JP6678959B2 - A method for forming a coating layer on the surface of a resin molded product. - Google Patents

A method for forming a coating layer on the surface of a resin molded product. Download PDF

Info

Publication number
JP6678959B2
JP6678959B2 JP2017159109A JP2017159109A JP6678959B2 JP 6678959 B2 JP6678959 B2 JP 6678959B2 JP 2017159109 A JP2017159109 A JP 2017159109A JP 2017159109 A JP2017159109 A JP 2017159109A JP 6678959 B2 JP6678959 B2 JP 6678959B2
Authority
JP
Japan
Prior art keywords
resin molded
molded product
forming
coating layer
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017159109A
Other languages
Japanese (ja)
Other versions
JP2019038861A (en
Inventor
芳人 川瀬
芳人 川瀬
Original Assignee
芳人 川瀬
芳人 川瀬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芳人 川瀬, 芳人 川瀬 filed Critical 芳人 川瀬
Priority to JP2017159109A priority Critical patent/JP6678959B2/en
Publication of JP2019038861A publication Critical patent/JP2019038861A/en
Application granted granted Critical
Publication of JP6678959B2 publication Critical patent/JP6678959B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、樹脂の表面にコーティング層を形成する方法に関し、特に、医療用樹脂成型物の表面に親水性の高い物質をコーティングする方法に関する。   TECHNICAL FIELD The present invention relates to a method for forming a coating layer on the surface of a resin, and particularly to a method for coating the surface of a medical resin molded product with a highly hydrophilic substance.

ポリエチレン、ポリウレタン、シリコーン樹脂等の合成樹脂により成形され、医療用デバイスとして、体内に長期間留置される合成樹脂製の管体がある。例えば、胆管癌、肝臓癌等が原因で生じた胆管障害に対してバイパスとして合成樹脂製(例えばポリエチレン)の胆管(以下樹脂胆管という)が体内に埋め込まれ留置される。この樹脂胆管の留置によって引き起こされる重大な問題として樹脂内表面に胆汁に含まれる物質がバイオフィルムとして堆積し、早ければ1ヶ月、平均でも3ヶ月程度で当該樹脂胆管が詰まり、その都度取り替える必要性が生じる点にある。   BACKGROUND ART As a medical device, which is molded from a synthetic resin such as polyethylene, polyurethane, or a silicone resin, there is a tubular body made of a synthetic resin that is left in the body for a long time. For example, a bile duct made of a synthetic resin (for example, polyethylene) (hereinafter referred to as a resin bile duct) is implanted and placed in the body as a bypass for bile duct damage caused by bile duct cancer, liver cancer, or the like. As a serious problem caused by the indwelling of the resin bile duct, a substance contained in bile is deposited as a biofilm on the inner surface of the resin, and the resin bile duct becomes clogged within 1 month at the earliest, or about 3 months on average, and it is necessary to replace it each time. Is at the point where

尿道障害、血管障害で体内に留置される樹脂尿管、樹脂血管でも同様の問題が発生する。   A similar problem occurs in a resin ureter and a resin blood vessel left in the body due to urethral disorder or vascular disorder.

この問題に対して、ポリエチレン等使用する材質の管の内表面を親水性にすることで胆汁等の体液に対する摩擦抵抗が低くなり、バイオフィルムの堆積が少なくなることが知られており、また、親水性の物質は、表面への細菌の付着やバイオフィルムの形成能も疎水性の未加工の樹脂そのものの材質に比べ抑えられることが知られている。   For this problem, it is known that by making the inner surface of the tube made of a material such as polyethylene hydrophilic, the frictional resistance against bodily fluids such as bile is reduced, and the deposition of biofilm is reduced. It is known that a hydrophilic substance can suppress the adhesion of bacteria to the surface and the ability to form a biofilm as compared with the material of the hydrophobic unprocessed resin itself.

