core member with screws. In this prior art, the fuel stop layer has a wood part and a mortar plate arranged along the outer peripheral surface of the core part. Further, the mortar board is formed in a plate shape having a substantially rectangular cross section, and is arranged with the longitudinal direction as the axial direction of the wooden structural member.
ここで、燃止層を構成するモルタルバー(高熱容量材、モルタル板)を作製して木材と接合する製造方法は、モルタルバーを高精度に作製することに限界があるので、モルタルバーを燃代層に隙間無く密着させることは困難である。よって、燃代層の燃焼熱をモルタルバー(燃止層)に吸収させることに限界があった。 Here, the manufacturing method of producing the mortar bar (high heat capacity material, mortar plate) that constitutes the fire stop layer and joining it to the wood has a limit in producing the mortar bar with high accuracy, and therefore the mortar bar is burned. It is difficult to make a close contact with the substratum without a gap. Therefore, there is a limit to the absorption of the combustion heat of the burn-up layer in the mortar bar (fuel stop layer).
本発明は、燃代層の燃焼熱を燃止層に吸収させる熱吸収性能を向上させた木質構造部材を提供することが目的である。 An object of the present invention is to provide a wood structural member having improved heat absorption performance that allows the combustion stop layer to absorb the combustion heat of the burn-up layer.
第一態様は、円柱状の木質の荷重支持部と、前記荷重支持部の外側に設けられ、不燃材料又は前記荷重支持部よりも着火温度が高い材料で構成された燃止層と、を備える木質構造部材である。 A first aspect includes a cylindrical wooden load support portion, and a fuel stop layer provided outside the load support portion and made of a non-combustible material or a material having an ignition temperature higher than that of the load support portion. It is a wooden structural member.
第二態様は、角部が円弧状の略四角柱状の木質の荷重支持部と、前記荷重支持部の外側に設けられ、不燃材料又は前記荷重支持部よりも着火温度が高い材料で構成された燃止層と、を備える木質構造部材である。 The second aspect is a load supporting part made of wood and having a substantially square columnar shape with arc-shaped corners, and is provided outside the load supporting part and is made of a non-combustible material or a material having a higher ignition temperature than the load supporting part. And a fire-retardant layer.
第三態様は、前記燃止層は、石膏を材料として構成されている、第一態様又は第二態様に記載の木質構造部材である。 A third aspect is the wood structural member according to the first aspect or the second aspect , in which the fire stop layer is made of gypsum.
第四態様は、前記燃止層は、グラウト材を材料として構成されている、第一態様又は第二態様に記載の木質構造部材である。 A fourth aspect is the wood structural member according to the first aspect or the second aspect , wherein the fuel stop layer is made of a grout material.
本発明によれば、木質構造部材の燃代層の燃焼熱を燃止層に吸収させる熱吸収性能を向上させることができる。 ADVANTAGE OF THE INVENTION According to this invention, the heat absorption performance which makes the combustion stop layer absorb the combustion heat of the combustion generation layer of a wooden structure member can be improved.
<第一実施形態>
本発明の木質構造部材の一例としての木質柱及びこの木質柱を使用した建物について説明する。なお、鉛直方向をZ方向とし、鉛直方向と直交する水平方向の互いに直交する二方向をX方向及びY方向とする。また、後述する木質柱100の軸方向は、鉛直方向(Z方向)である。
<First embodiment>
A wooden pillar and a building using the wooden pillar will be described as an example of the wooden structural member of the present invention. Note that the vertical direction is the Z direction, and two mutually orthogonal horizontal directions orthogonal to the vertical direction are the X direction and the Y direction. Further, the axial direction of the wooden pillar 100 described later is the vertical direction (Z direction).
(木質柱及び建物の構造)
図1に示すように、建物10は、フラットスラブ構造とされ、下面12Lから梁が突出していないスラブ12が複数の円柱状の木質柱100で支持されている。また、本実施形態のスラブ12は、鉄筋コンクリート製とされている。なお、木質柱100の柱頭部に、スラブ12を受けるコンクリート製のキャピタルが設けられていてもよい。
(Structure of wooden columns and buildings)
As shown in FIG. 1, the building 10 has a flat slab structure, and the slab 12 in which a beam does not project from the lower surface 12L is supported by a plurality of columnar wooden pillars 100. Further, the slab 12 of this embodiment is made of reinforced concrete. A concrete capital for receiving the slab 12 may be provided on the pillar head of the wooden pillar 100.
図2及び図3に示すように、木質柱100は、円柱状の木質の荷重支持部110(図5も参照)と、荷重支持部110の外側に間隔をあけて配置された円筒状の木質の燃代層130(図5も参照)と、荷重支持部110と燃代層130との間に石膏Sが充填されて硬化することで形成された円筒状の燃止層120と、の三層構造とされている。 As shown in FIGS. 2 and 3, the wooden pillar 100 includes a cylindrical wooden load support portion 110 (see also FIG. 5) and a cylindrical wooden material arranged outside the load support portion 110 with a space therebetween. No. 3 of the burn-up layer 130 (see also FIG. 5), and the cylindrical fuel-stop layer 120 formed by filling and hardening the plaster S between the load support portion 110 and the burn-in layer 130. It has a layered structure.
