JP6684320B2 - Rotating electric machine cooling configuration - Google Patents

Rotating electric machine cooling configuration Download PDF

Info

Publication number
JP6684320B2
JP6684320B2 JP2018136379A JP2018136379A JP6684320B2 JP 6684320 B2 JP6684320 B2 JP 6684320B2 JP 2018136379 A JP2018136379 A JP 2018136379A JP 2018136379 A JP2018136379 A JP 2018136379A JP 6684320 B2 JP6684320 B2 JP 6684320B2
Authority
JP
Japan
Prior art keywords
flow dividing
electric machine
flow
groove
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018136379A
Other languages
Japanese (ja)
Other versions
JP2020014354A (en
Inventor
黎振安
蕭瑞濱
鄭立巍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiwin Mikrosystem Corp
Original Assignee
Hiwin Mikrosystem Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiwin Mikrosystem Corp filed Critical Hiwin Mikrosystem Corp
Priority to JP2018136379A priority Critical patent/JP6684320B2/en
Publication of JP2020014354A publication Critical patent/JP2020014354A/en
Application granted granted Critical
Publication of JP6684320B2 publication Critical patent/JP6684320B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Motor Or Generator Frames (AREA)
  • Motor Or Generator Cooling System (AREA)

Description

本発明は、回転電機に関し、特に回転電機の冷却構成に関する。 The present invention relates to a rotary electric machine, and more particularly to a cooling structure for a rotary electric machine.

工業自動化技術の急速な発展に伴い、回転電機は様々な複合工作機械での高速回転の加工に広く適用されてきた。回転電機は、ステータコアの鉄損及びコイルの銅損によって熱が発生するので、工作機械の主軸を駆動させる場合、高温による熱変形が加工精度に大きく影響する。したがって、現在の回転電機における放熱設計には、モータケースに冷却流路を設け、冷却液を流入させてケースに直接接触させることにより冷却を行うことがトレンドである。 With the rapid development of industrial automation technology, rotary electric machines have been widely applied to high-speed machining of various compound machine tools. In a rotating electric machine, heat is generated by iron loss of a stator core and copper loss of a coil. Therefore, when driving a spindle of a machine tool, thermal deformation due to high temperature greatly affects machining accuracy. Therefore, in the heat radiation design of the present rotary electric machines, it is a trend to provide a cooling flow path in the motor case and allow the cooling liquid to flow into and directly contact the case for cooling.

従来の冷却流路は、互いに交差せず平行するように並設されるらせん状の流路設計があり、長軸の二つの対向端のそれぞれに入水口及び出水口が設けられ、冷却媒体が入水口かららせん状の流路を介して出水口へ流出することにより熱が奪われて、放熱冷却の目的が達成される。しかしながら、上記のらせん状の流路設計は、冷却経路の距離が比較的長く、圧力損失の増加をもたらし、冷却媒体の流速が入水口から出水口まで次第に低下するようにして、冷却効率を低下させる連続流路である。 Conventional cooling channels have a spiral channel design that is arranged in parallel so that they do not cross each other, and water inlets and outlets are provided at each of the two opposing ends of the long axis, and the cooling medium is The heat is removed by flowing out from the water inlet to the water outlet through the spiral flow path, and the purpose of radiative cooling is achieved. However, the spiral flow path design described above has a relatively long cooling path distance, causes an increase in pressure loss, and causes the cooling medium flow velocity to gradually decrease from the water inlet to the water outlet, thereby lowering the cooling efficiency. This is a continuous flow path.

そこで、如何に冷却流路の設計によって流路内の圧力損失の低下と冷却効率の向上を実現するかことは、回転電機の冷却設計での大きな挑戦になる。 Therefore, how to design the cooling flow path to reduce the pressure loss in the flow path and improve the cooling efficiency is a great challenge in the cooling design of the rotating electric machine.

そこで、本発明の主な目的は、非対称的に配置される第1の分流領域と第2の分流領域によって、交差する経路で流れる冷却媒体を提供して、回転電機の放熱効率を向上する回転電機の冷却構成を提供することにある。なお、各第1の分流領域中の逓減型流路設計により、冷却媒体の出口での流速及び熱対流係数を向上させて、出口での放熱効果を強化させ、モータ全体の放熱をより均一にする。 Therefore, a main object of the present invention is to provide a cooling medium that flows in an intersecting path by the asymmetrical first and second flow dividing regions to improve the heat dissipation efficiency of the rotating electric machine. To provide a cooling configuration for an electric machine. In addition, the flow rate and the thermal convection coefficient at the outlet of the cooling medium are improved by the design of the diminishing flow path in each of the first flow dividing regions, the heat radiation effect at the outlet is enhanced, and the heat radiation of the entire motor is made more uniform. To do.

