JP6681495B1 - Water-absorbent resin particles, absorber and absorbent article - Google Patents

Water-absorbent resin particles, absorber and absorbent article Download PDF

Info

Publication number
JP6681495B1
JP6681495B1 JP2019055308A JP2019055308A JP6681495B1 JP 6681495 B1 JP6681495 B1 JP 6681495B1 JP 2019055308 A JP2019055308 A JP 2019055308A JP 2019055308 A JP2019055308 A JP 2019055308A JP 6681495 B1 JP6681495 B1 JP 6681495B1
Authority
JP
Japan
Prior art keywords
water
resin particles
absorbent resin
absorbent
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019055308A
Other languages
Japanese (ja)
Other versions
JP2020121297A (en
Inventor
志保 岡澤
志保 岡澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=70166319&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6681495(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to US17/311,915 priority Critical patent/US20220023115A1/en
Priority to PCT/JP2019/048821 priority patent/WO2020122218A1/en
Priority to EP19896122.9A priority patent/EP3896120B1/en
Priority to KR1020217019053A priority patent/KR20210101253A/en
Priority to CN201980081999.8A priority patent/CN113195598A/en
Application granted granted Critical
Publication of JP6681495B1 publication Critical patent/JP6681495B1/en
Publication of JP2020121297A publication Critical patent/JP2020121297A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Absorbent Articles And Supports Therefor (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

【課題】吸液した際に吸収体の平面方向に液が好適に拡散し得る吸収性物品、並びに、当該吸収性物品を与える吸水性樹脂粒子及び吸収体を提供する。【解決手段】吸収性物品100は、吸収体10を備え、吸収体10は、吸水性樹脂粒子10aを含有し、吸水性樹脂粒子10aにおいて、下記(1)〜(6)の手順により測定される膨潤高さは10mm以下である。(1)底面積50cm2の凹部を有する容器を前記凹部が鉛直方向に開口した状態で配置する。(2)前記凹部内に吸水性樹脂粒子1.00gを配置する。(3)前記凹部内において前記吸水性樹脂粒子上に不織布を配置する。(4)前記不織布上に質量90gの重りを配置する。(5)前記凹部内に生理食塩水を供給する。(6)前記吸水性樹脂粒子の膨潤開始時から300秒経過したときの前記重りの鉛直方向の移動距離を前記膨潤高さとして測定する。【選択図】図1PROBLEM TO BE SOLVED: To provide an absorbent article capable of suitably diffusing a liquid in a plane direction of an absorbent body when absorbing the liquid, and water-absorbent resin particles and the absorbent body which give the absorbent article. An absorbent article 100 includes an absorbent body 10, the absorbent body 10 contains water-absorbent resin particles 10a, and the water-absorbent resin particles 10a are measured by the following procedures (1) to (6). The swelling height is 10 mm or less. (1) A container having a recess having a bottom area of 50 cm 2 is arranged with the recess opened in the vertical direction. (2) Place 1.00 g of water-absorbent resin particles in the recess. (3) A nonwoven fabric is arranged on the water absorbent resin particles in the recess. (4) A weight having a mass of 90 g is arranged on the non-woven fabric. (5) Supplying saline into the recess. (6) The moving distance in the vertical direction of the weight when 300 seconds have elapsed from the start of swelling of the water absorbent resin particles is measured as the swelling height. [Selection diagram] Figure 1

Description

本発明は、吸水性樹脂粒子、吸収体及び吸収性物品に関する。   The present invention relates to water absorbent resin particles, an absorbent body and an absorbent article.

従来、水を主成分とする液体(例えば尿)を吸収するための吸収性物品には、吸水性樹脂粒子を含有する吸収体が用いられている。例えば、下記特許文献1には、おむつ等の吸収性物品に好適に用いられる粒子径を有する吸水性樹脂粒子が開示されている。また、特許文献2には、尿のような体液を収容するのに効果的な吸収性部材として、特定の食塩水流れ誘導性、圧力下性能等を有するヒドロゲル吸収性重合体を使用する方法が開示されている。   Conventionally, an absorbent body containing water-absorbent resin particles has been used for an absorbent article for absorbing a liquid containing water as a main component (for example, urine). For example, Patent Document 1 below discloses water-absorbent resin particles having a particle size that is suitable for use in absorbent articles such as diapers. Further, Patent Document 2 discloses a method of using a hydrogel absorbent polymer having specific saline flow conductivity, performance under pressure, etc. as an absorbent member effective for containing body fluid such as urine. It is disclosed.

特開平06−345819号公報Japanese Patent Laid-Open No. 06-345819 特表平09−510889号公報Japanese Patent Publication No. 09-510889

吸収性物品が吸液した際に液が充分に拡散せずに吸液箇所(液の浸入箇所)の近傍のみに留まると、余剰の液は吸収性物品の表面を流れる等して吸収性物品の外に漏れるといった不具合が生じ得る。そのため、吸収性物品に対しては、吸液した際に液が好適に拡散することが求められ、特に、吸液した際に吸収体の平面方向(厚み方向に対して垂直な方向)に液が好適に拡散することが求められる。   When the absorbent article absorbs liquid, if the solution does not diffuse sufficiently and stays only near the liquid absorbing site (liquid infiltrating site), excess liquid flows on the surface of the absorbent product, etc. A problem such as leakage to the outside may occur. Therefore, for absorbent articles, it is required that the liquid diffuses favorably when it absorbs liquid, and in particular, when absorbing liquid, liquid absorbs in the plane direction of the absorbent body (direction perpendicular to the thickness direction). Is required to diffuse appropriately.

本発明の一側面は、吸液した際に吸収体の平面方向に液が好適に拡散し得る吸収性物品を与える吸水性樹脂粒子及び吸収体を提供することを目的とする。また、本発明の他の一側面は、吸液した際に液が好適に拡散し得る吸収性物品を提供することを目的とする。   An object of one aspect of the present invention is to provide a water-absorbent resin particle and an absorbent body that provide an absorbent article that allows the liquid to suitably diffuse in the plane direction of the absorbent body when absorbing the liquid. Another object of another aspect of the present invention is to provide an absorbent article in which the liquid can be suitably diffused when absorbing the liquid.

本発明者は、吸水性樹脂粒子が吸液した際の吸水性樹脂粒子の鉛直方向の膨潤を抑制することが、吸液した際に吸収体の平面方向に液が好適に拡散し得る吸収性物品を得ることに有効であることを見出した。   The present inventor can suppress the vertical swelling of the water-absorbent resin particles when the water-absorbent resin particles absorb the liquid, and the liquid can be suitably diffused in the plane direction of the absorber when the water-absorbent resin particles are absorbed. It has been found to be effective in obtaining articles.

本発明の一側面は、下記(1)〜(6)の手順により測定される膨潤高さが10mm以下である、吸水性樹脂粒子を提供する。
(1)底面積50cmの凹部を有する容器を前記凹部が鉛直方向に開口した状態で配置する。
(2)前記凹部内に吸水性樹脂粒子1.00gを配置する。
(3)前記凹部内において前記吸水性樹脂粒子上に不織布を配置する。
(4)前記不織布上に質量90gの重りを配置する。
(5)前記凹部内に生理食塩水を供給する。
(6)前記吸水性樹脂粒子の膨潤開始時から300秒経過したときの前記重りの鉛直方向の移動距離を前記膨潤高さとして測定する。
One aspect of the present invention provides water-absorbent resin particles having a swelling height of 10 mm or less measured by the following procedures (1) to (6).
(1) A container having a recess having a bottom area of 50 cm 2 is arranged with the recess opening in the vertical direction.
(2) Place 1.00 g of water-absorbent resin particles in the recess.
(3) A nonwoven fabric is arranged on the water absorbent resin particles in the recess.
(4) A weight having a mass of 90 g is arranged on the non-woven fabric.
(5) Supplying saline into the recess.
(6) The moving distance in the vertical direction of the weight when 300 seconds have elapsed from the start of swelling of the water absorbent resin particles is measured as the swelling height.

上述の吸水性樹脂粒子によれば、吸液した際に吸収体の平面方向に液が好適に拡散し得る吸収性物品を得ることができる。   With the above water-absorbent resin particles, it is possible to obtain an absorbent article in which the liquid can suitably diffuse in the plane direction of the absorber when absorbing the liquid.

本発明の他の一側面は、上述の吸水性樹脂粒子を含有する、吸収体を提供する。   Another aspect of the present invention provides an absorbent body containing the above water-absorbent resin particles.

本発明の他の一側面は、上述の吸収体を備える、吸収性物品を提供する。   Another aspect of the present invention provides an absorbent article including the absorbent body described above.

本発明の一側面によれば、吸液した際に吸収体の平面方向に液が好適に拡散し得る吸収性物品を与える吸水性樹脂粒子及び吸収体を提供することができる。また、本発明の他の一側面によれば、吸液した際に吸収体の平面方向に液が好適に拡散し得る吸収性物品を提供することができる。本発明の他の一側面によれば、吸液への樹脂粒子、吸収体及び吸収性物品の応用を提供することができる。   Advantageous Effects of Invention According to one aspect of the present invention, it is possible to provide a water-absorbent resin particle and an absorbent body that provide an absorbent article that can suitably diffuse the liquid in the plane direction of the absorbent body when absorbing the liquid. Further, according to another aspect of the present invention, it is possible to provide an absorbent article in which the liquid can suitably diffuse in the plane direction of the absorber when absorbing the liquid. According to another aspect of the present invention, it is possible to provide application of the resin particles, the absorbent body, and the absorbent article to the liquid absorption.

吸収性物品の一例を示す断面図である。It is sectional drawing which shows an example of an absorbent article. 膨潤高さの測定装置を示す概略図である。It is a schematic diagram showing a measuring device of swelling height. 吸水性樹脂粒子の荷重下の吸水量の測定装置を示す概略図である。It is a schematic diagram showing a measuring device of water absorption under load of water-absorbent resin particles.

以下、本発明の実施形態について詳細に説明する。但し、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。   Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments and can be variously modified and implemented within the scope of the gist thereof.

本明細書において、「アクリル」及び「メタクリル」を合わせて「(メタ)アクリル」と表記する。「アクリレート」及び「メタクリレート」も同様に「(メタ)アクリレート」と表記する。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「水溶性」とは、25℃において水に5質量%以上の溶解性を示すことをいう。本明細書に例示する材料は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。「生理食塩水」とは、0.9質量%塩化ナトリウム水溶液をいう。   In the present specification, “acrylic” and “methacrylic” are collectively referred to as “(meth) acrylic”. "Acrylate" and "methacrylate" are also referred to as "(meth) acrylate". In the numerical ranges described stepwise in this specification, the upper limit value or the lower limit value of the numerical range of a certain stage can be arbitrarily combined with the upper limit value or the lower limit value of the numerical range of another stage. In the numerical ranges described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples. “Water-soluble” means exhibiting a solubility of 5% by mass or more in water at 25 ° C. The materials exemplified in this specification may be used alone or in combination of two or more kinds. The content of each component in the composition means the total amount of the plurality of substances present in the composition, unless there is a plurality of substances corresponding to each component in the composition, unless otherwise specified. The "physiological saline" refers to a 0.9 mass% sodium chloride aqueous solution.

本実施形態に係る吸水性樹脂粒子において、下記(1)〜(6)の手順により測定される膨潤高さ(ゲル膨潤高さ)は、10mm以下である。
(1)底面積50cmの凹部を有する容器を前記凹部が鉛直方向に開口した状態で配置する。
(2)前記凹部内に吸水性樹脂粒子1.00gを配置する。
(3)前記凹部内において前記吸水性樹脂粒子上に不織布を配置する。
(4)前記不織布上に質量90gの重りを配置する。
(5)前記凹部内に生理食塩水を供給する。
(6)前記吸水性樹脂粒子の膨潤開始時から300秒経過したときの前記重りの鉛直方向の移動距離を前記膨潤高さとして測定する。
In the water absorbent resin particles according to the present embodiment, the swelling height (gel swelling height) measured by the following procedures (1) to (6) is 10 mm or less.
(1) A container having a recess having a bottom area of 50 cm 2 is arranged with the recess opening in the vertical direction.
(2) Place 1.00 g of water-absorbent resin particles in the recess.
(3) A nonwoven fabric is arranged on the water absorbent resin particles in the recess.
(4) A weight having a mass of 90 g is arranged on the non-woven fabric.
(5) Supplying saline into the recess.
(6) The moving distance in the vertical direction of the weight when 300 seconds have elapsed from the start of swelling of the water absorbent resin particles is measured as the swelling height.

本実施形態に係る吸水性樹脂粒子によれば、吸液した際に吸収体の平面方向(厚み方向に対して垂直な方向、吸液面に平行な方向)に液が好適に拡散し得る吸収性物品を得ることができる。本実施形態に係る吸水性樹脂粒子によれば、好適な吸水特性(保水量、吸水速度、荷重下の吸水量等)を有しながらも、吸液した際に吸収体の平面方向に液が好適に拡散し得る吸収性物品を得ることができる。   According to the water-absorbent resin particles according to the present embodiment, when the liquid is absorbed, the liquid can be suitably diffused in the plane direction of the absorber (the direction perpendicular to the thickness direction, the direction parallel to the liquid absorption surface). A sex article can be obtained. According to the water-absorbent resin particles according to the present embodiment, while having suitable water absorption characteristics (water retention amount, water absorption rate, water absorption amount under load, etc.), when the liquid is absorbed, the liquid is absorbed in the plane direction of the absorber. An absorbent article that can be suitably diffused can be obtained.

吸水性樹脂粒子が吸液することにより膨潤すると、厚み方向(吸液面に垂直な方向)に吸収体及び吸収性物品が膨張し得る。厚み方向に膨張し過ぎると、充分に吸液して更なる継続使用ができない状態に至ったと使用者、その保護者又は介助者等が誤解しかねない。また、おむつ等の装着物においては、吸液位置から吸収体の平面方向に吸液部材(例えばギャザー)を配置することで漏液を抑制し得るが、厚み方向の膨張に対して従来充分に対策が講じられていない。一方、本実施形態に係る吸水性樹脂粒子によれば、吸収体及び吸収性物品の厚み方向の膨張を抑制しつつ、吸液した際に吸収体の平面方向に液が好適に拡散し得る吸収性物品を得ることができる。   When the water-absorbent resin particles swell as they absorb liquid, the absorber and the absorbent article may expand in the thickness direction (direction perpendicular to the liquid-absorbing surface). If it expands too much in the thickness direction, it may be misunderstood by the user, his / her guardian, or caregiver that the liquid has sufficiently absorbed and cannot be used further. In addition, in a wearing article such as a diaper, it is possible to suppress liquid leakage by arranging a liquid absorbing member (for example, gather) from the liquid absorbing position in the plane direction of the absorbent body, but conventionally it is sufficiently sufficient against expansion in the thickness direction. No measures have been taken. On the other hand, according to the water-absorbent resin particles according to the present embodiment, while suppressing the expansion in the thickness direction of the absorbent body and the absorbent article, when the liquid is absorbed, the liquid can be preferably diffused in the plane direction of the absorbent body. A sex article can be obtained.

膨潤高さは、液が好適に拡散し得る吸収性物品を得やすい観点から、9.5mm以下、9.2mm以下、9.0mm以下、8.8mm以下、又は、8.6mm以下が好ましい。膨潤高さは、8.5mm以下、又は、8.4mm以下であってよい。膨潤高さは、1mm以上、3mm以上、5mm以上、7mm以上、又は、8mm以上であってよい。   The swelling height is preferably 9.5 mm or less, 9.2 mm or less, 9.0 mm or less, 8.8 mm or less, or 8.6 mm or less from the viewpoint of easily obtaining an absorbent article in which a liquid can be suitably diffused. The swelling height may be 8.5 mm or less, or 8.4 mm or less. The swelling height may be 1 mm or more, 3 mm or more, 5 mm or more, 7 mm or more, or 8 mm or more.

膨潤高さの試験における工程(1)において、容器は有底の凹部を有しており、凹部の開口方向が鉛直方向に位置するように容器を配置する。容器は、例えば、平坦面である底面を有する。容器において、凹部を形成する側壁は、例えば、凹部の開口方向に伸びている。凹部の開口方向に垂直な断面において凹部は例えば円形を呈している。円形の断面を有する凹部としては、例えば、内径80mm、底面積50.24cmの凹部を用いることができる。 In step (1) in the swelling height test, the container has a bottomed recess, and the container is arranged such that the opening direction of the recess is positioned in the vertical direction. The container has, for example, a bottom surface that is a flat surface. In the container, the side wall forming the recess extends, for example, in the opening direction of the recess. In a cross section perpendicular to the opening direction of the recess, the recess has, for example, a circular shape. As the recess having a circular cross section, for example, a recess having an inner diameter of 80 mm and a bottom area of 50.24 cm 2 can be used.

工程(2)では、凹部の底面に吸水性樹脂粒子を配置することができる。工程(2)では、凹部の底面に吸水性樹脂粒子を均一に配置することができる。   In the step (2), water absorbent resin particles can be arranged on the bottom surface of the recess. In the step (2), the water absorbent resin particles can be uniformly arranged on the bottom surface of the recess.

工程(3)における不織布としては、目付量12g/mの液体透過性不織布を用いることができる。工程(3)では、容器の凹部内において吸水性樹脂粒子に不織布を接触させることができる。不織布の大きさに特に制限はなく、不織布を用いることで工程(4)の重りと吸水性樹脂粒子とが直接的に接触しなければよい。 As the nonwoven fabric in the step (3), a liquid permeable nonwoven fabric having a basis weight of 12 g / m 2 can be used. In the step (3), the nonwoven fabric can be brought into contact with the water absorbent resin particles in the recess of the container. The size of the non-woven fabric is not particularly limited, and it is sufficient that the weight in the step (4) and the water-absorbent resin particles do not come into direct contact by using the non-woven fabric.

工程(4)における重りは、容器の内部を鉛直方向に抵抗無く移動することができ、平坦面を有してよい。重りは、液体が通過できる複数の孔が穿たれていてよい。工程(4)では、重りの平坦面を不織布に接触させることができる。工程(4)では、例えば、重りの質量に起因する荷重以外の荷重が吸水性樹脂粒子に負荷されないように重りを不織布上に静かに載せる。重りは、単一の部材であってよく、複数の部材から構成されていてもよい。重りは、例えば、平坦面を有する平板部と、平板部から伸びる凸部と、を有している。   The weight in step (4) can move in the vertical direction in the container without resistance and may have a flat surface. The weight may be perforated with a plurality of holes through which liquid may pass. In the step (4), the flat surface of the weight can be brought into contact with the nonwoven fabric. In the step (4), for example, the weight is gently placed on the nonwoven fabric so that a load other than the load due to the mass of the weight is not applied to the water-absorbent resin particles. The weight may be a single member or may be composed of a plurality of members. The weight has, for example, a flat plate portion having a flat surface and a convex portion extending from the flat plate portion.