円柱状の木質の荷重支持部110は、木質柱100が負担するスラブ12の荷重を支持可能な剛性及び強度を有している。また、本実施形態の荷重支持部110は、複数の板状の木製単材112(図6参照)を積層し、圧締して一体化された集成材で構成されている。 The cylindrical wooden load supporting portion 110 has rigidity and strength capable of supporting the load of the slab 12 that the wooden pillar 100 bears. In addition, the load supporting unit 110 of the present embodiment is configured by a laminated material in which a plurality of plate-shaped single wooden materials 112 (see FIG. 6) are laminated and pressed to be integrated.
本実施形態の円筒状の燃代層130は、円筒LVL(Laminated Veneer Lumber)である。なお、燃代層130は、円筒LVLでなく、例えば単板積層材(LVL)や直交集成板(CLT(Cross Laminated Timber))を円筒状に加工したものでもよい。 The cylindrical burn-up layer 130 of the present embodiment is a cylindrical LVL (Laminated Veneer Lumber). The burn-up layer 130 may be, for example, a single-layer laminated material (LVL) or a rectangular laminated plate (CLT (Cross Laminated Timber)) processed into a cylindrical shape instead of the cylindrical LVL.
燃止層120は、不燃材料である石膏Sで構成されているので不燃であり、また木質の荷重支持部110及び燃代層130よりも熱容量が大きい。なお、燃止層120の中に円筒状の金網が埋設されていてもよい。 The fuel stop layer 120 is made of gypsum S which is an incombustible material, and thus is incombustible, and has a larger heat capacity than the load support portion 110 and the burn-up layer 130 made of wood. A cylindrical wire net may be embedded in the fuel stop layer 120.
木質柱100の燃止層120の上面120Uは、燃代層130の上端面130U及び荷重支持部110の上端面110Uよりも若干下側に位置している。よって、木質柱100の上端部100Uには、燃止層120に相当する部位に凹部102が形成されている。 The upper surface 120U of the fuel stop layer 120 of the wooden pillar 100 is located slightly below the upper end surface 130U of the burnout layer 130 and the upper end surface 110U of the load support portion 110. Therefore, in the upper end 100U of the wooden pillar 100, the recess 102 is formed in a portion corresponding to the fuel stop layer 120.
そして、木質柱100の上端部100Uの凹部102には、スラブ12を打設する際にコンクリートが充填される。別の観点から説明するとスラブ12の下面12Lから突出する凸部14が木質柱100の上端部100Uの凹部102に係合している。 Then, the concave portion 102 of the upper end portion 100U of the wooden pillar 100 is filled with concrete when the slab 12 is cast. From another viewpoint, the convex portion 14 protruding from the lower surface 12L of the slab 12 is engaged with the concave portion 102 of the upper end portion 100U of the wooden pillar 100.
(木質柱の製造(施工)方法)
次に、木質柱100の製造(施工)方法の一例について説明する。
(Wood column manufacturing (construction) method)
Next, an example of a method of manufacturing (constructing) the wooden pillar 100 will be described.
先ず、複数の板状の木製単材112(図6参照)を積層して圧締、すなわち接着剤を塗布した木製単材112に圧力を加えて密着させ、接着剤が充分硬化するのを待って接着を完了することによって、四角柱の集成材を作製する。つぎに、この四角柱の集成材を円柱状に削ることで、図2及び図3に示す木質柱100の荷重支持部110を作製する。 First, a plurality of plate-shaped wooden single materials 112 (see FIG. 6) are laminated and pressed, that is, pressure is applied to the wooden single material 112 coated with the adhesive so that the adhesive is sufficiently cured, and the adhesive is sufficiently cured. A quadrangular prismatic laminated material is produced by completing the bonding by using the above method. Next, the load supporting portion 110 of the wooden pillar 100 shown in FIGS. 2 and 3 is manufactured by cutting the laminated material of the square pillar into a cylindrical shape.
燃代層130は、板状の直交集成板を棒状の冶具に巻き重ねて円筒状にする。なお、板状の直交集成板を巻き重ねるときに、一層毎に互いに繊維方向が円筒の軸方向に対して左右に傾けて逆巻きにする。 The burn-up layer 130 is formed by winding a plate-shaped orthogonal laminated plate around a rod-shaped jig to form a cylindrical shape. When the plate-shaped orthogonal laminated plates are wound, the fiber directions of the layers are inclined in the left-right direction with respect to the axial direction of the cylinder, and are wound in the reverse direction.
図4及び図5に示すように、円柱状の荷重支持部110を円筒状の燃代層130の中に隙間Tをあけて配置して固定する。なお、荷重支持部110と燃代層130とを隙間Tをあけて固定する方法はどのような方法であってもよい。 As shown in FIG. 4 and FIG. 5, the column-shaped load supporting portion 110 is arranged and fixed in the cylindrical combustion-assisting layer 130 with a gap T therebetween. Note that any method may be used to fix the load supporting portion 110 and the burn-up layer 130 with a gap T therebetween.