よって、上記の目的を達成するために、本発明の提供する回転電機の冷却構成は、第1の半環状周面と第2の半環状周面を備える環状周面を有するスリーブと、複数の流路を形成するように、互いに平行してスリーブの環状周面に設置される複数の分流壁と、複数の第1の分流領域を形成するように、それぞれ第1の半環状周面における対応する分流壁の間に設置される複数の第1のストッパ壁と、複数の第2の分流領域を形成するように、それぞれ第2の半環状周面における対応する分流壁の間に設置される複数の第2のストッパ壁とを有し、また、それらの第1の分流領域とそれらの第2の分流領域とは非対称的に配置される。 Therefore, in order to achieve the above-mentioned object, a cooling structure for a rotating electric machine provided by the present invention comprises: a sleeve having an annular peripheral surface having a first semi-annular peripheral surface and a second semi-annular peripheral surface; Correspondences on the first semi-annular peripheral surface so as to form a plurality of flow dividing walls and a plurality of first flow dividing regions that are installed parallel to each other on the annular peripheral surface of the sleeve so as to form a flow path. A plurality of first stopper walls that are installed between the flow dividing walls and a plurality of second flow dividing regions that are respectively installed between the corresponding flow dividing walls on the second semi-annular peripheral surface. It has a plurality of 2nd stopper walls, and those 1st division fields and those 2nd division fields are asymmetrically arranged.

本発明の実施例において、第1のストッパ壁の各々には、二つの隣り合う第1の分流領域を連通させる溝を含む。 In an embodiment of the present invention, each of the first stopper walls includes a groove that connects two adjacent first flow dividing regions.

本発明の実施例において、上記溝は弧状の外形又は矩形状の外形を呈する。 In an embodiment of the present invention, the groove has an arcuate outer shape or a rectangular outer shape.

本発明の実施例において、上記溝の底面が上記環状周面に平行し、且つ上記溝の二つの対向する側面が互いに平行する。 In an embodiment of the invention, the bottom surface of the groove is parallel to the annular peripheral surface and the two opposite side surfaces of the groove are parallel to each other.

本発明の実施例において、回転電機の冷却構成は、入水孔及び出水孔を備え、スリーブに嵌着されるハウジングをさらに有し、入水孔及び出水孔が、それぞれ二つの第1の分流領域に対応してハウジングの両端に設置される。 In the embodiment of the present invention, the cooling structure of the rotating electric machine includes a water inlet hole and a water outlet hole, and further has a housing fitted to the sleeve, and the water inlet hole and the water outlet hole are respectively provided in two first flow dividing regions. Correspondingly installed on both ends of the housing.

本発明の実施例において、入水孔に対応する第1の分流領域の流路数は、出水孔に対応する第1の分流領域の流路数より多い。 In the embodiment of the present invention, the number of channels in the first flow dividing region corresponding to the water inlet is larger than the number of channels in the first flow dividing region corresponding to the water outlet.

本発明の実施例において、入水孔に対応する第1の分流領域の流路数は、少なくとも出水孔に対応する第1の分流領域の流路数の1.5倍である。 In the embodiment of the present invention, the number of channels in the first flow dividing region corresponding to the water inlet is at least 1.5 times the number of channels in the first flow dividing region corresponding to the water outlet.

本発明の実施例において、溝の幅は、少なくとも流路の幅の2倍である。 In an embodiment of the invention, the width of the groove is at least twice the width of the channel.

本発明の実施例において、流路の深さは、少なくとも溝の深さの2倍である。 In an embodiment of the present invention, the depth of the channel is at least twice the depth of the groove.