工程(5)における生理食塩水の使用量は、吸水性樹脂粒子が生理食塩水に充分に浸漬するように調整できる。生理食塩水の使用量は、例えば20〜200gである。   The amount of physiological saline used in the step (5) can be adjusted so that the water-absorbent resin particles are sufficiently immersed in the physiological saline. The amount of physiological saline used is, for example, 20 to 200 g.

工程(6)において吸水性樹脂粒子の膨潤開始時としては、吸水性樹脂粒子が膨潤して重りが移動を開始した時を用いることができる。膨潤開始時から300秒経過したときの移動距離を用いることで、液が好適に拡散し得る吸収性物品を与える吸水性樹脂粒子を容易に選定できる。   As the start of swelling of the water absorbent resin particles in the step (6), the time when the water absorbent resin particles swell and the weight starts moving can be used. By using the moving distance when 300 seconds have passed from the start of swelling, the water-absorbent resin particles that give an absorbent article in which the liquid can be suitably diffused can be easily selected.

本実施形態に係る吸水性樹脂粒子は、水を保水可能であればよく、吸液対象の液は水を含むことができる。本実施形態に係る吸水性樹脂粒子は、尿、汗、血液(例えば経血)等の体液の吸収性に優れている。本実施形態に係る吸水性樹脂粒子は、本実施形態に係る吸収体の構成成分として用いることができる。   The water-absorbent resin particles according to the present embodiment need only be able to retain water, and the liquid to be absorbed can contain water. The water-absorbent resin particles according to the present embodiment are excellent in absorbability of body fluids such as urine, sweat, blood (for example, menstrual blood). The water absorbent resin particles according to the present embodiment can be used as a constituent component of the absorber according to the present embodiment.

本実施形態に係る吸水性樹脂粒子の生理食塩水の保水量は、下記の範囲が好ましい。保水量は、吸収性物品の吸収容量を高めやすい観点から、20g/g以上、30g/g以上、34g/g以上、35g/g以上、40g/g以上、45g/g以上、又は、50g/g以上が好ましい。保水量は、吸収性物品における過度の膨潤を抑制しやすい観点から、80g/g以下、75g/g以下、70g/g以下、65g/g以下、60g/g以下、又は、55g/g以下が好ましい。これらの観点から、保水量は、20〜80g/gが好ましく、30〜55g/gがより好ましい。保水量としては、25℃における保水量を用いることができる。保水量は、後述する実施例に記載の方法によって測定できる。   The water retention capacity of the physiological saline of the water absorbent resin particles according to the present embodiment is preferably within the following range. From the viewpoint of easily increasing the absorption capacity of the absorbent article, the water retention amount is 20 g / g or more, 30 g / g or more, 34 g / g or more, 35 g / g or more, 40 g / g or more, 45 g / g or more, or 50 g / g. It is preferably g or more. From the viewpoint of easily suppressing excessive swelling in the absorbent article, the water retention amount is 80 g / g or less, 75 g / g or less, 70 g / g or less, 65 g / g or less, 60 g / g or less, or 55 g / g or less. preferable. From these viewpoints, the water retention amount is preferably 20 to 80 g / g, more preferably 30 to 55 g / g. As the water retention amount, the water retention amount at 25 ° C. can be used. The water retention amount can be measured by the method described in Examples below.

本実施形態に係る吸水性樹脂粒子の荷重下における生理食塩水の吸水量は、下記の範囲が好ましい。吸水量は、液が好適に拡散し得る吸収性物品を得やすい観点から、10mL/g以上、12mL/g以上、15mL/g以上、18mL/g以上、20mL/g以上、24mL/g以上、又は、28mL/g以上が好ましい。吸水量は、吸収性物品における過度の膨潤を抑制しやすい観点から、40mL/g以下、35mL/g以下、又は、30mL/g以下が好ましい。これらの観点から、吸水量は、10〜40mL/gが好ましい。荷重下における生理食塩水の吸水量としては、荷重4.14kPaにおける吸水量(25℃)を用いることができる。吸水量は、後述する実施例に記載の方法によって測定できる。   The water absorption amount of the physiological saline solution under the load of the water absorbent resin particles according to the present embodiment is preferably within the following range. The water absorption amount is 10 mL / g or more, 12 mL / g or more, 15 mL / g or more, 18 mL / g or more, 20 mL / g or more, 24 mL / g or more, from the viewpoint of easily obtaining an absorbent article in which the liquid can suitably diffuse. Alternatively, 28 mL / g or more is preferable. The water absorption amount is preferably 40 mL / g or less, 35 mL / g or less, or 30 mL / g or less from the viewpoint of easily suppressing excessive swelling in the absorbent article. From these viewpoints, the water absorption amount is preferably 10 to 40 mL / g. As the amount of absorbed physiological saline under load, the amount of absorbed water (25 ° C.) at a load of 4.14 kPa can be used. The water absorption amount can be measured by the method described in Examples below.

本実施形態に係る吸水性樹脂粒子の生理食塩水の吸水速度は、下記の範囲が好ましい。吸水速度は、液が好適に吸収性物品に吸収されやすい観点から、60秒以下、57秒以下、又は、55秒以下が好ましい。吸水速度は、液が狭い箇所に滞留することで生じるゲルブロッキングを防止しやすい観点から、20秒以上、25秒以上、30秒以上、33秒以上、35秒以上、40秒以上、又は、45秒以上が好ましい。これらの観点から、吸水速度は、20〜60秒が好ましい。吸水速度としては、25℃における吸水速度を用いることができる。吸水速度は、Vortex法(日本工業規格JIS K 7224(1996))に準拠して測定することができる。具体的には、600rpm(rpm=min−1)で撹拌された生理食塩水50±0.1g中に吸水性樹脂粒子2.0±0.002gを添加し、吸水性樹脂粒子の添加後から、渦が消失し液面が平坦になるまでの時間[秒]として吸水速度を得ることができる。 The water absorption rate of the physiological saline of the water absorbent resin particles according to the present embodiment is preferably within the following range. The water absorption rate is preferably 60 seconds or less, 57 seconds or less, or 55 seconds or less from the viewpoint that the liquid is easily absorbed by the absorbent article. The water absorption rate is 20 seconds or more, 25 seconds or more, 30 seconds or more, 33 seconds or more, 35 seconds or more, 40 seconds or more, or 45 from the viewpoint of easily preventing gel blocking that occurs when the liquid stays in a narrow area. Seconds or more are preferable. From these viewpoints, the water absorption rate is preferably 20 to 60 seconds. As the water absorption rate, the water absorption rate at 25 ° C. can be used. The water absorption rate can be measured according to the Vortex method (Japanese Industrial Standard JIS K 7224 (1996)). Specifically, 2.0 ± 0.002 g of the water-absorbent resin particles was added to 50 ± 0.1 g of physiological saline that was stirred at 600 rpm (rpm = min −1 ) and after addition of the water-absorbent resin particles, The water absorption speed can be obtained as the time [sec] until the vortex disappears and the liquid surface becomes flat.

本実施形態に係る吸水性樹脂粒子の形状としては、略球状、破砕状、顆粒状等が挙げられる。本実施形態に係る吸水性樹脂粒子の中位粒子径は、250〜850μm、300〜700μm、又は、300〜600μmであってよい。本実施形態に係る吸水性樹脂粒子は、後述する製造方法により得られた時点で所望の粒度分布を有していてよいが、篩による分級を用いた粒度調整等の操作を行うことにより粒度分布を調整してもよい。   Examples of the shape of the water absorbent resin particles according to the present embodiment include a substantially spherical shape, a crushed shape, and a granular shape. The median particle diameter of the water absorbent resin particles according to the present embodiment may be 250 to 850 μm, 300 to 700 μm, or 300 to 600 μm. The water-absorbent resin particles according to the present embodiment may have a desired particle size distribution at the time of being obtained by the production method described later, but the particle size distribution by performing an operation such as particle size adjustment using classification with a sieve. May be adjusted.

本実施形態に係る吸水性樹脂粒子は、例えば、重合体粒子として、エチレン性不飽和単量体を含有する単量体を重合させて得られる架橋重合体を含むことができる。すなわち、本実施形態に係る吸水性樹脂粒子は、エチレン性不飽和単量体に由来する構造単位を有することができる。エチレン性不飽和単量体としては、水溶性エチレン性不飽和単量体を用いることができる。重合方法としては、逆相懸濁重合法、水溶液重合法、バルク重合法、沈殿重合法等が挙げられる。これらの中では、得られる吸水性樹脂粒子の良好な吸水特性の確保、及び、重合反応の制御が容易である観点から、逆相懸濁重合法又は水溶液重合法が好ましい。以下においては、エチレン性不飽和単量体を重合させる方法として、逆相懸濁重合法を例にとって説明する。   The water-absorbent resin particles according to the present embodiment can include, as polymer particles, for example, a cross-linked polymer obtained by polymerizing a monomer containing an ethylenically unsaturated monomer. That is, the water absorbent resin particles according to the present embodiment can have a structural unit derived from an ethylenically unsaturated monomer. A water-soluble ethylenically unsaturated monomer can be used as the ethylenically unsaturated monomer. Examples of the polymerization method include a reverse phase suspension polymerization method, an aqueous solution polymerization method, a bulk polymerization method, a precipitation polymerization method and the like. Among these, the reverse phase suspension polymerization method or the aqueous solution polymerization method is preferable from the viewpoints of ensuring good water absorbing properties of the water-absorbent resin particles to be obtained and controlling the polymerization reaction easily. In the following, the reverse phase suspension polymerization method will be described as an example of the method for polymerizing the ethylenically unsaturated monomer.

エチレン性不飽和単量体は水溶性であることが好ましく、例えば、(メタ)アクリル酸及びその塩、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸及びその塩、(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、2−ヒドロキシエチル(メタ)アクリレート、N−メチロール(メタ)アクリルアミド、ポリエチレングリコールモノ(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノプロピル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリルアミド等が挙げられる。エチレン性不飽和単量体がアミノ基を有する場合、当該アミノ基は4級化されていてもよい。エチレン性不飽和単量体は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。上述の単量体のカルボキシル基、アミノ基等の官能基は、後述する表面架橋工程において架橋が可能な官能基として機能し得る。   The ethylenically unsaturated monomer is preferably water-soluble, and examples thereof include (meth) acrylic acid and salts thereof, 2- (meth) acrylamide-2-methylpropanesulfonic acid and salts thereof, (meth) acrylamide, N. , N-dimethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, N-methylol (meth) acrylamide, polyethylene glycol mono (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-diethylamino Examples include propyl (meth) acrylate and diethylaminopropyl (meth) acrylamide. When the ethylenically unsaturated monomer has an amino group, the amino group may be quaternized. The ethylenically unsaturated monomer may be used alone or in combination of two or more kinds. A functional group such as a carboxyl group and an amino group of the above-mentioned monomer can function as a functional group capable of being crosslinked in the surface crosslinking step described later.

これらの中でも、工業的に入手が容易である観点から、エチレン性不飽和単量体は、(メタ)アクリル酸及びその塩、アクリルアミド、メタクリルアミド、並びに、N,N−ジメチルアクリルアミドからなる群より選ばれる少なくとも一種の化合物を含むことが好ましく、(メタ)アクリル酸及びその塩、並びに、アクリルアミドからなる群より選ばれる少なくとも一種の化合物を含むことがより好ましい。吸水特性(保水量等)を更に高める観点から、エチレン性不飽和単量体は、(メタ)アクリル酸及びその塩からなる群より選ばれる少なくとも一種の化合物を含むことが更に好ましい。すなわち、吸水性樹脂粒子は、(メタ)アクリル酸及びその塩からなる群より選ばれる少なくとも一種に由来する構造単位を有することが好ましい。   Among these, the ethylenically unsaturated monomer is selected from the group consisting of (meth) acrylic acid and its salts, acrylamide, methacrylamide, and N, N-dimethylacrylamide from the viewpoint of being industrially easily available. It is preferable to contain at least one compound selected, and it is more preferable to contain at least one compound selected from the group consisting of (meth) acrylic acid and salts thereof, and acrylamide. From the viewpoint of further enhancing the water absorption characteristics (water retention capacity, etc.), the ethylenically unsaturated monomer more preferably contains at least one compound selected from the group consisting of (meth) acrylic acid and salts thereof. That is, the water absorbent resin particles preferably have a structural unit derived from at least one selected from the group consisting of (meth) acrylic acid and salts thereof.

吸水性樹脂粒子を得るための単量体としては、上述のエチレン性不飽和単量体以外の単量体が使用されてもよい。このような単量体は、例えば、上述のエチレン性不飽和単量体を含む水溶液に混合して用いることができる。エチレン性不飽和単量体の使用量は、単量体全量に対して70〜100モル%であることが好ましい。中でも、(メタ)アクリル酸及びその塩の割合が単量体全量に対して70〜100モル%であることがより好ましい。   As the monomer for obtaining the water absorbent resin particles, a monomer other than the above-mentioned ethylenically unsaturated monomer may be used. Such a monomer can be used by being mixed with an aqueous solution containing the above-mentioned ethylenically unsaturated monomer. The amount of the ethylenically unsaturated monomer used is preferably 70 to 100 mol% based on the total amount of the monomers. Above all, the proportion of (meth) acrylic acid and its salt is more preferably 70 to 100 mol% with respect to the total amount of the monomers.

エチレン性不飽和単量体は、通常、水溶液として用いることが好適である。エチレン性不飽和単量体を含む水溶液(以下、単に「単量体水溶液」という)におけるエチレン性不飽和単量体の濃度は、20質量%以上飽和濃度以下が好ましく、25〜70質量%がより好ましく、30〜55質量%が更に好ましい。水溶液において使用される水としては、水道水、蒸留水、イオン交換水等が挙げられる。   Usually, the ethylenically unsaturated monomer is preferably used as an aqueous solution. The concentration of the ethylenically unsaturated monomer in the aqueous solution containing the ethylenically unsaturated monomer (hereinafter, simply referred to as “monomer aqueous solution”) is preferably 20% by mass or more and the saturated concentration or less, and 25 to 70% by mass is preferable. More preferably, 30 to 55 mass% is still more preferable. Examples of water used in the aqueous solution include tap water, distilled water, ion-exchanged water and the like.

単量体水溶液は、エチレン性不飽和単量体が酸基を有する場合、その酸基をアルカリ性中和剤によって中和して用いてもよい。エチレン性不飽和単量体における、アルカリ性中和剤による中和度は、得られる吸水性樹脂粒子の浸透圧を高くし、吸水特性(保水量等)を更に高める観点から、エチレン性不飽和単量体中の酸性基の10〜100モル%であることが好ましく、50〜90モル%であることがより好ましく、60〜80モル%であることが更に好ましい。アルカリ性中和剤としては、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、炭酸カリウム等のアルカリ金属塩;アンモニアなどが挙げられる。アルカリ性中和剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。アルカリ性中和剤は、中和操作を簡便にするために水溶液の状態で用いられてもよい。エチレン性不飽和単量体の酸基の中和は、例えば、水酸化ナトリウム、水酸化カリウム等の水溶液を上述の単量体水溶液に滴下して混合することにより行うことができる。   When the ethylenically unsaturated monomer has an acid group, the aqueous monomer solution may be used after neutralizing the acid group with an alkaline neutralizing agent. The degree of neutralization of the ethylenically unsaturated monomer with the alkaline neutralizing agent is determined from the viewpoint of increasing the osmotic pressure of the water-absorbent resin particles to be obtained and further improving the water absorption characteristics (water retention capacity, etc.). It is preferably 10 to 100 mol%, more preferably 50 to 90 mol%, and further preferably 60 to 80 mol% of the acidic group in the monomer. Examples of the alkaline neutralizing agent include alkali metal salts such as sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide and potassium carbonate; ammonia and the like. The alkaline neutralizing agent may be used alone or in combination of two or more kinds. The alkaline neutralizing agent may be used in the form of an aqueous solution in order to simplify the neutralizing operation. The acid group of the ethylenically unsaturated monomer can be neutralized by, for example, dropping an aqueous solution of sodium hydroxide, potassium hydroxide or the like into the above-mentioned aqueous monomer solution and mixing them.

逆相懸濁重合法においては、界面活性剤の存在下、炭化水素分散媒中で単量体水溶液を分散し、ラジカル重合開始剤等を用いてエチレン性不飽和単量体の重合を行うことができる。ラジカル重合開始剤としては、水溶性ラジカル重合開始剤を用いることができる。   In the reverse phase suspension polymerization method, an aqueous monomer solution is dispersed in a hydrocarbon dispersion medium in the presence of a surfactant, and the ethylenically unsaturated monomer is polymerized using a radical polymerization initiator or the like. You can A water-soluble radical polymerization initiator can be used as the radical polymerization initiator.

界面活性剤としては、ノニオン系界面活性剤、アニオン系界面活性剤等が挙げられる。ノニオン系界面活性剤としては、ソルビタン脂肪酸エステル、(ポリ)グリセリン脂肪酸エステル(「(ポリ)」とは、「ポリ」の接頭語がある場合及びない場合の双方を意味するものとする。以下同じ。)、ショ糖脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ソルビトール脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピルアルキルエーテル、ポリエチレングリコール脂肪酸エステル等が挙げられる。アニオン系界面活性剤としては、脂肪酸塩、アルキルベンゼンスルホン酸塩、アルキルメチルタウリン酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンアルキルエーテルスルホン酸塩、ポリオキシエチレンアルキルエーテルのリン酸エステル、ポリオキシエチレンアルキルアリルエーテルのリン酸エステル等が挙げられる。界面活性剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。   Examples of the surfactant include nonionic surfactants and anionic surfactants. As the nonionic surfactant, sorbitan fatty acid ester and (poly) glycerin fatty acid ester (“(poly)” means both with and without the prefix “poly”. The same applies hereinafter. ), Sucrose fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene glycerin fatty acid ester, sorbitol fatty acid ester, polyoxyethylene sorbitol fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, polyoxyethylene castor Oil, polyoxyethylene hydrogenated castor oil, alkylallyl formaldehyde condensed polyoxyethylene ether, polyoxyethylene polyoxypropylene block copolymer, polyoxyethylene polyoxypropyene Alkyl ethers, and polyethylene glycol fatty acid ester. Examples of anionic surfactants include fatty acid salts, alkylbenzene sulfonates, alkylmethyl taurates, polyoxyethylene alkylphenyl ether sulfates, polyoxyethylene alkyl ether sulfonates, and polyoxyethylene alkyl ether phosphates. , Phosphoric acid ester of polyoxyethylene alkyl allyl ether, and the like. The surfactant may be used alone or in combination of two or more kinds.

