JP6679860B2 - Fiber-reinforced polyimide resin molding and method for manufacturing the same - Google Patents

Fiber-reinforced polyimide resin molding and method for manufacturing the same Download PDF

Info

Publication number
JP6679860B2
JP6679860B2 JP2015181259A JP2015181259A JP6679860B2 JP 6679860 B2 JP6679860 B2 JP 6679860B2 JP 2015181259 A JP2015181259 A JP 2015181259A JP 2015181259 A JP2015181259 A JP 2015181259A JP 6679860 B2 JP6679860 B2 JP 6679860B2
Authority
JP
Japan
Prior art keywords
fiber
addition reaction
resin
reaction type
polyimide resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015181259A
Other languages
Japanese (ja)
Other versions
JP2016060914A (en
Inventor
渡辺 和伸
和伸 渡辺
俊文 榎戸
俊文 榎戸
幸太 瀬上
幸太 瀬上
小林 祐介
祐介 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Group Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Group Holdings Ltd filed Critical Toyo Seikan Group Holdings Ltd
Publication of JP2016060914A publication Critical patent/JP2016060914A/en
Application granted granted Critical
Publication of JP6679860B2 publication Critical patent/JP6679860B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、繊維強化ポリイミド樹脂成形体及びその製造方法に関するものであり、より詳細には、優れた摺動性能を有すると共に、ポリイミド樹脂中の機能性繊維が分散し、成形時の形状安定性に優れた成形体及びその製造方法に関する。   The present invention relates to a fiber-reinforced polyimide resin molded body and a method for producing the same, and more specifically, it has excellent sliding performance, and the functional fibers in the polyimide resin are dispersed, and the shape stability during molding is improved. And a method for producing the same.

従来より炭素繊維等の機能性繊維を樹脂に配合して成る繊維強化樹脂から成る成形体は、耐候性、機械的強度、耐久性等の特性に優れていることから、自動車、航空機等の輸送機材、土木・建設材料、スポーツ用品等の用途に広く使用されている。
例えば、下記特許文献1には、特定のピッチ系炭素短繊維混合物及びマトリックス樹脂から成る炭素繊維強化樹脂成形体が記載されており、各種電子部品に好適に使用されることが記載されている。
また下記特許文献2には、炭素繊維等のバインダーとして特定の芳香族ポリイミドオリゴマーを用いた摩擦材用樹脂組成物から成る摩擦材が提案されており、この摩擦材においては、従来、摩擦材のバインダーとして好適に使用されていたフェノール樹脂を用いた場合に比べて、バインダー自身の耐熱性や機械的特性が優れ、成形性が良好であることが記載されている。
更に下記特許文献3には、特定の熱伝導率を有する炭素繊維を10〜70重量%含む炭素繊維強化合成樹脂から成る転動体が提案されている。
Conventionally, molded products made of fiber-reinforced resin, which is made by mixing functional fibers such as carbon fiber with resin, have excellent properties such as weather resistance, mechanical strength, and durability. Widely used for equipment, civil engineering / construction materials, sports equipment, etc.
For example, the following Patent Document 1 describes a carbon fiber reinforced resin molded product composed of a specific pitch-based short carbon fiber mixture and a matrix resin, and describes that it is suitably used for various electronic parts.
Further, Patent Document 2 below proposes a friction material composed of a resin composition for a friction material, which uses a specific aromatic polyimide oligomer as a binder such as carbon fiber. It is described that the heat resistance and mechanical properties of the binder itself are excellent and the moldability is good as compared with the case of using a phenol resin which is preferably used as a binder.
Further, Patent Document 3 below proposes a rolling element made of a carbon fiber reinforced synthetic resin containing 10 to 70% by weight of carbon fiber having a specific thermal conductivity.

このような繊維強化樹脂成形体を軸受け等の摺動性部材として用いる場合には、強度、剛性等の機械的強度が高いこと、動摩擦係数が小さく摩耗量が少ないこと、更に限界PV値が高いこと等の特性が要求されており、機械的強度、耐熱性及び耐久性に優れ、また樹脂の含浸性に優れた付加反応型ポリイミド樹脂をマトリックス樹脂として用いることが望まれている。
付加反応型ポリイミド樹脂として、トランスファー成形(RTM)と樹脂圧入(RI)によって炭素繊維強化コンポジットを製造可能な高機能の付加反応型ポリイミド樹脂も提案されている(特許文献4)。
When such a fiber-reinforced resin molded product is used as a slidable member such as a bearing, it has high mechanical strength such as strength and rigidity, a small dynamic friction coefficient and a small amount of wear, and a high limit PV value. Such properties are required, and it is desired to use an addition reaction type polyimide resin having excellent mechanical strength, heat resistance and durability as well as resin impregnation property as a matrix resin.
As an addition reaction type polyimide resin, a high-performance addition reaction type polyimide resin capable of producing a carbon fiber reinforced composite by transfer molding (RTM) and resin press fitting (RI) has also been proposed (Patent Document 4).

特許第4538502号Patent No. 4538502 特開2009−242656号公報JP, 2009-242656, A 特開2011−127636号公報JP, 2011-127636, A 特表2003−526704号公報Special Table 2003-526704

しかしながら、繊維強化樹脂成形体のマトリックス樹脂として、付加反応型ポリイミド樹脂を用いる場合、優れた耐熱性、耐久性及び機械的強度が得られるとしても、得られた成形体に反りが生じてしまい、摺動性部材としては実用に供することができないという問題があった。
本発明者等がこの原因について鋭意研究した結果、以下の事実が分かった。すなわち、炭素繊維等の機能性繊維のマトリックス樹脂として好適に使用できる付加反応型ポリイミド樹脂は、プレポリマーの状態で溶融粘度が低いことから、プレポリマーに機能性繊維を混合すると、機能性繊維が沈降してプレポリマー中に偏在した状態となり、この状態で樹脂が架橋硬化されることにより、機能性繊維の存在量に応じて成形体の収縮量に差が生じてしまい、得られる繊維強化樹脂成形体に反りを生じてしまうことが分かった。
However, when the addition reaction type polyimide resin is used as the matrix resin of the fiber-reinforced resin molded product, even if excellent heat resistance, durability and mechanical strength are obtained, warpage occurs in the obtained molded product, There is a problem in that it cannot be put to practical use as a slidable member.
As a result of diligent research on the cause by the present inventors, the following facts were found. That is, since the addition reaction type polyimide resin that can be suitably used as a matrix resin for functional fibers such as carbon fibers has a low melt viscosity in a prepolymer state, when the prepolymer is mixed with the functional fibers, the functional fibers become As a result of sedimentation and uneven distribution in the prepolymer, the resin is cross-linked and cured in this state, and the amount of shrinkage of the molded product varies depending on the amount of functional fibers present. It was found that the molded body was warped.

従って本発明の目的は、優れた摺動性能を有すると共に、反り等の発生がなく、成形時の形状安定性に優れた繊維強化ポリイミド樹脂成形体を提供することである。
本発明の他の目的は、優れた摺動性能を有する繊維強化ポリイミド樹脂成形体を、形状安定性よく成形可能な製造方法を提供することである。
Therefore, an object of the present invention is to provide a fiber-reinforced polyimide resin molded product which has excellent sliding performance, is free from warpage, and has excellent shape stability during molding.
Another object of the present invention is to provide a manufacturing method capable of molding a fiber-reinforced polyimide resin molding having excellent sliding performance with good shape stability.

