JP6675566B1 - Carbide and method for producing carbide - Google Patents

Carbide and method for producing carbide Download PDF

Info

Publication number
JP6675566B1
JP6675566B1 JP2019190922A JP2019190922A JP6675566B1 JP 6675566 B1 JP6675566 B1 JP 6675566B1 JP 2019190922 A JP2019190922 A JP 2019190922A JP 2019190922 A JP2019190922 A JP 2019190922A JP 6675566 B1 JP6675566 B1 JP 6675566B1
Authority
JP
Japan
Prior art keywords
carbide
hardness
reaction time
charcoal
superheated steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019190922A
Other languages
Japanese (ja)
Other versions
JP2021066612A (en
Inventor
哲 梁川
哲 梁川
吉澤 秀治
秀治 吉澤
Original Assignee
新和環境株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新和環境株式会社 filed Critical 新和環境株式会社
Priority to JP2019190922A priority Critical patent/JP6675566B1/en
Application granted granted Critical
Publication of JP6675566B1 publication Critical patent/JP6675566B1/en
Publication of JP2021066612A publication Critical patent/JP2021066612A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/58Construction or demolition [C&D] waste

Landscapes

  • Coke Industry (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Processing Of Solid Wastes (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

【課題】建築廃材等の木質バイオマスから安定した性質の炭化物を製造すること。【解決手段】木炭硬度計による平均硬度が1以下となるように木質系バイオマス由来の炭化物を過熱蒸気処理、又は、木質系バイオマスを炭化処理する第1の工程、前記第1工程を経た炭化物を過熱蒸気と反応させる第2の工程、を有する炭化物の製造方法において、前記第2工程を経て得られた炭化物から木炭硬度計による平均硬度が1以下となるように前記炭化物を選別する。【選択図】なしPROBLEM TO BE SOLVED: To produce a charcoal-based material having stable properties from woody biomass such as construction waste materials. SOLUTION: A first step of superheated steam treatment of a wood-based biomass-derived carbide or a carbonization treatment of a wood-based biomass so that the average hardness by a charcoal hardness meter is 1 or less, and a carbide obtained through the first step are In the method for producing a carbide having a second step of reacting with superheated steam, the carbide is selected from the carbide obtained through the second step so that the average hardness by a charcoal hardness meter is 1 or less. [Selection diagram] None

Description

本発明は炭化物、炭化物の製造方法及びその用途に関するものである。   The present invention relates to a carbide, a method for producing the carbide, and a use thereof.

近年、環境意識の高まりとともにバイオマスの利用について注目が高まっている。バイオマスとは、動植物等から生まれた生物資源の総称であり、直接燃焼したり、ガス化したりする等の利用が図られている。バイオマスは発生源の観点から、林地残材や製材廃材等の木質系、建築廃材系、黒液やセルロース(古紙)等の製紙工場系、稲わらやトウモロコシ残渣等の農業残渣や家畜排泄物といった農業・家畜・水産系、食品加工廃棄物や水産加工残渣等の食品産業系、下水汚泥やし尿等の生活系等に分類することができる。   In recent years, attention has been paid to the use of biomass with increasing environmental awareness. Biomass is a general term for biological resources produced from animals and plants, and is used for direct combustion, gasification, and the like. From the viewpoint of the source of biomass, biomass includes wood-based materials such as forest residues and sawn timber, building waste materials, paper mill systems such as black liquor and cellulose (recovered paper), agricultural residues such as rice straw and corn residues, and livestock excrement. It can be classified into agriculture, livestock and fisheries systems, food industry systems such as food processing waste and marine processing residues, and living systems such as sewage sludge and human waste.

この中で木質系資源に関しては、炭化処理(熱処理)することで様々な用途に用いられている。炭は無数の微細孔を有し、これが物質の吸着機能を生み出している。当該機能を活かし、従来的には有害物質の浄化、臭気物質の脱臭、調湿によるカビ発生防止等に用いられてきた。また、炭の微細孔は様々な微生物の棲み処にもなることから、近年ではこうした微生物の機能に着目した土壌改良や水質浄化等も行われるようになってきた。   Among them, wood resources are used for various purposes by carbonization (heat treatment). Charcoal has a myriad of micropores, which create the function of adsorbing substances. Taking advantage of this function, it has been conventionally used for purification of harmful substances, deodorization of odorous substances, prevention of mold generation by humidity control, and the like. In addition, since the micropores of charcoal also serve as homes for various microorganisms, in recent years, soil improvement and water purification, etc., which focus on the functions of such microorganisms, have been performed.