要するに、本発明に係る回転電機の冷却構成は、非対称的に配置される第1の分流領域と第2の分流領域により、交差の経路で流れる冷却媒体を提供することにより、回転電機の放熱効率を向上させる。なお、各第1の分流領域における逓減型流路設計により冷却媒体の出口での流速と熱対流係数を向上させて、出口での放熱効果を強化させ、モータ全体の放熱をより均一させる。 In short, the cooling configuration of the rotating electric machine according to the present invention provides the cooling medium flowing in the intersecting path by the first diverting region and the second diverting region which are arranged asymmetrically, so that the heat dissipation efficiency of the rotating electric machine is improved. Improve. In addition, the flow rate and the thermal convection coefficient at the outlet of the cooling medium are improved by the design of the diminishing flow path in each of the first flow dividing regions, the heat radiation effect at the outlet is enhanced, and the heat radiation of the entire motor is made more uniform.

本発明の第1の実施例における回転電機の冷却構成の斜視図である。It is a perspective view of the cooling structure of the rotary electric machine in the 1st Example of this invention. 本発明の第1の実施例における回転電機のスリーブの分解図である。It is an exploded view of the sleeve of the rotary electric machine in the 1st example of the present invention. 本発明の第1の実施例における回転電機のスリーブの第1の半環状周面における前面図である。It is a front view in the 1st semicircular peripheral surface of the sleeve of the rotary electric machine in the 1st Example of this invention. 本発明の第1の実施例における回転電機のスリーブの第2の半環状周面における前面図である。It is a front view in the 2nd semicircular peripheral surface of the sleeve of the rotary electric machine in the 1st Example of this invention. 本発明の第1の実施例における回転電機のスリーブにおける第1の分流領域と第2の分流領域を説明する模式図である。It is a schematic diagram explaining the 1st flow dividing area | region and the 2nd flow dividing area | region in the sleeve of the rotary electric machine in the 1st Example of this invention. 図1の6−6方向に沿う断面図である。FIG. 6 is a sectional view taken along line 6-6 of FIG. 1. 本発明の第1の実施例における回転電機のスリーブにおける溝の構成を示す模式図である。It is a schematic diagram which shows the structure of the groove | channel in the sleeve of the rotary electric machine in the 1st Example of this invention. 本発明の他の溝の実施例の構成を示す模式図である。It is a schematic diagram which shows the structure of the Example of the other groove | channel of this invention. 本発明の他の溝の実施例の構成を示す模式図である。It is a schematic diagram which shows the structure of the Example of the other groove | channel of this invention. 本発明の第1の実施例における回転電機の冷却構成における溝の幅と深さの構成を示す模式図である。It is a schematic diagram which shows the structure of the width and the depth of the groove | channel in the cooling structure of the rotary electric machine in the 1st Example of this invention. 本発明の第1の実施例における回転電機の冷却構成における流路の幅と深さの構成を示す模式図である。It is a schematic diagram which shows the structure of the width and depth of the flow path in the cooling structure of the rotary electric machine in the 1st Example of this invention. 本発明における溝と流路の幅との比率と降下電圧及び温度との関係グラフである。It is a relationship graph of the ratio of the groove | channel and the width of a flow path, and the voltage drop and temperature in this invention. 本発明における溝と流路の深さとの比率と降下電圧及び温度との関係グラフである。It is a relationship graph of the ratio of the groove | channel and the depth of a flow path, and the voltage drop and temperature in this invention.

まず、図1〜図6を参照すると、本発明の第1の実施例において提供される回転電機の冷却構成は、スリーブ(10)、複数の分流壁(20)、複数の第1のストッパ壁(40)及び複数の第2のストッパ壁(50)を備える。 First, referring to FIG. 1 to FIG. 6, a cooling structure of a rotating electric machine provided in a first embodiment of the present invention includes a sleeve (10), a plurality of flow dividing walls (20), and a plurality of first stopper walls. (40) and a plurality of second stopper walls (50).

スリーブ(10)は、第1の半環状周面(12)及び第2の半環状周面(13)を備える環状周面(11)を有し、第1の半環状周面(12)と第2の半環状周面(13)とが対称的に配置される。分流壁(20)は、複数の流路(30)を形成するように、互いに平行してスリーブ(10)の環状周面(11)に配置される。 The sleeve (10) has an annular peripheral surface (11) comprising a first semi-annular peripheral surface (12) and a second semi-annular peripheral surface (13), the first semi-annular peripheral surface (12) and The second semi-annular peripheral surface (13) is arranged symmetrically. The flow dividing walls (20) are arranged parallel to each other on the annular peripheral surface (11) of the sleeve (10) so as to form a plurality of flow channels (30).