一方、理想的な生体適合性表面である生体細胞膜を模倣した物質として、2−メタクリロイルオキシエチルホスホリルコリン重合体(MPCポリマー)が注目されている。このMPCポリマーは、一分子中に生体膜の構成成分であるリン脂質極性基(ホスホリルコリン基)と重合性を有するメタクリロイル基とを併せ持つ重合体で、前記生体細胞膜類似構造を有することで、生体内で異物としての認識を受けず優れた生体親和性を発揮するほか、生体との相互作用も抑制されるため、タンパク質吸着や血栓形成が抑制できる。また、当該MPCポリマーは前記した親水性を備えていることから胆汁や血液等の体液に対する摩擦抵抗も低く、菌や細胞の付着を抑制できる可能性をもつ等、優れた特性がある。従って、ポリエチレン管等の樹脂成型物の表面を当該MPCポリマーで改質すると、極めて有効な医療用のデバイスを得ることが期待できることになる。   On the other hand, a 2-methacryloyloxyethylphosphorylcholine polymer (MPC polymer) has been attracting attention as a substance that mimics a biological cell membrane that is an ideal biocompatible surface. This MPC polymer is a polymer having both a phospholipid polar group (phosphorylcholine group) which is a constituent of a biological membrane and a polymerizable methacryloyl group in one molecule. In addition to exhibiting excellent biocompatibility without being recognized as a foreign substance, interaction with the living body is also suppressed, and thus protein adsorption and thrombus formation can be suppressed. In addition, since the MPC polymer has the above-mentioned hydrophilicity, it has excellent properties such as low frictional resistance to body fluids such as bile and blood, and the possibility of suppressing adhesion of bacteria and cells. Therefore, if the surface of a resin molded product such as a polyethylene pipe is modified with the MPC polymer, an extremely effective medical device can be expected to be obtained.

このように、高い親水性、生体適合性を持つ特徴からMPCポリマーは、現在、血管拡張ステント、カテーテル、コンタクトレンズ、人工心臓、あるいは、人工関節等多くの医療用デバイスの表面改質に応用されている。   Due to its high hydrophilicity and biocompatibility, MPC polymers are currently applied to surface modification of many medical devices such as vasodilating stents, catheters, contact lenses, artificial hearts, and artificial joints. ing.

例えば、WO2010/122817号公報(特許文献1)には、呼気補助チューブへの適用として、MPCを含むポリマーで該チューブをコーティングすることで、チューブへの細胞接着の抑制、チューブ使用後の粘膜剥離、組織損傷を防ぐことができ、その結果、炎症反応を回避することができるとする内容が開示されている。ここで、チューブの基材としては塩化ビニル樹脂を主成分としており、コーティングする方法としては、MPCを含むポリマーを0.01〜50重量%を含むコーティング液にチューブを浸漬する工程と浸漬したチューブの乾燥工程を2〜20回繰り返すとしている。   For example, in WO2010 / 122817 (Patent Document 1), as an application to an exhalation assisting tube, by coating the tube with a polymer containing MPC, suppression of cell adhesion to the tube and exfoliation of mucous membrane after the tube is used. It is disclosed that the tissue damage can be prevented, and as a result, the inflammatory reaction can be avoided. Here, a vinyl chloride resin as a main component is used as a base material of the tube, and as a coating method, a step of immersing the tube in a coating liquid containing 0.01 to 50% by weight of a polymer containing MPC and the immersed tube It is supposed that the drying process of 2 is repeated 2 to 20 times.

更に、特開2015−84848(特許文献2)には、プラズマ処理された樹脂成形物をMPCポリマー含有液に浸漬し乾燥する工程を複数回繰り返すことによって、成形物表面に親水性を持たせる方法が開示されている。   Further, in JP-A-2015-84848 (Patent Document 2), a method of imparting hydrophilicity to the surface of a molded product by repeating the step of immersing a plasma-treated resin molded product in an MPC polymer-containing liquid and drying it multiple times Is disclosed.

WO2010/122817号公報WO2010 / 122817 特開2015−84848号公報JP, 2005-84848, A

しかし、上記いずれの方法も基材に塗布するだけで物理的に接着しているのみであり、耐久性に問題がある。特に特許文献2においてはプラズマ処理した樹脂成型物に塗布しているが、この効果も樹脂成型物とMPCポリマーの馴染みが良くなるだけで、MPCポリマーと基板とは共有結合が生じておらず、依然耐久性に問題がある。   However, in any of the above-mentioned methods, only by applying it to the base material and physically adhering it, there is a problem in durability. Particularly, in Patent Document 2, it is applied to a resin-molded product that has been plasma-treated, but this effect also only improves the familiarity between the resin-molded product and the MPC polymer, and no covalent bond is formed between the MPC polymer and the substrate. There is still a problem with durability.