一例としては、図4に示す固定冶具50を用いて荷重支持部110と燃代層130とを隙間Tをあけて固定する。固定冶具50は、筒状のリング部52と楔形のスペーサー54とで構成されている。スペーサー54は、円周方向に間隔をあけて複数配置されている。このリング部52の内部に円筒状の燃代層130を配置して固定し、スペーサー54で荷重支持部110と燃代層130との隙間Tを一定にする。 As an example, the load supporting part 110 and the burn-up layer 130 are fixed with a gap T using the fixing jig 50 shown in FIG. The fixing jig 50 includes a tubular ring portion 52 and a wedge-shaped spacer 54. A plurality of spacers 54 are arranged at intervals in the circumferential direction. A cylindrical combustion margin layer 130 is arranged and fixed inside the ring portion 52, and the gap T between the load support portion 110 and the combustion margin layer 130 is made constant by the spacer 54.
そして、図5に示すように、荷重支持部110と燃代層130との隙間Tに流動状の石膏Sを上から流し込んで充填し、充填後に石膏Sが硬化することで燃止層120が形成される。なお、図4は、荷重支持部110と燃代層130との隙間Tに流動状の石膏Sが流し込まれて充填されている途中の状態の図である。 Then, as shown in FIG. 5, the fluid-filled gypsum S is poured from above into the gap T between the load support portion 110 and the burn-up layer 130, and the plaster S is cured after the filling, whereby the fuel-stop layer 120 is formed. It is formed. Note that FIG. 4 is a diagram of a state in which the fluid gypsum S is being poured into and filled in the gap T between the load supporting portion 110 and the combustion substratum 130.
燃止層120に金網を埋設させる場合は、荷重支持部110と燃代層130との隙間Tに円筒状に加工した金網を設けてから石膏Sを上から流し込んで充填する。 When the wire mesh is embedded in the fuel stop layer 120, a wire mesh processed into a cylindrical shape is provided in the gap T between the load support portion 110 and the combustion stock layer 130, and then the plaster S is poured from above and filled.
(作用及び効果)
次に、本実施形態の作用及び効果について説明する。
(Action and effect)
Next, the operation and effect of this embodiment will be described.
図4及び図5に示すように、燃代層130と荷重支持部110との隙間Tに石膏Sを上から流し込んで充填し、石膏Sが硬化することで燃止層120を形成できるので、例えばモルタルバーを接合して燃止層を作製する方法と比較し、施工性が向上する。 As shown in FIGS. 4 and 5, since the plaster S is poured from above into the gap T between the burn-up layer 130 and the load support portion 110 and the plaster S is cured, the fuel stop layer 120 can be formed. For example, the workability is improved as compared with a method of joining a mortar bar to produce a flame-retardant layer.
また、例えば、モルタルバーを接合して燃止層を作製する方法と比較し、軸方向と直交する断面の外形が、円形或いは曲面や複雑な形状の燃止層120を容易に作製することができる。つまり、外形が円形或いは曲面や複雑な形状の木質柱100を容易に作製することができる。 Further, for example, as compared with the method of joining the mortar bars to form the fuel stop layer, the outer shape of the cross section orthogonal to the axial direction can be easily formed into a circle, a curved surface, or a complicated shape. it can. That is, it is possible to easily manufacture the wooden pillar 100 having a circular outer shape, a curved surface, or a complicated shape.
また、図2、図3及び図6示されるように、木質柱100は、荷重を支持する荷重支持部110は、燃止層120及び燃代層130によって被覆されている。 In addition, as shown in FIGS. 2, 3 and 6, in the wooden pillar 100, the load support portion 110 that supports the load is covered with the fuel stop layer 120 and the burnout layer 130.
したがって、火災時には、先ず、最外層の燃代層130が徐々に燃焼して燃止層120の周囲に炭化層(断熱層)132(図6を参照)を形成する。これにより、燃止層120及び荷重支持部110へ浸入する火災熱が低減される。また、このとき、荷重支持部110及び燃代層130よりも熱容量が大きい燃止層120によって火災熱が吸収(吸熱)され、荷重支持部110に浸入する火災熱がさらに低減される。したがって、荷重支持部110の燃焼が抑制されるため、木質柱100の耐火性能が向上する。 Therefore, in the event of a fire, first, the outermost combustion margin layer 130 gradually burns to form a carbonized layer (heat insulating layer) 132 (see FIG. 6) around the fuel stop layer 120. As a result, the heat of fire that enters the fuel stop layer 120 and the load support portion 110 is reduced. Further, at this time, the heat of fire is absorbed (absorbed) by the fuel stop layer 120 having a larger heat capacity than that of the load support portion 110 and the burn-up layer 130, and the heat of fire entering the load support portion 110 is further reduced. Therefore, since the combustion of the load supporting portion 110 is suppressed, the fire resistance performance of the wooden pillar 100 is improved.
更に、不燃材料である石膏Sで構成された燃止層120によって、燃代層130の燃焼を停止(自然鎮火)させることができる。したがって、火災終了後(鎮火後)も荷重支持部110に荷重を支持させることができる。 Furthermore, the combustion stop layer 120 made of gypsum S, which is a non-combustible material, can stop the combustion of the combustion substratum layer 130 (natural extinction). Therefore, the load can be supported by the load supporting unit 110 even after the fire ends (after the fire is extinguished).