木質系資源を熱処理して得られた炭化物は炭材、温度、時間等の条件によって性質が異なってくる。例えば、炭化温度の違いによって木炭のpHや微細構造(孔径、比表面積等)等が異なってくる。木材の主成分はセルロース、ヘミセルロース、リグニンである。活発に熱分解する温度範囲はセルロースが240〜400℃、ヘミセルロースが180〜300℃、リグニンが280〜550℃であり(非特許文献1)、熱分解反応の中でC=O結合やO−H結合等に由来する様々な反応が起こり、炭化物のpHや孔径等に影響を及ぼすと考えられている。   The properties of the carbide obtained by heat-treating wood-based resources vary depending on conditions such as the carbon material, temperature, and time. For example, the pH, microstructure (pore diameter, specific surface area, etc.) of charcoal and the like differ depending on the carbonization temperature. The main components of wood are cellulose, hemicellulose and lignin. The temperature range of active pyrolysis is 240 to 400 ° C for cellulose, 180 to 300 ° C for hemicellulose, and 280 to 550 ° C for lignin (Non-Patent Document 1). It is thought that various reactions originating from the H bond and the like occur and affect the pH and pore size of the carbide.

さらに炭化温度を上げていくと炭材の違いによる比表面積等の性質の違いは小さくなる傾向にある。しかしながら、こうした高温処理によって性質のバラつきを小さくした炭化物であっても微生物を介在させた土壌改良や水質浄化等では比表面積等の従来的な指標では十分でない場合がある。   When the carbonization temperature is further increased, the difference in properties such as the specific surface area due to the difference in the carbon material tends to decrease. However, even in the case of a carbide whose property variation is reduced by such high-temperature treatment, a conventional index such as a specific surface area may not be sufficient for soil improvement or water purification through microorganisms.

また、工場排水等の汚染水を炭化物によって浄化処理する場合、比表面積がより大きい炭化物の方が汚染物質の吸着量が多くなり、浄化能力が大きいと言える。しかしながら、比表面積が大きいからといって必ずしも浄化性能に優れているとは言えないことがある。例えば、長期間の汚染水処理を行う中で汚染水が接する壁面には垢等が発生することがあるが、こうした汚れの発生は比表面積等、従来的な指標に頼って用いた炭化物では制御できないことが多く、場合によっては比表面積が大きい炭化物で処理した場合の方が垢等の発生が多いこともある。また、炭は水中では沈殿するため拡散性が悪いという問題もある。土壌に使用する場合にも、満遍なく土壌と混合拡散するのに同様の問題がある。   Further, when purifying contaminated water such as factory wastewater with carbide, it can be said that carbide having a larger specific surface area has a larger adsorption amount of pollutants and has a higher purification ability. However, even if the specific surface area is large, it may not always be said that the purification performance is excellent. For example, during the long-term treatment of contaminated water, dirt and the like may be generated on the wall that comes into contact with the contaminated water.The generation of such dirt is controlled by carbides that rely on conventional indicators such as the specific surface area. In many cases, it is not possible, and in some cases, treatment with a carbide having a large specific surface area may generate more scale and the like. In addition, there is also a problem that charcoal precipitates in water and thus has poor diffusivity. In the case of use in soil, there is a similar problem in that it is mixed and diffused evenly with soil.

