JP6684112B2 - Method for manufacturing thermal barrier tile - Google Patents

Method for manufacturing thermal barrier tile Download PDF

Info

Publication number
JP6684112B2
JP6684112B2 JP2016040226A JP2016040226A JP6684112B2 JP 6684112 B2 JP6684112 B2 JP 6684112B2 JP 2016040226 A JP2016040226 A JP 2016040226A JP 2016040226 A JP2016040226 A JP 2016040226A JP 6684112 B2 JP6684112 B2 JP 6684112B2
Authority
JP
Japan
Prior art keywords
mass
clay
less
glass frit
frit powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016040226A
Other languages
Japanese (ja)
Other versions
JP2017154934A (en
Inventor
泰司 俣野
泰司 俣野
吉富 丈記
丈記 吉富
慎平 岡本
慎平 岡本
裕行 水津
裕行 水津
寛 小野村
寛 小野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui House Ltd
Krosaki Harima Corp
Original Assignee
Sekisui House Ltd
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui House Ltd, Krosaki Harima Corp filed Critical Sekisui House Ltd
Priority to JP2016040226A priority Critical patent/JP6684112B2/en
Publication of JP2017154934A publication Critical patent/JP2017154934A/en
Application granted granted Critical
Publication of JP6684112B2 publication Critical patent/JP6684112B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Finishing Walls (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、遮熱タイル製造方法に関する。 The present invention relates to a method of manufacturing a heat insulating tile.

従来のタイル、特に屋根や外壁、外床等、屋外に使用されるタイルは、直射日光により温められる。特に熱を吸収しやすい濃色の磁器タイルでは、特に夏場の炎天下において60℃〜80℃もの高温に達することがある。そしてその熱は建物の室内に伝わり、夏場の冷房効果を効率的に得るための妨げになっている。また、近年はタイルを躯体に張り付ける際、モルタルで施工するのみでなく、有機系の接着剤を用いて施工することが多くなってきている。このような接着剤を用いる施工ではタイルの温度が高温になれば、接着剤の劣化が促進され最悪の場合タイル剥離の問題が懸念される。   Conventional tiles, especially those used outdoors, such as roofs, outer walls, and outer floors, are warmed by direct sunlight. Especially in a dark-colored porcelain tile that easily absorbs heat, the temperature may reach as high as 60 ° C. to 80 ° C. especially in the hot sun in summer. And the heat is transmitted to the interior of the building, which is an obstacle to the efficient cooling effect in the summer. Further, in recent years, when the tiles are attached to the body, not only mortar but also organic adhesives are often used. In the construction using such an adhesive, if the temperature of the tile becomes high, deterioration of the adhesive is promoted, and in the worst case, there is a fear of tile peeling.

タイル表面が高温になるのを防止する技術としては、特許文献1に、表面に赤外線反射性を有する無機顔料を含む釉薬を施すことで遮熱性を確保する技術が開示されている。   As a technique for preventing the tile surface from reaching a high temperature, Patent Document 1 discloses a technique for ensuring heat shield property by applying a glaze containing an inorganic pigment having infrared reflectivity to the surface.

特開2009−143794号公報JP, 2009-143794, A

しかしながら、特許文献1の技術においては、タイル表面に赤外線反射特性を有する無機顔料を含む釉薬を施す処理が必要であり、製造に手間とコストを要していた。また、釉薬を施すとタイル表面が光ってしまい、意匠性に問題があった。さらにタイルには、所定の強度も必要である。   However, in the technique of Patent Document 1, the tile surface needs to be treated with a glaze containing an inorganic pigment having an infrared reflection property, which requires labor and cost for production. Further, when the glaze is applied, the tile surface shines, which causes a problem in design. In addition, the tile must have a certain strength.

そこで本発明が解決しようとする課題は、遮熱タイルにおいて、手間とコストを要することなく、意匠性、遮熱性及び強度を確保できる技術を提供することにある。   Then, the subject which this invention tends to solve is providing the technique which can secure design property, heat insulation, and intensity | strength, without requiring effort and cost in a heat insulation tile.