また、石膏Sは硬化する前は、流動状であるので燃代層130と荷重支持部110とに密着する。更に、荷重支持部110及び燃代層130の表面の木目(凹凸)に石膏Sが入り込む。したがって、燃代層130と硬化後の燃止層120との密着性が良いので、燃代層130の燃焼熱が燃止層120に効果的に吸収される。つまり、燃代層130と燃止層120とが密着しておらず微小な隙間が形成されている場合と比較し、燃代層130の燃焼熱を燃止層120に吸収させる熱吸収性能が向上する。 Further, since the gypsum S is in a fluid state before being hardened, it is in close contact with the combustion stock layer 130 and the load supporting portion 110. Further, the plaster S enters the wood grain (concavo-convex) of the surfaces of the load supporting portion 110 and the combustion layer 130. Therefore, since the adhesion between the burn-up layer 130 and the burn-stop layer 120 after curing is good, the combustion heat of the burn-up layer 130 is effectively absorbed by the burn-stop layer 120. That is, as compared with the case where the combustion margin layer 130 and the fuel stop layer 120 are not in close contact with each other and a minute gap is formed, the heat absorption performance for absorbing the combustion heat of the combustion margin layer 130 into the fuel stop layer 120 is improved. improves.
また、燃止層120を構成する石膏Sは、多量の結晶水を含んでおり、炎や熱に晒されると、この水が蒸気として空気中に放出されることに伴って熱を吸収する。よって、燃代層130の燃焼熱を燃止層120に吸収させる熱吸収性能が更に向上する。 Further, the gypsum S that constitutes the fuel stop layer 120 contains a large amount of crystal water, and when exposed to a flame or heat, the water absorbs heat as it is released into the air as steam. Therefore, the heat absorption performance of allowing the combustion stop layer 120 to absorb the combustion heat of the combustion margin layer 130 is further improved.
また、燃代層130は筒状とされると共に、軸方向と直交する断面の外形は円形とされている(木質柱100の軸方向と直交する断面の外形が円形とされている)。よって、二方向加熱となる角部がある外形の木質柱(角柱)と比較し、耐火性能が向上する。 The burn-up layer 130 has a tubular shape, and the cross section orthogonal to the axial direction has a circular outer shape (the cross section orthogonal to the axial direction of the wood pillar 100 has a circular outer shape). Therefore, the fire resistance performance is improved as compared with a wood column (square column) having an outer shape with a corner that is heated in two directions.
また、燃止層120に金網を埋設させている場合は、燃焼中の燃止層120の脱落が防止されるので、更に耐火性能が向上する。 In addition, when the wire mesh is embedded in the fuel stop layer 120, the fuel stop layer 120 is prevented from falling off during combustion, so that the fire resistance is further improved.
また、図3に示すように、スラブ12の下面12Lは、コンクリートを打設する際に木質柱100における石膏Sで構成された燃止層120と密着し、燃止層120と一体化する。また、スラブ12の上面12Uは、石膏Sを流し込んで燃止層120を形成する際に燃止層120と密着し、燃止層120と一体化する。このように、木質柱100の燃止層120とスラブ12とが密着し、連続しているので、燃止層120がスラブ12と非連続である構造と比較し、耐火性能が向上する。 Further, as shown in FIG. 3, the lower surface 12L of the slab 12 is in close contact with the fuel stop layer 120 made of gypsum S in the wooden pillar 100 when pouring concrete, and is integrated with the fuel stop layer 120. Further, the upper surface 12U of the slab 12 is in close contact with the fuel stop layer 120 when the plaster S is poured to form the fuel stop layer 120, and is integrated with the fuel stop layer 120. As described above, since the fuel stop layer 120 of the wooden pillar 100 and the slab 12 are in close contact with each other and are continuous, the fire resistance performance is improved as compared with the structure in which the fuel stop layer 120 is discontinuous with the slab 12.
また、木質柱100は、前述したように、燃止層120と、燃代層130及び荷重支持部110との密着性が良いので、軸方向と直交する方向の圧縮力や軸方向と直交する方向のせん断力などの応力伝達性能が向上する。 Further, as described above, the wooden pillar 100 has good adhesion between the fuel stop layer 120 and the burn-up layer 130 and the load support portion 110, so that the wooden pillar 100 is orthogonal to the compression force in the direction orthogonal to the axial direction and the axial direction. The stress transfer performance such as directional shear force is improved.
(耐火試験)
次に、本実施形態の木質柱100の耐火試験の結果について説明する。なお、耐火試験は、指定性能評価機関(例えば、一般財団法人建材試験センター)の防耐火性能試験・評価業務方法書に準じて行った。
(Fire resistance test)
Next, the result of the fire resistance test of the wooden pillar 100 of this embodiment will be described. In addition, the fire resistance test was performed according to the fire prevention performance test / evaluation work method manual of a designated performance evaluation institution (for example, Building Material Testing Center).