本発明は、上記従来の事情に鑑みて提案されたものであって、浸漬処理により容易に樹脂表面へのMPCポリマーが共有結合を通して強固にコーティングされ、結果として長期間の使用にもMPCポリマーの高い浸水性、生体適合性を安定して保つことができる方法を提供することを目的とするものである。   The present invention has been proposed in view of the above-mentioned conventional circumstances, and the MPC polymer is easily and strongly coated on the resin surface through a covalent bond by dipping treatment, and as a result, the MPC polymer can be used for a long period of time. It is an object of the present invention to provide a method capable of stably maintaining high water immersion property and biocompatibility.

本発明は、医療用樹脂成形物の表面に2−メタクリロイルオキシエチルホスホリルコリン(MPC)を主体とする共重合体ポリマー(以下親水性ポリマーという)をコーティングするために以下の手順を採っている。
The present invention employs the following procedure to coat the surface of a medical resin molded product with a copolymer polymer mainly composed of 2- methacryloyloxyethylphosphorylcholine (MPC) (hereinafter referred to as a hydrophilic polymer).

その手順は、前記樹脂成形物をプラズマ処理する工程と、前記親水性ポリマーを作成する工程と、前記プラズマ処理された樹脂成形物を親水性ポリマー溶液に浸漬して反応させて共有結合を生成させる工程とを備える。   The procedure is as follows: a step of plasma-treating the resin-molded product, a step of forming the hydrophilic polymer, and a step of immersing the plasma-molded resin-molded product in a hydrophilic polymer solution to cause a reaction to form a covalent bond. And a process.

前記医療用樹脂成形物は、ポリエチレン、ポリウレタン、シリコーン樹脂等の管であり、胆管等、体内に長期間留置されるデバイスである。前記プラズマ処理は、前記樹脂成形物に対して、プラズマガスを流して表面処理する。前記親水性ポリマーは、MPCと基板表面の活性水素を有する官能基(例えば、水酸基やアミノ基等)と共有結合を形成出来る官能基(例えば、カルボキシル基等)を必須成分とするポリマーが挙げられる。好ましくはさらにn−ブチルメタクリレートとの共重合体が好ましく、具体的には、MPCとn−ブチルメタクリレートと基板表面の活性水素を有する官能基(例えば、水酸基やアミノ基等)と共有結合を形成出来る官能基としてカルボキシル基を有するアクリル酸の共重合体ポリマーとすることが好ましい。また、前記浸漬工低での親水性ポリマーの溶媒としては、炭酸水素系溶媒(n−ヘキサン、トルエン等)、エステル系溶媒(酢酸エチル、酢酸ブチル等)、エーテル系溶媒(エチルエーテル、テトラハイドロフラン等)、プロトン性溶媒(ジメチルスルホキサイド、N、N−ジメチルホルムアミド等)が挙げられる。これらのうち、テトラハイドロフランを用い、さらに、ジシクロヘキシルカルボジイミドとN.N−ジメチルアニリンを溶解させた液を用いるのが好ましい。
The medical resin molded product is a tube made of polyethylene, polyurethane, silicone resin or the like, and is a device such as a bile duct that is left in the body for a long period of time. In the plasma treatment, a plasma gas is caused to flow to the resin molded product for surface treatment. Examples of the hydrophilic polymer include a polymer containing MPC and a functional group (for example, a hydroxyl group or an amino group) having active hydrogen on the surface of the substrate, which is capable of forming a covalent bond with the functional group (for example, a carboxyl group) as an essential component. . A copolymer with n-butyl methacrylate is more preferable, and specifically, a covalent bond is formed with MPC, n-butyl methacrylate, and a functional group having active hydrogen on the substrate surface (for example, a hydroxyl group or an amino group). It is preferable to use an acrylic acid copolymer polymer having a carboxyl group as the functional group. Further, as the solvent immersion Engineering low in hydrophilic polymers, hydrogen carbonate-based solvent (n- hexane, toluene, etc.), ester solvents (ethyl acetate, butyl acetate), ether solvents (diethyl ether, tetra hydrofuran, etc.), aprotic solvents (dimethyl sulfoxide, N, N-dimethylformamide and the like). Among these, we have use the tetrahydrofuran, further dicyclohexylcarbodiimide and N. It is preferable to use a solution in which N-dimethylaniline is dissolved.