炭化物の特性をいかに安定化させるかという問題に対しては、例えば竹炭に微生物を含有させて有機被処理物の腐敗、発酵処理を行う方法がある(特許文献1)。当該方法は600〜800℃で炭化した竹炭を用いるものである。竹炭の細孔直径は概ね0.1μm〜100μm程度であり、当該孔径が微生物の機能に効果的であること、孔径が0.1μm未満の場合には孔に腐敗菌、微生物や有機処理物が浸透しにくくなり、一方100μmを越える場合には孔が大きくなって嫌気性雰囲気下での腐敗及び発酵処理の能力が低くなると共に、孔の数が少なくなって腐敗及び発酵処理の効率が低下する旨が示されている。   In order to solve the problem of how to stabilize the characteristics of the carbide, for example, there is a method in which microorganisms are contained in bamboo charcoal to rot and ferment the organic material to be treated (Patent Document 1). This method uses bamboo charcoal carbonized at 600 to 800 ° C. The pore diameter of bamboo charcoal is generally about 0.1 μm to 100 μm, and the pore diameter is effective for the function of microorganisms. On the other hand, if it exceeds 100 μm, the pores become large and the ability of decay and fermentation treatment under an anaerobic atmosphere is reduced, and the number of pits is reduced to decrease the efficiency of decay and fermentation treatment. Is indicated.

また、富栄養化汚染水の水質浄化用濾過材料としてコストの安い低品位石炭を酸化処理することで得られる活性化石炭粒状材料を用いるものがある(特許文献2)。成分要素中のケイ素と炭素との比率を所定範囲内(1:7〜1:13、望ましくは1:10)に規制することで微生物類や菌類を微孔構造部に繁殖させる場合に好適なものとして利用できる旨が示されている。成分要素中のケイ素と炭素との比率が所定範囲内に規制されている活性化石炭粒状材   Further, there is a filter material using activated coal granular material obtained by oxidizing low-cost low-grade coal as a filtration material for purifying eutrophic contaminated water (Patent Document 2). By regulating the ratio of silicon to carbon in the component elements within a predetermined range (1: 7 to 1:13, desirably 1:10), it is suitable when microorganisms and fungi propagate in the microporous structure. It is shown that it can be used as a product. Activated coal granular material in which the ratio of silicon to carbon in the component elements is regulated within a predetermined range

これらの文献は微生物の利用を前提として、前者は孔径を、後者は成分比率を指標の一つとして所定の品質を得ようとするものである。孔径や成分比率は炭化物の品質と関係のある重要な要素であるが、前記の垢の発生や拡散性等の問題においては指標としては適したものではない。   In these documents, the use of microorganisms is premised, and the former intends to obtain a predetermined quality using the pore size as the index and the component ratio as one of the indexes. Although the pore diameter and the component ratio are important factors related to the quality of the carbide, they are not suitable as indicators in the above-mentioned problems such as generation of scale and diffusibility.

特開2008−62225号公報JP 2008-62225 A 再表2010/103819号公報JP-A-2010 / 103819 城代進、鮫島一彦編:"木材化学講座4 化学"、海青社、15−19 (1993)Susumu Joshiro, Kazuhiko Samejima: “Wood Chemistry Course 4 Chemistry”, Kaiseisha, 15-19 (1993)

本発明が解決しようとする課題は、木質系バイオマスから安定した性質の炭化物を提供することである。   The problem to be solved by the present invention is to provide a carbide having stable properties from woody biomass.