図6は、耐火試験後の木質柱100を模式的に図示したものである。この図6に示すように、木質柱100の燃代層130が燃えて炭化層(断熱層)132を形成する。しかし、燃代層130における燃止層120に密着している内周部分134は燃え残っている。よって、燃代層130は燃止層120に密着することで、燃焼熱が燃止層120に効果的に吸収されることが判る。 FIG. 6 schematically shows the wooden pillar 100 after the fire resistance test. As shown in FIG. 6, the combustion stock layer 130 of the wooden pillar 100 burns to form a carbonized layer (heat insulating layer) 132. However, the inner peripheral portion 134 of the combustion margin layer 130, which is in close contact with the fuel stop layer 120, remains unburned. Therefore, it can be seen that the combustion heat is effectively absorbed in the combustion stop layer 120 because the combustion margin layer 130 is in close contact with the combustion stop layer 120.
また、燃止層120は燃焼後も脱落することなく荷重支持部110に密着しているので、燃焼後も荷重支持部110と共に荷重を支持することが可能であることが判る。 Further, since the fuel stop layer 120 is in close contact with the load support portion 110 without dropping off after the combustion, it is understood that the load can be supported together with the load support portion 110 even after the combustion.
[木質柱の変形例]
次に、木質柱の変形例について説明する。
[Modified example of wooden pillar]
Next, a modified example of the wooden pillar will be described.
(第一変形例)
図7に示す第一変形例の木質柱101の燃止層121は、石膏Sが充填され硬化することで形成された燃止部123と、木質の連結部材125とで構成されている。
(First modification)
The fuel stop layer 121 of the wooden pillar 101 of the first modified example shown in FIG. 7 is composed of a fuel stop portion 123 formed by filling and hardening gypsum S and a wooden connecting member 125.
また、荷重支持部110と燃代層130との隙間Tに、連結部材125を配置して接合した状態で、石膏Sを流し込んで充填し、硬化することで燃止部123が形成される。 Further, in a state in which the connecting member 125 is arranged and joined in the gap T between the load supporting portion 110 and the combustion margin layer 130, the plaster S is poured and filled, and then hardened to form the fuel stop portion 123.
(第二変形例)
図8に示す第二変形例の木質柱200は、略四角柱状の木質の荷重支持部210と、荷重支持部210の外側に間隔をあけて配置された四角筒状の木質の燃代層230と、荷重支持部210と燃代層230との間に石膏Sが充填されて硬化することで形成された略四角筒状の燃止層220と、の三層構造とされている。
(Second modified example)
A wood pillar 200 of a second modified example shown in FIG. 8 is a substantially square pillar-shaped wood load supporting portion 210, and a rectangular tubular wood-like burn-up layer 230 arranged outside the load supporting portion 210 with a space. And a substantially square tubular fuel stop layer 220 formed by filling and hardening the gypsum S between the load supporting portion 210 and the burn-up layer 230, and has a three-layer structure.
なお、荷重支持部210の角部212は円弧状とされている。つまり、荷重支持部210の角部212には、所謂角Rが形成されている。 The corners 212 of the load supporting portion 210 are arcuate. That is, a so-called corner R is formed at the corner portion 212 of the load support portion 210.
また、燃代層230は、四枚の板材(直交集成板)232を接合することで、四角筒状に形成されている。 Further, the burn-up layer 230 is formed in a rectangular tube shape by joining four plate members (orthogonal laminated plates) 232.
このように第二変形例の木質柱200の燃代層230の軸方向と直交する断面の外形は四角形とされている(木質柱200の軸方向と直交する断面の外形は、四角形とされている)。よって、木質柱200の角部202は二方向加熱となる。 In this way, the outer shape of the cross section orthogonal to the axial direction of the burn-up layer 230 of the wood pillar 200 of the second modified example is quadrangular (the outer shape of the cross section perpendicular to the axial direction of the wood pillar 200 is quadrangular. Exist). Therefore, the corner portion 202 of the wooden pillar 200 is heated in two directions.
しかし、荷重支持部210の角部212には、角Rが形成されているので、その分、燃止層220の角部222の厚みがあつくなる。つまり、角Rが形成されていない場合の厚みL2よりも角Rが形成されている場合の厚みL1の方が厚くなる。よって、二方向加熱となる木質柱200の角部202の耐火性能が向上する。 However, since the corner R of the load supporting portion 210 is formed with the corner R, the thickness of the corner 222 of the fuel stop layer 220 increases accordingly. That is, the thickness L1 when the corner R is formed is thicker than the thickness L2 when the corner R is not formed. Therefore, the fire resistance performance of the corner portion 202 of the wooden pillar 200 that is heated in two directions is improved.
なお、第二変形例の木質柱200でも、第一変形例の木質柱101のように、燃止層220に木質の連結部材125(図7を参照)を設けてもよい。 In the second modified example of the wooden pillar 200 as well, like the first modified example of the wooden pillar 101, a wood connecting member 125 (see FIG. 7) may be provided in the fuel stop layer 220.
<第二実施形態>
本発明の木質構造部材の一例としての木質梁について説明する。なお、第一実施形態と同一の部材には同一の符号を付し、重複する内容は簡略化又は省略する。また、木質梁300の軸方向は、Y方向である。
<Second embodiment>
A wood beam will be described as an example of the wood structural member of the present invention. The same members as those in the first embodiment are designated by the same reference numerals, and overlapping contents are simplified or omitted. The axial direction of the wooden beam 300 is the Y direction.
