JP6682176B2 - Strain measuring component and strain measuring method using the same - Google Patents

Strain measuring component and strain measuring method using the same Download PDF

Info

Publication number
JP6682176B2
JP6682176B2 JP2014162677A JP2014162677A JP6682176B2 JP 6682176 B2 JP6682176 B2 JP 6682176B2 JP 2014162677 A JP2014162677 A JP 2014162677A JP 2014162677 A JP2014162677 A JP 2014162677A JP 6682176 B2 JP6682176 B2 JP 6682176B2
Authority
JP
Japan
Prior art keywords
strain
plate
strain measuring
measuring component
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014162677A
Other languages
Japanese (ja)
Other versions
JP2016038326A (en
Inventor
啓祐 赤木
啓祐 赤木
山家 孝志
孝志 山家
将寛 近藤
将寛 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2014162677A priority Critical patent/JP6682176B2/en
Publication of JP2016038326A publication Critical patent/JP2016038326A/en
Application granted granted Critical
Publication of JP6682176B2 publication Critical patent/JP6682176B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

本発明は、歪測定部品に関し、特に硬化収縮に伴う残留応力の測定に好適な歪測定部品およびこれを用いた歪測定方法に関する。   The present invention relates to a strain measuring component, and more particularly to a strain measuring component suitable for measuring residual stress associated with curing shrinkage and a strain measuring method using the same.

樹脂や樹脂混練物を硬化させる工程を含む工業製品の製造において、安全性や信頼性を担保するためには、樹脂等の硬化収縮に伴う残留応力を正しく把握する必要があり、各種の歪ゲージやセンサが用いられている。   In order to ensure safety and reliability in the manufacturing of industrial products including the process of curing resin and resin kneaded products, it is necessary to correctly grasp the residual stress due to curing shrinkage of resin etc. And sensors are used.

特許文献1には、計測データを無線出力可能なセンサ体を、二つの金属板の間に配置した状態で樹脂モールドし、センサ体から三軸方向の圧力に関する出力データを受信することによって、センサ体にかかる主応力の方向及び大きさを計測し、樹脂モールド部品における、センサ体が配置される部位の内部応力を計測する技術が記載されている。   In Patent Document 1, a sensor body capable of wirelessly outputting measurement data is resin-molded in a state of being arranged between two metal plates, and the output data regarding the pressure in the three axial directions is received from the sensor body, and A technique is described in which the direction and magnitude of the principal stress are measured to measure the internal stress in a portion of the resin molded component where the sensor body is arranged.

特開2012−52891号公報JP 2012-52891 A

特許文献1の構成によれば、公知の歪ゲージに替えて、三軸方向の圧力に関する出力データを送受信し演算可能な、複雑な構成のセンサ体および計測装置を用意しなければならないという課題がある。   According to the configuration of Patent Document 1, in place of the known strain gauge, there is a problem that it is necessary to prepare a sensor body and a measuring device having a complicated configuration capable of transmitting and receiving output data regarding pressure in the three axial directions and performing calculation. is there.

すなわち、従来の歪ゲージでは、たとえば、樹脂または樹脂混練物を容器内で硬化させる際に生じる収縮応力や引っ張り応力による残留応力を、簡便かつ精度よく測定することができないという問題があった。   That is, the conventional strain gauge has a problem that residual stress due to shrinkage stress or tensile stress generated when the resin or the resin kneaded product is cured in the container cannot be easily and accurately measured.

そこで本発明は、上記課題を解決した歪測定部品およびこれを用いた歪測定方法を提供することを目的とする。   Therefore, it is an object of the present invention to provide a strain measuring component and a strain measuring method using the same, which solve the above problems.

上記の課題を解決するために、本発明の歪測定部品は、弾性を有する絶縁樹脂を成形してなる板状体と、入出力端子部を備えた歪検知部とを含み、前記入出力端子部は前記板状体から導出され、前記歪検知部は、前記板状体の板厚方向と歪検知方向が一致するように、前記板状体に埋設されてなることを特徴とする。   In order to solve the above-mentioned problems, a strain measuring component of the present invention includes a plate-shaped body formed by molding an insulating resin having elasticity, and a strain sensing unit having an input / output terminal unit, The section is derived from the plate-shaped body, and the strain sensing section is embedded in the plate-shaped body such that the plate thickness direction of the plate-shaped body and the strain sensing direction coincide with each other.

本発明の歪測定部品において、前記歪検知部は、金属抵抗体を備えてなることを特徴とする。   In the strain measuring component of the present invention, the strain sensing section includes a metal resistor.