第1の発明は、木質系バイオマスを炭化処理する第1の工程、前記第1の工程を経た炭化物を過熱蒸気と反応させる第2の工程、を有する炭化物の製造方法において、前記第2の工程を経て得られた炭化物の木炭硬度計による硬度を指標とし、前記硬度の炭化物が得られた過熱蒸気反応時間よりも反応時間をさら短く又は長くして新たな炭化物を製造し、その硬度がより小さくなる反応時間を新たな反応時間としてフィードバックすることで平均硬度が1以下となる反応時間を導き出し、当該反応時間で過熱蒸気処理することを特徴とする炭化物の製造方法である。また、第2の発明は、木質系バイオマスを炭化処理する第1の工程、前記第1の工程を経た炭化物を過熱蒸気と反応させる第2の工程、を有する炭化物の製造方法において、前記第2の工程を経て得られた炭化物の木炭硬度計による硬度を指標とし、前記硬度の炭化物が得られた過熱蒸気反応時間よりも反応時間をさら短く又は長くして新たな炭化物を製造し、その硬度がより小さくなる反応時間を新たな反応時間としてフィードバックすることで平均硬度1以下、かつ、比表面積が450〜900m /gとなる反応時間を導き出し、当該反応時間で過熱蒸気処理することを特徴とする炭化物の製造方法である。また、第3の発明は、炭化物の用途が水質浄化材であることを特徴とする第1又は第2の発明の炭化物の製造方法である。また、第4の発明は、炭化物の用途が土壌改良材であることを特徴とする第1又は第2の発明の炭化物の製造方法である。また、第5の発明は、炭化物の用途が脱臭材であることを特徴とする第1又は第2の発明の炭化物の製造方法である。 The first invention is a method for producing a carbide, comprising: a first step of carbonizing woody biomass; and a second step of reacting the carbide having passed through the first step with superheated steam. The hardness is determined by a charcoal hardness tester of the carbide obtained through the above, a new carbide is manufactured by further shortening or lengthening the reaction time from the superheated steam reaction time in which the carbide having the hardness is obtained, and the hardness is higher. A method for producing a carbide, characterized in that a reaction time in which the average hardness becomes 1 or less is derived by feeding back a reduced reaction time as a new reaction time, and a superheated steam treatment is performed in the reaction time. Further, a second invention provides a method for producing a carbide, comprising: a first step of carbonizing woody biomass; and a second step of reacting the carbide that has passed through the first step with superheated steam. The hardness obtained by the charcoal hardness tester of the carbide obtained through the step is used as an index, and a new carbide is produced by further shortening or lengthening the reaction time of the superheated steam reaction time in which the carbide having the hardness is obtained. The reaction time at which the average hardness becomes 1 or less and the specific surface area becomes 450 to 900 m 2 / g is derived by feeding back a reaction time in which the reaction time becomes smaller as a new reaction time, and superheated steam treatment is performed at the reaction time. It is a method for producing carbide. A third invention is the method for producing a carbide according to the first or second invention, wherein the use of the carbide is a water purification material. A fourth invention is the method for producing a carbide according to the first or second invention, wherein the use of the carbide is a soil improvement material. A fifth invention is the method for producing a carbide according to the first or second invention, wherein the use of the carbide is a deodorant.

本発明は、木質バイオマス由来の炭化物について硬度を指標に製造、選別することで各種用途のための品質を安定化する効果が期待できる。また、得られた炭化物を水質浄化に用いることで炭化物が水中に満遍なく拡散するとともに炭化物担持微生物の機能による浄化効果の向上が期待できる。また、得られた炭化物を土耕栽培に用いることで水質浄化効果の場合と同様の働きにより収穫量の向上等の効果が期待できる。また、得られた炭化物を脱臭に用いることで物理的処理と微生物処理による相乗効果が期待できる。   The present invention can be expected to stabilize the quality for various uses by producing and sorting carbides derived from woody biomass using hardness as an index. In addition, by using the obtained carbide for water purification, it is expected that the carbide is diffused evenly in water and the purification effect by the function of the carbide-bearing microorganisms is improved. In addition, by using the obtained carbide for soil cultivation, an effect such as improvement of the yield can be expected by the same function as in the case of the water purification effect. In addition, a synergistic effect by physical treatment and microbial treatment can be expected by using the obtained carbide for deodorization.

図1は工場排水の浄化試験に係る結果の比較写真である。FIG. 1 is a comparative photograph of the results of a purification test of factory wastewater. 図2は豚糞由来成分のクロマトグラムである。FIG. 2 is a chromatogram of a component derived from pig feces. 図3は豚糞由来成分を微生物担持炭で96時間処理した後のクロマトグラムである。FIG. 3 is a chromatogram after treating the components derived from swine dung with the microorganism-supporting carbon for 96 hours. 図4は豚糞由来成分を微生物担持炭で168時間処理した後のクロマトグラムである。FIG. 4 is a chromatogram after treating the components derived from swine dung with the microorganism-supported charcoal for 168 hours. 図5は豚糞由来成分の推定図である。FIG. 5 is an estimation diagram of components derived from pig feces.

本発明の実施の形態を以下に説明する。   An embodiment of the present invention will be described below.