(木質梁の構造)
図9に示すように、木質梁300は、四角柱状の木質の荷重支持部310と、荷重支持部310の外側に間隔をあけて配置された略U字状の木質の燃代層330と、荷重支持部310と燃代層330との間に石膏Sが充填されて硬化することで形成された略U字状の燃止層320と、の三層構造とされている。なお、燃止層320の中に略U字状の金網が埋設されていてもよい。
(Wood beam structure)
As shown in FIG. 9, the wooden beam 300 includes a load supporting portion 310 made of a quadrangular prismatic wooden material, a substantially U-shaped wood-based combustion margin layer 330 arranged outside the load supporting portion 310 with a space, It has a three-layer structure of a substantially U-shaped fuel stop layer 320 formed by filling and hardening the gypsum S between the load support portion 310 and the burn-up layer 330. In addition, a substantially U-shaped wire net may be embedded in the fuel stop layer 320.
木質梁300は、図示されていないコンクリート製のスラブを支持しており、木質梁300の上面300Uはスラブで覆われている。よって、木質梁300の上面300Uの耐火性は、スラブによって確保されるので、荷重支持部310の上面310Uは燃止層320によって覆われていない。 The wooden beam 300 supports a concrete slab (not shown), and the upper surface 300U of the wooden beam 300 is covered with the slab. Therefore, since the fire resistance of the upper surface 300U of the wooden beam 300 is ensured by the slab, the upper surface 310U of the load support portion 310 is not covered by the fuel stop layer 320.
(木質梁の製造(施工)方法)
次に、木質梁300の製造(施工)方法の一例について説明する。
(Wood beam manufacturing (construction) method)
Next, an example of a method of manufacturing (constructing) the wooden beam 300 will be described.
複数の板状の木製単材112(図6参照)を積層して圧締、すなわち接着剤を塗布した木製単材112に圧力を加えて密着させ、接着剤が充分硬化するのをまって接着を完了することによって、木質梁300の荷重支持部310を作製する。 Laminating a plurality of plate-like wooden single materials 112 (see FIG. 6) and pressing, that is, applying pressure to the adhesive-applied wooden single materials 112 to bring them into close contact, and to make sure that the adhesive is sufficiently cured By completing the above, the load supporting portion 310 of the wooden beam 300 is manufactured.
また、3枚の板材(直交集成板)332を略U字状に接合し、燃代層330を作製する。 Further, the three plate members (orthogonal laminated plates) 332 are joined in a substantially U-shape to form the combustion margin layer 330.
そして、四角柱状の荷重支持部310をU字形状の燃代層330の中に隙間Tをあけて配置して固定する。なお、荷重支持部310と燃代層330とを隙間Tをあけて固定する方法はどのような方法であってもよい。 Then, the quadrangular prism load supporting portion 310 is arranged and fixed in the U-shaped combustion margin layer 330 with a gap T therebetween. Any method may be used to fix the load supporting portion 310 and the burn-up layer 330 with a gap T therebetween.
一例として、図9に示すように、端面を木質又は鋼製で板状の固定部材350で固定し且つ上面を木質又は鋼製で板状の固定部材352で固定すると共に、楔形のスペーサー354を隙間Tに打ち込むことで、荷重支持部310と燃代層330とを隙間Tをあけて固定する。 As an example, as shown in FIG. 9, the end face is fixed by a plate-like fixing member 350 made of wood or steel and the upper surface is fixed by a plate-like fixing member 352 made of wood or steel, and a wedge-shaped spacer 354 is formed. By driving into the gap T, the load supporting portion 310 and the burn-up layer 330 are fixed with the gap T.
そして、荷重支持部310と燃代層330との隙間Tに流動状の石膏Sを上から流し込んで充填し、充填後に石膏Sが硬化することで燃止層320が作製される。 Then, the fluid gypsum S is poured from above into the gap T between the load supporting portion 310 and the burn-up layer 330, and the plaster S is cured after filling, whereby the fuel stop layer 320 is produced.
なお、燃止層320に金網を埋設させる場合は、荷重支持部310と燃代層330との隙間Tに金網を設けてから石膏Sを上から流し込んで充填する。 When the metal mesh is embedded in the fuel stop layer 320, the metal mesh is provided in the gap T between the load support portion 310 and the combustion stock layer 330, and then the plaster S is poured from above to be filled.
(作用及び効果)
次に、本実施形態の作用及び効果について説明する。
(Action and effect)
Next, the operation and effect of this embodiment will be described.
燃代層330と荷重支持部310との隙間Tに石膏Sを上から流し込んで充填し、石膏Sが硬化することで燃止層320を製作できるので、例えばモルタルバーを接合して燃止層を作製する方法と比較し、施工性が向上する。 Since the plaster S is poured from above to fill the gap T between the burn-up layer 330 and the load supporting portion 310 and the plaster S is hardened to form the flame-retardant layer 320, for example, a mortar bar is joined to the flame-retardant layer. The workability is improved as compared with the method of manufacturing.