W/O型逆相懸濁の状態が良好であり、好適な粒子径を有する吸水性樹脂粒子が得られやすく、工業的に入手が容易である観点から、界面活性剤は、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル及びショ糖脂肪酸エステルからなる群より選ばれる少なくとも一種の化合物を含むことが好ましい。吸水性樹脂粒子の適切な粒度分布が得られやすい観点、並びに、吸水性樹脂粒子の吸水特性及びそれを用いた吸収性物品の性能が向上しやすい観点から、界面活性剤は、ショ糖脂肪酸エステルを含むことが好ましく、ショ糖ステアリン酸エステルがより好ましい。   The surfactant is a sorbitan fatty acid ester, from the viewpoint that the W / O type reversed phase suspension is in a good state, water-absorbent resin particles having a suitable particle size are easily obtained, and industrially easily available. It is preferable to contain at least one compound selected from the group consisting of polyglycerin fatty acid ester and sucrose fatty acid ester. From the viewpoint of easily obtaining an appropriate particle size distribution of the water absorbent resin particles, and from the viewpoint of easily improving the water absorbing properties of the water absorbent resin particles and the performance of the absorbent article using the same, the surfactant is a sucrose fatty acid ester. Is preferred, and sucrose stearate is more preferred.

界面活性剤の使用量は、使用量に対する効果が充分に得られる観点、及び、経済的である観点から、単量体水溶液100質量部に対して、0.05〜10質量部が好ましく、0.08〜5質量部がより好ましく、0.1〜3質量部が更に好ましい。   The amount of the surfactant used is preferably 0.05 to 10 parts by mass, based on 100 parts by mass of the aqueous monomer solution, from the viewpoint that the effect on the amount used is sufficiently obtained and from the economical viewpoint. 0.08 to 5 parts by mass is more preferable, and 0.1 to 3 parts by mass is still more preferable.

逆相懸濁重合では、上述の界面活性剤と共に高分子系分散剤を併せて用いてもよい。高分子系分散剤としては、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸変性EPDM(エチレン・プロピレン・ジエン・ターポリマー)、無水マレイン酸変性ポリブタジエン、無水マレイン酸・エチレン共重合体、無水マレイン酸・プロピレン共重合体、無水マレイン酸・エチレン・プロピレン共重合体、無水マレイン酸・ブタジエン共重合体、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレン、酸化型エチレン・プロピレン共重合体、エチレン・アクリル酸共重合体、エチルセルロース、エチルヒドロキシエチルセルロース等が挙げられる。高分子系分散剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。高分子系分散剤としては、単量体の分散安定性に優れる観点から、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸・エチレン共重合体、無水マレイン酸・プロピレン共重合体、無水マレイン酸・エチレン・プロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレン、及び、酸化型エチレン・プロピレン共重合体からなる群より選ばれる少なくとも一種が好ましい。   In the reverse phase suspension polymerization, a polymeric dispersant may be used together with the above-mentioned surfactant. As the polymer dispersant, maleic anhydride modified polyethylene, maleic anhydride modified polypropylene, maleic anhydride modified ethylene / propylene copolymer, maleic anhydride modified EPDM (ethylene / propylene / diene / terpolymer), maleic anhydride Modified polybutadiene, maleic anhydride / ethylene copolymer, maleic anhydride / propylene copolymer, maleic anhydride / ethylene / propylene copolymer, maleic anhydride / butadiene copolymer, polyethylene, polypropylene, ethylene / propylene copolymer Examples thereof include coalesce, oxidized polyethylene, oxidized polypropylene, oxidized ethylene / propylene copolymer, ethylene / acrylic acid copolymer, ethyl cellulose and ethyl hydroxyethyl cellulose. The polymeric dispersants may be used alone or in combination of two or more. As the polymer dispersant, maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene / propylene copolymer, maleic anhydride / ethylene copolymer is used from the viewpoint of excellent dispersion stability of the monomer. Combined, maleic anhydride / propylene copolymer, maleic anhydride / ethylene / propylene copolymer, polyethylene, polypropylene, ethylene / propylene copolymer, oxidized polyethylene, oxidized polypropylene, and oxidized ethylene / propylene copolymer At least one selected from the group consisting of coalescence is preferable.

高分子系分散剤の使用量は、使用量に対する効果が充分に得られる観点、及び、経済的である観点から、単量体水溶液100質量部に対して、0.05〜10質量部が好ましく、0.08〜5質量部がより好ましく、0.1〜3質量部が更に好ましい。   The amount of the polymeric dispersant used is preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the aqueous monomer solution, from the viewpoint that the effect on the amount used can be sufficiently obtained and from the economical viewpoint. , 0.08 to 5 parts by mass is more preferable, and 0.1 to 3 parts by mass is still more preferable.

炭化水素分散媒は、炭素数6〜8の鎖状脂肪族炭化水素、及び、炭素数6〜8の脂環式炭化水素からなる群より選ばれる少なくとも一種の化合物を含んでいてもよい。炭化水素分散媒としては、n−ヘキサン、n−ヘプタン、2−メチルヘキサン、3−メチルヘキサン、2,3−ジメチルペンタン、3−エチルペンタン、n−オクタン等の鎖状脂肪族炭化水素;シクロヘキサン、メチルシクロヘキサン、シクロペンタン、メチルシクロペンタン、trans−1,2−ジメチルシクロペンタン、cis−1,3−ジメチルシクロペンタン、trans−1,3−ジメチルシクロペンタン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素などが挙げられる。炭化水素分散媒は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。   The hydrocarbon dispersion medium may contain at least one compound selected from the group consisting of chain aliphatic hydrocarbons having 6 to 8 carbon atoms and alicyclic hydrocarbons having 6 to 8 carbon atoms. As the hydrocarbon dispersion medium, chain aliphatic hydrocarbons such as n-hexane, n-heptane, 2-methylhexane, 3-methylhexane, 2,3-dimethylpentane, 3-ethylpentane and n-octane; cyclohexane Alicyclic hydrocarbons such as methylcyclohexane, cyclopentane, methylcyclopentane, trans-1,2-dimethylcyclopentane, cis-1,3-dimethylcyclopentane, trans-1,3-dimethylcyclopentane; benzene; Examples thereof include aromatic hydrocarbons such as toluene and xylene. The hydrocarbon dispersion medium may be used alone or in combination of two or more kinds.

炭化水素分散媒は、工業的に入手が容易であり、かつ、品質が安定している観点から、n−ヘプタン及びシクロヘキサンからなる群より選ばれる少なくとも一種を含んでいてもよい。また、同様の観点から、上述の炭化水素分散媒の混合物としては、例えば、市販されているエクソールヘプタン(エクソンモービル社製:n−ヘプタン及び異性体の炭化水素75〜85%含有)を用いてもよい。   The hydrocarbon dispersion medium may contain at least one selected from the group consisting of n-heptane and cyclohexane from the viewpoint of industrial availability and stable quality. From the same viewpoint, as the mixture of the above-mentioned hydrocarbon dispersion media, for example, commercially available exol heptane (manufactured by Exxon Mobil: n-heptane and 75-85% of isomer hydrocarbons) is used. May be.

炭化水素分散媒の使用量は、重合熱を適度に除去し、重合温度を制御しやすい観点から、単量体水溶液100質量部に対して、30〜1000質量部が好ましく、40〜500質量部がより好ましく、50〜400質量部が更に好ましい。炭化水素分散媒の使用量が30質量部以上であることにより、重合温度の制御が容易である傾向がある。炭化水素分散媒の使用量が1000質量部以下であることにより、重合の生産性が向上する傾向があり、経済的である。   The amount of the hydrocarbon dispersion medium used is preferably 30 to 1000 parts by mass, and 40 to 500 parts by mass with respect to 100 parts by mass of the aqueous monomer solution, from the viewpoint of appropriately removing the heat of polymerization and easily controlling the polymerization temperature. Is more preferable and 50 to 400 parts by mass is further preferable. When the amount of the hydrocarbon dispersion medium used is 30 parts by mass or more, control of the polymerization temperature tends to be easy. When the amount of the hydrocarbon dispersion medium used is 1000 parts by mass or less, the productivity of polymerization tends to be improved, which is economical.

ラジカル重合開始剤は水溶性であることが好ましく、例えば、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩;メチルエチルケトンパーオキシド、メチルイソブチルケトンパーオキシド、ジ−t−ブチルパーオキシド、t−ブチルクミルパーオキシド、t−ブチルパーオキシアセテート、t−ブチルパーオキシイソブチレート、t−ブチルパーオキシピバレート、過酸化水素等の過酸化物;2,2’−アゾビス(2−アミジノプロパン)2塩酸塩、2,2’−アゾビス[2−(N−フェニルアミジノ)プロパン]2塩酸塩、2,2’−アゾビス[2−(N−アリルアミジノ)プロパン]2塩酸塩、2,2'−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]2塩酸塩、2,2’−アゾビス{2−[1−(2−ヒドロキシエチル)−2−イミダゾリン−2−イル]プロパン}2塩酸塩、2,2’−アゾビス{2−メチル−N−[1,1−ビス(ヒドロキシメチル)−2−ヒドロキシエチル]プロピオンアミド}、2,2’−アゾビス[2−メチル−N−(2−ヒドロキシエチル)−プロピオンアミド]、4,4’−アゾビス(4−シアノ吉草酸)等のアゾ化合物などが挙げられる。ラジカル重合開始剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。ラジカル重合開始剤としては、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム、2,2’−アゾビス(2−アミジノプロパン)2塩酸塩、2,2'−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]2塩酸塩、及び、2,2’−アゾビス{2−[1−(2−ヒドロキシエチル)−2−イミダゾリン−2−イル]プロパン}2塩酸塩からなる群より選ばれる少なくとも一種が好ましい。   The radical polymerization initiator is preferably water-soluble, and examples thereof include persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate; methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, t. -Butyl cumyl peroxide, t-butyl peroxyacetate, t-butyl peroxyisobutyrate, t-butyl peroxypivalate, peroxides such as hydrogen peroxide; 2,2'-azobis (2-amidinopropane ) Dihydrochloride, 2,2'-azobis [2- (N-phenylamidino) propane] dihydrochloride, 2,2'-azobis [2- (N-allylamidino) propane] dihydrochloride, 2,2 '-Azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, 2,2'-azobis {2- [1- (2- Hydroxyethyl) -2-imidazolin-2-yl] propane} dihydrochloride, 2,2′-azobis {2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide} , 2,2′-azobis [2-methyl-N- (2-hydroxyethyl) -propionamide], 4,4′-azobis (4-cyanovaleric acid) and the like. The radical polymerization initiator may be used alone or in combination of two or more kinds. As the radical polymerization initiator, potassium persulfate, ammonium persulfate, sodium persulfate, 2,2′-azobis (2-amidinopropane) dihydrochloride, 2,2′-azobis [2- (2-imidazoline-2- At least one selected from the group consisting of yl) propane] dihydrochloride and 2,2'-azobis {2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane} dihydrochloride Is preferred.

ラジカル重合開始剤の使用量は、エチレン性不飽和単量体1モルに対して0.05〜10ミリモルであってよい。ラジカル重合開始剤の使用量が0.05ミリモル以上であると、重合反応に長時間を要さず、効率的である。ラジカル重合開始剤の使用量が10ミリモル以下であると、急激な重合反応が起こることを抑制しやすい。   The amount of the radical polymerization initiator used may be 0.05 to 10 mmol based on 1 mol of the ethylenically unsaturated monomer. When the amount of the radical polymerization initiator used is 0.05 mmol or more, the polymerization reaction does not require a long time and is efficient. When the amount of the radical polymerization initiator used is 10 mmol or less, it is easy to prevent a rapid polymerization reaction from occurring.

上述のラジカル重合開始剤は、亜硫酸ナトリウム、亜硫酸水素ナトリウム、硫酸第一鉄、L−アスコルビン酸等の還元剤と併用して、レドックス重合開始剤として用いることもできる。   The above radical polymerization initiator can be used as a redox polymerization initiator in combination with a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, and L-ascorbic acid.

重合反応の際、重合に用いる単量体水溶液は、連鎖移動剤を含んでいてもよい。連鎖移動剤としては、次亜リン酸塩類、チオール類、チオール酸類、第2級アルコール類、アミン類等が挙げられる。   During the polymerization reaction, the aqueous monomer solution used for the polymerization may contain a chain transfer agent. Examples of the chain transfer agent include hypophosphites, thiols, thiolic acids, secondary alcohols, amines and the like.

重合に用いる単量体水溶液は、吸水性樹脂粒子の粒子径を制御するために増粘剤を含んでいてもよい。増粘剤としては、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、カルボキシメチルセルロース、ポリエチレングリコール、ポリアクリルアミド、ポリエチレンイミン、デキストリン、アルギン酸ナトリウム、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンオキサイド等が挙げられる。なお、重合時の撹拌速度が同じであれば、単量体水溶液の粘度が高いほど、得られる粒子の中位粒子径は大きくなる傾向にある。   The aqueous monomer solution used for polymerization may contain a thickening agent in order to control the particle size of the water absorbent resin particles. Examples of the thickener include hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, carboxymethyl cellulose, polyethylene glycol, polyacrylamide, polyethyleneimine, dextrin, sodium alginate, polyvinyl alcohol, polyvinylpyrrolidone, polyethylene oxide and the like. If the stirring speed during polymerization is the same, the higher the viscosity of the aqueous monomer solution, the larger the median particle size of the particles obtained.

重合の際に自己架橋による架橋が生じるが、内部架橋剤を用いることで架橋を施してもよい。内部架橋剤を用いると、吸水性樹脂粒子の吸水特性(膨潤高さ、保水量等)を制御しやすい。内部架橋剤は、通常、重合反応の際に反応液に添加される。内部架橋剤としては、例えば、エチレングリコール、プロピレングリコール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール類のジ又はトリ(メタ)アクリル酸エステル類;上述のポリオール類と不飽和酸(マレイン酸、フマール酸等)とを反応させて得られる不飽和ポリエステル類;N,N’−メチレンビス(メタ)アクリルアミド等のビス(メタ)アクリルアミド類;ポリエポキシドと(メタ)アクリル酸とを反応させて得られるジ又はトリ(メタ)アクリル酸エステル類;ポリイソシアネート(トリレンジイソシアネート、ヘキサメチレンジイソシアネート等)と(メタ)アクリル酸ヒドロキシエチルとを反応させて得られるジ(メタ)アクリル酸カルバミルエステル類;アリル化澱粉、アリル化セルロース、ジアリルフタレート、N,N’,N”−トリアリルイソシアヌレート、ジビニルベンゼン等の、重合性不飽和基を2個以上有する化合物;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル等のポリグリシジル化合物;エピクロロヒドリン、エピブロムヒドリン、α−メチルエピクロロヒドリン等のハロエポキシ化合物;イソシアネート化合物(2,4−トリレンジイソシアネート、ヘキサメチレンジイソシアネート等)などの、反応性官能基を2個以上有する化合物などが挙げられる。内部架橋剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。内部架橋剤としては、ポリグリシジル化合物が好ましく、ジグリシジルエーテル化合物がより好ましく、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、及び、(ポリ)グリセリンジグリシジルエーテルからなる群より選ばれる少なくとも一種が更に好ましい。   Although crosslinking by self-crosslinking occurs during the polymerization, the crosslinking may be performed by using an internal crosslinking agent. When the internal cross-linking agent is used, it is easy to control the water absorption characteristics (swelling height, water retention amount, etc.) of the water absorbent resin particles. The internal cross-linking agent is usually added to the reaction solution during the polymerization reaction. Examples of the internal cross-linking agent include di- or tri (meth) acrylic acid esters of polyols such as ethylene glycol, propylene glycol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol and polyglycerin; Unsaturated polyesters obtained by reacting polyols with unsaturated acids (maleic acid, fumaric acid, etc.); bis (meth) acrylamides such as N, N′-methylenebis (meth) acrylamide; polyepoxides and (meth) Di- or tri (meth) acrylic acid esters obtained by reacting with acrylic acid; di (meth) obtained by reacting polyisocyanate (tolylene diisocyanate, hexamethylene diisocyanate, etc.) with hydroxyethyl (meth) acrylate ) Carbamyl acid esters; Compounds having two or more polymerizable unsaturated groups such as allylated starch, allylated cellulose, diallyl phthalate, N, N ', N "-triallyl isocyanurate, and divinylbenzene; ) Polyglycidyl such as ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, polyglycerol polyglycidyl ether Compounds; haloepoxy compounds such as epichlorohydrin, epibromhydrin, α-methylepichlorohydrin; isocyanate compounds (2,4-tolylene diisocyanate, hexamethylene diisocyanate, etc.) Examples thereof include compounds having two or more reactive functional groups, etc. The internal cross-linking agents may be used alone or in combination of two or more. A compound is preferable, a diglycidyl ether compound is more preferable, and at least one selected from the group consisting of (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether is further preferable. .

内部架橋剤の使用量は、液が好適に拡散し得る吸収性物品を得やすい観点、及び、得られる重合体が適度に架橋されることにより水溶性の性質が抑制され、充分な吸水量が得られやすい観点から、エチレン性不飽和単量体1モル当たり、30ミリモル以下が好ましく、0.01〜10ミリモルがより好ましく、0.012〜5ミリモルが更に好ましく、0.015〜1ミリモルが特に好ましく、0.02〜0.1ミリモルが極めて好ましく、0.02〜0.05ミリモルが非常に好ましい。   The amount of the internal cross-linking agent used is such that it is easy to obtain an absorbent article in which the liquid can suitably diffuse, and the water-soluble property is suppressed by the resulting polymer being appropriately cross-linked, and a sufficient water absorption amount is obtained. From the viewpoint of easily obtaining, it is preferably 30 mmol or less, more preferably 0.01 to 10 mmol, still more preferably 0.012 to 5 mmol, and 0.015 to 1 mmol per 1 mol of the ethylenically unsaturated monomer. Particularly preferred is 0.02 to 0.1 millimole and very preferred is 0.02 to 0.05 millimole.

エチレン性不飽和単量体、ラジカル重合開始剤、界面活性剤、高分子系分散剤、炭化水素分散媒等(必要に応じて更に内部架橋剤)を混合した状態において撹拌下で加熱し、油中水系において逆相懸濁重合を行うことができる。   An ethylenically unsaturated monomer, a radical polymerization initiator, a surfactant, a polymer-based dispersant, a hydrocarbon dispersion medium, etc. (and optionally an internal cross-linking agent) are mixed under heating in a mixed state, and oil is added. Reverse phase suspension polymerization can be performed in a medium water system.

逆相懸濁重合を行う際には、界面活性剤(必要に応じて更に高分子系分散剤)の存在下で、エチレン性不飽和単量体を含む単量体水溶液を炭化水素分散媒に分散させる。このとき、重合反応を開始する前であれば、界面活性剤、高分子系分散剤等の添加時期は、単量体水溶液の添加の前後どちらであってもよい。   When carrying out reverse-phase suspension polymerization, an aqueous monomer solution containing an ethylenically unsaturated monomer is used as a hydrocarbon dispersion medium in the presence of a surfactant (and a polymer dispersant if necessary). Disperse. At this time, the surfactant, the polymeric dispersant, etc. may be added before or after the polymerization reaction is started, either before or after the addition of the aqueous monomer solution.