本発明によれば、付加反応型ポリイミド樹脂中に機能性繊維が分散して成る樹脂成形体であって、限界PV値が3000kPa・m/s以上であることを特徴とする樹脂成形体が提供される。
本発明の樹脂成形体においては、
1.前記樹脂成形体を構成する組成物のマトリックスが付加反応型ポリイミド樹脂であり、前記機能性繊維に前記ポリイミド樹脂が含浸していること、
2.前記機能性繊維の含有率が付加反応型ポリイミド100重量部に対して5〜200重量部であること、
3.前記機能性繊維が、炭素繊維、ガラス繊維、アラミド繊維、金属繊維の何れか1種以上であること、
4.前記機能性繊維が、平均繊維長50〜6000μm、平均繊維径5〜20μmの炭素繊維であること、
5.更に、グラファイト、二硫化モリブデン、PTFE(四フッ化エチレン樹脂)、微細炭素系材料、金属粉の少なくとも1種以上を付加反応型ポリイミド100重量部に対して5〜40重量部で含有すること、
が好適である。
According to the present invention, there is provided a resin molded product in which a functional fiber is dispersed in an addition reaction type polyimide resin, the resin molded product having a limit PV value of 3000 kPa · m / s or more. To be done.
In the resin molded product of the present invention,
1. The matrix of the composition constituting the resin molded body is an addition reaction type polyimide resin, the functional resin is impregnated with the polyimide resin,
2. The content of the functional fiber is 5 to 200 parts by weight with respect to 100 parts by weight of the addition reaction type polyimide,
3. The functional fiber is any one or more of carbon fiber, glass fiber, aramid fiber, and metal fiber,
4. The functional fiber is a carbon fiber having an average fiber length of 50 to 6000 μm and an average fiber diameter of 5 to 20 μm,
5. Further, at least one or more of graphite, molybdenum disulfide, PTFE (tetrafluoroethylene resin), fine carbonaceous material, and metal powder is contained at 5 to 40 parts by weight with respect to 100 parts by weight of the addition reaction type polyimide.
Is preferred.

本発明によればまた、付加反応型ポリイミド樹脂のプレポリマーと機能性繊維を付加反応型ポリイミド樹脂の融点以上、熱硬化開始温度以下の温度で混練する分散混練工程、該分散混練工程を経て得られた混合物が、300〜320℃の温度条件下における溶融粘度が10〜5000Pa・sであり、該混合物を付加反応型ポリイミド樹脂の熱硬化開始温度以上の温度条件下で賦形する賦形工程、を少なくとも有することを特徴とする樹脂成形体の製造方法が提供される。
本発明の樹脂成形体の製造方法においては、
1.前記分散混練工程と賦形工程の間に、分散混練工程で得られた混練物を付加反応型ポリイミド樹脂の熱硬化開始温度以上の温度で一定時間保持することにより混練物の粘度を、300〜320℃の温度条件下における溶融粘度が10〜5000Pa・sに調整する増粘工程を有すること、
2.前記機能性繊維の含有率が付加反応型ポリイミド100重量部に対して5〜200重量部であること、
3.前記分散混練工程を経て得られた混合物を冷却し粉砕混合した後、加圧賦形すること、
.前記付加反応型ポリイミド樹脂が、付加反応基としてフェニルエチニル基を有するポリイミド樹脂であること、
.前記付加反応型ポリイミド樹脂が、付加反応基としてフェニルエチニル基を有するポリイミド樹脂である場合には、増粘工程おいて、310±10℃の温度で30〜60分間保持すること、
.前記賦形工程が、圧縮成形により行われること、
が好適である。
According to the present invention, the addition reaction type polyimide resin prepolymer and the functional fiber are kneaded at a temperature not lower than the melting point of the addition reaction type polyimide resin and not higher than the thermosetting start temperature, and the dispersion kneading step is obtained through the dispersion kneading step. The obtained mixture has a melt viscosity of 10 to 5000 Pa · s under a temperature condition of 300 to 320 ° C., and a shaping step of shaping the mixture under a temperature condition of the thermosetting initiation temperature of the addition reaction type polyimide resin or higher. A method for producing a resin molded body is provided, which comprises:
In the method for producing a resin molded body of the present invention,
1. Between the dispersion and kneading step and the shaping step, the kneaded material obtained in the dispersion and kneading step has a viscosity of 300 to 300 by holding the kneaded material at a temperature not lower than the thermosetting start temperature of the addition reaction type polyimide resin for a certain period of time. Having a thickening step of adjusting the melt viscosity to 10 to 5000 Pa · s under the temperature condition of 320 ° C. ,
2. The content of the functional fiber is 5 to 200 parts by weight with respect to 100 parts by weight of the addition reaction type polyimide,
3. After the mixture obtained through the dispersion kneading step was mixed cooling and pulverized, to pressure圧賦form,
4 . It pre-SL addition reaction type polyimide resin is a polyimide resin having a phenyl ethynyl group as an additional reactive group,
5 . When the addition reaction type polyimide resin is a polyimide resin having a phenylethynyl group as an addition reaction group, in the thickening step, it is maintained at a temperature of 310 ± 10 ° C. for 30 to 60 minutes,
6 . The shaping step is performed by compression molding,
Is preferred.

本発明の繊維強化ポリイミド樹脂成形体においては、耐熱性、耐久性及び機械的強度に優れた付加反応型ポリイミド樹脂をマトリックス樹脂とし、この付加反応型ポリイミド100重量部に対して5〜200重量部の量で配合することにより、限界PV値が3000kPa・m/s以上と優れた摺動性能を発現することが可能になる。しかも成形体中に機能性繊維が均一に分散された状態で架橋硬化されて成形されていることから、反り等のゆがみがなく、摺動性部材として好適に使用できる。尚、限界PV値とは、摩擦力が急激に上昇するときの面圧Pと速度Vの積で求まる値で、摺動部材として使用環境に適しているかを判断する指標として限界PV値を算出することが一般的である。限界PV値に近い条件下では摺動面の摩擦熱による樹脂の溶融・焼きつきによる動摩擦係数および試料温度の上昇、材料の異常摩耗などがみられ、この値が高いことは摺動性能が高いことを意味する。
また本発明の繊維強化ポリイミド樹脂成形体は、機能性繊維に付加反応型ポリイミドが含浸し、かつ、機能性繊維を所定量に含有しており、摺動に優れ、摺動部材として用いた場合に、長期に亘って安定した性能を維持することができるばかりか、そりによる変形を防止できるので、生産性に優れるとともに、長期間使用時の磨耗によるPV値の変化を小さくでき、交換時期や装置などの管理がしやすい。
In the fiber-reinforced polyimide resin molded product of the present invention, an addition reaction type polyimide resin excellent in heat resistance, durability and mechanical strength is used as a matrix resin, and 5 to 200 parts by weight relative to 100 parts by weight of this addition reaction type polyimide. It becomes possible to express excellent sliding performance with a limit PV value of 3000 kPa · m / s or more by blending in the amount of. Moreover, since the functional fiber is molded by being crosslinked and cured in a state where the functional fiber is uniformly dispersed in the molded product, there is no distortion such as warpage and it can be suitably used as a slidable member. The limit PV value is a value obtained by the product of the surface pressure P and the velocity V when the frictional force sharply rises, and the limit PV value is calculated as an index for determining whether the sliding member is suitable for the usage environment. It is common to Under conditions close to the limit PV value, dynamic friction coefficient and sample temperature rise due to melting and seizure of resin due to frictional heat of sliding surface, abnormal wear of material, etc. are observed. High value indicates high sliding performance. Means that.
Further, the fiber-reinforced polyimide resin molded product of the present invention, the functional fiber is impregnated with the addition reaction type polyimide, and contains a predetermined amount of the functional fiber, excellent sliding, when used as a sliding member In addition, not only stable performance can be maintained for a long period of time, but also deformation due to warpage can be prevented, so that it is excellent in productivity and can reduce the change in PV value due to abrasion during long-term use. Easy to manage devices.

また本発明の繊維強化ポリイミド樹脂成形体の成形方法においては、付加反応型ポリイミド樹脂と機能性繊維の分散混練工程後に、溶融状態にあるポリイミド樹脂のプレポリマー(イミドオリゴマー)の粘度を増大させる増粘工程を設けることにより、プレポリマー中に機能性繊維が均一分散した状態を維持することが可能になり、機能性繊維が沈降して偏在することがなく分散した繊維強化ポリイミド樹脂成形体を反り変形を生じることなく成形することが可能になる。   Further, in the molding method of the fiber-reinforced polyimide resin molding of the present invention, after the dispersion kneading step of the addition reaction type polyimide resin and the functional fiber, the viscosity of the prepolymer (imide oligomer) of the polyimide resin in a molten state is increased. By providing the viscous step, it becomes possible to maintain the state in which the functional fibers are uniformly dispersed in the prepolymer, and warp the fiber-reinforced polyimide resin molded body in which the functional fibers do not settle and are not unevenly distributed. It becomes possible to mold without causing deformation.