本発明の歪測定部品において、前記歪検知部は、半導体抵抗体を備えてなることを特徴とする。   In the strain measuring component of the present invention, the strain sensing section includes a semiconductor resistor.

本発明の歪測定部品において、前記板状体の板面以外の面には、離型性を有する層を備えてなることを特徴とする。   In the strain measuring component of the present invention, a layer having releasability is provided on a surface other than the plate surface of the plate-shaped body.

本発明の歪測定方法は、被測定物の熱膨張係数と等しい熱膨張係数を有する、前記絶縁樹脂を備えた前記歪測定部品を用いることを特徴とする。   The strain measuring method of the present invention is characterized by using the strain measuring component having the insulating resin and having a coefficient of thermal expansion equal to a coefficient of thermal expansion of an object to be measured.

公知の代表的な歪ゲージは、絶縁性薄板上に金属箔が配されており、被測定物に絶縁性薄板を接着し、被測定物の伸縮、すなわち絶縁性薄板の伸縮とこれに付随した金属箔の抵抗値の変化から、歪量を測定する。   A well-known representative strain gauge has a metal foil arranged on an insulating thin plate, and the insulating thin plate is adhered to the object to be measured, so that the object to be measured expands and contracts, that is, the insulating thin plate expands and contracts. The strain amount is measured from the change in the resistance value of the metal foil.

たとえば、上面に開口部を有する容器に注入された樹脂混練物を硬化させると、樹脂混練物には、時間経過とともに内部に向かって収縮する力、すなわち収縮応力や、容器の内壁との接着に起因する引っ張り応力などが作用し、これらの力は、残留応力として硬化後の樹脂混練物内に残る。   For example, when a resin kneaded product injected into a container having an opening on the upper surface is cured, the resin kneaded product has a force that shrinks inward with the passage of time, that is, shrinkage stress and adhesion to the inner wall of the container. The resulting tensile stress acts, and these forces remain as residual stress in the resin kneaded product after curing.

公知の代表的な歪ゲージを用いて、容器内の対向する2つの内側壁間に生じた引っ張り応力を測定する場合を考える。歪ゲージは、絶縁性薄板の表裏面が、容器の底面に平行になるように、被測定物たる樹脂混練物内に埋設される。引っ張り応力は、歪ゲージの表裏面、すなわち絶縁性薄板の表裏面に密着した樹脂の伸縮による歪量として検出される。   Consider a case where a well-known representative strain gauge is used to measure the tensile stress generated between two opposing inner walls in the container. The strain gauge is embedded in the resin kneaded material as the object to be measured such that the front and back surfaces of the insulating thin plate are parallel to the bottom surface of the container. The tensile stress is detected as the amount of strain due to the expansion and contraction of the resin adhered to the front and back surfaces of the strain gauge, that is, the front and back surfaces of the insulating thin plate.

しかしながら、生じる引っ張り応力は微小で、出力は小さい。加えて、容器の開口部、すなわち樹脂混練物の液面から、底面に向かってはポアソン収縮が生じるために、歪ゲージの表面では引っ張り応力による歪量を正確に検知することができない。   However, the tensile stress generated is minute and the output is small. In addition, since Poisson contraction occurs from the opening of the container, that is, from the liquid surface of the resin kneaded material to the bottom surface, the strain amount due to the tensile stress cannot be accurately detected on the surface of the strain gauge.

また、上述の内側壁に生じた引っ張り応力、すなわち内側壁に垂直な方向の力を、最も検知しやすいはずの、絶縁性薄板の厚み部分の面積は小さい。  In addition, the tensile stress generated on the inner wall, that is, the force in the direction perpendicular to the inner wall, which is most likely to be detected, has a small area of the thickness portion of the insulating thin plate.

本発明による歪測定部品は、金属線、金属箔などの金属抵抗体または半導体抵抗体を含む歪検知部を、弾性を有する樹脂からなる板状体に、歪検知部の歪検知方向が板状体の板厚方向と略平行になるように埋設し、たとえば容器内の対向する2つの内側壁間に生じた引っ張り応力に起因する歪量を板状体の板面で検知する構成とする。   In the strain measuring component according to the present invention, a strain sensing part including a metal resistor such as a metal wire or a metal foil or a semiconductor resistor is a plate-shaped body made of a resin having elasticity, and the strain sensing direction of the strain sensing part is plate-shaped. It is embedded so as to be substantially parallel to the plate thickness direction of the body, and for example, the amount of strain caused by the tensile stress generated between two opposing inner sidewalls in the container is detected by the plate surface of the plate body.