その中でも、得られる吸水性樹脂に残存する炭化水素分散媒の量を低減しやすい観点から、高分子系分散剤を分散させた炭化水素分散媒に単量体水溶液を分散させた後に界面活性剤を更に分散させてから重合を行うことが好ましい。   Among them, from the viewpoint of easily reducing the amount of the hydrocarbon dispersion medium remaining in the resulting water-absorbent resin, the surfactant is prepared by dispersing the aqueous monomer solution in the hydrocarbon dispersion medium in which the polymer dispersant is dispersed. It is preferable to carry out the polymerization after further dispersing.

逆相懸濁重合は、1段、又は、2段以上の多段で行うことができる。逆相懸濁重合は、生産性を高める観点から、2〜3段で行うことが好ましい。   The reverse phase suspension polymerization can be carried out in one stage or in multiple stages of two or more stages. The reverse phase suspension polymerization is preferably carried out in 2 to 3 stages from the viewpoint of improving productivity.

2段以上の多段で逆相懸濁重合を行う場合には、1段目の逆相懸濁重合を行った後、1段目の重合反応で得られた反応混合物にエチレン性不飽和単量体を添加して混合し、1段目と同様の方法で2段目以降の逆相懸濁重合を行えばよい。2段目以降の各段における逆相懸濁重合では、エチレン性不飽和単量体の他に、上述のラジカル重合開始剤及び/又は内部架橋剤を、2段目以降の各段における逆相懸濁重合の際に添加するエチレン性不飽和単量体の量を基準として、上述のエチレン性不飽和単量体に対する各成分のモル比の範囲内で添加して逆相懸濁重合を行うことが好ましい。なお、2段目以降の各段における逆相懸濁重合では、必要に応じて内部架橋剤を用いてもよい。内部架橋剤を用いる場合は、各段に供するエチレン性不飽和単量体の量を基準として、上述のエチレン性不飽和単量体に対する各成分のモル比の範囲内で添加して逆相懸濁重合を行うことが好ましい。   When performing reverse phase suspension polymerization in multiple stages of two or more stages, after performing the first stage reverse phase suspension polymerization, the reaction mixture obtained in the first stage polymerization reaction is mixed with an ethylenically unsaturated monomer. The body may be added and mixed, and the reverse phase suspension polymerization of the second and subsequent stages may be carried out in the same manner as in the first stage. In the reverse phase suspension polymerization in each of the second and subsequent stages, in addition to the ethylenically unsaturated monomer, the radical polymerization initiator and / or the internal crosslinking agent described above are used in the reverse phase in each of the second and subsequent stages. Based on the amount of the ethylenically unsaturated monomer added during suspension polymerization, reverse phase suspension polymerization is carried out by adding within the range of the molar ratio of each component to the above ethylenically unsaturated monomer. It is preferable. In the reverse phase suspension polymerization in the second and subsequent stages, an internal crosslinking agent may be used if necessary. When an internal cross-linking agent is used, it is added in an amount within the range of the molar ratio of each component to the above-mentioned ethylenically unsaturated monomer based on the amount of ethylenically unsaturated monomer to be supplied to each stage, and the reverse phase suspension is added. It is preferable to carry out turbid polymerization.

重合反応の温度は、使用するラジカル重合開始剤によって異なるが、重合を迅速に進行させ、重合時間を短くすることにより、経済性を高めると共に、容易に重合熱を除去して円滑に反応を行う観点から、20〜150℃が好ましく、40〜120℃がより好ましい。反応時間は、通常、0.5〜4時間である。重合反応の終了は、例えば、反応系内の温度上昇の停止により確認することができる。これにより、エチレン性不飽和単量体の重合体は、通常、含水ゲルの状態で得られる。   The temperature of the polymerization reaction varies depending on the radical polymerization initiator used, but the polymerization is promoted rapidly and the polymerization time is shortened to improve economic efficiency, and the heat of polymerization is easily removed to smoothly carry out the reaction. From a viewpoint, 20-150 degreeC is preferable and 40-120 degreeC is more preferable. The reaction time is usually 0.5 to 4 hours. The completion of the polymerization reaction can be confirmed by, for example, stopping the temperature rise in the reaction system. Thereby, the polymer of the ethylenically unsaturated monomer is usually obtained in a hydrogel state.

重合後、得られた含水ゲル状重合体に重合後架橋剤を添加して加熱することで架橋を施してもよい。重合後に架橋を行うことで含水ゲル状重合体の架橋度を高めて吸水特性(膨潤高さ、保水量等)を更に向上させることができる。   After the polymerization, a cross-linking agent may be added to the obtained hydrous gel polymer after the polymerization, and the cross-linking may be performed by heating. By carrying out crosslinking after the polymerization, the degree of crosslinking of the hydrogel polymer can be increased and the water absorption properties (swelling height, water retention amount, etc.) can be further improved.

重合後架橋剤としては、エチレングリコール、プロピレングリコール、1,4−ブタンジオール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル等の、2個以上のエポキシ基を有する化合物;エピクロルヒドリン、エピブロムヒドリン、α−メチルエピクロルヒドリン等のハロエポキシ化合物;2,4−トリレンジイソシアネート、ヘキサメチレンジイソシアネート等の、2個以上のイソシアネート基を有する化合物;1,2−エチレンビスオキサゾリン等のオキサゾリン化合物;エチレンカーボネート等のカーボネート化合物;ビス[N,N−ジ(β−ヒドロキシエチル)]アジプアミド等のヒドロキシアルキルアミド化合物などが挙げられる。これらの中でも、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル等のポリグリシジル化合物が好ましい。架橋剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。   Post-polymerization crosslinking agents include polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, polyglycerin; (poly) ethylene glycol diglycidyl ether. Compounds having two or more epoxy groups, such as (poly) propylene glycol diglycidyl ether and (poly) glycerin diglycidyl ether; haloepoxy compounds such as epichlorohydrin, epibromhydrin, α-methylepichlorohydrin; 2,4- Compounds having two or more isocyanate groups such as tolylene diisocyanate and hexamethylene diisocyanate; oxazoline compounds such as 1,2-ethylenebisoxazoline; ethylene car Carbonate compounds such as sulfonates; bis [N, N-di (beta-hydroxyethyl)] hydroxyalkylamide compound such Ajipuamido the like. Among these, polyglycidyl compounds such as (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, and polyglycerol polyglycidyl ether are preferable. . The crosslinking agent may be used alone or in combination of two or more kinds.

重合後架橋剤の量は、好適な吸水特性(膨潤高さ、保水量等)が得られやすい観点から、エチレン性不飽和単量体1モル当たり、30ミリモル以下が好ましく、10ミリモル以下がより好ましく、0.01〜5ミリモルが更に好ましく、0.012〜1ミリモルが特に好ましく、0.015〜0.1ミリモルが極めて好ましく、0.02〜0.05ミリモルが非常に好ましい。   The amount of the post-polymerization crosslinking agent is preferably 30 mmol or less, and more preferably 10 mmol or less, per 1 mol of the ethylenically unsaturated monomer from the viewpoint of easily obtaining suitable water absorption characteristics (swelling height, water retention amount, etc.). Preferably, 0.01 to 5 millimole is more preferable, 0.012 to 1 millimole is particularly preferable, 0.015 to 0.1 millimole is extremely preferable, and 0.02 to 0.05 millimole is very preferable.

重合後架橋剤の添加時期としては、重合に用いられるエチレン性不飽和単量体の重合後であればよく、多段重合の場合は、多段重合後に添加されることが好ましい。なお、重合時及び重合後の発熱、工程遅延による滞留、架橋剤添加時の系の開放、及び架橋剤添加に伴う水の添加等による水分の変動を考慮して、重合後架橋剤は、含水率(後述)の観点から、[重合直後の含水率±3質量%]の領域で添加することが好ましい。   The post-polymerization crosslinking agent may be added after the polymerization of the ethylenically unsaturated monomer used in the polymerization, and in the case of multi-stage polymerization, it is preferably added after the multi-stage polymerization. In consideration of heat generation during and after the polymerization, retention due to process delay, opening of the system at the time of adding the cross-linking agent, and fluctuation of water content due to addition of water accompanying the addition of the cross-linking agent, the cross-linking agent after the polymerization is hydrated. From the viewpoint of the rate (described later), it is preferable to add in the range of [water content immediately after polymerization ± 3 mass%].

引き続き、得られた含水ゲル状重合体から水分を除去するために乾燥を行うことにより重合体粒子(例えば、エチレン性不飽和単量体に由来する構造単位を有する重合体粒子)が得られる。乾燥方法としては、例えば、(a)含水ゲル状重合体が炭化水素分散媒に分散した状態で、外部から加熱することにより共沸蒸留を行い、炭化水素分散媒を還流させて水分を除去する方法、(b)デカンテーションにより含水ゲル状重合体を取り出し、減圧乾燥する方法、(c)フィルターにより含水ゲル状重合体をろ別し、減圧乾燥する方法等が挙げられる。中でも、製造工程における簡便さから、(a)の方法を用いることが好ましい。   Subsequently, the obtained hydrous gel polymer is dried to remove water to obtain polymer particles (for example, polymer particles having a structural unit derived from an ethylenically unsaturated monomer). As a drying method, for example, (a) the hydrogel polymer is dispersed in a hydrocarbon dispersion medium, and azeotropic distillation is performed by externally heating the mixture to reflux the hydrocarbon dispersion medium to remove water. Examples thereof include a method, (b) a method of taking out the hydrous gel polymer by decantation and drying under reduced pressure, and a method (c) of filtering the hydrous gel polymer by a filter and drying under reduced pressure. Above all, it is preferable to use the method (a) because it is easy in the manufacturing process.

重合反応時の撹拌機の回転数を調整することによって、あるいは、重合反応後又は乾燥の初期において凝集剤を系内に添加することによって吸水性樹脂粒子の粒子径を調整することができる。凝集剤を添加することにより、得られる吸水性樹脂粒子の粒子径を大きくすることができる。凝集剤としては、無機凝集剤を用いることができる。無機凝集剤(例えば粉末状無機凝集剤)としては、シリカ、ゼオライト、ベントナイト、酸化アルミニウム、タルク、二酸化チタン、カオリン、クレイ、ハイドロタルサイト等が挙げられる。凝集効果に優れる観点から、凝集剤としては、シリカ、酸化アルミニウム、タルク及びカオリンからなる群より選ばれる少なくとも一種が好ましい。   The particle size of the water-absorbent resin particles can be adjusted by adjusting the rotation speed of the stirrer during the polymerization reaction, or by adding a coagulant into the system after the polymerization reaction or at the beginning of the drying. By adding the aggregating agent, the particle diameter of the resulting water absorbent resin particles can be increased. An inorganic coagulant can be used as the coagulant. Examples of the inorganic coagulant (for example, powdery inorganic coagulant) include silica, zeolite, bentonite, aluminum oxide, talc, titanium dioxide, kaolin, clay, hydrotalcite and the like. From the viewpoint of excellent aggregating effect, the aggregating agent is preferably at least one selected from the group consisting of silica, aluminum oxide, talc and kaolin.

逆相懸濁重合において、凝集剤を添加する方法としては、重合で用いられるものと同種の炭化水素分散媒又は水に凝集剤を予め分散させてから、撹拌下で、含水ゲル状重合体を含む炭化水素分散媒中に混合する方法が好ましい。   In the reverse phase suspension polymerization, as a method of adding a flocculant, after preliminarily dispersing the flocculant in a hydrocarbon dispersion medium or water of the same kind as that used in the polymerization, under stirring, to give a hydrogel polymer. The method of mixing in the hydrocarbon dispersion medium containing is preferable.

凝集剤の添加量は、重合に使用するエチレン性不飽和単量体100質量部に対して、0.001〜1質量部が好ましく、0.005〜0.5質量部がより好ましく、0.01〜0.2質量部が更に好ましい。凝集剤の添加量が上述の範囲内であることによって、目的とする粒度分布を有する吸水性樹脂粒子が得られやすい。   The addition amount of the aggregating agent is preferably 0.001 to 1 part by mass, more preferably 0.005 to 0.5 part by mass, and even more preferably 0.001 part by mass with respect to 100 parts by mass of the ethylenically unsaturated monomer used for the polymerization. More preferably, it is from 01 to 0.2 parts by mass. When the amount of the aggregating agent added is within the above range, water-absorbent resin particles having a desired particle size distribution can be easily obtained.

吸水性樹脂粒子の製造においては、乾燥工程(水分除去工程)又はそれ以降の工程において、表面架橋剤を用いて含水ゲル状重合体の表面部分(表面及び表面近傍)の表面架橋が行われることが好ましい。表面架橋を行うことで、吸水性樹脂粒子の吸水特性(膨潤高さ、保水量等)を制御しやすい。表面架橋は、含水ゲル状重合体が特定の含水率であるタイミングで行われることが好ましい。表面架橋の時期は、含水ゲル状重合体の含水率が5〜50質量%である時点が好ましく、10〜40質量%である時点がより好ましく、15〜35質量%である時点が更に好ましい。なお、含水ゲル状重合体の含水率(質量%)は、次の式で算出される。
含水率=[Ww/(Ww+Ws)]×100
Ww:全重合工程の重合前の単量体水溶液に含まれる水分量から、乾燥工程により系外部に排出された水分量を差し引いた量に、凝集剤、表面架橋剤等を混合する際に必要に応じて用いられる水分量を加えた含水ゲル状重合体の水分量。
Ws:含水ゲル状重合体を構成するエチレン性不飽和単量体、架橋剤、開始剤等の材料の仕込量から算出される固形分量。
In the production of the water-absorbent resin particles, in the drying step (water removal step) or in subsequent steps, surface cross-linking of the surface portion (surface and vicinity of the surface) of the hydrogel polymer is performed using a surface cross-linking agent. Is preferred. By carrying out surface cross-linking, it is easy to control the water absorption characteristics (swelling height, water retention amount, etc.) of the water absorbent resin particles. The surface cross-linking is preferably carried out at the timing when the hydrogel polymer has a specific water content. The time of surface cross-linking is preferably a time point when the water content of the hydrogel polymer is 5 to 50% by mass, more preferably 10 to 40% by mass, and further preferably 15 to 35% by mass. The water content (mass%) of the water-containing gel polymer is calculated by the following formula.
Moisture content = [Ww / (Ww + Ws)] × 100
Ww: Required when mixing the coagulant, surface cross-linking agent, etc. to the amount obtained by subtracting the amount of water discharged to the outside of the system in the drying process from the amount of water contained in the aqueous monomer solution before the polymerization in the entire polymerization process The water content of the hydrogel polymer including the water content used according to the above.
Ws: Solid content calculated from the charged amounts of materials such as an ethylenically unsaturated monomer, a cross-linking agent, and an initiator that compose the hydrogel polymer.

表面架橋剤としては、例えば、反応性官能基を2個以上有する化合物を挙げることができる。表面架橋剤としては、エチレングリコール、プロピレングリコール、1,4−ブタンジオール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール類;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル(ポリ)プロピレングリコールポリグリシジルエーテル、(ポリ)グリセロールポリグリシジルエーテル等のポリグリシジル化合物;エピクロロヒドリン、エピブロムヒドリン、α−メチルエピクロロヒドリン等のハロエポキシ化合物;2,4−トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のイソシアネート化合物;3−メチル−3−オキセタンメタノール、3−エチル−3−オキセタンメタノール、3−ブチル−3−オキセタンメタノール、3−メチル−3−オキセタンエタノール、3−エチル−3−オキセタンエタノール、3−ブチル−3−オキセタンエタノール等のオキセタン化合物;1,2−エチレンビスオキサゾリン等のオキサゾリン化合物;エチレンカーボネート等のカーボネート化合物;ビス[N,N−ジ(β−ヒドロキシエチル)]アジプアミド等のヒドロキシアルキルアミド化合物などが挙げられる。表面架橋剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。表面架橋剤としては、ポリグリシジル化合物が好ましく、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、及び、ポリグリセロールポリグリシジルエーテルからなる群より選ばれる少なくとも一種がより好ましい。   Examples of the surface cross-linking agent include compounds having two or more reactive functional groups. As the surface cross-linking agent, polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol and polyglycerin; (poly) ethylene glycol diglycidyl ether Polyglycidyl compounds such as (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, trimethylolpropane triglycidyl ether (poly) propylene glycol polyglycidyl ether, (poly) glycerol polyglycidyl ether; epichlorohydrin, Haloepoxy compounds such as epibromhydrin and α-methylepichlorohydrin; 2,4-tolylene diisocyanate, hexamethylene diisocyanate Isocyanate compound; 3-methyl-3-oxetanemethanol, 3-ethyl-3-oxetanemethanol, 3-butyl-3-oxetanemethanol, 3-methyl-3-oxetaneethanol, 3-ethyl-3-oxetaneethanol, 3 -Oxetane compounds such as butyl-3-oxetane ethanol; oxazoline compounds such as 1,2-ethylenebisoxazoline; carbonate compounds such as ethylene carbonate; hydroxyalkyl such as bis [N, N-di (β-hydroxyethyl)] adipamide Examples thereof include amide compounds. The surface cross-linking agent may be used alone or in combination of two or more kinds. The surface cross-linking agent is preferably a polyglycidyl compound, such as (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, and polyglycerol. At least one selected from the group consisting of polyglycidyl ether is more preferable.

表面架橋剤の使用量は、好適な吸水特性(膨潤高さ、保水量等)が得られやすい観点から、重合に使用するエチレン性不飽和単量体1モルに対して、0.01〜20ミリモルが好ましく、0.05〜10ミリモルがより好ましく、0.1〜5ミリモルが更に好ましく、0.15〜1ミリモルが特に好ましく、0.2〜0.5ミリモルが極めて好ましい。   The amount of the surface cross-linking agent used is 0.01 to 20 with respect to 1 mol of the ethylenically unsaturated monomer used for the polymerization, from the viewpoint that suitable water absorption characteristics (swelling height, water retention amount, etc.) are easily obtained. Millimol is preferred, 0.05-10 mmol is more preferred, 0.1-5 mmol is even more preferred, 0.15-1 mmol is particularly preferred, and 0.2-0.5 mmol is highly preferred.

表面架橋後において、公知の方法で水及び炭化水素分散媒を留去することにより、表面架橋された乾燥品である重合体粒子を得ることができる。   After the surface cross-linking, water and the hydrocarbon dispersion medium are distilled off by a known method to obtain polymer particles which are surface cross-linked dry products.