実施例における限界PV値の測定方法を説明するための図である。It is a figure for demonstrating the measuring method of the limit PV value in an Example. 実施例における反り量の測定方法を説明するための図である。It is a figure for demonstrating the measuring method of the amount of curvature in an Example.

(樹脂成形体)
本発明の繊維強化ポリイミド樹脂成形体は、後述する付加反応型ポリイミド樹脂中に機能性繊維が分散して成る樹脂成形体であって、限界PV値が3000kPa・m/s以上であることが重要な特徴であり、耐熱性、耐久性及び機械的強度を有すると共に、限界PV値が大きく、優れた摺動性能を有している。
(Resin molding)
The fiber-reinforced polyimide resin molded body of the present invention is a resin molded body in which functional fibers are dispersed in an addition reaction type polyimide resin described later, and it is important that the limit PV value is 3000 kPa · m / s or more. In addition to having heat resistance, durability and mechanical strength, it has a large limit PV value and excellent sliding performance.

[付加反応型ポリイミド樹脂]
本発明においては、繊維強化ポリイミド樹脂成形体を構成する組成物のマトリックスとなるポリイミド樹脂として、付加反応型ポリイミド樹脂を用いることが重要な特徴である。
本発明に用いる付加反応型ポリイミド樹脂は、末端に付加反応基を有する芳香族ポリイミドオリゴマーから成り、従来公知の製法により調製したものを使用することができる。例えば、芳香族テトラカルボン酸二無水物、芳香族ジアミン、及び分子内に付加反応基と共に無水物基又はアミノ基を有する化合物を、各酸基の当量の合計と各アミノ基の合計とをほぼ等量となるように使用して、好適には溶媒中で反応させることによって容易に得ることができる。反応の方法としては、100℃以下、好適には80℃以下の温度で、0.1〜50時間重合してアミド酸結合を有するオリゴマーを生成し、次いでイミド化剤によって化学イミド化する方法や、140〜270℃程度の高温で加熱して熱イミド化する2工程からなる方法、或いは始めから140〜270℃の高温で、0.1〜50時間重合・イミド化反応を行わせる1工程からなる方法を例示できる。
これらの反応で用いる溶媒は、これに限定されないが、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、γ−ブチルラクトン、N−メチルカプロラクタム等の有機極性溶媒を好適に使用できる。
[Addition reaction type polyimide resin]
In the present invention, it is an important feature that an addition reaction type polyimide resin is used as the polyimide resin which becomes a matrix of the composition constituting the fiber reinforced polyimide resin molded body.
The addition reaction type polyimide resin used in the present invention is composed of an aromatic polyimide oligomer having an addition reaction group at the terminal, and the one prepared by a conventionally known production method can be used. For example, aromatic tetracarboxylic dianhydride, aromatic diamine, and a compound having an anhydride group or an amino group together with an addition reaction group in the molecule, the total of the equivalent of each acid group and the total of each amino group It can be easily obtained by using the same amount and preferably reacting in a solvent. As a method of the reaction, a method of polymerizing at a temperature of 100 ° C. or lower, preferably 80 ° C. or lower for 0.1 to 50 hours to form an oligomer having an amic acid bond, and then chemically imidizing with an imidizing agent, , A method comprising two steps of heating at a high temperature of about 140 to 270 ° C. for thermal imidization, or from the first step of performing a polymerization / imidization reaction at a high temperature of 140 to 270 ° C. for 0.1 to 50 hours. Can be exemplified.
The solvent used in these reactions is not limited to this, but is N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, γ-butyl lactone, N- An organic polar solvent such as methylcaprolactam can be preferably used.

本発明において、芳香族イミドオリゴマーの末端の付加反応基は、樹脂成形体を製造する際に、加熱によって硬化反応(付加重合反応)を行う基であれば特に限定されないが、好適に硬化反応を行うことができること、及び得られた硬化物の耐熱性が良好であることを考慮すると、好ましくはフェニルエチニル基、アセチレン基、ナジック酸基、及びマレイミド基からなる群から選ばれるいずれかの反応基であることが好ましく、特にフェニルエチニル基は、硬化反応によるガス成分の発生がなく、しかも得られた樹脂成形体の耐熱性に優れていると共に機械的な強度にも優れていることから好適である。
これらの付加反応基は、分子内に付加反応基と共に無水物基又はアミノ基を有する化合物が、芳香族イミドオリゴマーの末端のアミノ基又は酸無水物基と、好適にはイミド環を形成する反応によって、芳香族イミドオリゴマーの末端に導入される。
分子内に付加反応基と共に無水物基又はアミノ基を有する化合物は、例えば4−(2−フェニルエチニル)無水フタル酸、4−(2−フェニルエチニル)アニリン、4−エチニル−無水フタル酸、4−エチニルアニリン、ナジック酸無水物、マレイン酸無水物等を好適に使用することができる。
In the present invention, the addition reaction group at the terminal of the aromatic imide oligomer is not particularly limited as long as it is a group that undergoes a curing reaction (addition polymerization reaction) by heating when producing a resin molded product, but a curing reaction is preferably performed. Considering that it can be carried out, and that the obtained cured product has good heat resistance, preferably any reactive group selected from the group consisting of a phenylethynyl group, an acetylene group, a nadic acid group, and a maleimide group. In particular, a phenylethynyl group is preferable because it does not generate a gas component due to a curing reaction, and the resulting resin molded article has excellent heat resistance and mechanical strength. is there.
These addition reaction groups are a reaction in which a compound having an anhydride group or an amino group together with an addition reaction group in the molecule forms an imide ring, preferably with an amino group or an acid anhydride group at the terminal of an aromatic imide oligomer. Is introduced at the end of the aromatic imide oligomer.
The compound having an anhydride group or an amino group together with an addition reaction group in the molecule is, for example, 4- (2-phenylethynyl) phthalic anhydride, 4- (2-phenylethynyl) aniline, 4-ethynyl-phthalic anhydride, 4 -Ethynylaniline, nadic acid anhydride, maleic acid anhydride and the like can be preferably used.

末端に付加反応基を有する芳香族イミドオリゴマーを形成するテトラカルボン酸成分としては、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、及び3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物からなる群から選ばれる少なくとも一つのテトラカルボン酸二無水物を例示することができ、特に、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物を好適に使用することができる。   Examples of the tetracarboxylic acid component forming the aromatic imide oligomer having an addition reaction group at the terminal include 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride and 2,2 ′, 3,3′-biphenyl. At least selected from the group consisting of tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, and 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride. One tetracarboxylic dianhydride can be illustrated, and in particular, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride can be preferably used.