すなわち、検知する面積が大きい板面で、微小な歪量を効率よく検知する構成とする。   That is, the configuration is such that a minute amount of strain is efficiently detected on a plate surface having a large area to be detected.

また、本発明による歪測定部品は、歪量を検知する板面以外の面に離型性を有する層を形成することで、樹脂混練物との接着強度を弱めて、可能な限り収縮応力の影響を排除した構成とする。   Further, the strain measurement component according to the present invention, by forming a layer having releasability on the surface other than the plate surface for detecting the amount of strain, weakens the adhesive strength with the resin kneaded material, and reduces the contraction stress as much as possible. Use a configuration that excludes the effects.

本発明による歪測定部品は、被測定物内に必要な個数を必要な個所に埋設し、歪検知部から導出された入出力端子部を外部の測定機器に接続して、被測定物内に生じる力を検知し、歪量を測定する。   The strain measurement component according to the present invention is embedded in a required number in the object to be measured, and the input / output terminal part derived from the strain sensing part is connected to an external measuring device to be placed in the object to be measured. The generated force is detected and the amount of strain is measured.

この際、被測定物の熱膨張係数と等しい、もしくは、ほぼ等しい熱膨張係数を有する材料で板状体を構成した歪測定部品を選択して用いることにより、より正確な歪量を得ることができる。   At this time, a more accurate strain amount can be obtained by selecting and using a strain measurement component in which a plate-shaped body is made of a material having a thermal expansion coefficient equal to or substantially equal to the thermal expansion coefficient of the measured object. it can.

本発明によれば、樹脂または樹脂混練物を容器内で硬化させる際に生じる残留応力を、低コストで、簡便かつ精度よく測定することができる歪測定部品および歪測定方法が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the strain measuring component and strain measuring method which can measure residual stress produced when hardening resin or a resin kneaded material in a container at low cost simply and accurately are obtained.

本発明の歪測定部品における第1の実施の形態を示す説明図である。It is explanatory drawing which shows 1st Embodiment in the distortion measurement component of this invention. 本発明の歪測定部品における第2の実施の形態を示す説明図である。It is explanatory drawing which shows 2nd Embodiment in the distortion measuring component of this invention. 本発明の歪測定部品および比較例における歪量測定結果を示す図である。It is a figure which shows the distortion amount measurement result in the distortion measuring component of this invention, and a comparative example.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(第1の実施の形態)
図1は本発明の歪測定部品における第1の実施の形態を示す説明図である。
(First embodiment)
FIG. 1 is an explanatory view showing a first embodiment of a strain measuring component of the present invention.

弾性を有する樹脂からなる板状体2の中心部に、絶縁性薄板上に金属箔パターンを形成してなる歪検知部1を、歪検知方向と板厚hの方向が一致するように埋設して、歪測定部品100を構成する。   A strain sensing portion 1 formed by forming a metal foil pattern on an insulating thin plate is embedded in the central portion of a plate-like body 2 made of a resin having elasticity so that the strain sensing direction and the direction of the plate thickness h coincide with each other. Then, the strain measuring component 100 is configured.

歪検知部1の端部から導出された入出力端子部11は、板状体の外部に引き出されている。   The input / output terminal portion 11 led out from the end of the strain sensing portion 1 is drawn out of the plate-shaped body.

歪検知部1は、金属抵抗体や半導体抵抗体を絶縁性薄板上にパターン配置した公知の歪ゲージから適宜選択して用いるのが好ましいが、板状体2を構成する樹脂に直接埋設してもよい。また、必要に応じて、1つの板状体の中に複数の歪検知部1を設けてもよい。   The strain sensing unit 1 is preferably selected from known strain gauges in which metal resistors and semiconductor resistors are pattern-arranged on an insulating thin plate, and is preferably used. However, the strain sensing unit 1 is directly embedded in the resin forming the plate-shaped body 2. Good. Moreover, you may provide the some distortion detection part 1 in one plate-shaped body as needed.

歪検知部1を埋設する位置はいずれでもよいが、検知対象外の応力の影響を受けにくい、板状体2の中央部近傍に配するのが好ましい。   The strain sensing unit 1 may be embedded at any position, but it is preferable to dispose the strain sensing unit 1 in the vicinity of the central portion of the plate-shaped body 2 which is less likely to be affected by stress outside the sensing target.