(1)炭化物の製造(設備:(株)高橋製作所製)
木質系バイオマスには大きさ50mm以下の木質チップを用いた。広葉樹や針葉樹を原料としたものであるが、これらに限定されるものではなく、また、間伐材、建築廃材等、どのような起源のものであるか限定されるものではない。まず、含水率55%以下の木質チップを乾燥させ、木質チップの含水率を15%以下にした。次に、燃焼温度900〜1200℃で木質チップを炭化させた(第1工程)(炭化処理)。ここで、燃焼時間について限定するものではないが、所定硬度の炭化物を多く得るためには30分以上が望ましい。また、炭化物中の炭素含有率が80%であることが炭化の目安となる。次に、炭化工程で炭素含有率を80%以上とした炭化チップを730〜830℃の過熱蒸気とともに900〜1200℃で加熱して熱分解反応させた(第2工程)(過熱蒸気処理)。ここで、過熱蒸気とは過熱された水蒸気のことであるが、水蒸気に限定するものではない。
(1) Carbide production (Equipment: Takahashi Manufacturing Co., Ltd.)
A wood chip having a size of 50 mm or less was used as the woody biomass. Hardwoods and conifers are used as raw materials, but the materials are not limited to these, and there is no limitation on the origin of the materials, such as thinned wood and construction waste. First, wood chips having a water content of 55% or less were dried to reduce the water content of the wood chips to 15% or less. Next, the wood chips were carbonized at a combustion temperature of 900 to 1200 ° C. (first step) (carbonization treatment). Here, the burning time is not limited, but is preferably 30 minutes or more in order to obtain a large amount of carbide having a predetermined hardness. Further, a carbon content of 80% in the carbide serves as a measure of carbonization. Next, the carbonized chips having a carbon content of 80% or more in the carbonization step were heated at 900 to 1200 ° C. together with superheated steam at 730 to 830 ° C. to cause a thermal decomposition reaction (second step) (superheated steam treatment). Here, the superheated steam refers to superheated steam, but is not limited to steam.

また、本発明のための処理装置としては、前記各工程の条件を実現できるものであれば何でもよく、全工程を一括的に処理するもの、工程別に分離処理するものでもよい。例えば、特開2018−002808号公報に記載の装置を用いて炭を製造することができる。処理装置を用いて炭化、熱分解条件を変化させて繰り返し製造を行ったところ、木炭硬度計による硬度が1以下の炭化物の固定炭素は85%以上、比表面積は450〜900m/g、pHは約10であった。 Further, the processing apparatus for the present invention may be any apparatus that can realize the conditions of the above-mentioned steps, and may be an apparatus that processes all the steps collectively or an apparatus that separates and processes each step. For example, charcoal can be manufactured using the device described in JP-A-2018-002808. When the carbonization and thermal decomposition conditions were changed using a treatment apparatus and the production was repeated, the fixed carbon of the carbide having a hardness of 1 or less measured by a charcoal hardness meter was 85% or more, the specific surface area was 450 to 900 m 2 / g, and the pH was Was about 10.

なお、木炭硬度計(販売元:炭やきの会)を用いて過熱蒸気処理後の木炭の硬度を測定した。本硬度計は1番から6番まで6種類の金属からなり、木炭の折れ口を金属片で引っかいて計測した。   The hardness of the charcoal after the superheated steam treatment was measured using a charcoal hardness meter (sold by Charcoal Yaki no Kai). This hardness tester was composed of six types of metals from No. 1 to No. 6, and the charcoal break was measured by scratching a bent part of the charcoal.