上記のように、プラズマ処理された樹脂成形物を親水性ポリマー溶液に浸漬することにより、プラズマ処理によって成形物表面に形成された水酸基やアミノ基と、前記親水性ポリマーの成分であるアクリル酸のカルボキシル基とが反応して共有結合を形成し、親水性ポリマーを樹脂成型物の表面に強固に固定でき、長期間にわたり生体起源のバイオフィルムの管内壁への付着を防止できる医療用デバイスを提供することができる。   As described above, by immersing the plasma-treated resin molded product in the hydrophilic polymer solution, a hydroxyl group or an amino group formed on the surface of the molded product by the plasma treatment, and acrylic acid which is a component of the hydrophilic polymer. Provide a medical device that can react with a carboxyl group to form a covalent bond, firmly fix a hydrophilic polymer on the surface of a resin molded product, and prevent biofilm of biogenic origin from adhering to the inner wall of the tube for a long period of time. can do.

前記樹脂成型物は、胆管、尿管、血管として体内に長期間留置されるポリエチレン管、ポリウレタン管、シリコーン樹脂等である。   The resin molded product is a bile duct, a ureter, a polyethylene tube, a polyurethane tube, a silicone resin, or the like that is left in the body for a long time as a blood vessel.

本発明の処理をしないポリエチレン板の接触角を示す図(写真)。The figure (photograph) which shows the contact angle of the polyethylene plate which does not process of this invention. 本発明の処理をしたポリエチレン板の接触角を示す図(写真)。The figure (photograph) which shows the contact angle of the polyethylene board which processed the present invention.

<被加工物>
本実施の形態によりコーティングされる医療用樹脂成形物は、例えば、胆管として利用されるポリエチレン管、ポリウレタン管、シリコーン樹脂管等の合成樹脂管であり、本例においては、胆管のバイパスとして長期間体内に留置される外径3.3mm(内径3.0mm程度)のポリエチレン管を採用した。尚、胆管のように管体では、親水性を観測しにくいので別途ポリエチレン板のサンプルにも同様の処理をした。
<Workpiece>
The medical resin molded product coated according to this embodiment is, for example, a synthetic resin tube such as a polyethylene tube, a polyurethane tube, or a silicone resin tube used as a bile duct. A polyethylene tube with an outer diameter of 3.3 mm (inner diameter of about 3.0 mm) to be placed in the body was adopted. Incidentally, since it is difficult to observe hydrophilicity in a tubular body such as a bile duct, a polyethylene plate sample was separately treated in the same manner.

このポリエチレン管(クック社製、長さ10cm)の内部(およびポリエチレン板(2×7cm)の片面:以下単にポリエチレン管とする)を、大気圧プラズマに常温で3分間曝した。これによって、ポリエチレン管の内表面に水酸基やアミノ基が生成されることになる。尚プラズマ装置は魁半導体社製、ガス種は窒素である。   The inside of this polyethylene tube (manufactured by Cook Co., 10 cm in length) (and one side of a polyethylene plate (2 × 7 cm): hereinafter simply referred to as polyethylene tube) was exposed to atmospheric pressure plasma at room temperature for 3 minutes. As a result, hydroxyl groups and amino groups are generated on the inner surface of the polyethylene pipe. The plasma device is manufactured by Kaiki Semiconductor Co., Ltd., and the gas type is nitrogen.

<親水性ポリマー>
本発明では、以下のようにして作成された親水性ポリマーが、前記ポリエチレン管の内表面にコーティングされる。
<Hydrophilic polymer>
In the present invention, the hydrophilic polymer prepared as described below is coated on the inner surface of the polyethylene pipe.