板状体2を構成する樹脂は、少なくとも歪測定を行う環境下で弾性を有するものを用いるが、−40〜200℃で1MPa〜40GPa程度の引っ張り弾性率を有するものが好ましく、被測定物と同程度の弾性率を有するものが特に好ましい。   As the resin constituting the plate-shaped body 2, a resin having elasticity under at least an environment for strain measurement is used, but a resin having a tensile elastic modulus of about 1 MPa to 40 GPa at −40 to 200 ° C. is preferable, and the resin to be measured is Those having the same elastic modulus are particularly preferable.

さらに、板状体2を構成する樹脂は、歪検知部1に含まれる金属抵抗体や半導体抵抗体、必要に応じて絶縁性薄板、さらには、被測定物と密着するように、被測定物の破断強度に応じて数MPa〜数百MPa程度の接着力を有するものが好ましい。   Further, the resin forming the plate-shaped body 2 is a metal resistor or a semiconductor resistor included in the strain sensing portion 1, an insulating thin plate as necessary, and further, an object to be measured so as to be in close contact with the object to be measured. It is preferable that the adhesive has an adhesive force of about several MPa to several hundred MPa depending on the breaking strength.

上記を鑑みて、板状体2を構成する樹脂としては、いわゆる低弾性率を有するシリコーン樹脂やエポキシ樹脂、もしくはその他の被測定物に含まれる樹脂が好ましい。   In view of the above, the resin forming the plate-shaped body 2 is preferably a silicone resin or an epoxy resin having a so-called low elastic modulus, or a resin contained in another object to be measured.

板状体2は、板面と側周面からなる円盤形状が好ましいが、板面が略平坦であればよく、板面の形状は、円形、四辺形、多角形等、もしくは幾何学的な定義にとらわれない不定形であってもよい。   The plate-shaped body 2 preferably has a disk shape including a plate surface and a side peripheral surface, but the plate surface may be substantially flat, and the plate surface may have a circular shape, a quadrilateral shape, a polygonal shape, or a geometrical shape. It may be indefinite without being bound by the definition.

板面の最大寸法d、たとえば図1における直径は、板厚hの1倍以上20倍以下が好ましく、硬化収縮の影響を効果的に排除し、引っ張り応力を効率よく検知するためには、板厚hの2倍以上15倍以下が特に好ましい。なお、板状体2の強度を考慮すると、板面の最大寸法dは、板厚hの5倍以上10倍以下がさらに好ましい。   The maximum dimension d of the plate surface, for example, the diameter in FIG. 1, is preferably 1 time or more and 20 times or less the plate thickness h, and in order to effectively eliminate the influence of curing shrinkage and to detect the tensile stress efficiently, It is particularly preferable that the thickness h is 2 times or more and 15 times or less. In consideration of the strength of the plate-shaped body 2, the maximum dimension d of the plate surface is more preferably 5 times or more and 10 times or less the plate thickness h.

歪検知部1として、公知の歪ゲージを用いる場合は、歪ゲージの大きさを考慮して、板厚hは1mm以上が好ましい。また、板厚hの上限は、硬化収縮の影響を排除できる10mm以下が好ましい。より測定精度を向上させるためには、板厚hを1mm以上5mm以下にするのが好ましい。   When a known strain gauge is used as the strain detection unit 1, the plate thickness h is preferably 1 mm or more in consideration of the size of the strain gauge. Further, the upper limit of the plate thickness h is preferably 10 mm or less, which can eliminate the influence of curing shrinkage. In order to further improve the measurement accuracy, it is preferable that the plate thickness h is 1 mm or more and 5 mm or less.

板状体2の板面以外の面、すなわち側周面には、測定対象外の力、たとえばポアソン収縮等の硬化収縮による力の影響を排除するために、離型剤を塗布するなどして離型性を有する層を形成するのが好ましい。   A surface other than the plate surface of the plate-shaped body 2, that is, the side peripheral surface is coated with a release agent in order to eliminate the influence of a force other than the measurement target force, for example, a force caused by curing shrinkage such as Poisson shrinkage. It is preferable to form a layer having releasability.

離型剤としては公知の離型剤から適宜選択して用いてよいが、接着力が0.1MPa以下のものが好ましく、ダイキン工業株式会社のダイフリー(登録商標)、ケムリースジャパン株式会社のモノコート(登録商標)などのフッ素系樹脂やシリコーン系樹脂からなる離型剤を用いるのが特に好ましい。   The release agent may be appropriately selected and used from known release agents, but one having an adhesive force of 0.1 MPa or less is preferable, and a die-free (registered trademark) of Daikin Industries, Ltd., Chemlease Japan KK It is particularly preferable to use a release agent made of a fluororesin or a silicone resin such as Monocoat (registered trademark).