木質梁300は、荷重を支持する荷重支持部310が燃止層320及び燃代層330によって被覆されており、燃代層330が燃焼して燃止層320の周囲に炭化層(断熱層)132(図6を参照)を形成することで、燃止層320及び荷重支持部310へ浸入する火災熱が低減される。また、燃止層120によって火災熱が吸収(吸熱)される。したがって、荷重支持部310の燃焼が抑制されるため、木質梁300の耐火性能が向上する。 In the wooden beam 300, a load supporting portion 310 that supports a load is covered with a combustion stop layer 320 and a combustion margin layer 330, and the combustion margin layer 330 burns to form a carbonized layer (heat insulating layer) around the combustion prevention layer 320. By forming 132 (see FIG. 6), the heat of fire that penetrates into the flame stop layer 320 and the load support portion 310 is reduced. Further, the heat of the fire is absorbed (absorbed) by the fuel stop layer 120. Therefore, since the combustion of the load support portion 310 is suppressed, the fire resistance performance of the wooden beam 300 is improved.
更に、不燃材料である石膏Sで構成された燃止層320によって、燃代層330の燃焼を停止(自然鎮火)させることができるので、火災終了後(鎮火後)も荷重支持部310に荷重を支持させることができる。 Further, since the combustion stop layer 320 made of the non-combustible material gypsum S can stop the combustion of the combustion subsidence layer 330 (natural extinction), the load supporting portion 310 is loaded even after the fire ends (after the extinction). Can be supported.
また、燃代層330と硬化後の燃止層320との密着性が良いので、燃代層330の燃焼熱が燃止層320に効果的に吸収される。 Moreover, since the adhesion between the burn-up layer 330 and the cured burn-stop layer 320 is good, the combustion heat of the burn-up layer 330 is effectively absorbed by the burn-stop layer 320.
また、燃止層320を構成する石膏Sは、多量の結晶水を含んでおり、炎や熱に晒されると、この水が蒸気として空気中に放出されることに伴って熱を吸収する。よって、燃代層330の燃焼熱を燃止層320に吸収させる熱吸収性能が更に向上する。 Further, the gypsum S that constitutes the fuel stop layer 320 contains a large amount of crystal water, and when exposed to a flame or heat, the water absorbs heat as it is released into the air as steam. Therefore, the heat absorption performance of allowing the combustion stop layer 320 to absorb the combustion heat of the combustion margin layer 330 is further improved.
このような構造により木質梁300の耐火性能が向上する。なお、前述したように、木質梁300の上面300Uの耐火性は、図示していないスラブによって確保される。 With such a structure, the fire resistance of the wooden beam 300 is improved. As described above, the fire resistance of the upper surface 300U of the wooden beam 300 is ensured by the slab (not shown).
なお、第一実施形態の第一変形例の木質柱101(図7を参照)のように、燃止層320に木質の連結部材125(図7を参照)を設けてもよい。また、第一実施形態の第二変形例の木質柱200(図8を参照)のように、荷重支持部310の下側の角部に角Rを形成してもよい。 In addition, like the wooden pillar 101 (see FIG. 7) of the first modified example of the first embodiment, a wood coupling member 125 (see FIG. 7) may be provided in the fuel stop layer 320. Further, as in the wooden pillar 200 (see FIG. 8) of the second modified example of the first embodiment, the corner R may be formed at the lower corner of the load support portion 310.
<その他>
尚、本発明は上記実施形態に限定されない。
<Other>
The present invention is not limited to the above embodiment.
上記実施形態では、荷重支持部110、210、310と燃代層130、230、330との間に充填されて硬化する充填材は石膏Sであったが、これに限定されない。例えば、グラウト材、コンクリート、モルタル及び繊維補強コンクリートであってもよい。 In the above embodiment, the filling material filled between the load supporting portions 110, 210, 310 and the burn-up layers 130, 230, 330 and hardened was the gypsum S, but the filling material is not limited to this. For example, it may be grout, concrete, mortar and fiber reinforced concrete.
なお、グラウト材は流動性に優れているので、荷重支持部と燃代層との間への充填効率が向上する。また、グラウト材は硬化による収縮が小さく、木質構造部材の燃代層と燃止層との密着性が良いので、燃代層の燃焼熱が燃止層に効果的に吸収される。 In addition, since the grout material has excellent fluidity, the filling efficiency between the load supporting portion and the burn-up layer is improved. Further, since the grout material has a small shrinkage due to hardening and has good adhesion between the burn-in layer and the burn-stop layer of the wooden structural member, the combustion heat of the burn-in layer is effectively absorbed by the burn-stop layer.
或いは、不燃ではないが、荷重支持部110、210、310よりも着火温度が高い充填材、例えば樹脂製のコーキング材であってもよい。要は、不燃材料又は荷重支持部よりも着火温度が高い材料で構成された充填材であればよい。 Alternatively, it may be a filler that is not incombustible but has a higher ignition temperature than the load supporting portions 110, 210, 310, for example, a caulking material made of resin. What is essential is that the filler is made of a non-combustible material or a material having an ignition temperature higher than that of the load supporting portion.
また、木質の荷重支持部及び木質の燃代層は、木材によって構成されていればよい。例えば、米松、唐松、檜、杉及びあすなろ等の一般の木造建築に用いられる木材を用いることができる。 Further, the load supporting portion made of wood and the combustion stock layer made of wood may be made of wood. For example, wood used for general wooden construction such as Yonematsu, Karamatsu, cypress, cedar and Asunaro can be used.