上述のとおり、吸水性樹脂粒子に含まれる重合体粒子は、単量体の重合時に用いる内部架橋剤を用いて得ることが可能であり、内部架橋剤、及び、単量体の重合後に用いられる外部架橋剤(単量体の重合後に用いられる重合後架橋剤、及び、単量体の重合後の乾燥工程又はそれ以降の工程において用いられる表面架橋剤)を用いて得ることができる。内部架橋剤に対する外部架橋剤の使用量の比(外部架橋剤/内部架橋剤)は、好適な吸水特性(膨潤高さ、保水量等)が得られやすい観点から、5〜100が好ましく、10〜80がより好ましく、15〜50が更に好ましく、15〜30が特に好ましい。吸水性樹脂粒子は、内部架橋剤を用いた反応物である重合体粒子を含んでよく、内部架橋剤及び外部架橋剤を用いた反応物である重合体粒子を含んでよい。重合体粒子において内部架橋剤に対する外部架橋剤の使用量の比は上述の範囲が好ましい。   As described above, the polymer particles contained in the water-absorbent resin particles can be obtained by using the internal cross-linking agent used during the polymerization of the monomer, and the internal cross-linking agent and the monomer are used after the polymerization of the monomer. An external cross-linking agent (a post-polymerization cross-linking agent used after the polymerization of the monomer, and a surface cross-linking agent used in the drying step after the polymerization of the monomer or the subsequent steps) can be used. The ratio of the amount of the external cross-linking agent used to the internal cross-linking agent (external cross-linking agent / internal cross-linking agent) is preferably 5 to 100 from the viewpoint that suitable water absorption characteristics (swelling height, water retention amount, etc.) are easily obtained. -80 are more preferable, 15-50 are still more preferable, and 15-30 are especially preferable. The water absorbent resin particles may include polymer particles that are a reaction product using an internal crosslinking agent, and may include polymer particles that are a reaction product using an internal crosslinking agent and an external crosslinking agent. The ratio of the amount of the external crosslinking agent used to the internal crosslinking agent in the polymer particles is preferably within the above range.

本実施形態に係る吸水性樹脂粒子は、重合体粒子に加えて、例えば、ゲル安定剤、金属キレート剤(エチレンジアミン4酢酸及びその塩、ジエチレントリアミン5酢酸及びその塩、例えばジエチレントリアミン5酢酸5ナトリウム等)、流動性向上剤(滑剤)等の追加成分を更に含むことができる。追加成分は、重合体粒子の内部、重合体粒子の表面上、又は、これらの両方に配置され得る。   In addition to the polymer particles, the water-absorbent resin particles according to the present embodiment include, for example, a gel stabilizer, a metal chelating agent (ethylenediaminetetraacetic acid and its salt, diethylenetriamine-5-acetic acid and its salt, such as diethylenetriamine-5-acetic acid 5 sodium salt). , An additional component such as a fluidity improver (lubricant) and the like. The additional components can be located within the polymer particles, on the surface of the polymer particles, or both.

吸水性樹脂粒子は、重合体粒子の表面上に配置された複数の無機粒子を含んでいてもよい。例えば、重合体粒子と無機粒子とを混合することにより、重合体粒子の表面上に無機粒子を配置することができる。この無機粒子は、非晶質シリカ等のシリカ粒子であってもよい。   The water absorbent resin particles may include a plurality of inorganic particles arranged on the surface of the polymer particles. For example, the inorganic particles can be arranged on the surface of the polymer particles by mixing the polymer particles and the inorganic particles. The inorganic particles may be silica particles such as amorphous silica.

吸水性樹脂粒子が、重合体粒子の表面上に配置された無機粒子を含む場合、無機粒子の含有量は、重合体粒子の全質量を基準として下記の範囲であってよい。無機粒子の含有量は、0.05質量%以上、0.1質量%以上、0.15質量%以上、又は、0.2質量%以上であってよい。無機粒子の含有量は、5.0質量%以下、3.0質量%以下、1.0質量%以下、0.5質量%以下、又は、0.3質量%以下であってよい。   When the water absorbent resin particles include the inorganic particles arranged on the surface of the polymer particles, the content of the inorganic particles may be in the following range based on the total mass of the polymer particles. The content of the inorganic particles may be 0.05% by mass or more, 0.1% by mass or more, 0.15% by mass or more, or 0.2% by mass or more. The content of the inorganic particles may be 5.0% by mass or less, 3.0% by mass or less, 1.0% by mass or less, 0.5% by mass or less, or 0.3% by mass or less.

ここでの無機粒子は、通常、重合体粒子の大きさと比較して微小な大きさを有する。例えば、無機粒子の平均粒子径は、0.1〜50μm、0.5〜30μm、又は、1〜20μmであってよい。平均粒子径は、粒子の特性に応じて、細孔電気抵抗法又はレーザー回折・散乱法によって測定できる。   The inorganic particles here usually have a fine size as compared with the size of the polymer particles. For example, the average particle size of the inorganic particles may be 0.1 to 50 μm, 0.5 to 30 μm, or 1 to 20 μm. The average particle diameter can be measured by the pore electrical resistance method or the laser diffraction / scattering method depending on the characteristics of the particles.

本実施形態に係る吸収体は、本実施形態に係る吸水性樹脂粒子を含有する。本実施形態に係る吸収体は、繊維状物を含有していてもよく、例えば、吸水性樹脂粒子及び繊維状物を含む混合物である。吸収体の構成としては、例えば、吸水性樹脂粒子及び繊維状物が均一混合された構成であってよく、シート状又は層状に形成された繊維状物の間に吸水性樹脂粒子が挟まれた構成であってもよく、その他の構成であってもよい。   The absorber according to the present embodiment contains the water absorbent resin particles according to the present embodiment. The absorber according to the present embodiment may contain a fibrous substance, and is, for example, a mixture containing water-absorbent resin particles and a fibrous substance. The structure of the absorbent body may be, for example, a structure in which the water-absorbent resin particles and the fibrous substance are uniformly mixed, and the water-absorbent resin particles are sandwiched between the fibrous substances formed into a sheet or layer. It may be a configuration or another configuration.

繊維状物としては、微粉砕された木材パルプ;コットン;コットンリンター;レーヨン;セルロースアセテート等のセルロース系繊維;ポリアミド、ポリエステル、ポリオレフィン等の合成繊維;これらの繊維の混合物などが挙げられる。繊維状物は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。繊維状物としては、親水性繊維を用いることができる。   Examples of the fibrous material include finely pulverized wood pulp; cotton; cotton linters; rayon; cellulosic fibers such as cellulose acetate; synthetic fibers such as polyamide, polyester and polyolefin; and a mixture of these fibers. The fibrous material may be used alone or in combination of two or more kinds. Hydrophilic fibers can be used as the fibrous material.

吸収体の使用前及び使用中における形態保持性を高めるために、繊維状物に接着性バインダーを添加することによって繊維同士を接着させてもよい。接着性バインダーとしては、熱融着性合成繊維、ホットメルト接着剤、接着性エマルジョン等が挙げられる。接着性バインダーは、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。   The fibers may be bonded to each other by adding an adhesive binder to the fibrous material in order to improve the shape retention of the absorbent body before and during use. Examples of the adhesive binder include heat-fusible synthetic fibers, hot melt adhesives and adhesive emulsions. The adhesive binder may be used alone or in combination of two or more kinds.

熱融着性合成繊維としては、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体等の全融型バインダー;ポリプロピレンとポリエチレンとのサイドバイサイド又は芯鞘構造からなる非全融型バインダーなどが挙げられる。上述の非全融型バインダーにおいては、ポリエチレン部分のみ熱融着することができる。   Examples of the heat-fusible synthetic fiber include a total fusion type binder such as polyethylene, polypropylene and an ethylene-propylene copolymer; and a non-total fusion type binder having a side-by-side or core-sheath structure of polypropylene and polyethylene. In the above non-total melting type binder, only the polyethylene portion can be heat-sealed.

ホットメルト接着剤としては、例えば、エチレン−酢酸ビニルコポリマー、スチレン−イソプレン−スチレンブロックコポリマー、スチレン−ブタジエン−スチレンブロックコポリマー、スチレン−エチレン−ブチレン−スチレンブロックコポリマー、スチレン−エチレン−プロピレン−スチレンブロックコポリマー、アモルファスポリプロピレン等のベースポリマーと、粘着付与剤、可塑剤、酸化防止剤等との混合物が挙げられる。   Examples of hot melt adhesives include ethylene-vinyl acetate copolymer, styrene-isoprene-styrene block copolymer, styrene-butadiene-styrene block copolymer, styrene-ethylene-butylene-styrene block copolymer, styrene-ethylene-propylene-styrene block copolymer. , A mixture of a base polymer such as amorphous polypropylene and a tackifier, a plasticizer, an antioxidant and the like.

接着性エマルジョンとしては、例えば、メチルメタクリレート、スチレン、アクリロニトリル、2−エチルヘキシルアクリレート、ブチルアクリレート、ブタジエン、エチレン、及び、酢酸ビニルからなる群より選ばれる少なくとも一種の単量体の重合物が挙げられる。   Examples of the adhesive emulsion include a polymer of at least one monomer selected from the group consisting of methyl methacrylate, styrene, acrylonitrile, 2-ethylhexyl acrylate, butyl acrylate, butadiene, ethylene, and vinyl acetate.

本実施形態に係る吸収体は、無機粉末(例えば非晶質シリカ)、消臭剤、抗菌剤、顔料、染料、香料、粘着剤等を含有してもよい。吸水性樹脂粒子が無機粒子を含む場合、吸収体は、吸水性樹脂粒子中の無機粒子とは別に無機粉末を含有してよい。   The absorber according to the present embodiment may contain an inorganic powder (for example, amorphous silica), a deodorant, an antibacterial agent, a pigment, a dye, a fragrance, an adhesive, and the like. When the water-absorbent resin particles contain inorganic particles, the absorber may contain an inorganic powder separately from the inorganic particles in the water-absorbent resin particles.

本実施形態に係る吸収体の形状は、例えばシート状であってよい。吸収体の厚さ(例えば、シート状の吸収体の厚さ)は、0.1〜20mm又は0.3〜15mmであってよい。   The shape of the absorber according to the present embodiment may be, for example, a sheet shape. The thickness of the absorbent body (for example, the thickness of the sheet-shaped absorbent body) may be 0.1 to 20 mm or 0.3 to 15 mm.

吸収体における吸水性樹脂粒子の含有量は、充分な吸水性能を得やすい観点から、吸水性樹脂粒子及び繊維状物の合計に対して、2〜100質量%、10〜80質量%又は20〜60質量%であってよい。   The content of the water-absorbent resin particles in the absorber is 2 to 100% by mass, 10 to 80% by mass, or 20 to 20% by mass based on the total amount of the water-absorbent resin particles and the fibrous substance, from the viewpoint of easily obtaining sufficient water-absorbing performance. It may be 60% by weight.

吸収体における吸水性樹脂粒子の含有量は、充分な吸水性能を得やすい観点から、吸収体1m当たり、100〜1000gが好ましく、150〜800gがより好ましく、200〜700gが更に好ましい。吸収体における繊維状物の含有量は、充分な吸水性能を得やすい観点から、吸収体1mあたり、50〜800gが好ましく、100〜600gがより好ましく、150〜500gが更に好ましい。 The content of the water-absorbent resin particles in the absorber is preferably 100 to 1000 g, more preferably 150 to 800 g, and further preferably 200 to 700 g per 1 m 2 of the absorber from the viewpoint of easily obtaining sufficient water absorbing performance. The content of the fibrous material in the absorbent body is preferably 50 to 800 g, more preferably 100 to 600 g, still more preferably 150 to 500 g, per 1 m 2 of the absorbent body, from the viewpoint of easily obtaining sufficient water absorption performance.

本実施形態に係る吸収性物品は、本実施形態に係る吸収体を備える。本実施形態に係る吸収性物品は、吸収体を保形すると共に吸収体の構成部材の脱落や流動を防止するコアラップ;吸液対象の液が浸入する側の最外部に配置される液体透過性シート;吸液対象の液が浸入する側とは反対側の最外部に配置される液体不透過性シート等が挙げられる。吸収性物品としては、おむつ(例えば紙おむつ)、トイレトレーニングパンツ、失禁パッド、衛生材料(生理用ナプキン、タンポン等)、汗取りパッド、ペットシート、簡易トイレ用部材、動物排泄物処理材などが挙げられる。   The absorbent article according to the present embodiment includes the absorbent body according to the present embodiment. The absorbent article according to the present embodiment is a core wrap that retains the shape of the absorbent body and prevents the constituent members of the absorbent body from falling off or flowing; Sheet: A liquid-impermeable sheet or the like arranged on the outermost side on the side opposite to the side where the liquid to be sucked enters. Examples of absorbent articles include diapers (eg, paper diapers), toilet training pants, incontinence pads, sanitary materials (sanitary napkins, tampons, etc.), sweat pads, pet sheets, simple toilet parts, animal excrement disposal materials, etc. ..

図1は、吸収性物品の一例を示す断面図である。図1に示す吸収性物品100は、吸収体10と、コアラップ20a,20bと、液体透過性シート30と、液体不透過性シート40と、を備える。吸収性物品100において、液体不透過性シート40、コアラップ20b、吸収体10、コアラップ20a、及び、液体透過性シート30がこの順に積層している。図1において、部材間に間隙があるように図示されている部分があるが、当該間隙が存在することなく部材間が密着していてよい。   FIG. 1 is a sectional view showing an example of an absorbent article. The absorbent article 100 shown in FIG. 1 includes an absorber 10, core wraps 20a and 20b, a liquid permeable sheet 30, and a liquid impermeable sheet 40. In the absorbent article 100, the liquid impermeable sheet 40, the core wrap 20b, the absorber 10, the core wrap 20a, and the liquid permeable sheet 30 are laminated in this order. In FIG. 1, there is a portion where there is a gap between the members, but the members may be in close contact with each other without the gap.

吸収体10は、本実施形態に係る吸水性樹脂粒子10aと、繊維状物を含む繊維層10bと、を有する。吸水性樹脂粒子10aは、繊維層10b内に分散している。   The absorber 10 includes the water-absorbent resin particles 10a according to the present embodiment and the fiber layer 10b containing a fibrous material. The water absorbent resin particles 10a are dispersed in the fiber layer 10b.

コアラップ20aは、吸収体10に接した状態で吸収体10の一方面側(図1中、吸収体10の上側)に配置されている。コアラップ20bは、吸収体10に接した状態で吸収体10の他方面側(図1中、吸収体10の下側)に配置されている。吸収体10は、コアラップ20aとコアラップ20bとの間に配置されている。コアラップ20a,20bとしては、ティッシュ、不織布、織布、液体透過孔を有する合成樹脂フィルム、網目を有するネット状シート等が挙げられる。コアラップ20a及びコアラップ20bは、例えば、吸収体10と同等の大きさの主面を有している。   The core wrap 20a is arranged on one surface side of the absorbent body 10 (the upper side of the absorbent body 10 in FIG. 1) while being in contact with the absorbent body 10. The core wrap 20b is arranged on the other surface side of the absorbent body 10 (below the absorbent body 10 in FIG. 1) while being in contact with the absorbent body 10. The absorber 10 is arranged between the core wrap 20a and the core wrap 20b. Examples of the core wraps 20a and 20b include tissues, non-woven fabrics, woven fabrics, synthetic resin films having liquid permeation holes, net-like sheets having a mesh, and the like. The core wrap 20a and the core wrap 20b have, for example, a main surface having the same size as the absorber 10.

液体透過性シート30は、吸収対象の液が浸入する側の最外部に配置されている。液体透過性シート30は、コアラップ20aに接した状態でコアラップ20a上に配置されている。液体透過性シート30としては、ポリエチレン、ポリプロピレン、ポリエステル、ポリアミド等の合成樹脂からなる不織布、多孔質シートなどが挙げられる。液体不透過性シート40は、吸収性物品100において液体透過性シート30とは反対側の最外部に配置されている。液体不透過性シート40は、コアラップ20bに接した状態でコアラップ20bの下側に配置されている。液体不透過性シート40としては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等の合成樹脂からなるシート、これらの合成樹脂と不織布との複合材料からなるシートなどが挙げられる。液体透過性シート30及び液体不透過性シート40は、例えば、吸収体10の主面よりも広い主面を有しており、液体透過性シート30及び液体不透過性シート40の外縁部は、吸収体10及びコアラップ20a,20bの周囲に延在している。   The liquid permeable sheet 30 is arranged on the outermost side on the side where the liquid to be absorbed enters. The liquid permeable sheet 30 is arranged on the core wrap 20a while being in contact with the core wrap 20a. Examples of the liquid permeable sheet 30 include a nonwoven fabric made of a synthetic resin such as polyethylene, polypropylene, polyester, polyamide, and a porous sheet. The liquid impermeable sheet 40 is arranged on the outermost side of the absorbent article 100 on the side opposite to the liquid permeable sheet 30. The liquid impermeable sheet 40 is arranged below the core wrap 20b while being in contact with the core wrap 20b. Examples of the liquid impermeable sheet 40 include a sheet made of a synthetic resin such as polyethylene, polypropylene and polyvinyl chloride, a sheet made of a composite material of these synthetic resins and a non-woven fabric, and the like. The liquid permeable sheet 30 and the liquid impermeable sheet 40 have, for example, a main surface wider than the main surface of the absorber 10, and the outer edge portions of the liquid permeable sheet 30 and the liquid impermeable sheet 40 are It extends around the absorber 10 and the core wraps 20a, 20b.

吸収体10、コアラップ20a,20b、液体透過性シート30、及び、液体不透過性シート40の大小関係は、特に限定されず、吸収性物品の用途等に応じて適宜調整される。また、コアラップ20a,20bを用いて吸収体10を保形する方法は、特に限定されず、図1に示すように複数のコアラップにより吸収体を包んでよく、1枚のコアラップにより吸収体を包んでもよい。   The size relationship among the absorbent body 10, the core wraps 20a and 20b, the liquid permeable sheet 30, and the liquid impermeable sheet 40 is not particularly limited, and is appropriately adjusted according to the application of the absorbent article and the like. The method of retaining the shape of the absorbent core 10 using the core wraps 20a and 20b is not particularly limited, and the absorbent core may be wrapped with a plurality of core wraps as shown in FIG. 1, and the absorbent core may be wrapped with one core wrap. But it's okay.

吸収体は、トップシートに接着されていてもよい。吸収体がコアラップにより挟持又は被覆されている場合、少なくともコアラップとトップシートとが接着されていることが好ましく、コアラップとトップシートとが接着されていると共にコアラップと吸収体とが接着されていることがより好ましい。吸収体の接着方法としては、ホットメルト接着剤をトップシートに対して所定間隔で幅方向にストライプ状、スパイラル状等に塗布して接着する方法;デンプン、カルボキシメチルセルロース、ポリビニルアルコール、ポリビニルピロリドン、その他の水溶性高分子等の水溶性バインダーを用いて接着する方法などが挙げられる。また、吸収体が熱融着性合成繊維を含む場合、熱融着性合成繊維の熱融着によって接着する方法を採用してもよい。   The absorber may be adhered to the topsheet. When the absorbent body is sandwiched or covered by the core wrap, it is preferable that at least the core wrap and the top sheet are bonded together, and the core wrap and the top sheet are bonded together and the core wrap and the absorbent body are bonded together. Is more preferable. As a method for adhering the absorbent body, a method in which a hot-melt adhesive is applied to the top sheet at predetermined intervals in the width direction in a stripe shape, a spiral shape or the like and adhered; starch, carboxymethylcellulose, polyvinyl alcohol, polyvinylpyrrolidone, etc. Examples of the method include bonding using a water-soluble binder such as the water-soluble polymer described above. Further, when the absorbent body contains the heat-fusible synthetic fiber, a method of adhering the heat-fusible synthetic fiber by heat fusion may be adopted.