本発明の一観点によれば、タイル用の粘土(以下、単に「粘土」という。)を5質量%以上30質量%以下、粘土を除く白色系を呈するアルミナ−シリカ質原料を40質量%以上、粒径が0.2mm以下のガラスフリット粉末(以下、単に「ガラスフリット粉末」という。)を0.5質量%以上5質量%未満含み、粘土/ガラスフリット粉末の質量比が3以上15以下である原料配合物を混練、成形、焼成する、遮熱タイルの製造方法が提供される。 According to one aspect of the present invention, 5% by mass or more and 30% by mass or less of clay for tile (hereinafter, simply referred to as “clay”) , and 40% by mass or more of an alumina-siliceous raw material exhibiting a white system excluding clay. Containing 0.5 mass% or more and less than 5 mass% of glass frit powder having a particle diameter of 0.2 mm or less (hereinafter, simply referred to as “glass frit powder”), and having a mass ratio of clay / glass frit powder of 3 or more and 15 or less. There is provided a method for producing a heat-insulating tile, which comprises kneading, molding, and firing the raw material mixture.

本発明において原料配合物の主原料であるアルミナ−シリカ質原料はその色が白色系であるので、本発明の遮熱タイルも白色系を呈する。これにより、日光の反射率が向上するので、釉薬を施すといった手間とコストを要することなく遮熱性を確保できる。また、白色系を呈することで意匠性も確保できる。さらに、原料配合物にガラスフリット粉末を適量含有するので、焼成中に適量の液相が生成することで強度を確保できるとともに、比較的低温で焼成することができるのでエネルギーコストを低減できる。しかも、ガラスフリット粉末の含有量は5質量%未満に限定しているので、焼成中の液相の増加による発色を低減でき、遮熱性及び意匠性が害されることを防止できる。   Since the color of the alumina-siliceous raw material, which is the main raw material of the raw material blend in the present invention, is white, the thermal insulation tile of the present invention also exhibits white. As a result, the reflectance of sunlight is improved, so that the heat shielding property can be secured without the labor and cost of applying glaze. Further, by exhibiting a white color, designability can be secured. Further, since the raw material blend contains an appropriate amount of glass frit powder, strength can be ensured by producing an appropriate amount of liquid phase during firing, and energy cost can be reduced because firing can be performed at a relatively low temperature. Moreover, since the content of the glass frit powder is limited to less than 5% by mass, it is possible to reduce the color development due to the increase of the liquid phase during firing, and prevent the heat shielding property and the design property from being impaired.

遮熱タイルの遮熱性の評価方法を示す概念図である。It is a conceptual diagram which shows the evaluation method of the heat insulation of a heat insulation tile.

本発明において原料配合物は、粘土を除くアルミナ−シリカ質原料を40質量%以上、粘土を5質量%以上30質量%以下、ガラスフリット粉末を0.5質量%以上5質量%未満含有する。   In the present invention, the raw material mixture contains 40% by mass or more of an alumina-siliceous raw material excluding clay, 5% by mass or more and 30% by mass or less of clay, and 0.5% by mass or more and less than 5% by mass of glass frit powder.

粘土を除くアルミナ−シリカ質原料としては、ろう石、シャモット、ムライト、ボーキサイトなどが挙げられ、いずれも白色系を呈する。これらのアルミナ−シリカ質原料が40質量%未満であると、遮熱タイルがそもそも白色系を呈さなくなり、また、焼結が進み過ぎて発色するので、遮熱性及び意匠性が低下する。   Examples of the alumina-siliceous raw material excluding clay include wax, chamotte, mullite, bauxite and the like, all of which are white. When the content of these alumina-siliceous raw materials is less than 40% by mass, the heat-shielding tile does not exhibit a white color in the first place, and since the sintering proceeds too much to develop a color, the heat-shielding property and the designability are deteriorated.