(2)工場排水の浄化試験
約350mLのガラス製容器に工場排水を約300mL入れ、さらに上記(1)にて製造した本発明に係る炭化物を20g投入し、比較用の市販の炭20gを投入したもの、炭化物を用いないもの(ブランク)をそれぞれ2年間にわたって目視観察した。試験開始直後は本発明の炭、比較用の炭を入れた容器内部の排水の透明度がいずれも高まったことが確認された。しかしながら、時間経過とともに容器内の汚れの発生に差が生じたことが確認された。排水中の炭化物を入れ替えずに2年経過した時点で、本発明に係る炭化物を投入した容器には、目視上、容器内に汚れの発生は確認さなかったが、比較用の活性炭を投入した容器壁面にカビ、垢のようなものが確認された(図1)。
(2) Purification test of factory effluent About 300 mL of factory effluent is put into a glass container of about 350 mL, 20 g of the carbide according to the present invention produced in the above (1) is further put, and 20 g of commercially available charcoal for comparison is put. The thus-obtained one and the one not using carbide (blank) were each visually observed for two years. Immediately after the start of the test, it was confirmed that the transparency of the drainage inside the container containing the charcoal of the present invention and the charcoal for comparison both increased. However, it was confirmed that there was a difference in the generation of dirt in the container over time. At the time when two years had passed without replacing the carbide in the wastewater, the container charged with the carbide according to the present invention did not visually confirm the occurrence of dirt in the container, but was charged with activated carbon for comparison. Mold and grime were observed on the container wall (Fig. 1).

(3)養液土耕栽培試験
本発明に係る炭化物を土壌改良材として、硝酸化養液(牛糞をメタン発酵した消化液を硝酸化したもの)を用いてコマツナの養液土耕栽培を行った(栽培容器:縦20cm×横100cm×高さ25cm)(図2)。まず、炭化物添加による土壌pHの変化を観測したところ、炭化物を添加しない場合の土壌の平均pHが5.49、炭化物添加量0.24%の場合の平均pHが5.48、炭化物添加量1.2%の場合の平均pHが5.63、炭化物添加量2.4%の場合の平均pHは5.67を示した(いずれもn=3)。コマツナは弱酸性を好み、こうしたpH領域での栽培が可能であることが確認された。
(3) Hydroponic soil cultivation test Komatsuna was cultivated in a hydroponic soil cultivation using a carbonized material according to the present invention as a soil improving material and a nitrated nutrient solution (a solution obtained by nitrating digestion fluid obtained by methane fermentation of cow dung). (Cultivation container: length 20 cm × width 100 cm × height 25 cm) (FIG. 2). First, when the change in soil pH due to the addition of carbides was observed, the average pH of the soil when no carbide was added was 5.49, the average pH when the amount of carbide addition was 0.24% was 5.48, and the amount of carbide addition was 1 The average pH in the case of 0.2% was 5.63, and the average pH in the case of the addition amount of carbide of 2.4% was 5.67 (n = 3 in all cases). Komatsuna prefers weak acidity, and it has been confirmed that cultivation in such a pH range is possible.

炭化物と硝酸化養液の施用試験区とコマツナの育成結果は表1、表2の通りである。区画Hでは葉の長さが最大、重量が区画Bに次いで重く、区画Cでは炭化物量、養液量を抑えつつ、葉の長さ、重量、枚数の全てにおいて平均以上であった。
Tables 1 and 2 show the test plots for application of carbides and nitrating nutrient solution and the results of growing komatsuna. In the section H, the leaf length was the largest and the weight was the second heaviest after the section B, and in the section C, the amount of the carbide and the nutrient solution were suppressed, and the leaf length, weight and number were all above average.

(4)脱臭試験
本発明に係る炭化物を用いて家畜系成分の脱臭試験を行った。まず、微生物を用いて消化液から硝化液を製造する工程において硝化反応前(硝化菌が増殖する前)の消化液に炭化物を入れ、硝化反応を通じて硝酸イオンが検出された段階で前記炭化物を液中から取り出して硝化に係る微生物の担持炭とした。次に、内部に3枚の攪拌版を内蔵した3Lの円柱状ポリ容器に豚糞(麻布大学提供)25g、微生物担持炭40g、水500gを入れ、蓋をしたものと豚糞25g、微生物未担持炭、水500gを入れ、蓋をしたものをそれぞれ同一回転速度で試験終了時まで混合攪拌した。試験中、所定時間経過後に前記容器の所定の穴にシリンジを差し込み、内部の空気を採取し、オーラルクロマト装置(FIS社製VSC測定用簡易クロマトグラフ)にて硫化水素(HS)、メチルメルカプタン(CHSH)、硫化ジメチル((CHS)類を測定した。
(4) Deodorization test A livestock component was subjected to a deodorization test using the carbide according to the present invention. First, in the step of producing a nitrification solution from a digestion solution using a microorganism, a carbide is put into the digestion solution before the nitrification reaction (before the nitrifying bacteria proliferate), and at the stage where nitrate ions are detected through the nitrification reaction, the carbide is dissolved. It was taken out from the inside and used as charcoal for microorganisms involved in nitrification. Next, 25 g of pig dung (provided by Azabu University), 40 g of microorganism-carrying charcoal, and 500 g of water were placed in a 3 L cylindrical plastic container containing three stirring plates inside, and a lid and 25 g of pig dung were collected. 500 g of supported charcoal and water were added, and the ones with lids were mixed and stirred at the same rotation speed until the end of the test. During the test, after a lapse of a predetermined time, a syringe is inserted into a predetermined hole of the container, air inside the container is collected, and hydrogen sulfide (H 2 S), methyl sulfide is measured by an oral chromatograph (simple chromatograph for VSC measurement manufactured by FIS). Mercaptan (CH 3 SH) and dimethyl sulfide ((CH 3 ) 2 S) were measured.