本実施形態によれば、本実施形態に係る吸水性樹脂粒子、吸収体又は吸収性物品を用いた吸液方法を提供することができる。本実施形態に係る吸液方法は、本実施形態に係る吸水性樹脂粒子、吸収体又は吸収性物品に吸液対象の液を接触させる工程を備える。   According to the present embodiment, it is possible to provide a liquid absorbing method using the water absorbent resin particles, the absorber or the absorbent article according to the present embodiment. The liquid absorbing method according to the present embodiment includes a step of bringing a liquid to be absorbed into contact with the water absorbent resin particles, the absorber or the absorbent article according to the present embodiment.

本実施形態によれば、吸収性物品における吸収体の平面方向への液の拡散距離の向上方法であって、本実施形態に係る吸水性樹脂粒子、吸収体又は吸収性物品を用いた、拡散距離の向上方法を提供することができる。本実施形態によれば、上述の膨潤高さが10mm以下である吸水性樹脂粒子を用いた、吸水性樹脂粒子の鉛直方向における膨張の抑制方法を提供することができる。本実施形態によれば、上述の膨潤高さに基づき吸水性樹脂粒子を選定する選定工程を備える、吸水性樹脂粒子の製造方法を提供することができる。選定工程では、例えば、上述の膨潤高さが10mm以下であるか否かに基づき吸水性樹脂粒子を選定する。   According to the present embodiment, a method of improving the diffusion distance of the liquid in the plane direction of the absorbent body in the absorbent article, using the water-absorbent resin particles, the absorbent body or the absorbent article according to the present embodiment, diffusion A method of improving the distance can be provided. According to the present embodiment, it is possible to provide a method for suppressing the expansion of the water-absorbent resin particles in the vertical direction using the water-absorbent resin particles having the swelling height of 10 mm or less. According to this embodiment, it is possible to provide a method for producing water-absorbent resin particles, which includes a selection step of selecting water-absorbent resin particles based on the above-described swelling height. In the selection step, for example, the water absorbent resin particles are selected based on whether the swelling height is 10 mm or less.

以下、実施例及び比較例を用いて本発明の内容を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。   Hereinafter, the contents of the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

<吸水性樹脂粒子の製造>
(実施例1)
還流冷却器、滴下ロート、窒素ガス導入管、及び、撹拌機(翼径5cmの4枚傾斜パドル翼を2段有する撹拌翼)を備えた内径11cm、内容積2Lの丸底円筒型セパラブルフラスコを準備した。このフラスコに、炭化水素分散媒としてn−ヘプタン293gを添加し、高分子系分散剤として無水マレイン酸変性エチレン・プロピレン共重合体(三井化学株式会社製、ハイワックス1105A)0.736gを添加することにより混合物を得た。この混合物を撹拌しつつ80℃まで昇温することにより分散剤を溶解した後、混合物を50℃まで冷却した。
<Production of water absorbent resin particles>
(Example 1)
A round-bottomed cylindrical separable flask having an inner diameter of 11 cm and an inner volume of 2 L equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction tube, and a stirrer (stirring blade having two inclined paddle blades with a blade diameter of 5 cm in two stages). Prepared. To this flask, 293 g of n-heptane was added as a hydrocarbon dispersion medium, and 0.736 g of a maleic anhydride-modified ethylene / propylene copolymer (Mitsui Chemicals, Inc., Hiwax 1105A) was added as a polymeric dispersant. This gave a mixture. After heating the mixture to 80 ° C. with stirring to dissolve the dispersant, the mixture was cooled to 50 ° C.

次に、内容積300mLのビーカーに、水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液92.0g(アクリル酸:1.03モル)を添加した。続いて、外部より冷却しつつ、20.9質量%の水酸化ナトリウム水溶液147.7gをビーカー内に滴下することによりアクリル酸に対して75モル%の中和を行った。その後、増粘剤としてヒドロキシエチルセルロース0.092g(住友精化株式会社製、HEC AW−15F)、水溶性ラジカル重合開始剤として2,2’−アゾビス(2−アミジノプロパン)2塩酸塩0.092g(0.339ミリモル)及び過硫酸カリウム0.018g(0.068ミリモル)、内部架橋剤としてエチレングリコールジグリシジルエーテル0.005g(0.029ミリモル)を加えた後に溶解させることにより第1段目の水性液を調製した。   Next, to a beaker having an internal volume of 300 mL, 92.0 g (acrylic acid: 1.03 mol) of an aqueous 80.5 mass% acrylic acid solution was added as a water-soluble ethylenically unsaturated monomer. Subsequently, while being cooled from the outside, 147.7 g of a 20.9 mass% aqueous sodium hydroxide solution was dropped into the beaker to neutralize 75 mol% of acrylic acid. After that, 0.092 g of hydroxyethyl cellulose (HEC AW-15F, manufactured by Sumitomo Seika Chemicals Ltd.) as a thickener, and 0.092 g of 2,2′-azobis (2-amidinopropane) dihydrochloride as a water-soluble radical polymerization initiator. (0.339 mmol) and 0.018 g (0.068 mmol) of potassium persulfate, and 0.005 g (0.029 mmol) of ethylene glycol diglycidyl ether as an internal cross-linking agent, and then dissolved to add the first step. An aqueous solution of was prepared.

そして、撹拌機の回転数550rpmで撹拌しながら上述の第1段目の水性液を上述のセパラブルフラスコに添加した後、10分間撹拌した。その後、n−ヘプタン6.62gにショ糖ステアリン酸エステル(界面活性剤、三菱化学フーズ株式会社製、リョートーシュガーエステルS−370、HLB値:3)0.736gを加熱溶解することにより得られた界面活性剤溶液をセパラブルフラスコに添加した。そして、撹拌機の回転数550rpmで撹拌しながら系内を窒素で充分に置換した。その後、フラスコを70℃の水浴に浸漬して昇温し、重合を60分間行うことにより第1段目の重合スラリー液を得た。   Then, the above-mentioned first-stage aqueous liquid was added to the above separable flask while stirring at a rotation speed of the stirrer of 550 rpm, followed by stirring for 10 minutes. Then, it was obtained by heating and dissolving 0.736 g of sucrose stearate (surfactant, manufactured by Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370, HLB value: 3) in 6.62 g of n-heptane. The surfactant solution was added to the separable flask. Then, the system was sufficiently replaced with nitrogen while stirring at a rotation speed of the stirrer of 550 rpm. Then, the flask was immersed in a water bath at 70 ° C. to raise the temperature, and polymerization was carried out for 60 minutes to obtain a first stage polymerization slurry liquid.

次に、内容積500mLの別のビーカーに水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液128.8g(アクリル酸:1.43モル)を添加した。続いて、外部より冷却しつつ、27質量%の水酸化ナトリウム水溶液159.0gをビーカー内に滴下することによりアクリル酸に対して75モル%の中和を行った。その後、水溶性ラジカル重合開始剤として2,2’−アゾビス(2−アミジノプロパン)2塩酸塩0.129g(0.475ミリモル)及び過硫酸カリウム0.026g(0.095ミリモル)を加えた後に溶解させることにより第2段目の水性液を調製した。   Next, 128.8 g (acrylic acid: 1.43 mol) of an 80.5 mass% acrylic acid aqueous solution as a water-soluble ethylenically unsaturated monomer was added to another beaker having an internal volume of 500 mL. Subsequently, while cooling from the outside, 159.0 g of a 27 mass% sodium hydroxide aqueous solution was dropped into the beaker to neutralize 75 mol% of acrylic acid. Then, after adding 2,29'-azobis (2-amidinopropane) dihydrochloride 0.129 g (0.475 mmol) and potassium persulfate 0.026 g (0.095 mmol) as a water-soluble radical polymerization initiator, A second-stage aqueous liquid was prepared by dissolving.

次に、撹拌機の回転数1000rpmで撹拌しながら、上述のセパラブルフラスコ内を25℃に冷却した後、上述の第2段目の水性液の全量を上述の第1段目の重合スラリー液に添加した。続いて、系内を窒素で30分間置換した後、再度、フラスコを70℃の水浴に浸漬して昇温し、重合反応を60分間行った。その後、重合後架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液0.580g(エチレングリコールジグリシジルエーテル:0.067ミリモル)を添加することにより第2段目の含水ゲル状重合体を得た。   Next, after the inside of the separable flask described above was cooled to 25 ° C. while stirring at a rotation speed of the stirrer of 1000 rpm, the total amount of the above-mentioned second-stage aqueous liquid was added to the above-mentioned first-stage polymerized slurry liquid. Was added to. Then, after the system was replaced with nitrogen for 30 minutes, the flask was again immersed in a 70 ° C. water bath to raise the temperature, and a polymerization reaction was carried out for 60 minutes. After that, 0.580 g of a 2% by mass aqueous solution of ethylene glycol diglycidyl ether (ethylene glycol diglycidyl ether: 0.067 mmol) was added as a post-polymerization crosslinking agent to obtain a second stage hydrogel polymer. .

上述の第2段目の含水ゲル状重合体に45質量%のジエチレントリアミン5酢酸5ナトリウム水溶液0.265gを撹拌下で添加した。その後、125℃に設定した油浴にフラスコを浸漬し、n−ヘプタンと水との共沸蒸留によりn−ヘプタンを還流しながら223.7gの水を系外へ抜き出した。そして、フラスコに表面架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液4.42g(エチレングリコールジグリシジルエーテル:0.507ミリモル)を添加した後、83℃で2時間保持した。   0.265 g of a 45% by mass aqueous solution of diethylenetriaminepentaacetic acid 5 sodium salt was added to the above-mentioned second stage hydrogel polymer under stirring. Then, the flask was immersed in an oil bath set at 125 ° C., and 223.7 g of water was extracted out of the system while refluxing the n-heptane by azeotropic distillation of n-heptane and water. Then, 4.42 g of a 2% by mass ethylene glycol diglycidyl ether aqueous solution (ethylene glycol diglycidyl ether: 0.507 mmol) was added to the flask as a surface cross-linking agent, and the mixture was kept at 83 ° C. for 2 hours.

その後、n−ヘプタンを125℃にて蒸発させて乾燥させることによって重合体粒子(乾燥品)を得た。この重合体粒子を目開き850μmの篩に通過させた後、重合体粒子の全質量を基準として0.2質量%の非晶質シリカ(オリエンタルシリカズコーポレーション社製、トクシールNP−S)を重合体粒子に混合することにより、非晶質シリカを含む吸水性樹脂粒子を229.6g得た。吸水性樹脂粒子の中位粒子径は346μmであった。実施例1において、内部架橋剤の使用量に対する外部架橋剤の使用量の比率はモル比で19.8であった。   Then, n-heptane was evaporated at 125 ° C. and dried to obtain polymer particles (dry product). After passing the polymer particles through a sieve with an opening of 850 μm, 0.2% by mass of amorphous silica (TOKUSIL NP-S, manufactured by Oriental Silicas Corporation) was added based on the total mass of the polymer particles. By mixing with the coalesced particles, 229.6 g of water-absorbent resin particles containing amorphous silica was obtained. The median particle diameter of the water absorbent resin particles was 346 μm. In Example 1, the molar ratio of the amount of the external crosslinking agent to the amount of the internal crosslinking agent used was 19.8.

(実施例2)
第2段目の含水ゲル状重合体において、共沸蒸留により231.7gの水を系外へ抜き出したこと以外は実施例1と同様にして吸水性樹脂粒子230.6gを得た。吸水性樹脂粒子の中位粒子径は361μmであった。
(Example 2)
230.6 g of water-absorbent resin particles were obtained in the same manner as in Example 1 except that 231.7 g of water was extracted from the second-stage hydrogel polymer by azeotropic distillation. The median particle diameter of the water absorbent resin particles was 361 μm.

(実施例3)
第2段目の含水ゲル状重合体において、共沸蒸留により234.2gの水を系外へ抜き出したこと以外は実施例1と同様にして吸水性樹脂粒子231.1gを得た。吸水性樹脂粒子の中位粒子径は355μmであった。
(Example 3)
231.1 g of water-absorbent resin particles was obtained in the same manner as in Example 1 except that 234.2 g of water was extracted from the second-stage hydrogel polymer by azeotropic distillation. The median particle diameter of the water absorbent resin particles was 355 μm.

(比較例1)
第1段目の水性液の調製において、水溶性ラジカル重合開始剤として過硫酸カリウム0.0736g(0.272ミリモル)を用いると共に、2,2’−アゾビス(2−アミジノプロパン)2塩酸塩を加えなかったこと、内部架橋剤としてエチレングリコールジグリシジルエーテル0.010g(0.057ミリモル)を用いたこと;第2段目の水性液の調製において、水溶性ラジカル重合開始剤として過硫酸カリウム0.090g(0.334ミリモル)を用いると共に、2,2’−アゾビス(2−アミジノプロパン)2塩酸塩を加えなかったこと、内部架橋剤としてエチレングリコールジグリシジルエーテル0.012g(0.069ミリモル)を用いたこと;含水ゲル状重合体の作製において、重合反応を60分間行った後に、架橋剤を添加することなく45質量%のジエチレントリアミン5酢酸5ナトリウム水溶液0.265gを添加したこと;第2段目の重合後の含水ゲル状重合体において、共沸蒸留により247.9gの水を系外へ抜き出したこと;重合体粒子の質量に対して0.5質量%の非晶質シリカを重合体粒子と混合したこと以外は、実施例1と同様にして、吸水性樹脂粒子231.0gを得た。吸水性樹脂粒子の中位粒子径は355μmであった。比較例1において、内部架橋剤の使用量に対する外部架橋剤の使用量の比率はモル比で4.0であった。
(Comparative Example 1)
In the preparation of the first-stage aqueous liquid, 0.0736 g (0.272 mmol) of potassium persulfate was used as a water-soluble radical polymerization initiator, and 2,2′-azobis (2-amidinopropane) dihydrochloride was added. No addition, 0.010 g (0.057 mmol) of ethylene glycol diglycidyl ether was used as an internal crosslinking agent; potassium persulfate was used as a water-soluble radical polymerization initiator in the preparation of the second-stage aqueous liquid. 0.090 g (0.334 mmol) was used and 2,2'-azobis (2-amidinopropane) dihydrochloride was not added, and 0.012 g (0.069 mmol) of ethylene glycol diglycidyl ether as an internal cross-linking agent. ) Was used; in the preparation of the hydrogel polymer, a crosslinking reaction was performed after the polymerization reaction was performed for 60 minutes. Without addition, 0.265 g of a 45% by mass aqueous solution of 5% sodium diethylenetriaminepentaacetate was added; in the hydrogel polymer after the second stage polymerization, 247.9 g of water was removed from the system by azeotropic distillation. Extracted: 231.0 g of water-absorbent resin particles was obtained in the same manner as in Example 1 except that 0.5% by mass of the amorphous silica was mixed with the polymer particles. It was The median particle diameter of the water absorbent resin particles was 355 μm. In Comparative Example 1, the molar ratio of the amount of the external crosslinking agent to the amount of the internal crosslinking agent used was 4.0.

(比較例2)
第2段目の重合後の含水ゲル状重合体において、共沸蒸留により256.1gの水を系外へ抜き出したこと、及び、重合体粒子の質量に対して0.1質量%の非晶質シリカを重合体粒子と混合したこと以外は、比較例1と同様にして、吸水性樹脂粒子230.8gを得た。吸水性樹脂粒子の中位粒子径は349μmであった。
(Comparative example 2)
In the hydrogel polymer after the second-stage polymerization, 256.1 g of water was extracted out of the system by azeotropic distillation, and 0.1% by mass of amorphous particles was used with respect to the mass of the polymer particles. 230.8 g of water-absorbent resin particles was obtained in the same manner as in Comparative Example 1 except that high quality silica was mixed with polymer particles. The median particle diameter of the water absorbent resin particles was 349 μm.

(比較例3)
第2段目の重合後の含水ゲル状重合体において、共沸蒸留により278.9gの水を系外へ抜き出したこと、及び、重合体粒子の質量に対して0.2質量%の非晶質シリカを重合体粒子と混合したこと以外は、比較例1と同様にして、吸水性樹脂粒子230.8gを得た。吸水性樹脂粒子の中位粒子径は347μmであった。
(Comparative example 3)
In the hydrogel polymer after the second-stage polymerization, 278.9 g of water was extracted out of the system by azeotropic distillation, and 0.2% by mass of the amorphous polymer was used with respect to the mass of the polymer particles. 230.8 g of water-absorbent resin particles was obtained in the same manner as in Comparative Example 1 except that high quality silica was mixed with polymer particles. The median particle diameter of the water absorbent resin particles was 347 μm.

(比較例4)
還流冷却器、滴下ロート、窒素ガス導入管、及び、撹拌機(翼径5cmの4枚傾斜パドル翼(フッ素樹脂にて表面処理したもの)を2段有する撹拌翼)を備えた内径11cm、内容積2Lの、4箇所の側壁バッフル付き丸底円筒型セパラブルフラスコ(バッフル幅:7mm)を準備した。このフラスコに、炭化水素分散媒としてn−ヘプタン451.4gを入れ、界面活性剤としてソルビタンモノラウレート(日油株式会社製、ノニオンLP−20R、HLB値:8.6)0.984gを加えることにより混合物を得た。この混合物を撹拌機の回転数300rpmで撹拌しつつ50℃まで昇温することによりソルビタンモノラウレートをn−ヘプタンに溶解させた後、内温を40℃まで冷却した。
(Comparative example 4)
Inner diameter 11 cm, equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction pipe, and a stirrer (stirring blade having two inclined paddle blades with a blade diameter of 5 cm (two surface-treated with fluororesin)) A 2 L round bottom cylindrical separable flask with side wall baffles (baffle width: 7 mm) was prepared. Into this flask, 451.4 g of n-heptane was placed as a hydrocarbon dispersion medium, and 0.984 g of sorbitan monolaurate (NOF Corporation, Nonion LP-20R, HLB value: 8.6) was added as a surfactant. This gave a mixture. The sorbitan monolaurate was dissolved in n-heptane by raising the temperature to 50 ° C. while stirring this mixture at a rotation speed of a stirrer of 300 rpm, and then the internal temperature was cooled to 40 ° C.

次に、内容積500mLの三角フラスコに80.5質量%のアクリル酸水溶液92.0g(アクリル酸:1.03モル)を添加した。続いて、外部より氷冷しながら20.9質量%の水酸化ナトリウム水溶液147.7gを三角フラスコ内に滴下することによりアクリル酸に対して75モル%の中和を行った。その後、アクリル酸部分中和物水溶液にラジカル重合開始剤として過硫酸カリウム0.101g(0.374ミリモル)を加えた後に溶解させることによりモノマー水溶液を調製した。   Next, 92.0 g (acrylic acid: 1.03 mol) of an 80.5 mass% acrylic acid aqueous solution was added to an Erlenmeyer flask having an internal volume of 500 mL. Subsequently, while cooling with ice from the outside, 147.7 g of a 20.9 mass% sodium hydroxide aqueous solution was dropped into the Erlenmeyer flask to neutralize 75 mol% of acrylic acid. Then, 0.101 g (0.374 mmol) of potassium persulfate was added as a radical polymerization initiator to the aqueous solution of partially neutralized acrylic acid, and then dissolved to prepare an aqueous monomer solution.