粘土としては、タイルの原料として一般的に使用されているものを使用することができる。粘土が5質量%未満であると成型性の低下(素地密度の低下)により強度が低下する。一方、粘土が30質量%を超えると、粘土は一般的に不純物成分として鉄分を多く含むため、焼成時に発色して遮熱性及び意匠性が低下する。原料配合物中の粘土の含有量は10質量%以上21質量%以下であることが好ましい。   As the clay, those generally used as a raw material for tiles can be used. When the amount of clay is less than 5% by mass, the strength is lowered due to the deterioration of moldability (reduction of the base density). On the other hand, when the amount of clay exceeds 30% by mass, the clay generally contains a large amount of iron as an impurity component, so that the color develops during firing, and the heat shielding property and designability deteriorate. The content of clay in the raw material mixture is preferably 10% by mass or more and 21% by mass or less.

ガラスフリット粉末としては、前述のとおり粒径が0.2mm以下のものを使用する。このガラスフリット粉末が0.5質量%未満であると焼成中に液相が不足して焼結性も低下するので、強度が低下する。一方、ガラスフリット粉末が5質量%を超えると、焼成中に液相が過剰となり、各原料中の不純物として存在する鉄分等が液相を介して全体に拡散し、遮熱タイルが黄色や茶色に発色するので、遮熱性及び意匠性が低下する。例えば、ガラスフリット粉末が5質量%を超えると、アルミナーシリカ質原料に不可避的に含まれる鉄分等が焼成過程で発色してしまい、遮熱性及び意匠性が低下する。原料配合物中のガラスフリット粉末の含有量は1質量%以上3質量%以下であることが好ましい。また、ガラスフリット粉末の軟化点は900℃以下であることが好ましい。   As described above, the glass frit powder having a particle diameter of 0.2 mm or less is used. If this glass frit powder is less than 0.5% by mass, the liquid phase will be insufficient during firing and the sinterability will also decrease, resulting in a decrease in strength. On the other hand, when the glass frit powder exceeds 5% by mass, the liquid phase becomes excessive during firing, iron and the like existing as impurities in each raw material diffuse throughout the liquid phase, and the heat shield tile becomes yellow or brown. As the color develops, the heat shielding property and the design property are deteriorated. For example, when the glass frit powder exceeds 5% by mass, iron and the like inevitably contained in the alumina-silica raw material is colored in the firing process, and the heat shield property and the designability are deteriorated. The content of the glass frit powder in the raw material mixture is preferably 1% by mass or more and 3% by mass or less. The softening point of the glass frit powder is preferably 900 ° C or lower.

本発明において原料配合物中の粘土とガラスフリット粉末は反応焼結によって強度を発現するが、その質量比(粘土/ガラスフリット粉末の質量比)は3以上15以下となるようにする。この質量比が3未満であると、粘土とガラスフリット粉末の反応が不十分なため強度が低下する。この質量比が15を超えた場合も同様に強度が低下する。   In the present invention, the clay and the glass frit powder in the raw material mixture exhibit strength by reaction sintering, and the mass ratio (clay / glass frit powder mass ratio) is set to 3 or more and 15 or less. If this mass ratio is less than 3, the reaction between the clay and the glass frit powder is insufficient, resulting in a decrease in strength. When the mass ratio exceeds 15, the strength similarly decreases.

ここで、タイルの技術分野においてガラス原料を使用すること自体は、特開平11−199311号公報に開示されているように公知である。しかし、この特開平11−199311号公報の技術では、ガラス屑を5〜45wt%使用しているため焼成中に液相が過剰となる。液相が過剰になると前述のとおり、遮熱タイルが黄色や茶色に発色するので遮熱性及び意匠性が低下する。また、特開平11−199311号公報には「ガラス屑」を使用することが開示されているのみで、「粒径が0.2mm以下のガラスフリット粉末」を使用することは開示されていない。すなわち、本発明は「粒径が0.2mm以下のガラスフリット粉末」を前述のとおり特定の範囲で使用し、しかも粘土/ガラスフリット粉末の質量比を限定することで、意匠性、遮熱性及び強度をバランス良く確保できる点で、特開平11−199311号公報の技術を凌駕するものである。   Here, the use of glass raw materials per se in the technical field of tiles is known as disclosed in JP-A-11-199311. However, in the technique disclosed in Japanese Patent Laid-Open No. 11-199311, glass liquid is used in an amount of 5 to 45 wt%, so that the liquid phase becomes excessive during firing. As described above, when the liquid phase becomes excessive, the heat-shielding tile develops yellow or brown color, so that the heat-shielding property and the designability are deteriorated. Further, Japanese Patent Laid-Open No. 11-199311 discloses only the use of "glass scrap", not the use of "glass frit powder having a particle size of 0.2 mm or less". That is, the present invention uses "glass frit powder having a particle size of 0.2 mm or less" in a specific range as described above, and further, by limiting the mass ratio of clay / glass frit powder, designability, heat shielding property and It is superior to the technique disclosed in Japanese Patent Laid-Open No. 11-199311 in that the strength can be secured in a well-balanced manner.