離型性を有する層の形成方法は、離形剤の塗布や吹き付けといった公知の手段から適宜採用してよい。   The method for forming the layer having releasability may be appropriately selected from known means such as application and spraying of a release agent.

(第2の実施の形態)
図2は本発明の歪測定部品における第2の実施の形態を示す説明図であり、本発明の歪測定部品の使用状態を示している。
(Second embodiment)
FIG. 2 is an explanatory view showing a second embodiment of the strain measuring component of the present invention, and shows a usage state of the strain measuring component of the present invention.

樹脂混練物からなる被測定物3は、容器4に注入されている。歪測定部品100は、容器4と被測定物3の接着から生じる引っ張り応力F1および引っ張り応力F2に起因する歪量を測定すべく、歪検知部1の歪検知方向が、容器4の内側壁に垂直となるように配置している。  The DUT 3 made of a resin kneaded product is poured into a container 4. In the strain measuring component 100, the strain detecting direction of the strain detecting unit 1 is set to the inner wall of the container 4 in order to measure the strain amount caused by the tensile stress F1 and the tensile stress F2 generated by the adhesion between the container 4 and the DUT 3. It is arranged vertically.

すなわち、歪検知部1の歪検知方向と、引っ張り応力F1および引っ張り応力F2の方向は、ほぼ平行となるように配置されている。   That is, the strain detection direction of the strain detection unit 1 and the directions of the tensile stress F1 and the tensile stress F2 are arranged to be substantially parallel.

歪測定部品100の入出力端子部11は、被測定物3の開放面から引き出され、図示しない外部の測定機器に接続される。   The input / output terminal portion 11 of the strain measuring component 100 is pulled out from the open surface of the DUT 3 and connected to an external measuring device (not shown).

被測定物3の内部における歪測定部品100の位置は、必要に応じて適宜選択してよい。   The position of the strain measuring component 100 inside the device under test 3 may be appropriately selected as necessary.

さらに歪測定部品100の数量も必要に応じて複数用いてもよい。   Further, a plurality of strain measuring components 100 may be used as needed.

被測定物3に含まれる樹脂と等しい熱膨張係数を有する樹脂からなる板状体2を備えた歪測定部品100を選択的に用いるのは、熱膨張係数の差に起因する測定対象外の力を排除する上でより好ましい。   The strain measuring component 100 provided with the plate-like body 2 made of a resin having a thermal expansion coefficient equal to that of the resin contained in the object to be measured 3 is selectively used because the force other than the measurement target due to the difference in the thermal expansion coefficient is used. Is more preferable in eliminating.

本発明品として、25℃における引っ張り弾性率17GPaのエポキシ樹脂からなる板状体2と、歪検知部1として板状体に用いたエポキシ樹脂からなる絶縁性薄板上に、金属抵抗体としてCu−Ni系金属箔を用いた公知の歪ゲージを備えた、板面の最大寸法dが15mm、板厚hが1.5mmの円盤形状の歪測定部品100を用意した。   As a product of the present invention, a plate-shaped body 2 made of an epoxy resin having a tensile elastic modulus of 17 GPa at 25 ° C., an insulating thin plate made of an epoxy resin used for the plate-shaped body as the strain sensing portion 1, and Cu- A disc-shaped strain measuring component 100 having a plate surface maximum dimension d of 15 mm and a plate thickness h of 1.5 mm was prepared, which was provided with a known strain gauge using a Ni-based metal foil.

また、比較例として、本発明品の歪検知部1として用いたものと同じ歪ゲージ単体を用意した。   In addition, as a comparative example, the same strain gauge simple substance as that used as the strain sensing unit 1 of the present invention was prepared.

被測定物3として、およそ120℃で硬化収縮するエポキシ樹脂を含む磁性スラリーを用意した。   As the DUT 3, a magnetic slurry containing an epoxy resin that cures and shrinks at about 120 ° C. was prepared.

被測定物3を注入し硬化させる容器4として、底面が正方形の、同形状かつ同容量のSUS容器とポリプロピレン容器を用意した。   As the container 4 into which the DUT 3 is injected and cured, a SUS container and a polypropylene container having a square bottom and the same shape and the same volume were prepared.