第1のストッパ壁(40)は、それぞれ複数の第1の分流領域(42)を形成するように第1の半環状周面(12)における対応する分流壁(20)の間に設置され、第2のストッパ壁(50)は、それぞれ複数の第2の分流領域(52)を形成するように、第2の半環状周面(13)における対応する分流壁(20)の間に設置される。第1の半環状周面(12)に配置される第1の分流領域(42)と第2の半環状周面(13)に配置される第2の分流領域(52)とが非対称的に配置される。 First stopper walls (40) are respectively installed between corresponding flow dividing walls (20) on the first semi-annular circumferential surface (12) so as to form a plurality of first flow dividing regions (42), The second stopper walls (50) are installed between the corresponding flow dividing walls (20) on the second semi-annular peripheral surface (13) so as to form a plurality of second flow dividing regions (52), respectively. It The first flow dividing region (42) arranged on the first semi-annular peripheral surface (12) and the second flow dividing region (52) arranged on the second semi-annular peripheral surface (13) are asymmetrical. Will be placed.

本実施例において、回転電機の冷却構成は、入水孔(61)及び出水孔(62)を備え、上記スリーブ(10)に嵌着されるハウジング(60)をさらに有し、入水孔(61)及び出水孔(62)が、それぞれ二つの第1の分流領域(42)に対応してハウジング(60)の両端に設置される。第1の半環状周面(12)に四つの第1の分流領域(42)が配置され、第1の分流領域(42)の各々は、それらに含まれる流路数が、入水孔(61)から出水孔(62)への方向に低減するように設計される。具体的に、入水孔(61)に対応する第1の分流領域(42)は六つの流路(30)を有するが、その隣り合う第1の分流領域(42)は五つの流路(30)を有する。出水孔(62)に対応する第1の分流領域(42)は二つの流路(30)を有するが、その隣り合う第1の分流領域(42)は三つの流路(30)を有する。しかしながら、本実施例における流路数は単なる例示であり、入水孔(61)に対応する第1の分流領域(42)の流路数が、少なくとも出水孔(62)に対応する第1の分流領域(42)の流路数の1.5倍であることは、設計原則である。 In this embodiment, the cooling structure of the rotating electric machine includes a water inlet hole (61) and a water outlet hole (62), and further has a housing (60) fitted to the sleeve (10), and the water inlet hole (61). And water discharge holes (62) are installed at both ends of the housing (60) corresponding to the two first flow dividing regions (42), respectively. Four first diversion regions (42) are arranged on the first semi-annular circumferential surface (12), and each of the first diversion regions (42) has a number of flow paths included therein that is equal to the water inlet hole (61). ) To the water exit hole (62). Specifically, the first flow dividing region (42) corresponding to the water inlet hole (61) has six flow channels (30), but the adjacent first flow dividing region (42) has five flow channels (30). ) Has. The first flow dividing region (42) corresponding to the water outlet hole (62) has two flow channels (30), and the adjacent first flow dividing region (42) has three flow channels (30). However, the number of flow paths in the present embodiment is merely an example, and the number of flow paths in the first flow dividing region (42) corresponding to the water inlet hole (61) is at least equal to that of the water outlet hole (62). It is a design principle that the number of flow paths in the region (42) is 1.5 times.

以上のように、本発明の第1の実施例において提供される回転電機の冷却構成は、非対称的に配置される第1の分流領域(42)及び第2の分流領域(52)により、交差の経路で流れる冷却媒体を提供するので、従来技術における連続な流路設計と比べると、放熱効率が良い。なお、第1の分流領域(42)の各々は、逓減型流路設計により、入口での流速が遅く熱対流係数が低いが、出口での流速が早く熱対流係数が高いので、出口での放熱効果を強化させ、モータ全体の放熱をより均一させる。 As described above, the cooling configuration of the rotating electric machine provided in the first embodiment of the present invention intersects with the first flow dividing region (42) and the second flow dividing region (52) which are arranged asymmetrically. Since the cooling medium that flows through the path is provided, the heat dissipation efficiency is good as compared with the continuous flow path design in the conventional technology. Each of the first flow dividing regions (42) has a slow flow velocity at the inlet and a low thermal convection coefficient due to the diminishing flow channel design, but has a high flow velocity at the outlet and a high thermal convection coefficient. Enhances the heat dissipation effect and makes the heat dissipation of the entire motor more uniform.