上述のモノマー水溶液を上述のセパラブルフラスコに添加した後、系内を窒素で充分に置換した。その後、撹拌機の回転数700rpmで撹拌しながらフラスコを70℃の水浴に浸漬した後、60分間保持することにより含水ゲル状重合体を得た。
した。
After the above monomer aqueous solution was added to the above separable flask, the inside of the system was sufficiently replaced with nitrogen. Then, the flask was immersed in a water bath at 70 ° C. while stirring at a rotation speed of a stirrer of 700 rpm, and then held for 60 minutes to obtain a hydrogel polymer.
did.

続いて、撹拌機の回転数1000rpmで撹拌しながら、上述の含水ゲル状重合体、n−ヘプタン及び界面活性剤を含む重合液に、非晶質シリカ(粉末状無機凝集剤、オリエンタルシリカズコーポレーション社製、トクシールNP−S)0.092gを予めn−ヘプタン100gに分散させて得られた混合物を添加した後に10分間混合して反応液を得た。その後、反応液を含むフラスコを125℃の油浴に浸漬し、n−ヘプタンと水との共沸蒸留によりn−ヘプタンを還流しながら112gの水を系外へ抜き出した。そして、重合後架橋剤として10質量%のエチレングリコールジグリシジルエーテル水溶液4.97g(エチレングリコールジグリシジルエーテル:2.85ミリモル)を添加した後、内温80±2℃で2時間保持した。   Then, while stirring at a rotation speed of a stirrer of 1000 rpm, amorphous silica (powdered inorganic coagulant, Oriental Silicas Corporation) was added to the polymer solution containing the above-mentioned hydrogel polymer, n-heptane and a surfactant. Tokusil NP-S) (0.092 g, manufactured by Co., Ltd.) was previously dispersed in 100 g of n-heptane, and the resulting mixture was mixed for 10 minutes to obtain a reaction solution. Then, the flask containing the reaction solution was immersed in an oil bath at 125 ° C., and 112 g of water was extracted out of the system while refluxing n-heptane by azeotropic distillation of n-heptane and water. Then, 4.97 g of a 10% by mass ethylene glycol diglycidyl ether aqueous solution (ethylene glycol diglycidyl ether: 2.85 mmol) was added as a post-polymerization crosslinking agent, and the mixture was kept at an internal temperature of 80 ± 2 ° C. for 2 hours.

その後、水及びn−ヘプタンを蒸発させて、系内からの蒸発物がほとんど留出されなくなるまで乾燥させた。続いて、フラスコを一旦油浴から外し、スプレーにて水13.8gを毎秒0.3gの流量で噴霧した。その後、系内に毎分200mLの流量で窒素を吹き込みながら80℃で30分間保持することにより重合体粒子(乾燥品)を得た。重合体粒子を目開き850μmの篩に通すことにより吸水性樹脂粒子90.5gを得た。吸水性樹脂粒子の中位粒子径は356μmであった。   After that, water and n-heptane were evaporated, and the product was dried until almost no evaporation product from the system was distilled. Then, the flask was once removed from the oil bath, and 13.8 g of water was sprayed at a flow rate of 0.3 g per second. After that, polymer particles (dry product) were obtained by maintaining the system at 80 ° C. for 30 minutes while blowing nitrogen at a flow rate of 200 mL per minute. The polymer particles were passed through a sieve with an opening of 850 μm to obtain 90.5 g of water-absorbent resin particles. The median particle diameter of the water absorbent resin particles was 356 μm.

(比較例5)
還流冷却器、滴下ロート、窒素ガス導入管、及び、撹拌機(翼径5cmの4枚傾斜パドル翼(フッ素樹脂にて表面処理したもの)を2段有する撹拌翼)を備えた内径11cm、内容積2Lの、4箇所の側壁バッフル付き丸底円筒型セパラブルフラスコ(バッフル幅:7mm)を準備した。このフラスコに、炭化水素分散媒としてn−ヘプタン451gを入れ、界面活性剤としてソルビタンモノラウレート(日油株式会社製、ノニオンLP−20R、HLB値:8.6)0.984gを加えることにより混合物を得た。この混合物を撹拌機の回転数300rpmで撹拌しつつ50℃まで昇温することによりソルビタンモノラウレートをn−ヘプタンに溶解させた後、内温を40℃まで冷却した。
(Comparative example 5)
Inner diameter 11 cm, equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction pipe, and a stirrer (stirring blade having two inclined paddle blades with a blade diameter of 5 cm (two surface-treated with fluororesin)) A 2 L round bottom cylindrical separable flask with side wall baffles (baffle width: 7 mm) was prepared. To this flask, 451 g of n-heptane was placed as a hydrocarbon dispersion medium, and 0.984 g of sorbitan monolaurate (NOF Corporation, Nonion LP-20R, HLB value: 8.6) was added as a surfactant. A mixture was obtained. The sorbitan monolaurate was dissolved in n-heptane by raising the temperature to 50 ° C. while stirring this mixture at a rotation speed of a stirrer of 300 rpm, and then the internal temperature was cooled to 40 ° C.

次に、内容積500mLの三角フラスコに80.5質量%のアクリル酸水溶液92.0g(アクリル酸:1.03モル)を添加した。続いて、外部より氷冷しながら20.9質量%の水酸化ナトリウム水溶液147.7gを三角フラスコ内に滴下することによりアクリル酸に対して75モル%の中和を行った。その後、アクリル酸部分中和物水溶液にラジカル重合開始剤として過硫酸カリウム0.101g(0.374ミリモル)を加えた後に溶解させることによりモノマー水溶液を調製した。   Next, 92.0 g (acrylic acid: 1.03 mol) of an 80.5 mass% acrylic acid aqueous solution was added to an Erlenmeyer flask having an internal volume of 500 mL. Subsequently, while cooling with ice from the outside, 147.7 g of a 20.9 mass% sodium hydroxide aqueous solution was dropped into the Erlenmeyer flask to neutralize 75 mol% of acrylic acid. Then, 0.101 g (0.374 mmol) of potassium persulfate was added as a radical polymerization initiator to the aqueous solution of partially neutralized acrylic acid, and then dissolved to prepare an aqueous monomer solution.

上述のモノマー水溶液を上述のセパラブルフラスコに添加した後、系内を窒素で充分に置換した。その後、撹拌機の回転数700rpmで撹拌しながらフラスコを70℃の水浴に浸漬した後、60分間保持することにより反応液を得た。   After the above monomer aqueous solution was added to the above separable flask, the inside of the system was sufficiently replaced with nitrogen. Then, the reaction solution was obtained by immersing the flask in a water bath at 70 ° C. while stirring at a rotation speed of a stirrer of 700 rpm, and holding it for 60 minutes.

その後、反応液を含むフラスコを125℃の油浴に浸漬し、n−ヘプタンと水との共沸蒸留によりn−ヘプタンを還流しながら129gの水を系外へ抜き出した。そして、表面架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液4.14g(エチレングリコールジグリシジルエーテル:0.48ミリモル)を添加した後、内温80±2℃で2時間保持した。   Then, the flask containing the reaction solution was immersed in an oil bath at 125 ° C., and 129 g of water was extracted from the system while refluxing n-heptane by azeotropic distillation of n-heptane and water. Then, after adding 4.14 g (ethylene glycol diglycidyl ether: 0.48 mmol) of a 2 mass% ethylene glycol diglycidyl ether aqueous solution as a surface cross-linking agent, the mixture was kept at an internal temperature of 80 ± 2 ° C. for 2 hours.

その後、n−ヘプタンを125℃にて蒸発させて乾燥することによって重合体粒子(乾燥品)を得た。重合体粒子を目開き850μmの篩に通すことにより吸水性樹脂粒子90.0gを得た。吸水性樹脂粒子の中位粒子径は180μmであった。   Then, n-heptane was evaporated at 125 ° C. and dried to obtain polymer particles (dry product). The polymer particles were passed through a sieve with an opening of 850 μm to obtain 90.0 g of water-absorbent resin particles. The median particle diameter of the water absorbent resin particles was 180 μm.

<中位粒子径の測定>
吸水性樹脂粒子の上述の中位粒子径は下記手順により測定した。すなわち、JIS標準篩を上から、目開き600μmの篩、目開き500μmの篩、目開き425μmの篩、目開き300μmの篩、目開き250μmの篩、目開き180μmの篩、目開き150μmの篩、及び、受け皿の順に組み合わせた。組み合わせた最上の篩に、吸水性樹脂粒子50gを入れ、ロータップ式振とう器を用いて10分間振とうさせて分級した。分級後、各篩上に残った粒子の質量を全量に対する質量百分率として算出し粒度分布を求めた。この粒度分布に関して粒子径の大きい方から順に篩上を積算することにより、篩の目開きと篩上に残った粒子の質量百分率の積算値との関係を対数確率紙にプロットした。確率紙上のプロットを直線で結ぶことにより、積算質量百分率50質量%に相当する粒子径を中位粒子径として得た。
<Measurement of medium particle size>
The above-mentioned median particle diameter of the water absorbent resin particles was measured by the following procedure. That is, from the top of the JIS standard sieve, a sieve having an opening of 600 μm, a sieve having an opening of 500 μm, a sieve having an opening of 425 μm, a sieve having an opening of 300 μm, a sieve having an opening of 250 μm, a sieve having an opening of 180 μm, a sieve having an opening of 150 μm. , And a saucer in this order. 50 g of the water-absorbent resin particles were put into the combined uppermost sieve and shaken for 10 minutes using a low-tap shaker for classification. After the classification, the mass of the particles remaining on each sieve was calculated as a mass percentage with respect to the total amount to determine the particle size distribution. With respect to this particle size distribution, the relationship between the mesh opening of the sieve and the integrated value of the mass percentage of the particles remaining on the sieve was plotted on a logarithmic probability paper by integrating over the sieve in order from the largest particle diameter. By connecting the plots on the probability paper with a straight line, the particle size corresponding to the cumulative mass percentage of 50 mass% was obtained as the median particle size.

<膨潤高さの測定>
膨潤高さは、図2に示す測定装置Xを用いて測定した。図2に示す測定装置Xは、移動距離測定装置51、凹型円形カップ(高さ45mm、外径90mm、凹部の深さ40mm、凹部の内径80mm)52、及び、プラスチック製の凸型円形ピストン(外径79mm)53から構成される。凸型円形ピストン53は、平坦面を有する平板部と、平板部から伸びる凸部とを有している。凸型円形ピストン53の平板部には、平板部を貫通する直径2mmの貫通孔53aが均等に60個形成されている。測定装置Xは、レーザー光Lにより距離の変位を0.01mm単位で測定することが可能なセンサー(移動距離測定装置51の下部、株式会社キーエンス製、IL−100)を有する。距離の変位は、解析機と測定装置Xとをアンプユニット(株式会社キーエンス製、IL−1000)、チャンネルユニット(株式会社キーエンス製、NR−TH08)、及び、データロガー(株式会社キーエンス製、NR−500)を介して接続した上で、データ解析ソフト(株式会社キーエンス製、WAVE LOGGER)を用いて測定できる。凹型円形カップ52内に所定量の吸水性樹脂粒子54を均一に散布することができる。凹型円形カップ52の凹部内において吸水性樹脂粒子54上に不織布55(目付量12g/mの液体透過性不織布)を配置することができる。凸型円形ピストン53は、不織布55を介して吸水性樹脂粒子54に対して90gの荷重を均一に加えることができる。
<Measurement of swelling height>
The swelling height was measured using the measuring device X shown in FIG. The measuring device X shown in FIG. 2 includes a moving distance measuring device 51, a concave circular cup (height 45 mm, outer diameter 90 mm, concave portion depth 40 mm, concave portion inner diameter 80 mm) 52, and a plastic convex circular piston ( The outer diameter is 79 mm) 53. The convex circular piston 53 has a flat plate portion having a flat surface and a convex portion extending from the flat plate portion. In the flat plate portion of the convex circular piston 53, 60 through holes 53a having a diameter of 2 mm and penetrating the flat plate portion are evenly formed. The measuring device X has a sensor (lower part of the moving distance measuring device 51, manufactured by Keyence Corporation, IL-100) capable of measuring the displacement of the distance by the laser light L in units of 0.01 mm. The displacement of the distance includes an amplifier unit (Keyence Co., Ltd., IL-1000), a channel unit (Keyence Co., Ltd., NR-TH08), and a data logger (Keyence Co., NR). -500) and then using data analysis software (WAVE LOGGER manufactured by Keyence Corporation). A predetermined amount of water-absorbent resin particles 54 can be uniformly dispersed in the concave circular cup 52. A non-woven fabric 55 (a liquid-permeable non-woven fabric having a basis weight of 12 g / m 2 ) can be placed on the water-absorbent resin particles 54 in the concave portion of the concave circular cup 52. The convex circular piston 53 can uniformly apply a load of 90 g to the water absorbent resin particles 54 via the nonwoven fabric 55.

測定は温度25℃、湿度60±10%の環境下で行われた。凹型円形カップ52の凹部内における底部の全面に1.0gの吸水性樹脂粒子54を均一に散布した後、吸水性樹脂粒子54上に不織布55を配置した。次に、凸型円形ピストン53を不織布55の上に静かに載せた後、移動距離測定装置51のセンサーのレーザー光Lが凸型円形ピストン53の凸部の先端の中央部に位置するように調整した。凸型円形ピストン53により吸水性樹脂粒子54に90gの荷重が加えられた状態で、予め25℃に調節した生理食塩水(20g)を、凸型円形ピストン53の貫通孔53aを通して凹型円形カップ52内に投入し、吸水性樹脂粒子54が膨潤して凸型円形ピストン53を押し上げたことが感知(0.5mm変位が観測されると自動測定開始)された時点を吸水開始(0秒)とし、吸水性樹脂粒子54が膨潤して凸型円形ピストン53が押し上げられた距離(凹型円形カップ52の凹部の底面に対して垂直な方向の凸型円形ピストン53の変位差)を測定した。生理食塩水の投入開始から3秒おきに生理食塩水の水位を確認し、凸型円形ピストン53の平板部の平坦面の高さ付近に水面を維持するように、間欠的に生理食塩水の注水を続けた。吸水開始から5分(300秒)後における凸型円形ピストン53の移動距離を膨潤高さ[mm]として得た。   The measurement was performed in an environment of a temperature of 25 ° C. and a humidity of 60 ± 10%. After 1.0 g of the water-absorbent resin particles 54 was uniformly dispersed on the entire bottom surface of the concave circular cup 52 in the recess, a nonwoven fabric 55 was placed on the water-absorbent resin particles 54. Next, after gently placing the convex circular piston 53 on the non-woven fabric 55, the laser light L of the sensor of the movement distance measuring device 51 is positioned at the center of the tip of the convex portion of the convex circular piston 53. It was adjusted. With the load of 90 g applied to the water-absorbent resin particles 54 by the convex circular piston 53, physiological saline (20 g) adjusted in advance to 25 ° C. is passed through the through hole 53 a of the convex circular piston 53 to form the concave circular cup 52. Water absorption starts (0 second) when it is sensed that the water absorbent resin particles 54 have swollen and pushed up the convex circular piston 53 (automatic measurement starts when 0.5 mm displacement is observed). The distance at which the water-absorbent resin particles 54 swelled and the convex circular piston 53 was pushed up (the displacement difference of the convex circular piston 53 in the direction perpendicular to the bottom surface of the concave portion of the concave circular cup 52) was measured. The water level of the physiological saline is checked every 3 seconds from the start of the physiological saline injection, and the saline is intermittently maintained so as to maintain the water surface near the height of the flat surface of the flat plate portion of the convex circular piston 53. Water injection was continued. The moving distance of the convex circular piston 53 after 5 minutes (300 seconds) from the start of water absorption was obtained as the swelling height [mm].

<吸水性樹脂粒子の保水量>
吸水性樹脂粒子の生理食塩水の保水量(室温、25℃±2℃)を下記手順で測定した。まず、吸水性樹脂粒子2.0gを量り取った綿袋(メンブロード60番、横100mm×縦200mm)を内容積500mLのビーカー内に設置した。吸水性樹脂粒子の入った綿袋内に0.9質量%塩化ナトリウム水溶液(生理食塩水)500gを、ママコができないように一度に注ぎ込んだ後、綿袋の上部を輪ゴムで縛り、30分静置させることで吸水性樹脂粒子を膨潤させた。30分経過後の綿袋を、遠心力が167Gとなるように設定した脱水機(株式会社コクサン製、品番:H−122)を用いて1分間脱水した後、脱水後の膨潤ゲルを含んだ綿袋の質量Wa[g]を測定した。吸水性樹脂粒子を添加せずに同様の操作を行い、綿袋の湿潤時の空質量Wb[g]を測定し、下記式から吸水性樹脂粒子の生理食塩水の保水量を算出した。結果を表1に示す。
保水量[g/g]=(Wa−Wb)/2.0
<Water retention amount of water-absorbent resin particles>
The water retention capacity of physiological saline of the water-absorbent resin particles (room temperature, 25 ° C ± 2 ° C) was measured by the following procedure. First, a cotton bag (Membroad No. 60, width 100 mm x length 200 mm) in which 2.0 g of water-absorbent resin particles was weighed was placed in a beaker having an internal volume of 500 mL. After pouring 500 g of 0.9 mass% sodium chloride aqueous solution (physiological saline solution) into the cotton bag containing the water-absorbent resin particles at once so as not to make Mako, tie the upper part of the cotton bag with a rubber band and let stand for 30 minutes. The water absorbent resin particles were swollen by placing them. The cotton bag after 30 minutes was dehydrated for 1 minute using a dehydrator (manufactured by Kokusan Co., Ltd., product number: H-122) set to have a centrifugal force of 167 G, and then the swollen gel after dehydration was included. The mass Wa [g] of the cotton bag was measured. The same operation was performed without adding the water-absorbent resin particles, the empty mass Wb [g] of the cotton bag when wet was measured, and the water retention capacity of the physiological saline of the water-absorbent resin particles was calculated from the following formula. The results are shown in Table 1.
Water retention [g / g] = (Wa-Wb) /2.0

<吸水性樹脂粒子の吸水速度>
吸水性樹脂粒子の生理食塩水の吸水速度をVortex法に基づき下記手順で測定した。まず、恒温水槽にて25±0.2℃の温度に調整した0.9質量%塩化ナトリウム水溶液(生理食塩水)50±0.1gを内容積100mLのビーカーに量りとった。次に、マグネチックスターラーバー(8mmφ×30mm、リング無し)を用いて回転数600rpmで撹拌することにより渦を発生させた。吸水性樹脂粒子2.0±0.002gを塩化ナトリウム水溶液中に一度に添加した。吸水性樹脂粒子の添加後から、液面の渦が収束する時点までの時間[秒]を測定し、当該時間を吸水性樹脂粒子の吸水速度として得た。結果を表1に示す。
<Water absorption rate of water-absorbent resin particles>
The water absorption rate of the physiological saline solution of the water absorbent resin particles was measured by the following procedure based on the Vortex method. First, 50 ± 0.1 g of 0.9 mass% sodium chloride aqueous solution (physiological saline) adjusted to a temperature of 25 ± 0.2 ° C. in a constant temperature water tank was weighed into a beaker having an internal volume of 100 mL. Next, a magnetic stirrer bar (8 mmφ × 30 mm, no ring) was used to stir at a rotation speed of 600 rpm to generate a vortex. 2.0 ± 0.002 g of water-absorbent resin particles were added at once to the aqueous sodium chloride solution. The time [seconds] from the addition of the water-absorbent resin particles to the time when the vortex on the liquid surface converges was measured, and the time was obtained as the water-absorption rate of the water-absorbent resin particles. The results are shown in Table 1.