本発明品および比較例たる歪ゲージ単体を、歪検知方向が水平または鉛直となるように、被測定物3を注入した容器4の中央部に各々配置後、被測定物3を加熱して120℃近傍で保持し、入出力端子部11を外部の測定機器に接続して歪量を求めた。   The present invention product and the strain gauge alone as the comparative example are placed in the center of the container 4 into which the DUT 3 is injected so that the strain sensing direction is horizontal or vertical, and the DUT 3 is heated to 120. The amount of strain was determined by holding the temperature in the vicinity of ° C and connecting the input / output terminal portion 11 to an external measuring device.

図3は本発明の歪測定部品および比較例における歪量測定結果を示す図で、上述の構成で求めた各歪量の推移を示している。   FIG. 3 is a diagram showing the results of strain amount measurement in the strain measuring component of the present invention and the comparative example, and shows the transition of each strain amount obtained in the above-described configuration.

左縦軸は歪量を示し、正の値は伸びを負の値は収縮を示す。また、右縦軸は温度を、横軸は加熱開始からの経過時間を示す。   The left vertical axis indicates the amount of strain, a positive value indicates elongation and a negative value indicates contraction. The vertical axis on the right shows the temperature, and the horizontal axis shows the elapsed time from the start of heating.

歪量推移Shは、本発明品を歪検知方向が水平となるようにSUS容器中に配置した時の、磁性スラリー硬化に伴う歪量の変化を示す。   The strain amount transition Sh indicates a change in strain amount due to hardening of the magnetic slurry when the product of the present invention is placed in the SUS container so that the strain detection direction is horizontal.

歪量推移Spは、本発明品を歪検知方向が鉛直となるようにSUS容器中に配置した時の、磁性スラリー硬化に伴う歪量の変化を示す。   The strain amount transition Sp shows a change in strain amount due to hardening of the magnetic slurry when the product of the present invention is arranged in the SUS container so that the strain detection direction is vertical.

歪量推移Phは、本発明品を歪検知方向が水平となるようにポリプロピレン容器中に配置した時の、磁性スラリー硬化に伴う歪量の変化を示す。   The strain amount change Ph represents a change in strain amount due to hardening of the magnetic slurry when the product of the present invention is arranged in a polypropylene container so that the strain detection direction is horizontal.

歪量推移Ppは、本発明品を歪検知方向が鉛直となるようにポリプロピレン容器中に鉛直方向に配置した時の、磁性スラリー硬化に伴う歪量の変化を示す。   The strain amount transition Pp indicates a change in strain amount due to hardening of the magnetic slurry when the product of the present invention is arranged in a polypropylene container in a vertical direction so that the strain detection direction is vertical.

歪量推移PAhは、比較例の歪ゲージを単体で、歪検知方向が水平となるようにポリプロピレン容器中に配置した時の、磁性スラリー硬化に伴う歪量の変化を示す。   The strain amount transition PAh shows a change in strain amount due to hardening of the magnetic slurry when the strain gauge of the comparative example is placed alone in a polypropylene container so that the strain detection direction is horizontal.

歪量推移PApは、比較例の歪ゲージを単体で、歪検知方向が鉛直となるようにポリプロピレン容器中に配置した時の、磁性スラリー硬化に伴う歪量の変化を示す。   The strain amount transition PAp shows a change in strain amount due to hardening of the magnetic slurry when the strain gauge of the comparative example is placed alone in a polypropylene container so that the strain detection direction is vertical.

温度推移Tmは、被測定物3の内部の温度変化を示し、温度推移Taは、容器4を載置した雰囲気中の温度変化を示す。   The temperature transition Tm represents a temperature change inside the DUT 3, and the temperature transition Ta represents a temperature change in the atmosphere in which the container 4 is placed.

比較例たる歪ゲージ単体を用いて求めた歪量推移PAhおよび歪量推移PApは、いずれも被測定物3の内部の温度上昇に伴って収縮を開始し、最終的には、硬化収縮開始点Aからの変化量である硬化収縮による歪量Bを記録した。   The strain amount transition PAh and the strain amount transition PAp obtained by using the strain gauge alone as a comparative example both start shrinking as the temperature inside the DUT 3 rises, and finally reach the curing shrinkage start point. The amount of strain B due to curing shrinkage, which is the amount of change from A, was recorded.

一方、本発明品を用いて求めた歪量推移Sh、Sp、Ph、Ppは、いずれも伸びによる歪量の変化を示した。   On the other hand, the strain amount transitions Sh, Sp, Ph, and Pp obtained by using the product of the present invention all showed a change in strain amount due to elongation.