結果として、前者容器からは20時間後には硫化物は検出されなくなり、官能的に臭気は感じられなくなった。後者容器からは24時間後において約600ppbのHSが検出され、官能的にはわずかな臭気が感じられたが、96時間後には全ての物質が検出されなくなり、官能的に臭気も感じられなくなった。 As a result, no sulfide was detected from the former container after 20 hours, and no odor was sensed organoleptically. From the latter container, about 600 ppb of H 2 S was detected after 24 hours, and a slight odor was sensed functionally, but after 96 hours, all substances were no longer detected and a sense of odor was sensed. lost.

また、上記試験とは別にGC/MS(Agilent Technologies社製GC6890/5973MSD)による臭気物質の変化を確認した(図2〜4)。図2は3L容器に豚糞と水を入れ3時間攪拌した後に採取した空気から得られたクロマトグラムである。主な検出成分は有機酸、エーテル類、アルコール類であった(図5)。容器に微生物担持炭を入れて96時間、168時間と混合攪拌した後ではクロマトグラムのピークが大幅に減少したことが確認された(図3〜5)。   In addition to the above test, a change in odorous substances was confirmed by GC / MS (GC6890 / 5973MSD manufactured by Agilent Technologies) (FIGS. 2 to 4). FIG. 2 is a chromatogram obtained from air collected after pork manure and water were put in a 3 L container and stirred for 3 hours. Main detection components were organic acids, ethers, and alcohols (FIG. 5). It was confirmed that the peak of the chromatogram was significantly reduced after mixing and stirring for 96 hours and 168 hours after putting the microorganism-supported charcoal into the container (FIGS. 3 to 5).