2−メタクリロイルオキシエチルホスホリルコリン(MPC)(東京化成工業社製)2.0g、とメタクリル酸n−ブチル(ナカライテクス社製)0.73g、アクリル酸(ナカライテクス社製)0.1gをエチルアルコールに溶解させ、アルゴンガスを液相にバブリングして反応系内のアルゴン置換を行う。
2.0 g of 2-methacryloyloxyethylphosphorylcholine (MPC) (manufactured by Tokyo Chemical Industry Co., Ltd.), 0.73 g of n-butyl methacrylate (manufactured by Nacalai Textile Co., Ltd.), and 0.1 g of acrylic acid (manufactured by Nacalai Textile Co., Ltd.) in ethyl alcohol. And bubbling argon gas into the liquid phase to replace the argon in the reaction system.

前記置換後、重合開始剤であるAIBN(アゾビスイソブチロニトリル)40.0mlを加えてエチルアルコールの沸点前後で8時間加熱還流することによって、MPC、とメタクリル酸n−ブチル、アクリル酸が重合を開始する。この重合反応によって生成された溶液をクロロホルム50ml中に滴下し、生じた沈殿をろ過し、得られた固形物を更にエチルアルコール20mlに溶解し、クロロホルム50mlに滴下して生じた沈殿をろ過する操作を2回繰り返すことにより2−メタクリロイルオキシエチルホスホリルコリン、メタクリル酸n−ブチル及びアクリル酸からなる共重合体ポリマー(親水性ポリマー)2.3gを得た。 After the substitution, 40.0 ml of AIBN (azobisisobutyronitrile) which is a polymerization initiator was added, and MPC, n-butyl methacrylate and acrylic acid were separated by heating and refluxing for 8 hours around the boiling point of ethyl alcohol. Initiate polymerization. An operation in which the solution produced by this polymerization reaction is dropped into 50 ml of chloroform, the resulting precipitate is filtered, the obtained solid substance is further dissolved in 20 ml of ethyl alcohol, and the resulting precipitate is dropped into 50 ml of chloroform and filtered. Was repeated twice to obtain 2.3 g of a copolymer polymer (hydrophilic polymer) composed of 2-methacryloyloxyethylphosphorylcholine , n-butyl methacrylate and acrylic acid.

<ポリエチレン管の親水化処理>
乾燥テトラハイドロフラン50cc中に、前記親水性ポリマー1.5g、ジシクロヘキシルカルボジイミド(東京化成工業社製)1.00g、N.N−ジメチルアニリン(ナカライテスク社製)0.06gを溶解させた溶液を得る。当該溶液に前記プラズマ処理したポリエチレン管を浸し、室温で3日間攪拌した。これによって、前記プラズマ処理によってポリエチレン管内表面に形成された水酸基やアミノ基と、親水性ポリマーの成分であるアクリル酸のカルボキシル基が共有結合を形成し、前記親水性ポリマーをポリエチレン管の内表面にコーティングすることができる。
<Hydrophilic treatment of polyethylene pipe>
In 50 cc of dried tetrahydrofuran, 1.5 g of the hydrophilic polymer, 1.00 g of dicyclohexylcarbodiimide (manufactured by Tokyo Chemical Industry Co., Ltd.), N.V. A solution in which 0.06 g of N-dimethylaniline (manufactured by Nacalai Tesque) is dissolved is obtained. The plasma-treated polyethylene tube was immersed in the solution and stirred at room temperature for 3 days. As a result, a hydroxyl group or an amino group formed on the inner surface of the polyethylene pipe by the plasma treatment and a carboxyl group of acrylic acid, which is a component of the hydrophilic polymer, form a covalent bond, and the hydrophilic polymer is formed on the inner surface of the polyethylene pipe. Can be coated.

<親水性の測定>
上記のようにして作成した表面改質ポリエチレン管(表面改質ポリエチレン板)表面の親水性を、上記の処理をしない未改質ポリエチレン管(未改質ポリエチレン板)と比較する。
<Measurement of hydrophilicity>
The hydrophilicity of the surface of the surface-modified polyethylene pipe (surface-modified polyethylene plate) prepared as described above is compared with that of an unmodified polyethylene pipe (unmodified polyethylene plate) which is not subjected to the above treatment.