本発明品を用いた場合には、容器4の材質に関係なく伸びによる歪量、すなわち、図2における引っ張り応力F1および引っ張り応力F2を検出していることがわかる。   It can be seen that when the product of the present invention is used, the strain amount due to elongation, that is, the tensile stress F1 and the tensile stress F2 in FIG. 2 is detected regardless of the material of the container 4.

上記より、樹脂または樹脂混練物を容器内で硬化させる際に生じる残留応力、特に引っ張り応力を、低コストで、簡便かつ精度よく測定することができる歪測定部品およびこれを用いた歪測定方法が得られた。   From the above, the residual stress generated when the resin or the resin kneaded product is cured in the container, especially the tensile stress, at low cost, a strain measurement component that can be easily and accurately measured and a strain measurement method using the same Was obtained.

以上、本発明の実施の形態および実施例を説明したが、本発明は、上記に限定されるものではなく、本発明の要旨を逸脱しない範囲で、構成の変更や修正が可能である。すなわち、当業者であれば成し得る各種変形、修正もまた本発明に含まれる。   Although the embodiments and examples of the present invention have been described above, the present invention is not limited to the above, and changes and modifications of the configuration are possible without departing from the gist of the present invention. That is, various variations and modifications that can be made by those skilled in the art are also included in the present invention.

1 歪検知部
11 入出力端子部
2 板状体
3 被測定物
4 容器
100 歪測定部品
d 板面の最大寸法
h 板厚
F1,F2 引っ張り応力
A 硬化収縮開始点
B 硬化収縮による歪量
Sh,Sp,Ph,Pp,PAh,PAp 歪量推移
Tm,Ta 温度推移
1 Strain Detecting Section 11 Input / Output Terminal Section 2 Plate-like Object 3 Object to be Measured 4 Container 100 Strain Measuring Component d Maximum Plate Size Dimension h Plate Thickness F1, F2 Tensile Stress A Cure Shrinkage Start Point B Strain Amount Due to Cure Shrink Sh, Sp, Ph, Pp, PAh, PAp Strain amount transition Tm, Ta Temperature transition

Claims (4)

弾性を有する絶縁樹脂を成形してなり、円形、多角形、または不定形の板面と前記板面の側周面からなる板状体と、入出力端子部を備えた歪検知部とを含み、前記板面の最大寸法は前記板状体の板厚の2倍以上15倍以下であり、前記入出力端子部は前記板状体から導出され、前記歪検知部は、金属抵抗体を備え、前記板状体の板厚方向と歪検知方向が一致するように、前記板状体に埋設されてなることを特徴とする歪測定部品。   The insulating resin having elasticity is molded, and includes a plate member having a circular, polygonal, or irregular plate surface and a side peripheral surface of the plate surface, and a strain sensing portion having an input / output terminal portion. The maximum dimension of the plate surface is not less than 2 times and not more than 15 times the plate thickness of the plate body, the input / output terminal portion is led out from the plate body, and the strain sensing portion includes a metal resistor. A strain measuring component, wherein the strain measuring component is embedded in the plate so that a plate thickness direction of the plate and a strain detection direction coincide with each other. 弾性を有する絶縁樹脂を成形してなり、円形、多角形、または不定形の板面と前記板面の側周面からなる板状体と、入出力端子部を備えた歪検知部とを含み、前記板面の最大寸法は前記板状体の板厚の2倍以上15倍以下であり、前記入出力端子部は前記板状体から導出され、前記歪検知部は、半導体抵抗体を備え、前記板状体の板厚方向と歪検知方向が一致するように、前記板状体に埋設されてなることを特徴とする歪測定部品。   The insulating resin having elasticity is molded, and includes a plate member having a circular, polygonal, or irregular plate surface and a side peripheral surface of the plate surface, and a strain sensing portion having an input / output terminal portion. The maximum dimension of the plate surface is not less than 2 times and not more than 15 times the plate thickness of the plate-shaped body, the input / output terminal portion is led out from the plate-shaped body, and the strain sensing portion includes a semiconductor resistor. A strain measuring component, wherein the strain measuring component is embedded in the plate so that a plate thickness direction of the plate and a strain detection direction coincide with each other. 前記板状体の前記側周面は、離型性を有する層を備えてなることを特徴とする請求項1または2に記載の歪測定部品。   The strain measuring component according to claim 1 or 2, wherein the side peripheral surface of the plate-shaped body is provided with a layer having releasability. 被測定物の熱膨張係数と等しい熱膨張係数を有する、前記絶縁樹脂を備えた請求項1ないし3のいずれかに記載の歪測定部品を、前記被測定物内に埋設し、前記被測定物内に生じる力を検知して歪量を測定することを特徴とする歪測定方法。 The strain measuring component according to any one of claims 1 to 3, which has the thermal expansion coefficient equal to the thermal expansion coefficient of the measured object, is embedded in the measured object, and the measured object is embedded in the measured object. strain measuring method characterized that you measure the amount of distortion by detecting the force generated within.
JP2014162677A 2014-08-08 2014-08-08 Strain measuring component and strain measuring method using the same Active JP6682176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014162677A JP6682176B2 (en) 2014-08-08 2014-08-08 Strain measuring component and strain measuring method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014162677A JP6682176B2 (en) 2014-08-08 2014-08-08 Strain measuring component and strain measuring method using the same