末端に付加反応基を有する芳香族イミドオリゴマーを形成するジアミン成分としては、これに限定されないが、1,4−ジアミノベンゼン、1,3−ジアミノベンゼン、1,2−ジアミノベンゼン、2,6−ジエチル−1,3−ジアミノベンゼン、4,6−ジエチル−2−メチル−1,3-ジアミノベンゼン、3,5−ジエチルトルエン−2,4−ジアミン、3,5−ジエチルトルエン−2,6−ジアミン等のベンゼン環を1個有するジアミン、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、3,3’−ジアミノベンゾフェノン、4,4’−ジアミノベンゾフェノン、4,4’−ジアミノジフェニルメタン、3,3’−ジアミノジフェニルメタン、ビス(2,6−ジエチル−4−アミノフェノキシ)メタン、ビス(2−エチル−6−メチル−4−アミノフェニル)メタン、4,4’−メチレン−ビス(2,6−ジエチルアニリン)、4,4’−メチレン−ビス(2−エチル,6−メチルアニリン)、2,2―ビス(3−アミノフェニル)プロパン、2,2―ビス(4−アミノフェニル)プロパン、ベンジジン、2,2’−ビス(トリフルオロメチル)ベンジジン、3,3’−ジメチルベンジジン、2,2−ビス(4−アミノフェニル)プロパン、2,2−ビス(3−アミノフェニル)プロパン等のベンゼン環を2個有するジアミン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン,1,4−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼン等のベンゼン環を3個有するジアミン2,2−ビス[4−[4−アミノフェノキシ]フェニル]プロパン、2,2−ビス[4−[4−アミノフェノキシ]フェニル]ヘキサフルオロプロパン等のベンゼン環を4個有するジアミン等を単独、或いは複数種混合して使用することができる。   The diamine component forming the aromatic imide oligomer having an addition reactive group at the terminal is not limited to this, but is 1,4-diaminobenzene, 1,3-diaminobenzene, 1,2-diaminobenzene, 2,6- Diethyl-1,3-diaminobenzene, 4,6-diethyl-2-methyl-1,3-diaminobenzene, 3,5-diethyltoluene-2,4-diamine, 3,5-diethyltoluene-2,6- Diamines such as diamines having one benzene ring, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 3,3'-diaminobenzophenone, 4,4'-diaminobenzophenone , 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, bis (2,6-diamino) Tyl-4-aminophenoxy) methane, bis (2-ethyl-6-methyl-4-aminophenyl) methane, 4,4′-methylene-bis (2,6-diethylaniline), 4,4′-methylene- Bis (2-ethyl, 6-methylaniline), 2,2-bis (3-aminophenyl) propane, 2,2-bis (4-aminophenyl) propane, benzidine, 2,2'-bis (trifluoromethyl) ) Benzidine, 3,3'-dimethylbenzidine, 2,2-bis (4-aminophenyl) propane, 2,2-bis (3-aminophenyl) propane, and the like, diamine having two benzene rings, 1,3- Bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 1,4-bis (3-aminophenoxy) ) Such as diamine 2,2-bis [4- [4-aminophenoxy] phenyl] propane and 2,2-bis [4- [4-aminophenoxy] phenyl] hexafluoropropane having three benzene rings such as benzene. A diamine having four benzene rings and the like can be used alone or in combination of two or more.

これらの中でも、1,3−ジアミノベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、及び2,2’−ビス(トリフルオロメチル)ベンジジンからなる群から選ばれる少なくとも二つの芳香族ジアミンによって構成された混合ジアミンを用いることが好適であり、特に、1,3−ジアミノベンゼンと1,3−ビス(4−アミノフェノキシ)ベンゼンとの組み合せからなる混合ジアミン、3,4’−ジアミノジフェニルエーテルと4,4’−ジアミノジフェニルエーテルとの組み合せからなる混合ジアミン、3,4’−ジアミノジフェニルエーテルと1,3−ビス(4−アミノフェノキシ)ベンゼンとの組み合せからなる混合ジアミン、4,4’−ジアミノジフェニルエーテルと1,3−ビス(4−アミノフェノキシ)ベンゼンとの組み合せからなる混合ジアミン、及び2,2’−ビス(トリフルオロメチル)ベンジジンと1,3−ビス(4−アミノフェノキシ)ベンゼンとの組み合せからなる混合ジアミンを使用することが、耐熱性と成形性の点から好適である。   Among these, 1,3-diaminobenzene, 1,3-bis (4-aminophenoxy) benzene, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, and 2,2′-bis (trifluoro It is preferable to use a mixed diamine composed of at least two aromatic diamines selected from the group consisting of methyl) benzidine, and particularly 1,3-diaminobenzene and 1,3-bis (4-aminophenoxy) benzene. , A mixed diamine consisting of a combination of 3,4'-diaminodiphenyl ether and 4,4'-diaminodiphenyl ether, a mixed diamine consisting of a combination of 3,4'-diaminodiphenyl ether and 1,3-bis (4-aminophenoxy) Mixed diamines in combination with benzene, 4,4'- Mixed diamine consisting of a combination of aminodiphenyl ether and 1,3-bis (4-aminophenoxy) benzene, and 2,2′-bis (trifluoromethyl) benzidine and 1,3-bis (4-aminophenoxy) benzene It is preferable to use a mixed diamine composed of a combination of the above from the viewpoints of heat resistance and moldability.

本発明で用いる末端に付加反応基を有する芳香族イミドオリゴマーは、イミドオリゴマーの繰返し単位の繰返しが、0〜20、特に1〜5であることが好適であり、GPCによるスチレン換算の数平均分子量が、10000以下、特に3000以下であることが好適である。繰返し単位の繰返し数が上記範囲にあることにより、溶融粘度が適切な範囲に調整されて、機能性繊維を混合することが可能になる。また高温で成形する必要がなく、成形性に優れていると共に、耐熱性、機械的強度に優れた樹脂成形体を提供することが可能になる。
繰返し単位の繰返し数の調整は、芳香族テトラカルボン酸二無水物、芳香族ジアミン、及び分子内に付加反応基と共に無水物基又はアミノ基を有する化合物の割合を変えることにより行うことができ、分子内に付加反応基と共に無水物基又はアミノ基を有する化合物の割合を高くすることにより、低分子量化して繰返し単位の繰返し数は小さくなり、この化合物の割合を小さくすると、高分子量化して繰返し単位の繰返し数は大きくなる。
The aromatic imide oligomer having an addition reaction group at the terminal used in the present invention preferably has a repeating unit of the imide oligomer of 0 to 20, particularly 1 to 5, and has a styrene-equivalent number average molecular weight by GPC. Is preferably 10,000 or less, and particularly preferably 3,000 or less. When the number of repeating units is within the above range, the melt viscosity can be adjusted to an appropriate range and the functional fibers can be mixed. Further, it is not necessary to mold at a high temperature, and it is possible to provide a resin molded product having excellent moldability, heat resistance, and mechanical strength.
The adjustment of the repeating number of the repeating unit can be performed by changing the ratio of the compound having an anhydride group or an amino group with an addition reaction group in the molecule, aromatic tetracarboxylic dianhydride, aromatic diamine, By increasing the proportion of the compound having an anhydride group or an amino group together with an addition reaction group in the molecule, the molecular weight is lowered and the number of repeating units is decreased, and when the proportion of this compound is decreased, the molecular weight is increased and the repeating number is increased. The number of repetitions of a unit becomes large.

付加反応型ポリイミド樹脂には、目的とする樹脂成形体の用途に応じて、難燃剤、着色剤、滑剤、熱安定剤、光安定剤、紫外線吸収剤、充填剤等の樹脂添加剤を公知の処方に従って配合することができる。   For the addition reaction type polyimide resin, a known resin additive such as a flame retardant, a colorant, a lubricant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, a filler, etc., depending on the intended use of the resin molded product. It can be blended according to the prescription.

[機能性繊維]
本発明において、上述した付加反応型ポリイミド樹脂中に分散させる機能性繊維としては、従来公知の物を使用することができ、炭素繊維、アラミド繊維、ガラス繊維、金属繊維等、従来公知の機能性繊維を使用することができるが、特に炭素繊維を好適に用いることができる。
中でも、平均繊維長が50〜6000μm及び平均繊維径が5〜20μmの範囲にある炭素繊維を好適に使用することができる。上記範囲よりも平均繊維長が短い場合には、炭素繊維の強化材としての効果を充分に得ることができず、その一方上記範囲よりも長いとポリイミド樹脂中での分散性に劣るようになる。また上記範囲よりも平均繊維径が細い場合には、取扱い性に劣ると共に高価であり、一方上記範囲よりも平均繊維径が太い場合には機能性繊維の沈降速度が増大して、機能性繊維が偏在しやすくなるおそれがあると共に、繊維の強度が低下する傾向があり、強化材としての効果を充分に得られないおそれがある。
[Functional fiber]
In the present invention, as the functional fiber to be dispersed in the above-mentioned addition reaction type polyimide resin, a conventionally known substance can be used, such as a carbon fiber, an aramid fiber, a glass fiber, and a metal fiber, a conventionally known functionality. Although fibers can be used, carbon fibers can be particularly preferably used.
Among them, carbon fibers having an average fiber length of 50 to 6000 μm and an average fiber diameter of 5 to 20 μm can be preferably used. If the average fiber length is shorter than the above range, the effect of the carbon fiber as a reinforcing material cannot be sufficiently obtained, while if it is longer than the above range, the dispersibility in the polyimide resin becomes poor. . Further, when the average fiber diameter is smaller than the above range, it is inferior in handleability and is expensive, while when the average fiber diameter is larger than the above range, the sedimentation rate of the functional fiber is increased, and the functional fiber is Is likely to be unevenly distributed, and the strength of the fiber tends to be lowered, so that the effect as a reinforcing material may not be sufficiently obtained.