接触角測定装置{協和界面化学株式会社、DROP MASTER 500、液適量2μL、測定間隔1000ms、測定回数30回}で、表面改質ポリエチレン板および未改質ポリエチレン板の表面の任意の5箇所について、接触角を観察した。本願発明の処理を施した表面改質ポリエチレン板では、図2のように15.5度であったが、未改質ポリエチレン板では図1に示すように89度であった。   Using a contact angle measuring device {Kyowa Interface Chemistry Co., Ltd., DROP MASTER 500, liquid volume 2 μL, measurement interval 1000 ms, number of measurements 30 times}, at any 5 points on the surface of the surface-modified polyethylene plate and the unmodified polyethylene plate, The contact angle was observed. The surface-modified polyethylene plate subjected to the treatment of the present invention was 15.5 degrees as shown in FIG. 2, while the unmodified polyethylene plate was 89 degrees as shown in FIG.

以上の結果より、本発明の方法で形成されたMPCポリマーを含有する親水性ポリマーのコーティングを施したポリエチレンをはじめとする樹脂成形物は、親水性に富んだ表面を形成することができる。その結果、胆管として使用したとき、樹脂内表面に胆汁に含まれる物質がバイオフィルムとして堆積することもなく。長期に渡って体内に留置することが期待できる。   From the above results, a resin molded article such as polyethylene coated with a hydrophilic polymer containing an MPC polymer formed by the method of the present invention can form a hydrophilic surface. As a result, when used as a bile duct, the substance contained in bile does not deposit as a biofilm on the inner surface of the resin. It can be expected to be placed in the body for a long time.

以上説明したように、プラズマ処理された樹脂成形物を親水性ポリマー溶液に浸漬することにより、プラズマ処理によって成形物表面に形成された水酸基やアミノ基と、前記親水性ポリマーの成分であるアクリル酸のカルボキシル基とが反応し、親水性ポリマーを樹脂成型物の表面に固定でき、長期間にわたり生体起源のバイオフィルムの管内壁への付着を防止できる医療用デバイスを提供することができる。   As described above, by immersing the plasma-treated resin molded product in the hydrophilic polymer solution, hydroxyl groups and amino groups formed on the surface of the molded product by the plasma treatment, and acrylic acid which is a component of the hydrophilic polymer. It is possible to provide a medical device capable of reacting with the carboxyl group of the above to fix the hydrophilic polymer on the surface of the resin molded product and preventing the biofilm of biogenic origin from adhering to the inner wall of the tube for a long period of time.

Claims (4)

医療用樹脂成形物の表面に2−メタクリロイルオキシエチルホスホリルコリン(MPC)を主体とする共重合体である親水性ポリマーのコーティング層を形成する方法において、
前記樹脂成形物の表面にプラズマ処理によって水酸基やアミノ基を形成するする工程と、
前記樹脂成形物の表面に形成された水酸基やアミノ基と、前記親水性ポリマーの成分であるカルボキシル基を、ジシクロヘキシルカルボジイミドの存在下で、室温で反応させて共有結合を生成させる工程と、
を備えることを特徴とする樹脂成形物の表面へのコーティング層形成方法。
In a method of forming a coating layer of a hydrophilic polymer which is a copolymer mainly composed of 2-methacryloyloxyethylphosphorylcholine (MPC) on the surface of a medical resin molded article,
A step of forming a hydroxyl group or an amino group on the surface of the resin molded product by plasma treatment,
A step of reacting a hydroxyl group or an amino group formed on the surface of the resin molded product and a carboxyl group, which is a component of the hydrophilic polymer , at room temperature in the presence of dicyclohexylcarbodiimide to form a covalent bond,
A method for forming a coating layer on the surface of a resin molded product, comprising:
前記医療用樹脂成形物は、ポリエチレン、ポリウレタン、シリコーン樹脂の管である請求項1に記載の樹脂成形物の表面へのコーティング層形成方法。   The method for forming a coating layer on the surface of a resin molded article according to claim 1, wherein the medical resin molded article is a tube of polyethylene, polyurethane, or a silicone resin. 前記2−メタクリロイルオキシエチルホスホリルコリン(MPC)を主体とする共重合体ポリマーが、MPCとn−ブチルメタクリレートとアクリル酸の共重合である親水性ポリマーである請求項1から2のいずれかに記載の樹脂成形物の表面へのコーティング層形成方法。   The copolymer polymer mainly composed of 2-methacryloyloxyethylphosphorylcholine (MPC) is a hydrophilic polymer which is a copolymer of MPC, n-butyl methacrylate and acrylic acid. A method for forming a coating layer on the surface of a resin molded product. 前記共重合体である親水性ポリマーの溶液が、テトラハイドロフランを溶媒とする請求項1から3のいずれかに記載の樹脂成形物の表面へのコーティング層形成方法。   The method for forming a coating layer on the surface of a resin molded article according to claim 1, wherein the solution of the hydrophilic polymer which is the copolymer uses tetrahydrofuran as a solvent.
JP2017159109A 2017-08-22 2017-08-22 A method for forming a coating layer on the surface of a resin molded product. Active JP6678959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017159109A JP6678959B2 (en) 2017-08-22 2017-08-22 A method for forming a coating layer on the surface of a resin molded product.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017159109A JP6678959B2 (en) 2017-08-22 2017-08-22 A method for forming a coating layer on the surface of a resin molded product.