図7A〜図7Cを参照すると、第1のストッパ壁(40)における異なる溝(41)の実施例をそれぞれ示している。本実施例の第1の分流領域(42)における第1のストッパ壁(40)の各々は、連通する二つの隣り合う第1の分流領域(42)における溝(41)を備えるので、第1のストッパ壁(40)での冷却媒体による乱流を回避して、流路圧損を低下させる目的を達成させる。図7Aに示す実施例において、溝(41)の底面が、環状周面(11)に平行し、且つその溝(41)の二つの対向する側面が互いに平行する。図7Bに示す実施例において、溝(41)は、弧状の外形を呈する。図7Cに示す実施例において、溝(41)は、矩形状の外形を呈する。しかしながら、本発明に係る溝(41)は、上記実施例に制限されてなく、その連通面積が、目的とする流路圧損の低下程度に依存する。 Referring to FIGS. 7A-7C, examples of different grooves (41) in the first stopper wall (40) are shown respectively. Since each of the first stopper walls (40) in the first flow dividing region (42) of the present embodiment includes the groove (41) in two adjacent first flow dividing regions (42) communicating with each other, The turbulent flow due to the cooling medium at the stopper wall (40) is avoided, and the purpose of reducing the flow path pressure loss is achieved. In the embodiment shown in FIG. 7A, the bottom surface of the groove (41) is parallel to the annular peripheral surface (11) and the two opposite side surfaces of the groove (41) are parallel to each other. In the embodiment shown in FIG. 7B, the groove (41) has an arcuate outer shape. In the example shown in FIG. 7C, the groove (41) has a rectangular outer shape. However, the groove (41) according to the present invention is not limited to the above-mentioned embodiment, and its communication area depends on the target degree of decrease in flow path pressure loss.

図8〜図10を参照すると、図8Aと図8Bは、それぞれ本発明の第1の実施例における溝(41)の幅(W1)と深さ(D1)及び流路(30)の幅(W2)と深さ(D2)を示し、図9は、溝(41)の幅(W1)と流路(30)の幅(W2)との比率と降下電圧及び温度との関係グラフであり、図10は、溝(41)の深さ(D1)と流路(30)の深さ(D2)との比率と降下電圧及び温度との関係グラフである。溝(41)の幅(W1)と流路(30)の幅(W2)との比率が2〜4倍の間にある場合、流路内の圧損を低減させて好適な放熱効果を得るが、溝(41)の深さ(D1)と流路(30)の深さ(D2)との比率が0.1〜0.5倍の間にある場合も、流路内の圧損を低減させて好適な放熱効果を得る。 Referring to FIGS. 8 to 10, FIGS. 8A and 8B show the width (W1) and depth (D1) of the groove (41) and the width (W1) of the channel (30) in the first embodiment of the present invention, respectively. W2) and depth (D2) are shown, and FIG. 9 is a relationship graph of the ratio of the width (W1) of the groove (41) to the width (W2) of the flow path (30) and the voltage drop and temperature. FIG. 10 is a graph showing the relationship between the ratio of the depth (D1) of the groove (41) to the depth (D2) of the flow path (30), the voltage drop, and the temperature. When the ratio of the width (W1) of the groove (41) and the width (W2) of the flow channel (30) is between 2 and 4 times, pressure loss in the flow channel is reduced to obtain a suitable heat dissipation effect. Even when the ratio of the depth (D1) of the groove (41) and the depth (D2) of the flow channel (30) is between 0.1 and 0.5 times, the pressure loss in the flow channel is reduced. To obtain a suitable heat radiation effect.

上記流路構成設計の説明により、本発明に係る回転電機の冷却構成は、以下のような主要な効果が達成される。 From the above description of the flow path configuration design, the cooling configuration of the rotary electric machine according to the present invention achieves the following main effects.