表1に示す各例の原料配合物100質量%に対して適量(外掛けで3〜5質量%程度)の水を添加して混練し、所定の形状に成形した。その後、その成形体をトンネルキルンにより1260℃で焼成し、遮熱タイルとした。ここで、表1において「その他原料」にはガラス屑及びタルク(珪酸マグネシウム(3MgO・4SiO・HO))が含まれる。このうち「ガラス屑」は、粒径が0.2mm以下である「ガラスフリット粉末」に比べサイズ(粒径)が遥かに大きく、ガラスフリット粉末とは明確に区別されるものである。なお、ガラスフリット粉末としては軟化点が800℃のものを用いた。 An appropriate amount of water (about 3 to 5% by mass on the outside) was added to 100% by mass of the raw material mixture of each example shown in Table 1 and kneaded to form a predetermined shape. Then, the formed body was fired at 1260 ° C. in a tunnel kiln to obtain a heat shield tile. Here, the "other material" in Table 1 include glass fragments and talc (magnesium silicate (3MgO · 4SiO 2 · H 2 O)). Among them, the "glass waste" has a much larger size (particle diameter) than the "glass frit powder" having a particle diameter of 0.2 mm or less, and is clearly distinguished from the glass frit powder. The glass frit powder having a softening point of 800 ° C. was used.

各例の遮熱タイルについて、色、遮熱性及び曲げ強度をそれぞれ以下の要領で評価した。   With respect to the heat-shielding tile of each example, the color, heat-shielding property, and bending strength were evaluated according to the following procedures.

(1)色の評価
人間の目視により、白色、淡黄色、黄色、薄茶色、茶色、こげ茶色のいずれに該当するかを判定し、比較例1(黄色)を基準として相対評価した。表1では、比較例1よりも色がうすい場合(白色)を◎、比較例1よりも色が少しうすい場合(淡黄色)を○、比較例1と同等の場合(黄色)を△、比較例1よりも色が濃い場合(茶色、こげ茶色)を×として表記した。
(1) Evaluation of color It was judged by human eyes which one of white, light yellow, yellow, light brown, brown, and dark brown, and the relative evaluation was performed using Comparative Example 1 (yellow) as a reference. In Table 1, when the color is lighter than comparative example 1 (white), ⊚, when the color is a little lighter than comparative example 1 (pale yellow), it is ◯, when it is equivalent to comparative example 1, (yellow) is Δ, and comparative When the color was darker than that of Example 1 (brown, dark brown), it was expressed as x.