Publications (2)

Publication Number Publication Date
JP2019038861A JP2019038861A (en) 2019-03-14
JP6678959B2 true JP6678959B2 (en) 2020-04-15

Family

ID=65726142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017159109A Active JP6678959B2 (en) 2017-08-22 2017-08-22 A method for forming a coating layer on the surface of a resin molded product.

Country Status (1)

Country Link
JP (1) JP6678959B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0751355A (en) * 1993-08-11 1995-02-28 Kuraray Co Ltd Medical synthetic high polymer and medical material
JPH07184990A (en) * 1993-12-28 1995-07-25 Kuraray Co Ltd High polymer material for medical treatment and medical treating material
JP3404514B2 (en) * 1994-02-22 2003-05-12 宣男 中林 Antithrombotic regenerated cellulose-based membrane
JP5597814B2 (en) * 2008-09-05 2014-10-01 国立大学法人 東京大学 Optical surface modification of hydrophobic polymer materials
RS52882B (en) * 2010-07-30 2014-02-28 Novartis Ag Silicone hydrogel lenses with water-rich surfaces

Also Published As

Publication number Publication date
JP2019038861A (en) 2019-03-14

Similar Documents

Publication Publication Date Title
US9895470B2 (en) Non-fouling, anti-microbial, anti-thrombogenic graft—from compositions
EP3441433B1 (en) Modification of medical device surfaces for fluid and solid repellency
US8277928B2 (en) Ultra-thin photo-polymer coatings and uses thereof
WO2017209222A1 (en) Method for producing medical device
Kondyurin et al. Effect of low molecular weight additives on immobilization strength, activity, and conformation of protein immobilized on PVC and UHMWPE
Suganya et al. Study on plasma pre-functionalized PVC film grafted with TiO2/PVP to improve blood compatible and antibacterial properties
JP7158993B2 (en) Phosphorylcholine group-containing copolymer and biomedical substrate
JP5504491B2 (en) Crosslinked polymer composition for treatment of support surface
WO2019142710A1 (en) Medical coating material and medical instrument using said medical coating material
JP6678959B2 (en) A method for forming a coating layer on the surface of a resin molded product.
WO2015125890A1 (en) Medical material and medical instrument using medical material
JPH0751355A (en) Medical synthetic high polymer and medical material
JP2022508521A (en) Medical equipment
Chu et al. Significantly improved antifouling capability of silicone rubber surfaces by covalently bonded acrylated agarose towards biomedical applications
WO2020213529A1 (en) Antithrombogenic material, production method of antithrombogenic material, artificial organ, and antithrombogenicity imparting agent
JP6159644B2 (en) Coating method for medical resin molding
JP2022177309A (en) Manufacturing method of medical equipment
Crago et al. Durable plasma-mediated zwitterionic grafting on polymeric surfaces for implantable medical devices
WO2014123077A1 (en) Medical coating material and medical device
JP2014147639A (en) Medical device
Thomes The influence on protein adsorption of surface chemistry and surface roughness produced via the pulsed plasma technique

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190410

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190410

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200304

R150 Certificate of patent or registration of utility model

Ref document number: 6678959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250