機能性繊維の含有量は、樹脂成形体の摺動性能及び成形時の反り発生に重大な影響を有しており、本発明においては、機能性繊維は、付加反応型ポリイミド100重量部に対して5〜200重量部、特に10〜150重量部の量で含有されていることが、優れた摺動性能を有すると共に、反りがなく優れた形状安定性を有する成形体を得る上で好適である。上記範囲よりも機能性繊維の量が少ないと、限界PV値が上記値未満になり摺動性が低下するおそれがある。また樹脂成形体の反りの発生が増大するおそれもある。一方上記範囲よりも機能性繊維の量が多いと、上記範囲にある場合に比して限界PV値が低下するおそれがある。また過度の増粘が生じ、賦型できないおそれがある。   The content of the functional fiber has a significant influence on the sliding performance of the resin molded product and the occurrence of warpage during molding, and in the present invention, the functional fiber is 100 parts by weight of the addition reaction type polyimide. 5 to 200 parts by weight, and particularly 10 to 150 parts by weight, is suitable for obtaining a molded product having excellent sliding performance, warpage, and excellent shape stability. is there. If the amount of the functional fiber is less than the above range, the limit PV value may be less than the above value and the slidability may be deteriorated. Further, the warp of the resin molded body may increase. On the other hand, when the amount of the functional fiber is larger than the above range, the limit PV value may be lower than that in the above range. In addition, excessive thickening may occur, and it may not be possible to mold.

本発明においては、上記機能性繊維と共に、グラファイト、PTFE、二硫化モリブデン、カーボンブラック等の微細炭素系材料、アルミ粉、銅粉等の金属粉等の無機材料の少なくとも一種を更に含有することもできる。上記無機材料は、付加反応型ポリイミド100重量部に対して5〜40重量部、特に5〜30重量部の量で含有されていることが好適である。上記範囲よりも無機材料の量が少ないと無機材料を配合することにより得られる効果が充分得られず、一方上記範囲よりも無機材料の量が多いと摩擦係数の増大や耐摩耗性の低下等、かえって摺動性能を損なうおそれがある。   In the present invention, at least one kind of fine carbonaceous material such as graphite, PTFE, molybdenum disulfide and carbon black, and inorganic material such as metal powder such as aluminum powder and copper powder may be further contained together with the functional fiber. it can. The above inorganic material is preferably contained in an amount of 5 to 40 parts by weight, particularly 5 to 30 parts by weight, based on 100 parts by weight of the addition reaction type polyimide. If the amount of the inorganic material is less than the above range, the effect obtained by blending the inorganic material cannot be sufficiently obtained, while if the amount of the inorganic material is more than the above range, the friction coefficient increases and the wear resistance decreases, etc. On the contrary, the sliding performance may be impaired.

(樹脂成形体の製造方法)
本発明の樹脂成形体の製造方法は、少なくとも、付加反応型ポリイミド樹脂のプレポリマー(イミドオリゴマー)と機能性繊維を付加反応型ポリイミド樹脂の融点以上、熱硬化開始温度以下の温度で混練する分散混練工程(A)、分散混練工程を経た混合物を反応型ポリイミド樹脂の熱硬化開始温度以上の温度条件下で加圧賦形する賦形工程(C)、から成り、必要により、前記分散混練工程(A)と賦形工程(C)の間に、分散混練工程により得られた混練物を反応型ポリイミド樹脂の熱硬化開始温度以上の温度で一定時間保持することにより混練物の粘度を必要に応じて上昇させ適正範囲に混練物の粘度を調整する増粘工程(B)を有することを特徴とする。
前述したとおり、本発明の樹脂成形体の成形に用いる付加反応型ポリイミド樹脂は、架橋硬化前のプレポリマーの状態では低粘度であることから、機能性繊維を含有させると沈降してしまい、その結果、機能性繊維が遍在し、成形体に反りが発生する。本発明においては、上記分散混練工程(A)後に、上記増粘工程(B)によりプレポリマーの粘度を増大させることにより機能性繊維の沈降を防止して、その状態を維持したまま賦形工程(C)で賦形されることから、機能性繊維が均一に分散し、加熱硬化の際に均等に収縮して反りのない成形体を成形することが可能になる。
(Method for manufacturing resin molded body)
The method for producing a resin molded product of the present invention is a dispersion in which at least a prepolymer (imide oligomer) of an addition reaction type polyimide resin and a functional fiber are kneaded at a temperature not lower than the melting point of the addition reaction type polyimide resin and not higher than a thermosetting start temperature. A kneading step (A), a shaping step (C) of shaping the mixture that has undergone the dispersion kneading step under a temperature condition of the thermosetting initiation temperature of the reactive polyimide resin or higher, and, if necessary, the dispersion kneading step. Between (A) and the shaping step (C), the viscosity of the kneaded product is required by holding the kneaded product obtained by the dispersion kneading process at a temperature not lower than the thermosetting start temperature of the reactive polyimide resin for a certain period of time. It is characterized by having a thickening step (B) of increasing the viscosity of the kneaded product in an appropriate range.
As described above, the addition reaction type polyimide resin used for molding the resin molded body of the present invention has a low viscosity in the state of the prepolymer before the crosslinking and curing, so that it is precipitated when the functional fiber is contained, As a result, the functional fibers are ubiquitous and warp occurs in the molded body. In the present invention, after the dispersion kneading step (A), the viscosity of the prepolymer is increased by the thickening step (B) to prevent the functional fibers from settling, and the shaping step while maintaining the state. Since it is shaped in (C), the functional fibers are uniformly dispersed and evenly contracted during heating and curing, so that a molded body having no warp can be formed.

[分散混練工程]
付加反応型ポリイミド樹脂のプレポリマー(イミドオリゴマー)と機能性繊維を付加反応型ポリイミド樹脂の融点以上の温度で加熱しプレポリマーを溶融しながら混練することにより、プレポリマーと機能性繊維を混合する。この際、前述したとおり、付加反応型ポリイミド100重量部に対して機能性繊維を5〜200重量部、特に10〜150重量部の量で用いる。また上述した無機材料を上述した量配合することもできる。
プレポリマー及び機能性繊維の混練は、ヘンシェルミキサー、タンブラーミキサー、リボンブレンダ―等の従来公知の混合機を用いることもできるが、機能性繊維の破断を抑制すると共に分散させることが重要であることから、バッチ式の加圧ニーダー(混練機)を用いることが特に好適である。
[Dispersion and kneading process]
The prepolymer and the functional fiber are mixed by heating the prepolymer (imide oligomer) of the addition reaction type polyimide resin and the functional fiber at a temperature higher than the melting point of the addition reaction type polyimide resin and kneading the prepolymer while melting. . At this time, as described above, the functional fiber is used in an amount of 5 to 200 parts by weight, particularly 10 to 150 parts by weight, based on 100 parts by weight of the addition reaction type polyimide. Further, the above-mentioned inorganic materials can be blended in the above-mentioned amounts.
For the kneading of the prepolymer and the functional fiber, a conventionally known mixer such as a Henschel mixer, a tumbler mixer, a ribbon blender can be used, but it is important to suppress the breakage of the functional fiber and disperse it. Therefore, it is particularly preferable to use a batch type pressure kneader (kneader).