1. 従来技術における連続な流路設計には、長距離の冷却経路による圧力損失が増加して冷却効率が低下することに対して、本発明に係る回転電機の冷却構成には、非対称的に配置される第1の分流領域(42)及び第2の分流領域(52)により、交差の経路で流れる冷却媒体を提供することにより、回転電機の放熱効率を向上させる。なお、第1の分流領域(42)の各々は、逓減型流路設計により冷却媒体の出口での流速と熱対流係数を向上させて、出口での放熱効果を強化させ、モータ全体の放熱をより均一させる。 1. In the conventional flow path design in the prior art, the pressure loss due to the long-distance cooling path increases and the cooling efficiency decreases, whereas the cooling configuration of the rotating electric machine according to the present invention is asymmetrical. The heat dissipating efficiency of the rotating electric machine is improved by providing the cooling medium flowing in the intersecting path by the first diversion region (42) and the second diversion region (52) arranged. It should be noted that each of the first flow dividing regions (42) improves the flow velocity and the thermal convection coefficient at the outlet of the cooling medium by the diminishing flow path design, enhances the heat radiation effect at the outlet, and dissipates the heat of the entire motor. Make more uniform.

2. 本発明における第1のストッパ壁(40)は、連通する二つの隣り合う第1の分流領域(42)における溝(41)により、第1のストッパ壁(40)での冷却媒体による乱流を回避して、流路圧損を低下させる目的を達成させる。なお、溝(41)と流路(30)とのアスペクト比を最適に設計することにより、二つの隣り合う第1の分流領域(42)の連通面積及び流路(30)の通路面積を制御して、流路内の圧損を低下させ好適な放熱効果を達成させる。 2. The first stopper wall (40) of the present invention is disturbed by the cooling medium in the first stopper wall (40) due to the groove (41) in the two adjacent first flow dividing regions (42) communicating with each other. To avoid the flow and achieve the purpose of reducing the flow path pressure loss. It is to be noted that the communication area between two adjacent first flow dividing regions (42) and the passage area of the flow channel (30) are controlled by optimally designing the aspect ratio of the groove (41) and the flow channel (30). As a result, the pressure loss in the flow path is reduced and a suitable heat dissipation effect is achieved.

Claims (8)

第1の半環状周面と第2の半環状周面を備える環状周面を有するスリーブと、
複数の流路を形成するように、互いに平行して前記スリーブの前記環状周面に設置される複数の分流壁と、
複数の第1の分流領域を形成するように、それぞれ前記第1の半環状周面における対応する前記分流壁の間に設置される複数の第1のストッパ壁と、
複数の第2の分流領域を形成するように、それぞれ前記第2の半環状周面における対応する前記分流壁の間に設置される複数の第2のストッパ壁と、を有し、
また、前記第1の分流領域と前記第2の分流領域とは非対称的に配置され、
入水孔及び出水孔を備え、前記スリーブに嵌着されるハウジングをさらに有し、前記入水孔及び前記出水孔が、それぞれ二つの第1の分流領域に対応して前記ハウジングの両端に設置され
前記入水孔に対応する前記第1の分流領域の流路数は、前記出水孔に対応する前記第1の分流領域の流路数より多い回転電機の冷却構成。
A sleeve having an annular peripheral surface having a first semi-annular peripheral surface and a second semi-annular peripheral surface;
A plurality of flow dividing walls installed in parallel with each other on the annular peripheral surface of the sleeve so as to form a plurality of flow paths;
A plurality of first stopper walls provided between the corresponding flow dividing walls on the first semi-annular circumferential surface so as to form a plurality of first flow dividing regions;
A plurality of second stopper walls installed between the corresponding flow dividing walls in the second semi-annular peripheral surface so as to form a plurality of second flow dividing regions, respectively,
Further, the first flow dividing region and the second flow dividing region are arranged asymmetrically,
The housing further includes a housing having a water inlet hole and a water outlet hole and fitted into the sleeve, wherein the water inlet hole and the water outlet hole are installed at both ends of the housing corresponding to two first flow dividing regions, respectively. ,
The cooling structure of the rotating electric machine , wherein the number of channels in the first flow dividing region corresponding to the water inlet hole is larger than the number of channels in the first flow dividing region corresponding to the water outlet hole .
前記第1のストッパ壁の各々は、二つの隣り合う第1の分流領域を連通させる溝を含む請求項1に記載の回転電機の冷却構成。 The cooling structure for a rotary electric machine according to claim 1, wherein each of the first stopper walls includes a groove that connects two adjacent first flow dividing regions. 前記溝は、弧状の外形を呈する請求項2に記載の回転電機の冷却構成。 The cooling structure for a rotating electric machine according to claim 2, wherein the groove has an arcuate outer shape. 前記溝は、矩形状の外形を呈する請求項2に記載の回転電機の冷却構成。 The cooling structure for a rotating electric machine according to claim 2, wherein the groove has a rectangular outer shape. 前記溝の底面が前記環状周面に平行し、且つ前記溝の二つの対向する側面が互いに平行する請求項2に記載の回転電機の冷却構成。 3. The cooling structure for a rotary electric machine according to claim 2, wherein a bottom surface of the groove is parallel to the annular peripheral surface, and two facing side surfaces of the groove are parallel to each other. 前記入水孔に対応する前記第1の分流領域の流路数は、少なくとも前記出水孔に対応する前記第1の分流領域の流路数の1.5倍である請求項1に記載の回転電機の冷却構成。 The rotation according to claim 1 , wherein the number of channels in the first flow dividing region corresponding to the water inlet hole is at least 1.5 times the number of channels in the first flow dividing region corresponding to the water outlet hole. Cooling structure of electric machine. 前記溝の幅は、少なくとも前記流路の幅の2倍である請求項2に記載の回転電機の冷却構成,。 The cooling structure for a rotating electric machine according to claim 2, wherein the width of the groove is at least twice the width of the flow path. 前記流路の深さは、少なくとも前記溝の深さの2倍である請求項2に記載の回転電機の冷却構成。 The cooling structure for a rotating electric machine according to claim 2, wherein the depth of the flow path is at least twice the depth of the groove.
JP2018136379A 2018-07-20 2018-07-20 Rotating electric machine cooling configuration Active JP6684320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018136379A JP6684320B2 (en) 2018-07-20 2018-07-20 Rotating electric machine cooling configuration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018136379A JP6684320B2 (en) 2018-07-20 2018-07-20 Rotating electric machine cooling configuration