(2)遮熱性の評価
図1に概念的に示すように、評価対象の評価試料とアスファルトからなる基準試料とを対比して遮熱性を評価した。
評価試料及び基準試料は、いずれも30cm角、5cm厚の大きさとし、厚さ5cmの発泡スチロールで囲み、表面のみを表に出し、センサーを表面中央にセットした。センサーは、各試料に5.3mmの孔を開け、当該試料の裏面側から表面に通すことで表面中央にセットした。なお、センサーは黒色のためビームランプからのビーム(光線)の吸収が良く温度が上がる傾向にあるため、穿孔時に発生した切粉を掛け、センサー先端を薄く隠した。
予備試験により、基準試料の表面温度が照射開始から約3時間で60℃に到達する距離を確認し、試料とビームランプの距離(照射距離)をこれに合わせた。具体的には照射距離は565mm前後とし、試料により微調整した。
評価試料と基準試料は、同じ照射距離に調節して同じ条件で照射し、その間に3mm厚さの発泡スチロール板からなる隔壁を設置し、相互の光線の影響を排除した。
遮熱性の評価は、基準試料の表面温度が60℃の時の評価試料の表面温度との差が10℃以上ある場合、すなわち評価試料の表面温度が50℃以下の場合に遮熱効果が認められるとした。この温度差は15℃以上(評価試料の表面温度は45℃以下)であることが好ましい。
なお、遮熱性は、表1中の代表的な例についてのみ評価した。本発明の材料系においては、遮熱性は色と相関関係があるので、色の評価が◎、○、△、×のそれぞれの一例について遮熱性を評価した。
(2) Evaluation of heat-shielding property As shown conceptually in FIG. 1, the heat-shielding property was evaluated by comparing an evaluation sample to be evaluated with a reference sample made of asphalt.
The evaluation sample and the reference sample each had a size of 30 cm square and 5 cm thickness, were surrounded by styrofoam having a thickness of 5 cm, only the surface was exposed, and the sensor was set at the center of the surface. The sensor was set in the center of the surface of each sample by opening a hole of 5.3 mm and passing the sample from the back side to the front side. Since the sensor is black and absorbs the beam (light ray) from the beam lamp well, and the temperature tends to rise, the tip of the sensor was hidden by dusting with chips generated during perforation.
By a preliminary test, the distance at which the surface temperature of the reference sample reached 60 ° C. within about 3 hours from the start of irradiation was confirmed, and the distance between the sample and the beam lamp (irradiation distance) was adjusted to this. Specifically, the irradiation distance was set to about 565 mm, and fine adjustment was performed according to the sample.
The evaluation sample and the reference sample were adjusted to the same irradiation distance and irradiated under the same conditions, and a partition wall made of a styrene foam plate having a thickness of 3 mm was installed between them to eliminate the influence of mutual light rays.
The heat shield property is evaluated when the difference between the surface temperature of the reference sample and the surface temperature of the evaluation sample when the surface temperature is 60 ° C is 10 ° C or more, that is, when the surface temperature of the evaluation sample is 50 ° C or less. I was supposed to. This temperature difference is preferably 15 ° C. or higher (the surface temperature of the evaluation sample is 45 ° C. or lower).
The heat shield property was evaluated only for the representative examples in Table 1. In the material system of the present invention, since the heat shielding property has a correlation with the color, the heat shielding property was evaluated for each of the color evaluations of ⊚, ◯, Δ and ×.

(3)曲げ強度の評価
曲げ強度は、JIS R2213(耐火れんがの曲げ強さの試験方法)に準拠して評価した。
(3) Evaluation of bending strength The bending strength was evaluated according to JIS R2213 (Test method for bending strength of refractory bricks).

(4)総合評価
色の評価が◎、○、又は△であり、かつ曲げ強度が15MPa以上の場合を合格とした。一方、色の評価が×、又は曲げ強度が10MPa以下の場合を不合格とした。
(4) Comprehensive Evaluation A case in which the color evaluation was ⊚, ◯, or Δ and the bending strength was 15 MPa or more was regarded as acceptable. On the other hand, the case where the color evaluation was x or the bending strength was 10 MPa or less was regarded as a failure.

表1に示すとおり、本発明の範囲内にある実施例1〜9はいずれも総合評価が合格であり、良好な意匠性、遮熱性及び強度を確保できた。特に、粘土及びガラスフリット粉末の含有量と粘土/ガラスフリットの質量比が好ましい範囲(粘土:10質量%以上21質量%以下、ガラスフリット粉末:1質量%以上3質量%以下、質量比:7以上10以下)にある実施例1〜3は、さらに良好な意匠性、遮熱性及び強度を確保できた。なお、通常、タイルの焼成温度は1300〜1400℃程度であるが、実施例1〜9では1260℃という低温焼成で、良好な意匠性、遮熱性及び強度を確保できた。   As shown in Table 1, all of Examples 1 to 9 within the scope of the present invention passed the comprehensive evaluation, and good designability, heat shielding property and strength could be secured. In particular, the content of clay and glass frit powder and the mass ratio of clay / glass frit are in a preferable range (clay: 10% by mass to 21% by mass, glass frit powder: 1% by mass to 3% by mass, mass ratio: 7). In Examples 1 to 3 described above (10 or less), more excellent designability, heat shielding property and strength could be secured. In addition, normally, the firing temperature of the tile is about 1300 to 1400 ° C., but in Examples 1 to 9, good designability, heat shielding property and strength could be secured by low temperature firing of 1260 ° C.