[増粘工程]
次いで、溶融混練されたプレポリマーと機能性繊維の混合物の300〜320℃の温度条件下における溶融粘度が10以下である場合、その混合物に用いるポリイミド樹脂の熱硬化開始温度近傍310±10℃の温度で30〜60分間保持することにより、300〜320℃の温度条件下における溶融粘度を10〜5000Pa・sの範囲に調整する。
すなわち、プレポリマーと機能性繊維の混合物を、電気炉等を用いて310±10℃の温度で30〜60分間保持することにより、プレポリマーが徐々に架橋し始めることから粘度は上昇する。更に前記分散混練工程によりプレポリマー中に含浸された機能性繊維はこの粘度上昇によりプレポリマー中で沈降することなく分散状態を維持できる。また上記範囲の加熱温度及び保持時間にすることで、プレポリマーを完全に架橋硬化させることなく、粘度のみを上記範囲に上昇させることが可能になる。従って、増粘工程は、プレポリマーの熱硬化開始温度以上、且つ、完全に架橋硬化する温度未満にておこなう。
尚、付加反応型ポリイミド樹脂においては、反応開始温度は付加反応基に依存し、本発明において付加反応基として好適なフェニルエチニル基を有するポリイミド樹脂においては、熱硬化開始温度近傍である310±10℃の温度で30〜60分間加熱することが望ましい。なお機能性繊維においても上記粘度範囲に入る場合、本工程を必要としない。
[Thickening process]
Then, when the melt viscosity of the melt-kneaded mixture of the prepolymer and the functional fiber under the temperature condition of 300 to 320 ° C. is 10 or less, the temperature of the polyimide resin used in the mixture is around 310 ± 10 ° C. By holding the temperature for 30 to 60 minutes, the melt viscosity under the temperature condition of 300 to 320 ° C. is adjusted to the range of 10 to 5000 Pa · s.
That is, by holding the mixture of the prepolymer and the functional fiber at a temperature of 310 ± 10 ° C. for 30 to 60 minutes using an electric furnace or the like, the prepolymer gradually starts to be crosslinked and the viscosity increases. Furthermore, the functional fiber impregnated in the prepolymer by the dispersion kneading step can maintain the dispersed state without settling in the prepolymer due to this increase in viscosity. Further, by setting the heating temperature and the holding time in the above range, it becomes possible to raise only the viscosity to the above range without completely crosslinking and curing the prepolymer. Therefore, the thickening step is performed at a temperature equal to or higher than the thermal curing start temperature of the prepolymer and lower than the temperature at which the prepolymer is completely crosslinked and cured.
Incidentally, in the addition reaction type polyimide resin, the reaction start temperature depends on the addition reaction group, and in the polyimide resin having a phenylethynyl group suitable as the addition reaction group in the present invention, the temperature is 310 ± 10 which is near the thermosetting start temperature. It is desirable to heat at a temperature of 30 ° C. for 30 to 60 minutes. If the functional fiber also falls within the above viscosity range, this step is not necessary.

本発明においては、分散混練工程を経たプレポリマーと機能性繊維の混合物を冷却固化した後、所定の大きさの塊状にしておくことが望ましい。これにより、機能性繊維がプレポリマーに分散した混合物を経時保管することが可能になり、取扱い性も向上する。   In the present invention, it is desirable that the mixture of the prepolymer and the functional fiber that has been subjected to the dispersion and kneading step is cooled and solidified, and then formed into a lump of a predetermined size. As a result, the mixture in which the functional fibers are dispersed in the prepolymer can be stored with time, and the handleability is also improved.

[賦形工程]
増粘工程を経て溶融粘度が上記範囲に調整されたプレポリマー及び機能性繊維の混合物は、用いるポリイミド樹脂の熱硬化開始温度以上の温度条件下で賦形し、所望の形状の樹脂成形体として成形される。
増粘工程と連続して賦形工程を行う場合には、溶融状態にある増粘されたポリイミドプレポリマーと機能性繊維の混合物を、成形型に導入して熱硬化開始温度以上の温度で加熱することにより硬化させて樹脂成形体を成形するが、前述したように、増粘工程後プレポリマーと機能性繊維の混合物を冷却固化し粉砕混合した混合物を用いる場合には、電気炉等を用いて付加反応型ポリイミド樹脂の融点以上の温度で加熱して混合物を溶融した後成形型に導入して加熱硬化させるか、或いは成形型内で混合物を溶融すると共に加熱硬化させることにより樹脂成形体を成形することができる。
尚、賦形は、成形型に導入された混合物を加圧圧縮して成形する圧縮成形やトランスファー成形によることが好適であるが、射出成形や押出成形によっても成形することができる。
[Shaping process]
The mixture of the prepolymer and the functional fiber whose melt viscosity is adjusted to the above range through the thickening step is shaped under a temperature condition of the thermosetting start temperature or higher of the polyimide resin to be used, and as a resin molded body having a desired shape. Molded.
When performing the shaping step continuously with the thickening step, a mixture of the thickened polyimide prepolymer in the molten state and the functional fiber is introduced into a mold and heated at a temperature higher than the thermosetting start temperature. The resin molded product is molded by curing by doing so, as described above, when using a mixture obtained by cooling and solidifying the mixture of the prepolymer and the functional fiber after the thickening step and pulverizing and mixing, use an electric furnace or the like. By heating at a temperature higher than the melting point of the addition reaction type polyimide resin to melt the mixture and then introducing it into the molding die to heat-cure it, or by melting the mixture in the molding die and heat-curing the resin molding. It can be molded.
The shaping is preferably performed by compression molding or transfer molding in which the mixture introduced into the molding die is compressed and compressed, but it can also be molded by injection molding or extrusion molding.

(限界PV値の測定)
JIS K 7218(プラスチックの滑り摩耗試験方法)に適合したスラスト型摩耗試験機を用い、図1に示すようなリングオンディスク式にて速度一定の条件下で5分ないしは10分おきに面圧を上昇させ、摩擦力が急激に上昇する或いは著しい変形と摩耗粉が発生したところを限界とし、限界時の1つ前の面圧(P)と速度(V)の積を限界PV値とした。
限界PV値測定条件
試験速度;0.5m/s、初期面圧;0.5MPa
面圧ステップ 0.5MPa/10min(〜10MPa)
1MPa/10min(10MPa〜)
相手材 :S45Cリング 表面粗さRa0.8μm
外径25.6mm、内径20mm(接触面積2cm
試験環境:23±2℃、50%±5%RH
試験機:エー・アンド・デイ社製 摩擦摩耗試験機 EMF−III−F
(Measurement of limit PV value)
Using a thrust-type wear tester conforming to JIS K 7218 (plastic sliding wear test method), the ring-on-disk type as shown in FIG. 1 was used to measure the surface pressure every 5 to 10 minutes under constant speed conditions. A limit PV value is defined as the product of the surface pressure (P) and the velocity (V) immediately before the limit when the frictional force is rapidly increased or a significant deformation and abrasion powder are generated.
Limit PV value measurement conditions Test speed; 0.5 m / s, initial surface pressure; 0.5 MPa
Surface pressure step 0.5 MPa / 10 min (-10 MPa)
1 MPa / 10 min (10 MPa-)
Counterpart material: S45C ring Surface roughness Ra 0.8 μm
Outer diameter 25.6 mm, inner diameter 20 mm (contact area 2 cm 2 )
Test environment: 23 ± 2 ℃, 50% ± 5% RH
Testing machine: A & D company friction wear testing machine EMF-III-F

(繊維の分散)
成形体の断面を観察し、繊維の偏在の有無を目視または走査電子顕微鏡(日立ハイテクテクノロジー社製S−3400N)による観察にて確認した。繊維が分散しているものを○、繊維の沈降がみられるものを×とした。
(Fiber dispersion)
The cross section of the molded body was observed, and the presence or absence of uneven distribution of fibers was confirmed visually or by a scanning electron microscope (S-3400N manufactured by Hitachi High-Tech Technology Co., Ltd.). The one in which the fibers were dispersed was evaluated as ◯, and the one in which the fiber sedimentation was observed was evaluated as x.

(反り量の測定)
図2に示す試験片反り量t(mm)、製品直径寸法D(mm)を測定し、反り/直径比を以下の式(1)により算出した。
反り/直径比(%)=t/D×100
t:試験片反り量(mm)、T:製品厚み(mm)
なお反り/直径比の良否判定は1.5%未満を○、1.5%以上を×とした。
(Measurement of warp amount)
The warp amount t (mm) and the product diameter dimension D (mm) shown in FIG. 2 were measured, and the warp / diameter ratio was calculated by the following formula (1).
Warp / diameter ratio (%) = t / D × 100
t: test piece warp amount (mm), T: product thickness (mm)
The warp / diameter ratio was judged as good or bad by less than 1.5% and as bad by 1.5% or more.