Publications (2)

Publication Number Publication Date
JP2020014354A JP2020014354A (en) 2020-01-23
JP6684320B2 true JP6684320B2 (en) 2020-04-22

Family

ID=69170138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018136379A Active JP6684320B2 (en) 2018-07-20 2018-07-20 Rotating electric machine cooling configuration

Country Status (1)

Country Link
JP (1) JP6684320B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01131256U (en) * 1988-03-01 1989-09-06
JP2013141334A (en) * 2011-12-28 2013-07-18 Denso Corp Rotary electric machine
JP5594350B2 (en) * 2012-11-27 2014-09-24 ダイキン工業株式会社 Electric motor
JP6302736B2 (en) * 2014-04-28 2018-03-28 日立オートモティブシステムズ株式会社 Rotating electric machine
CN206060428U (en) * 2016-08-31 2017-03-29 宁波菲仕电机技术有限公司 A kind of fluid-cooled electrical machine housing

Also Published As

Publication number Publication date
JP2020014354A (en) 2020-01-23

Similar Documents

Publication Publication Date Title
US8053938B2 (en) Enhanced motor cooling system
US10523084B2 (en) Cooling system for an electric machine
JP2007143247A (en) Water-cooled motor, and method of processing waterway in its motor frame
JP6791463B1 (en) Motors and motor devices
WO2015087707A1 (en) Drive module
JP6452284B2 (en) motor
CN108633233B (en) Liquid cooling radiator and power electronic equipment
KR20090073789A (en) Cooling device for electric motor
JP5699824B2 (en) Electric motor
JP2019221054A (en) Cooling device of electric motor
CN115882622A (en) Axial magnetic field motor and stator cooling structure and manufacturing method thereof
JP2007209134A (en) Dynamo device
JP6684320B2 (en) Rotating electric machine cooling configuration
CN110676981A (en) Cooling structure of rotary motor
JP6684318B2 (en) Cooling structure of rotating electric machine
TWI697177B (en) Cooling structure of rotary motor
JPWO2018066076A1 (en) Rotating electric machine and rotating electric machine stator
KR102041248B1 (en) Cooling structure of rotating electric motor
TWI697178B (en) Cooling structure of rotary motor
US10784741B2 (en) Cooling structure for rotary electric machine
CN110676971B (en) Cooling structure of rotary motor
CN210327237U (en) Liquid cooling casing and liquid cooling motor
KR20170086903A (en) Motor apparatus and stator core thereof
CN220356170U (en) Heat exchange chip, heat exchange core body and heat exchange device
JP3243324U (en) Cooling structure with adapter and adapter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200327

R150 Certificate of patent or registration of utility model

Ref document number: 6684320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250