Publications (2)

Publication Number Publication Date
JP2016038326A JP2016038326A (en) 2016-03-22
JP6682176B2 true JP6682176B2 (en) 2020-04-15

Family

ID=55529497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014162677A Active JP6682176B2 (en) 2014-08-08 2014-08-08 Strain measuring component and strain measuring method using the same

Country Status (1)

Country Link
JP (1) JP6682176B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113496795B (en) * 2021-06-03 2023-03-24 南方电网科学研究院有限责任公司 GIL post insulator and interface stress detection method thereof
JP2023133956A (en) * 2022-03-14 2023-09-27 ミネベアミツミ株式会社 strain gauge

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022655A (en) * 1973-06-28 1975-03-11
JPS51137465A (en) * 1975-05-23 1976-11-27 Sumitomo Bakelite Co Ltd Press pressure detector
JPS51137466A (en) * 1975-05-23 1976-11-27 Sumitomo Bakelite Co Ltd Press pressure detecting method
US4422063A (en) * 1982-04-01 1983-12-20 Pitney Bowes Inc. Semiconductor strain gauge
JPS60257301A (en) * 1984-06-04 1985-12-19 Hitachi Ltd Phase type strain gauge
JP2570945Y2 (en) * 1992-05-19 1998-05-13 ミヤチテクノス株式会社 Force measuring device for resistance welding machine
JP5308060B2 (en) * 2008-04-25 2013-10-09 株式会社日立製作所 Semiconductor strain sensor
JP2012247355A (en) * 2011-05-30 2012-12-13 Oriental Shiraishi Corp Concrete stress meter

Also Published As

Publication number Publication date
JP2016038326A (en) 2016-03-22

Similar Documents

Publication Publication Date Title
Shi et al. Screen‐printed soft capacitive sensors for spatial mapping of both positive and negative pressures
US10488284B2 (en) Method of making a contact pressure sensor
JP7166175B2 (en) Position Sensing Technology and Related Systems and Methods for Additive Manufacturing
KR101258897B1 (en) Curved tectile sensor and manufacturing method thereof
JP2014528079A5 (en)
JP2016531640A5 (en)
JP2012247403A5 (en) Stress detection element, sensor module, electronic device, and gripping device
JP6682176B2 (en) Strain measuring component and strain measuring method using the same
CN104019931B (en) A kind of determine horizontal centre-point load under the method for annular prestressed film maximum stress
JP5443515B2 (en) Device for evaluating tactile properties of surface textures
CN104020036B (en) A kind of determine horizontal centre-point load under the method for annular prestressed film maximum defluxion
JP2015052594A (en) Absolute pressure sensor with improved cap bonding boundary
JP2013162046A5 (en) Imprint apparatus, imprint method, and article manufacturing method
JP2019512670A (en) Sensor device, measuring device, motored vehicle and method of detecting actual deformation of a member
US8033804B2 (en) Pressure measurement device and mould for vulcanizing rubber for tires
JP7113487B2 (en) pulse wave sensor
JP6650525B2 (en) A kind of integrated stress sensor
Su et al. Skin‐Inspired Multi‐Modal Mechanoreceptors for Dynamic Haptic Exploration
JP4703232B2 (en) Concave forming member for sensor mounting
JP6184452B2 (en) Pin with pressure sensor and molding device
CN103033295A (en) Sensor
Dumstorff et al. Strain gauges—Volume embedding vs. surface application
JP2014085259A5 (en) Strain measuring device and strain gauge transducer
US20170363488A1 (en) Protective electrode for a piezoceramic sensor
KR20090005318A (en) Sensor apparatus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190116

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190123

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200325

R150 Certificate of patent or registration of utility model

Ref document number: 6682176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250