(溶融粘度の測定)
310℃における溶融粘度をレオメータ(TA instrument社製ARES)により測定した。測定モードを動的周波数分散として、角周波数を0.1〜500rad/sとし、0.1rad/sの条件における溶融粘度を測定値とした。
(Measurement of melt viscosity)
The melt viscosity at 310 ° C. was measured by a rheometer (ARES manufactured by TA instrument). The measurement mode was dynamic frequency dispersion, the angular frequency was 0.1 to 500 rad / s, and the melt viscosity under the condition of 0.1 rad / s was the measured value.

(実施例1)
付加重合型ポリイミド(宇部興産社製PETI−330)100重量部に対して、平均単繊維長さ200μmのピッチ系炭素繊維(三菱樹脂社製K223HM)11.1重量部を配合し、ニーダーにより大気圧下280℃、30分で溶融混練した。その後、室温まで冷却された混合物(バルクモールディングコンパウンド、以下BMC)を得た。得られたBMCを扱いが容易なサイズに割ってから310℃、30分電気炉内に保持し、急冷、再度粉砕した樹脂混合体(増粘BMC)を圧縮成形機用金型内で、280℃〜320℃で一定時間保持することで溶融および均熱した後、2.4MPaに加圧しながら、昇温速度3℃/minで371℃まで昇温、60分間保持、徐冷してφ40mm厚さ3mmの板を得た。得られた板材を357℃条件下で6時間の硬化処理を施した後、所望の寸法に加工し試験片を得た。
(Example 1)
11.1 parts by weight of pitch-based carbon fiber (K223HM manufactured by Mitsubishi Plastics Co., Ltd.) having an average single fiber length of 200 μm was mixed with 100 parts by weight of addition polymerization type polyimide (PETI-330 manufactured by Ube Industries, Ltd.), and the mixture was increased by a kneader. Melt kneading was carried out at 280 ° C. for 30 minutes under atmospheric pressure. Then, a mixture (bulk molding compound, hereinafter BMC) cooled to room temperature was obtained. The obtained BMC is divided into a size that is easy to handle, then held in an electric furnace at 310 ° C. for 30 minutes, rapidly cooled and re-crushed, and the resin mixture (thickened BMC) is 280 in a mold for a compression molding machine. After melting and soaking by holding at a temperature of ℃ to 320 ℃ for a certain period of time, while pressurizing to 2.4 MPa, raise the temperature to 371 ℃ at a temperature rising rate of 3 ℃ / min, hold for 60 minutes, slowly cool and φ40 mm thickness. A 3 mm thick plate was obtained. The obtained plate material was subjected to a curing treatment at 357 ° C. for 6 hours and then processed into a desired size to obtain a test piece.

(実施例2)
付加重合型ポリイミド(宇部興産社製PETI−330)100重量部に対して、平均単繊維長さ200μmのピッチ系炭素繊維(三菱樹脂社製K223HM)42.9重量部を配合し、ニーダーにより大気圧下280℃、30分で溶融混練した。その後、室温まで冷却されたBMCを得た。得られたBMCを金型内に納まる大きさ程度に割ってから、BMCを圧縮成形機用金型内で、280℃〜320℃で一定時間保持することで溶融および均熱した後、11MPaに加圧しながら、昇温速度3℃/minで371℃まで昇温、1時間保持、徐冷してφ100mm厚さ3mmの板を得た。得られた板材を357℃条件下で6時間の硬化処理を施した後、所望の寸法に加工し試験片を得た。
(Example 2)
42.9 parts by weight of a pitch-based carbon fiber (K223HM manufactured by Mitsubishi Plastics Co., Ltd.) having an average single fiber length of 200 μm was mixed with 100 parts by weight of an addition polymerization type polyimide (PETI-330 manufactured by Ube Industries, Ltd.), and a large amount was obtained by a kneader. Melt kneading was carried out at 280 ° C. for 30 minutes under atmospheric pressure. Then, BMC cooled to room temperature was obtained. After dividing the obtained BMC into a size that fits in the mold, the BMC is melted and soaked in the mold for the compression molding machine by holding it at 280 ° C. to 320 ° C. for a certain time, and then to 11 MPa. While pressurizing, the temperature was raised to 371 ° C. at a temperature rising rate of 3 ° C./min, held for 1 hour, and gradually cooled to obtain a plate having a diameter of 100 mm and a thickness of 3 mm. The obtained plate material was subjected to a curing treatment at 357 ° C. for 6 hours and then processed into a desired size to obtain a test piece.

(実施例3)
炭素繊維の配合量を100重量部に変更した以外は実施例2と同じとした。
(Example 3)
Same as Example 2 except that the blending amount of carbon fiber was changed to 100 parts by weight.

(実施例4)
電気炉内に310℃保持しなかった以外は実施例1と同じとした。得られた樹脂成形体は、反りが生じていたため、表裏層を削って所定の平行度とし、限界PV値を測定した。削る前の面の限界PV値は測定していないが、測定した面を観察したところ、削る前の面と比較して炭素繊維が明らかに多く存在していた。このことからも、表面には所定量の炭素繊維が必要であることがわかる。
(Example 4)
Same as Example 1 except that the temperature was not kept at 310 ° C. in the electric furnace. Since the obtained resin molded body had warpage, the front and back layers were shaved to have a predetermined parallelism, and the limit PV value was measured. Although the limit PV value of the surface before shaving was not measured, when the measured surface was observed, it was apparent that a large amount of carbon fibers were present compared with the surface before shaving. From this, too, it is understood that a predetermined amount of carbon fiber is required on the surface.

(比較例1)
炭素繊維を配合しなかった以外は実施例2と同じとした。
(Comparative Example 1)
Same as Example 2 except that no carbon fiber was blended.

(比較例2)
炭素繊維の配合量を233重量部に変更した以外は実施例2と同じとした。なお、溶融混練後に得られたBMCの粘度が高く、賦形工程にて金型内での伸張不足が一部みられ、限界PV値の測定ができなかった。
(Comparative example 2)
Same as Example 2 except that the amount of carbon fiber was changed to 233 parts by weight. The viscosity of BMC obtained after melt-kneading was high, and inadequate stretching was observed in the mold during the shaping step, and the PV limit value could not be measured.

実施例1〜4、比較例1、2にて得られた試験片の限界PV値測定結果、増粘行程の有無、繊維分散の良否および成形品の欠損の有無を表1に示す。   Table 1 shows the results of measuring the limit PV value of the test pieces obtained in Examples 1 to 4 and Comparative Examples 1 and 2, the presence / absence of a thickening process, the quality of fiber dispersion, and the presence / absence of defects in molded articles.

(実施例5)
BMCを電気炉に310℃の条件下で45分とした以外は実施例1と同じとした。
(Example 5)
Same as Example 1 except that BMC was placed in an electric furnace at 310 ° C. for 45 minutes.

(実施例6)
BMCを電気炉に310℃、60分とした以外は実施例1と同じとした。
(Example 6)
Same as Example 1 except that BMC was placed in an electric furnace at 310 ° C. for 60 minutes.

(比較例3)
BMCを電気炉に310℃、15分とした以外は実施例1と同じとした。なお、金型内からBMC漏れ、及び繊維の不均一な分布による反り変形が生じた。
(Comparative Example 3)
Same as Example 1 except that BMC was placed in an electric furnace at 310 ° C. for 15 minutes. It should be noted that BMC leaked from inside the mold and warped deformation due to uneven distribution of fibers occurred.

(比較例4)
BMCを電気炉に310℃、75分とした以外は実施例1と同じとした。なお、樹脂粘度が高く伸張せず賦型することができなかった。
(Comparative example 4)
Same as Example 1 except that BMC was placed in an electric furnace at 310 ° C. for 75 minutes. The resin viscosity was so high that it could not be molded without stretching.

実施例1、5、6、比較例3、4にて得られた試験片の賦形性、繊維の分散の良否、反り/直径比、溶融粘度の測定結果を表2に示す。
Table 2 shows the measurement results of the shapeability of the test pieces obtained in Examples 1, 5, 6 and Comparative Examples 3 and 4, the quality of dispersion of fibers, the warp / diameter ratio, and the melt viscosity.