一方、比較例1は粘土が少ない例で、強度が低下した。比較例2はアルミナ−シリカ質原料が少ない例で、色の評価が×であった。
比較例3は粘土が多い例で、色の評価が×であった。
比較例4はガラスフリット粉末が少ない例で、強度が低下した。比較例5はガラスフリット粉末が多い例で、色の評価が×であった。
比較例6は粘土/ガラスフリットの質量比が小さい例、比較例7は前記質量比が大きい例で、いずれも強度が低下した。
On the other hand, Comparative Example 1 was an example in which the amount of clay was small, and the strength decreased. Comparative Example 2 is an example in which the amount of the alumina-siliceous raw material is small, and the color evaluation is x.
Comparative Example 3 is an example containing a large amount of clay, and the color evaluation was x.
Comparative Example 4 is an example in which the glass frit powder is small, and the strength is lowered. Comparative Example 5 is an example in which there are many glass frit powders, and the color evaluation is x.
Comparative Example 6 is an example in which the mass ratio of clay / glass frit is small, and Comparative Example 7 is an example in which the above mass ratio is large.

なお、本発明の遮熱タイルは、屋根や外壁、外床等の屋外用タイルとして利用可能であり、また、製鉄や化学・発電プラント設備用遮熱タイル、工業炉用遮熱タイル、土木建築用遮熱タイルとしても利用可能である。   The heat-insulating tile of the present invention can be used as an outdoor tile such as a roof, an outer wall, and an outer floor, and also a heat-insulating tile for steelmaking, chemical / power plant equipment, a heat-insulating tile for an industrial furnace, and civil engineering. It can also be used as a heat insulating tile.

Claims (2)

タイル用の粘土(以下、単に「粘土」という。)を5質量%以上30質量%以下、粘土を除く白色系を呈するアルミナ−シリカ質原料を40質量%以上、粒径が0.2mm以下のガラスフリット粉末(以下、単に「ガラスフリット粉末」という。)を0.5質量%以上5質量%未満含み、粘土/ガラスフリット粉末の質量比が3以上15以下である原料配合物を混練、成形、焼成する、遮熱タイルの製造方法5% by mass or more and 30% by mass or less of clay for tile (hereinafter, simply referred to as “clay”) , 40% by mass or more of alumina-siliceous raw material exhibiting a white system excluding clay, and a particle size of 0.2 mm or less A raw material mixture containing 0.5% by mass or more and less than 5% by mass of glass frit powder (hereinafter, simply referred to as “glass frit powder”) and having a mass ratio of clay / glass frit powder of 3 or more and 15 or less is kneaded and molded. , firing the method of manufacturing a heat shield tiles. 前記原料配合物中の粘土の含有量が10質量%以上21質量%以下、ガラスフリット粉末の含有量が1質量%以上3質量%以下、粘土/ガラスフリット粉末の質量比が7以上10以下である、請求項1に記載の遮熱タイルの製造方法The content of clay in the raw material mixture is 10% by mass or more and 21% by mass or less, the content of glass frit powder is 1% by mass or more and 3% by mass or less, and the mass ratio of clay / glass frit powder is 7% or more and 10% or less. The method for manufacturing a thermal barrier tile according to claim 1, wherein
JP2016040226A 2016-03-02 2016-03-02 Method for manufacturing thermal barrier tile Active JP6684112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016040226A JP6684112B2 (en) 2016-03-02 2016-03-02 Method for manufacturing thermal barrier tile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016040226A JP6684112B2 (en) 2016-03-02 2016-03-02 Method for manufacturing thermal barrier tile

Publications (2)