更に、本発明の要旨を逸脱しない範囲において種々なる態様で実施し得ることは言うまでもない Further, it goes without saying that the present invention can be implemented in various modes without departing from the scope of the present invention.
110 荷重支持部
100 木質柱(木質構造部材の一例)
101 木質柱(木質構造部材の一例)
120 燃止層
123 燃止部(燃止層)
130 燃代層
200 木質柱(木質構造部材の一例)
210 荷重支持部
220 燃止層
230 燃代層
300 木質梁(木質構造部材の一例)
310 荷重支持部
320 燃止層
330 燃代層
S 石膏(充填材の一例)
110 load supporting part 100 wooden pillar (an example of a wooden structural member)
101 Wooden pillar (an example of wooden structural member)
120 Fuel stop layer 123 Fuel stop part (fuel stop layer)
130 Combustion layer 200 Wooden pillar (an example of a wooden structural member)
210 Load-bearing part 220 Fire stop layer 230 Combustion layer 300 Wood beam (an example of wood structural member)
310 Load-bearing part 320 Fire-stop layer 330 Combustion layer
S Gypsum (an example of filler)
Claims (4)
前記荷重支持部の全周面に密着して設けられ、不燃材料又は前記荷重支持部よりも着火温度が高い材料で構成された燃止層と、
前記燃止層の中に埋設された金網と、
を備える木質構造部材。 Cylindrical wood load support,
Provided in close contact with the entire circumferential surface of the load supporting portion, a fire stop layer made of a material having a higher ignition temperature than the load supporting portion or the load supporting portion,
A wire mesh embedded in the fire-stop layer,
A wooden structural member including.
前記荷重支持部の全周面に密着して設けられ、不燃材料又は前記荷重支持部よりも着火温度が高い材料で構成された燃止層と、
前記燃止層の中に埋設された金網と、
を備える木質構造部材。 A load supporting portion made of wood and having a substantially rectangular column shape whose corners are arc-shaped,
Provided in close contact with the entire circumferential surface of the load supporting portion, a fire stop layer made of a material having a higher ignition temperature than the non-combustible material or the load supporting portion,
A wire mesh embedded in the fire-stop layer,
A wooden structural member including.
請求項1又は請求項2に記載の木質構造部材。 The flame-retardant layer is made of gypsum,
The wooden structural member according to claim 1 or 2.
請求項1又は請求項2に記載の木質構造部材。 The fuel stop layer is made of grout material,
The wooden structural member according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018083785A JP6684848B2 (en) | 2018-04-25 | 2018-04-25 | Wood structural member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018083785A JP6684848B2 (en) | 2018-04-25 | 2018-04-25 | Wood structural member |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015119071A Division JP6648989B2 (en) | 2015-06-12 | 2015-06-12 | Wood structural members |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018131901A JP2018131901A (en) | 2018-08-23 |
JP6684848B2 true JP6684848B2 (en) | 2020-04-22 |
Family
ID=63248153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018083785A Active JP6684848B2 (en) | 2018-04-25 | 2018-04-25 | Wood structural member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6684848B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005036456A (en) * | 2003-07-17 | 2005-02-10 | Ohbayashi Corp | Structure material and building |
JP5602902B2 (en) * | 2013-03-13 | 2014-10-08 | 株式会社 協創 | Tunnel fireproofing method |
JP6245893B2 (en) * | 2013-08-22 | 2017-12-13 | 株式会社竹中工務店 | Joint structure of wood structure material and wall |
-
2018
- 2018-04-25 JP JP2018083785A patent/JP6684848B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018131901A (en) | 2018-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6648989B2 (en) | Wood structural members | |
JP5859250B2 (en) | Bonding structure of different structural members and composite structure | |
JP6482224B2 (en) | Structural member | |
JP2018123628A (en) | Wood member joining structure | |
JP6726450B2 (en) | Joining structure of wooden structural members | |
JP4292119B2 (en) | Structural materials and buildings | |
JP7087263B2 (en) | Joint structure of wooden beams | |
JP6245909B2 (en) | Column beam structure | |
JP2005036456A (en) | Structure material and building | |
JP6684848B2 (en) | Wood structural member | |
JP6192252B1 (en) | Seismic structural members | |
JP4314081B2 (en) | Manufacturing method and joining method of composite wood structure material | |
JP7120702B2 (en) | Steel beam fireproof covering structure | |
JP5808590B2 (en) | Column beam connection structure and column beam connection method | |
JP6934288B2 (en) | Joint structure | |
JP6592959B2 (en) | Joining structure between refractory structural column and refractory structural beam and joining method between refractory structural column and refractory structural beam | |
JP2024008637A (en) | Joint structure | |
JP6423655B2 (en) | Floor structure | |
JP6010430B2 (en) | Floor structure | |
JP6368540B2 (en) | Floor structure | |
JP5925427B2 (en) | Column beam connection structure and column beam connection method | |
JP2019090270A (en) | Wooden wall | |
JP5805436B2 (en) | Seismic structure | |
JP6660724B2 (en) | Column joint structure | |
JP7494423B2 (en) | Wooden column-beam joint structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180425 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190326 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190520 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191015 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191114 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200324 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200330 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6684848 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R157 | Certificate of patent or utility model (correction) |
Free format text: JAPANESE INTERMEDIATE CODE: R157 |