本発明の樹脂成形体は、限界PV値が3000kPa・m/s以上と摺動性能に優れていることから、自動車、電気・電子分野等の摺動性部材として種々の用途に使用できる。   INDUSTRIAL APPLICABILITY The resin molded product of the present invention is excellent in sliding performance with a limit PV value of 3000 kPa · m / s or more, and therefore can be used in various applications as a slidable member in the fields of automobiles, electric / electronics and the like.

Claims (13)

付加反応型ポリイミド樹脂中に機能性繊維が分散して成る樹脂成形体であって、限界PV値が3000kPa・m/s以上であることを特徴とする樹脂成形体。   A resin molded body comprising functional reaction fibers dispersed in an addition reaction type polyimide resin, wherein the resin molded body has a limit PV value of 3000 kPa · m / s or more. 前記樹脂成形体を構成する組成物のマトリックスが付加反応型ポリイミド樹脂であり、前記機能性繊維に前記ポリイミド樹脂が含浸している請求項1に記載の樹脂成形体。   The resin molded body according to claim 1, wherein the matrix of the composition forming the resin molded body is an addition reaction type polyimide resin, and the functional fiber is impregnated with the polyimide resin. 前記機能性繊維の含有率が付加反応型ポリイミド100重量部に対して5〜200重量部である請求項1又は2記載の樹脂成形体。   The resin molded product according to claim 1, wherein the content of the functional fiber is 5 to 200 parts by weight with respect to 100 parts by weight of the addition reaction type polyimide. 前記機能性繊維が、炭素繊維、ガラス繊維、アラミド繊維、金属繊維の何れか1種以上である請求項1〜3記載の樹脂成形体。   The resin molding according to claim 1, wherein the functional fiber is at least one selected from carbon fiber, glass fiber, aramid fiber, and metal fiber. 前記機能性繊維が、平均繊維長50〜6000μm、平均繊維径5〜20μmの炭素繊維である請求項1〜4の何れかに記載の樹脂成形体。   The resin molding according to any one of claims 1 to 4, wherein the functional fiber is a carbon fiber having an average fiber length of 50 to 6000 µm and an average fiber diameter of 5 to 20 µm. 更に、グラファイト、二硫化モリブデン、PTFE(四フッ化エチレン樹脂)、微細炭素系材料、金属粉の少なくとも1種以上を付加反応型ポリイミド100重量部に対して5〜40重量部で含有する請求項1〜5の何れかに記載の樹脂成形体。   Furthermore, 5 to 40 parts by weight of at least one or more of graphite, molybdenum disulfide, PTFE (tetrafluoroethylene resin), fine carbonaceous material and metal powder is contained with respect to 100 parts by weight of addition reaction type polyimide. The resin molding according to any one of 1 to 5. 付加反応型ポリイミド樹脂のプレポリマーと機能性繊維を付加反応型ポリイミド樹脂の融点以上、熱硬化開始温度以下の温度で混練する分散混練工程、
該分散混練工程を経て得られた混合物が、300〜320℃の温度条件下における溶融粘度が10〜5000Pa・sであり、該混合物を付加反応型ポリイミド樹脂の熱硬化開始温度以上の温度条件下で賦形する賦形工程、を少なくとも有することを特徴とする樹脂成形体の製造方法。
Dispersion and kneading step of kneading the prepolymer of the addition reaction type polyimide resin and the functional fiber at a temperature not lower than the melting point of the addition reaction type polyimide resin and not higher than the thermosetting start temperature,
The mixture obtained through the dispersion-kneading step has a melt viscosity of 10 to 5000 Pa · s under a temperature condition of 300 to 320 ° C., and the mixture is subjected to a temperature condition of the thermosetting initiation temperature of the addition reaction type polyimide resin or higher. The method for producing a resin molded product, which comprises at least a shaping step of shaping.
前記分散混練工程と賦形工程の間に、分散混練工程で得られた混練物を付加反応型ポリイミド樹脂の熱硬化開始温度以上の温度で一定時間保持することにより混練物の粘度を、300〜320℃の温度条件下における溶融粘度が10〜5000Pa・sに調整する増粘工程を有する請求項7記載の製造方法。 Between the dispersion and kneading step and the shaping step, the kneaded material obtained in the dispersion and kneading step has a viscosity of 300 to 300 by holding the kneaded material at a temperature not lower than the thermosetting start temperature of the addition reaction type polyimide resin for a certain period of time. The manufacturing method according to claim 7, further comprising a thickening step of adjusting the melt viscosity to 10 to 5000 Pa · s under a temperature condition of 320 ° C. 前記機能性繊維の含有率が付加反応型ポリイミド100重量部に対して5〜200重量部である請求項7又は8記載の樹脂成形体の製造方法。   The method for producing a resin molded product according to claim 7, wherein the content of the functional fiber is 5 to 200 parts by weight with respect to 100 parts by weight of the addition reaction type polyimide. 前記分散混練工程を経て得られた混合物を冷却し粉砕混合した後、加圧賦形する請求項7又は9記載の製造方法。 After the mixture obtained through the dispersion kneading step was mixed cooling and pulverizing method according to claim 7 or 9, wherein for pressurizing圧賦form. 前記付加反応型ポリイミド樹脂が、付加反応基としてフェニルエチニル基を有するポリイミド樹脂である請求項7〜10の何れかに記載の製造方法。 The method according to any one of claims 7-10 is a polyimide resin having the addition reaction type polyimide resin, phenylethynyl group as an additional reactive group. 前記増粘工程おいて、310±10℃の温度で30〜60分間保持する請求項11に記載の製造方法。 The manufacturing method according to claim 11 , wherein in the thickening step, the temperature is held at 310 ± 10 ° C for 30 to 60 minutes. 前記賦形工程が、圧縮成形により行われる請求項7〜12の何れかに記載の製造方法。 Said shaping step, the manufacturing method according to any one of claims 7-12 which is carried out by compression molding.
JP2015181259A 2014-09-12 2015-09-14 Fiber-reinforced polyimide resin molding and method for manufacturing the same Active JP6679860B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014186941 2014-09-12
JP2014186941 2014-09-12

Publications (2)

Publication Number Publication Date
JP2016060914A JP2016060914A (en) 2016-04-25
JP6679860B2 true JP6679860B2 (en) 2020-04-15

Family

ID=55797223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015181259A Active JP6679860B2 (en) 2014-09-12 2015-09-14 Fiber-reinforced polyimide resin molding and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP6679860B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112018074254A2 (en) * 2016-06-01 2019-03-06 Toyo Seikan Group Holdings, Ltd. structure, and method for producing a structure.
JP6961988B2 (en) 2017-04-12 2021-11-05 東洋製罐グループホールディングス株式会社 Method for Producing Composition with High Filler Content and Mold
JP2019093685A (en) 2017-11-28 2019-06-20 東洋製罐グループホールディングス株式会社 Fiber-reinforced laminate and method for producing the same

Also Published As

Publication number Publication date
JP2016060914A (en) 2016-04-25

Similar Documents

Publication Publication Date Title
WO2016039485A1 (en) Fiber-reinforced polyimide resin molded article and method for producing same
US8748509B2 (en) Friction material and resin composition for friction material
JP6679860B2 (en) Fiber-reinforced polyimide resin molding and method for manufacturing the same
JP6794616B2 (en) Fiber-reinforced polyimide resin molded product and its manufacturing method
CN110520455B (en) Composition with high filler content and method for producing shaped bodies
WO2019107352A1 (en) Fiber-reinforced laminated body and method for manufacturing same
Jin et al. Preparation of polyimide powders via hydrothermal polymerization and post-heat treatment for application to compression-molding materials
JP7444532B2 (en) Sliding structure and its manufacturing method
JP7405097B2 (en) Fiber-reinforced polyimide resin molding precursor and method for producing the same
JP6984804B1 (en) Polyimide resin molded product and its manufacturing method
JP2018162411A (en) Polyimide resin composition, and seal ring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200302

R150 Certificate of patent or registration of utility model

Ref document number: 6679860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150