<吸水性樹脂粒子の荷重下の吸水量>
吸水性樹脂粒子の荷重下(加圧下)の生理食塩水の吸水量(室温、25℃±2℃)を、図3に示す測定装置Yを用いて測定した。測定装置Yは、ビュレット部61、導管62、測定台63、及び、測定台63上に置かれた測定部64から構成される。ビュレット部61は、鉛直方向に伸びるビュレット61aと、ビュレット61aの上端に配置されたゴム栓61bと、ビュレット61aの下端に配置されたコック61cと、コック61cの近傍において一端がビュレット61a内に伸びる空気導入管61dと、空気導入管61dの他端側に配置されたコック61eとを有している。導管62は、ビュレット部61と測定台63との間に取り付けられている。導管62の内径は6mmである。測定台63の中央部には、直径2mmの穴があいており、導管62が連結されている。測定部64は、円筒64a(アクリル樹脂(プレキシグラス)製)と、円筒64aの底部に接着されたナイロンメッシュ64bと、重り64cとを有している。円筒64aの内径は20mmである。ナイロンメッシュ64bの目開きは75μm(200メッシュ)である。そして、測定時にはナイロンメッシュ64b上に測定対象の吸水性樹脂粒子65が均一に撒布される。重り64cの直径は19mmであり、重り64cの質量は120gである。重り64cは、吸水性樹脂粒子65上に置かれ、吸水性樹脂粒子65に対して4.14kPaの荷重を加えることができる。
<Water absorption amount of water-absorbent resin particles under load>
The water absorption amount (room temperature, 25 ° C. ± 2 ° C.) of the physiological saline solution under load (under pressure) of the water absorbent resin particles was measured using the measuring device Y shown in FIG. The measuring device Y is composed of a burette part 61, a conduit 62, a measuring table 63, and a measuring part 64 placed on the measuring table 63. The buret part 61 has a burette 61a extending in the vertical direction, a rubber plug 61b arranged at the upper end of the buret 61a, a cock 61c arranged at the lower end of the buret 61a, and one end extending into the buret 61a near the cock 61c. It has an air introducing pipe 61d and a cock 61e arranged on the other end side of the air introducing pipe 61d. The conduit 62 is attached between the burette portion 61 and the measuring table 63. The inner diameter of the conduit 62 is 6 mm. A hole having a diameter of 2 mm is formed in the center of the measuring table 63, and the conduit 62 is connected to the hole. The measuring section 64 has a cylinder 64a (made of acrylic resin (Plexiglas)), a nylon mesh 64b adhered to the bottom of the cylinder 64a, and a weight 64c. The inner diameter of the cylinder 64a is 20 mm. The opening of the nylon mesh 64b is 75 μm (200 mesh). Then, at the time of measurement, the water-absorbent resin particles 65 to be measured are evenly spread on the nylon mesh 64b. The weight 64c has a diameter of 19 mm, and the weight 64c has a mass of 120 g. The weight 64c is placed on the water absorbent resin particles 65, and a load of 4.14 kPa can be applied to the water absorbent resin particles 65.

測定装置Yの円筒64aの中に0.100gの吸水性樹脂粒子65を入れた後、重り64cを載せて測定を開始した。吸水性樹脂粒子65が吸水した生理食塩水と同容積の空気が、空気導入管より、速やかにかつスムーズにビュレット61aの内部に供給されるため、ビュレット61aの内部の生理食塩水の水位の減量が、吸水性樹脂粒子65が吸水した生理食塩水量となる。ビュレット61aの目盛は、上から下方向に0mLから0.5mL刻みで刻印されており、生理食塩水の水位として、吸水開始前のビュレット61aの目盛りVaと、吸水開始から60分後のビュレット61aの目盛りVbとを読み取り、下記式より荷重下の吸水量を算出した。結果を表1に示す。
加圧下の吸水量[mL/g]=(Vb−Va)/0.1
After putting 0.100 g of the water-absorbent resin particles 65 into the cylinder 64a of the measuring device Y, the weight 64c was placed and the measurement was started. Since the same volume of air as the physiological saline solution absorbed by the water-absorbent resin particles 65 is rapidly and smoothly supplied into the buret 61a from the air introduction pipe, the amount of the physiological saline solution inside the buret 61a is reduced. Is the amount of physiological saline absorbed by the water-absorbent resin particles 65. The scale of the buret 61a is engraved from 0 mL to 0.5 mL in a downward direction from the top, and the burette 61a of the burette 61a before the start of water absorption and the burette 61a 60 minutes after the start of water absorption are used as the physiological saline level. The scale Vb was read and the amount of water absorption under load was calculated from the following formula. The results are shown in Table 1.
Water absorption under pressure [mL / g] = (Vb-Va) /0.1

<吸収体性能の評価>
(試験液の作製)
内容積10Lの容器に、塩化ナトリウム60g、塩化カルシウム二水和物1.8g、塩化マグネシウム六水和物3.6g及び適量の蒸留水を入れた後、完全に溶解させた。次いで、ポリオキシエチレンノニルフェニルエーテル0.02gを添加した後、蒸留水を追加することにより水溶液全体の質量を6000gに調整した。続いて、少量の青色1号で着色することにより試験液(人工尿)を得た。
<Evaluation of absorber performance>
(Preparation of test solution)
In a container having an internal volume of 10 L, 60 g of sodium chloride, 1.8 g of calcium chloride dihydrate, 3.6 g of magnesium chloride hexahydrate and an appropriate amount of distilled water were put and then completely dissolved. Next, after adding 0.02 g of polyoxyethylene nonylphenyl ether, the mass of the entire aqueous solution was adjusted to 6000 g by adding distilled water. Then, a test solution (artificial urine) was obtained by coloring with a small amount of Blue No. 1.

(吸収性物品の作製)
気流型混合装置(有限会社オーテック社製、パッドフォーマー)を用いて、吸水性樹脂粒子10g及び粉砕パルプ10gを空気抄造によって均一混合することにより、40cm×12cmの大きさのシート状の吸収体を作製した。次に、吸収体と同じ大きさを有する坪量16g/mのコアラップ(ティッシュペーパー)の上に吸収体を配置した後、吸収体の上面に、吸収体と同じ大きさを有する坪量16g/mのコアラップ(ティッシュペーパー)を配置した。コアラップによって挟まれた吸収体に対して、196kPaの荷重を30秒間加えることにより積層体を得た。さらに、吸収体と同じ大きさを有する坪量22g/mのポリエチレン−ポリプロピレン製のエアスルー型多孔質液体透過性シートを積層体の上面に配置すると共に、同じ大きさ及び同じ坪量を有するポリエチレン製の液体不透過性シートを積層体の下面に配置することにより吸収性物品を作製した。
(Preparation of absorbent article)
A sheet-shaped absorber having a size of 40 cm × 12 cm was obtained by uniformly mixing 10 g of the water-absorbent resin particles and 10 g of crushed pulp by air-papermaking using an air flow type mixing device (pad former manufactured by Autech Co., Ltd.). Was produced. Next, after arranging the absorber on the core wrap (tissue paper) having the same size as the absorber and having a basis weight of 16 g / m 2 , the basis weight 16 g having the same size as the absorber is provided on the upper surface of the absorber. / M 2 core wrap (tissue paper) was placed. A laminated body was obtained by applying a load of 196 kPa to the absorbent body sandwiched by the core wraps for 30 seconds. Further, an air-through type porous liquid permeable sheet made of polyethylene-polypropylene having a basis weight of 22 g / m 2 and having the same size as the absorber is arranged on the upper surface of the laminate, and polyethylene having the same size and the same basis weight. An absorbent article was produced by arranging a liquid-impermeable sheet made from the product on the lower surface of the laminate.

(拡散長及び浸透速度の評価)
温度25±2℃の室内において、水平の台上に配置された吸収性物品の中心部に、内径3cmの開口部を有する液投入用シリンダーを具備した測定器具を載せた。次に、25±1℃に調整した50mLの試験液をシリンダー内に一度に投入(鉛直方向から供給)すると共にストップウォッチをスタートさせた。投入開始から、試験液が吸収体に完全に吸収されるまでの吸収時間を測定した。この操作を30分間隔で更に2回(計3回)行い、吸収時間の合計値を浸透速度(単位:秒)として得た。浸透速度は短い方が好ましい。また、1回目の試験液の投入開始から120分後に、試験液が浸透した吸収性物品の長手方向(吸収性物品における吸収体の平面方向)の拡がり寸法(吸収性物品の中心部を通り、かつ、試験液の拡散領域の両端部間の距離(拡散距離)。単位:cm)を測定した。拡散長は0.5cm単位で測定した。結果を表1に示す。
(Evaluation of diffusion length and permeation rate)
In a room at a temperature of 25 ± 2 ° C., a measuring instrument equipped with a liquid charging cylinder having an opening with an inner diameter of 3 cm was placed at the center of an absorbent article placed on a horizontal table. Next, 50 mL of the test solution adjusted to 25 ± 1 ° C. was charged into the cylinder at one time (supplied from the vertical direction), and the stopwatch was started. The absorption time from the start of feeding until the test liquid was completely absorbed by the absorber was measured. This operation was repeated twice at 30-minute intervals (three times in total), and the total value of the absorption time was obtained as the permeation rate (unit: second). A shorter permeation rate is preferred. Further, 120 minutes after the start of the first injection of the test liquid, the spread dimension in the longitudinal direction (the plane direction of the absorber in the absorbent article) of the absorbent article in which the test liquid has penetrated (passes through the central portion of the absorbent article, Moreover, the distance (diffusion distance) between both ends of the diffusion region of the test liquid (unit: cm) was measured. The diffusion length was measured in units of 0.5 cm. The results are shown in Table 1.

Figure 0006681495
Figure 0006681495

表1によれば、膨潤高さを低減することにより、吸液した際に吸収体の平面方向に液が好適に拡散し得る吸収性物品が得られることが確認される。   According to Table 1, it is confirmed that by reducing the swelling height, it is possible to obtain an absorbent article in which the liquid can suitably diffuse in the plane direction of the absorbent body when absorbing the liquid.

10…吸収体、10a,54,65…吸水性樹脂粒子、10b…繊維層、20a,20b…コアラップ、30…液体透過性シート、40…液体不透過性シート、51…移動距離測定装置、52…凹型円形カップ、53…凸型円形ピストン、53a…貫通孔、55…不織布、61…ビュレット部、61a…ビュレット、61b…ゴム栓、61c…コック、61d…空気導入管、61e…コック、62…導管、63…測定台、64…測定部、64a…円筒、64b…ナイロンメッシュ、64c…重り、100…吸収性物品、L…レーザー光、X,Y…測定装置。

10 ... Absorber, 10a, 54, 65 ... Water absorbent resin particles, 10b ... Fiber layer, 20a, 20b ... Core wrap, 30 ... Liquid permeable sheet, 40 ... Liquid impermeable sheet, 51 ... Moving distance measuring device, 52 ... concave circular cup, 53 ... convex circular piston, 53a ... through hole, 55 ... non-woven fabric, 61 ... burette part, 61a ... burette, 61b ... rubber stopper, 61c ... cock, 61d ... air introducing pipe, 61e ... cock, 62 ... Conduit, 63 ... Measuring stand, 64 ... Measuring part, 64a ... Cylinder, 64b ... Nylon mesh, 64c ... Weight, 100 ... Absorbent article, L ... Laser light, X, Y ... Measuring device.

Claims (4)

エチレン性不飽和単量体に由来する構造単位を有する架橋重合体を含む吸水性樹脂粒子であって、
前記エチレン性不飽和単量体が、(メタ)アクリル酸及びその塩からなる群より選ばれる少なくとも1種の化合物を含み、
前記(メタ)アクリル酸及びその塩の割合が、前記吸水性樹脂粒子を得るための単量体全量に対して70〜100モル%であり、
生理食塩水の保水量が30〜80g/gであり、
中位粒子径が250〜850μmであり、
下記(1)〜(6)の手順により測定される膨潤高さが10mm以下である、吸水性樹脂粒子。
(1)底面積50cmの凹部を有する容器を前記凹部が鉛直方向に開口した状態で配置する。
(2)前記凹部内に吸水性樹脂粒子1.00gを配置する。
(3)前記凹部内において前記吸水性樹脂粒子上に不織布を配置する。
(4)前記不織布上に質量90gの重りを配置する。
(5)前記凹部内に生理食塩水を供給する。
(6)前記吸水性樹脂粒子の膨潤開始時から300秒経過したときの前記重りの鉛直方向の移動距離を前記膨潤高さとして測定する。
A water-absorbent resin particle containing a cross-linked polymer having a structural unit derived from an ethylenically unsaturated monomer,
The ethylenically unsaturated monomer contains at least one compound selected from the group consisting of (meth) acrylic acid and salts thereof,
The ratio of the (meth) acrylic acid and its salt is 70 to 100 mol% with respect to the total amount of monomers for obtaining the water-absorbent resin particles,
The water retention capacity of physiological saline is 30 to 80 g / g,
Has a medium particle size of 250 to 850 μm,
Water-absorbent resin particles having a swelling height of 10 mm or less measured by the following procedures (1) to (6).
(1) A container having a recess having a bottom area of 50 cm 2 is arranged with the recess opening in the vertical direction.
(2) Place 1.00 g of water-absorbent resin particles in the recess.
(3) A nonwoven fabric is arranged on the water absorbent resin particles in the recess.
(4) A weight having a mass of 90 g is arranged on the non-woven fabric.
(5) Supplying saline into the recess.
(6) The moving distance in the vertical direction of the weight when 300 seconds have elapsed from the start of swelling of the water absorbent resin particles is measured as the swelling height.
請求項1に記載の吸水性樹脂粒子を含有する、吸収体。 An absorbent body containing the water absorbent resin particles according to claim 1 . 請求項に記載の吸収体を備える、吸収性物品。 An absorbent article comprising the absorbent body according to claim 2 . おむつである、請求項に記載の吸収性物品。 The absorbent article according to claim 3 , which is a diaper.
JP2019055308A 2018-12-12 2019-03-22 Water-absorbent resin particles, absorber and absorbent article Active JP6681495B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/311,915 US20220023115A1 (en) 2018-12-12 2019-12-12 Water-absorbing resin particles, absorbent, and absorbent article
PCT/JP2019/048821 WO2020122218A1 (en) 2018-12-12 2019-12-12 Water-absorbing resin particles, absorbent, and absorbent article
EP19896122.9A EP3896120B1 (en) 2018-12-12 2019-12-12 Water-absorbing resin particles, absorbent, and absorbent article
KR1020217019053A KR20210101253A (en) 2018-12-12 2019-12-12 Absorbent resin particles, absorbent body and absorbent article
CN201980081999.8A CN113195598A (en) 2018-12-12 2019-12-12 Water-absorbent resin particles, absorbent body, and absorbent article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019014532 2019-01-30
JP2019014532 2019-01-30

Publications (2)

Publication Number Publication Date
JP6681495B1 true JP6681495B1 (en) 2020-04-15
JP2020121297A JP2020121297A (en) 2020-08-13

Family

ID=70166319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019055308A Active JP6681495B1 (en) 2018-12-12 2019-03-22 Water-absorbent resin particles, absorber and absorbent article

Country Status (1)

Country Link
JP (1) JP6681495B1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4880144B2 (en) * 2001-09-19 2012-02-22 住友精化株式会社 Absorber and absorbent article using the same
CN109608661B (en) * 2013-08-28 2021-09-10 株式会社日本触媒 Gel crushing device, method for producing polyacrylic acid (salt) -based water-absorbent resin powder, and water-absorbent resin powder
JP6557721B2 (en) * 2015-03-30 2019-08-07 株式会社日本触媒 Particulate water absorbent
EP3586957B1 (en) * 2017-02-22 2022-03-30 Nippon Shokubai Co., Ltd. Absorbent article comprising water-absorbing sheet

Also Published As

Publication number Publication date
JP2020121297A (en) 2020-08-13

Similar Documents

Publication Publication Date Title
JP7561117B2 (en) Water-absorbent resin particles
WO2020184394A1 (en) Water absorbent resin particle, absorber, absorbent article, method for measuring permeation retention rate of water absorbent resin particle, and method for producing water absorbent resin particle
WO2020122209A1 (en) Water absorbent resin particles
WO2020122218A1 (en) Water-absorbing resin particles, absorbent, and absorbent article
KR20210101251A (en) Absorbent resin particles, absorbent body and absorbent article
JP6681492B1 (en) Water absorbent resin particles
JP7538107B2 (en) Water-absorbent resin particles and their manufacturing method, absorbent body, and absorbent article
WO2020184398A1 (en) Water absorbing resin particles and method for producing same, absorbent body, and absorbent article
WO2020122219A1 (en) Water absorbent resin particles, absorbent, absorbent article and liquid suction power measurement method
JP6681494B1 (en) Water absorbent resin particles
WO2020122202A1 (en) Absorbent article
CN113544169A (en) Water-absorbent resin particles, method for producing same, absorbent body, absorbent article, and method for adjusting permeation rate
WO2021049450A1 (en) Water absorbent resin particles
JP7194197B2 (en) Absorbent bodies and absorbent articles
JP6681495B1 (en) Water-absorbent resin particles, absorber and absorbent article
US20220219140A1 (en) Water-absorbent resin particles
WO2020184393A1 (en) Water absorbent resin particles, absorber and absorbent article
JP6710303B1 (en) Absorbent article and manufacturing method thereof
WO2020122211A1 (en) Water-absorbent resin particles
JPWO2020218168A1 (en) Water-absorbent resin particles, absorbers and absorbent articles
JP2020093242A (en) Water-absorbing resin particle, absorber and absorbent article
JP7143513B2 (en) Water-absorbent resin particles, method for producing the same, absorbent body, and absorbent article
WO2020218161A1 (en) Water-absorbing resin particles and manufacturing method therefor, absorbent body, and absorbent article
WO2020122207A1 (en) Water-absorbent resin particles, absorbent body, and absorbent article
WO2020122217A1 (en) Water-absorptive resin particle, absorption body, and absorptive article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200323

R150 Certificate of patent or registration of utility model

Ref document number: 6681495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250