Publication Number Publication Date
JP2017154934A JP2017154934A (en) 2017-09-07
JP6684112B2 true JP6684112B2 (en) 2020-04-22

Family

ID=59808031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016040226A Active JP6684112B2 (en) 2016-03-02 2016-03-02 Method for manufacturing thermal barrier tile

Country Status (1)

Country Link
JP (1) JP6684112B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112805252B (en) 2018-08-08 2023-04-04 康宁股份有限公司 Method for manufacturing halogen-doped silica preform for optical fiber

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4021288A1 (en) * 1990-07-04 1992-01-09 Hoechst Ceram Tec Ag METHOD FOR PRODUCING A SILICALLY BONDED MATERIAL
JPH11199311A (en) * 1998-01-20 1999-07-27 Inax Corp Production of clay ceramic and caly ceramic
JP2000026154A (en) * 1998-07-07 2000-01-25 Inax Corp Production of white tile
JP2006347813A (en) * 2005-06-16 2006-12-28 Cosmic Garden:Kk Solar heat reflective glazing agent and thermal insulating ceramic external material using the same
JP5065231B2 (en) * 2007-11-21 2012-10-31 ダント−ホ−ルディングス株式会社 Low heat storage ceramics and manufacturing method thereof
JP2011226156A (en) * 2010-04-20 2011-11-10 Danto Holdings Corp High reflective white tile and its production method
JP5837467B2 (en) * 2012-08-23 2015-12-24 水澤化学工業株式会社 Activated clay for aromatic hydrocarbon treatment
JP6048737B2 (en) * 2012-12-03 2016-12-21 新吾 河野 Oil deterioration preventing agent using shirasu and method for producing the same
JP2014234361A (en) * 2013-05-31 2014-12-15 国立大学法人鳥取大学 Antibacterial-aromatic agent using aromatic distilled water of wood and metal-carrying calcined product
JP6221098B2 (en) * 2013-11-03 2017-11-01 環境テクノス株式会社 Molding composition

Also Published As

Publication number Publication date
JP2017154934A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
CN103342468B (en) Composite sheet of foam pyroceram and pure devitrified glass and preparation method thereof
JP6684112B2 (en) Method for manufacturing thermal barrier tile
CN103608304A (en) Crown structure
KR101175664B1 (en) Water soluble powder paint for fire resistance and heat insulation
JP2018035052A (en) Large ceramic sheet and manufacturing method therefor
KR101771677B1 (en) Refractory bricks for fireplaces emitting negative ions and far infrared rays
KR101659437B1 (en) Ceramic block having improved heat resistance and fire resistance
KR101558747B1 (en) Fire-proof board
CN104386953A (en) Fireproof thermal-insulation mortar and application method thereof
KR101924840B1 (en) Component for manufacturing bio-far ir glass tile and manufacturing method of bio-far ir glass tile
JP2014080792A (en) Heat-shielding material and formed body
JP5065231B2 (en) Low heat storage ceramics and manufacturing method thereof
KR101655162B1 (en) Fireproof doors and its manufacturing method
KR100403856B1 (en) Inorganic Building Materials Using Refused Glass And Method for Manufacturing The Same
de Caro et al. Archaeometric Investigations on Archaeological Findings from Palazzo Corsini Alla Lungara (Rome)
CN107352948A (en) A kind of magnesite exterior wall fireproof decorative panel
KR102240415B1 (en) Nano-Coated Ceramic Siding
Najar et al. Building materials from aluminium industry wastes
US3526523A (en) Refractory furnace wall coating
CN107020682A (en) A kind of production method of composite foamed ceramic plate and its application
US3428716A (en) Method of installing high temperature furnace insulation
CN106588114A (en) Processing method of concrete for anti-scaling wall
KR20190129606A (en) Inorganic composition for Lightweight Ondol Panel, method for producing the Prefabricated Ondol Panel used them, its Ondol Panel and the hot water heating system using it
US1288834A (en) Heat-insulating material and process for making the same.
JP5374334B2 (en) Cured body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200327

R150 Certificate of patent or registration of utility model

Ref document number: 6684112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250