(5)考察
以上から、木質系バイオマス由来の炭化物について木炭硬度計による平均硬度が1以下であることを指標として過熱蒸気処理することで、また、過熱蒸気処理後に平均硬度が1以下となるように選別して得られた炭化物とすることで一定の特性(品質)とすることができることが示唆された。炭化物の過熱蒸気処理は、
C+HO=CO+H (発生したCOについては、さらに、CO+HO=CO+H
C+2HO=CO+2H
という反応を通じて固形の炭素成分を消費するものであり、当該反応を含む様々な反応後の残存物が過熱蒸気処理後の炭化物である。今回、この炭化物について木炭硬度計による計測値で1以下のもの(より柔らかい炭化物)であることが水質浄化に有効であることが確認され(実施例1(2))、炭化物の硬度が品質の指標となり得ることが示唆された。なお、比較試験にも使用した市販の木炭(黒炭)の硬度は概ね2、備長炭(白炭)の硬度は3〜4であり、本発明に係る木炭よりも硬度は大きい(硬い)。後述の拡散性の点から木炭の硬度は1以下であることは望ましいが、製造した炭化物全てが厳密に硬度1以下である必要はなく、全体として(例えば、任意の木炭片3〜4検体についての平均値が)1以下であればよい。過熱蒸気処理は900〜1200℃で行われるが、炭化物製造を繰り返し行ったところ、炭化処理と過熱蒸気処理の処理条件(処理温度、処理時間等)によって硬度が少なからず変化することがわかっている(この硬度の硬度幅は1未満であるため硬度測定者の感覚値に基づく)。例えば、炭化処理後よりも過熱蒸気処理後の木炭の硬度が大きい(硬くなる)ということもある。このような中で木炭硬度計による平均硬度が1以下であることを炭化処理、過熱蒸気処理条件(処理温度や処理時間等)を設定、変更するためのフィードバック指標としたり、最終生成物の選別指標として硬度1を超えるものを取り除いたり、又は最終生成物である炭化物そのものの品質指標とすることで水質浄化や土耕栽培に適した(品質が保証された)炭化物を得ることができる。このような炭化物の特性は微生物が介在する場合に有用である可能性があるが、その用途としては微生物が介在する場合に限ったものではない。例えば、硬度の低さを利用し、pH調整材として栽培土壌に満遍なく馴染ませて用いる等の用途が挙げられる。試験者の経験においても、硬度が1を超える場合に比べて1以下の場合が土壌のみならず水中においても拡散性が優れていることが認められている。また、微生物による効果についても期待できる例としては、家畜系臭気に対して一般的な物理吸着効果に加え、炭化物に担持した微生物による臭気分解効果が挙げられる。すなわち、従来の物理吸着だけでは飽和状態となるところを微生物による臭気成分の分解効果により炭化物の長寿命化という相乗効果も期待できる。
(5) Consideration From the above, by performing superheated steam treatment on a carbonaceous material derived from woody biomass with an index indicating that the average hardness by a charcoal hardness tester is 1 or less, the average hardness becomes 1 or less after the superheated steam treatment. It was suggested that a certain characteristic (quality) can be obtained by using the carbide obtained by the selective sorting. Superheated steam treatment of carbides
C + H 2 O = CO + H 2 (For generated CO, CO + H 2 O = CO 2 + H 2 )
C + 2H 2 O = CO 2 + 2H 2
The solid carbon component is consumed through the reaction described above, and the residue after various reactions including the reaction is carbide after the superheated steam treatment. This time, it was confirmed that a value of 1 or less (softer carbide) measured by a charcoal hardness meter for this carbide was effective for water purification (Example 1 (2)), and the hardness of the carbide was It was suggested that it could be an indicator. The hardness of the commercial charcoal (black charcoal) used in the comparative test is about 2, and the hardness of Bincho charcoal (white charcoal) is 3 to 4, which is higher (harder) than the charcoal according to the present invention. It is desirable that the hardness of the charcoal is 1 or less from the viewpoint of diffusibility described below, but it is not necessary that all of the produced carbides have a strictly hardness of 1 or less. It is sufficient if the average value of is not more than 1). Although the superheated steam treatment is performed at 900 to 1200 ° C., it has been found that when the carbide production is repeatedly performed, the hardness is not significantly changed depending on the treatment conditions (treatment temperature, treatment time, etc.) of the carbonization treatment and the superheated steam treatment. (Because the hardness width of this hardness is less than 1, it is based on the sensory value of the hardness measurer). For example, the hardness of the charcoal after the superheated steam treatment may be higher (harder) than after the carbonization treatment. Under such circumstances, the fact that the average hardness measured by a charcoal hardness tester is 1 or less is used as a feedback index for setting and changing carbonization treatment, superheated steam treatment conditions (treatment temperature, treatment time, etc.), and selection of final products. By removing an index exceeding hardness 1 as an index, or as a quality index of the carbide itself as a final product, it is possible to obtain a carbide suitable for water purification or soil cultivation (quality is guaranteed). Such properties of carbides may be useful when microorganisms are involved, but their use is not limited to microorganisms. For example, there is an application in which a low hardness is used and used as a pH adjusting material evenly mixed with a cultivation soil. According to the tester's experience, the case where the hardness is 1 or less as compared with the case where the hardness exceeds 1 has excellent diffusibility not only in soil but also in water. In addition, examples in which the effect of microorganisms can be expected include, in addition to the general physical adsorption effect on livestock odors, the odor decomposition effect of microorganisms carried on carbides. In other words, a synergistic effect of extending the service life of the carbide can be expected due to the effect of the microorganisms decomposing the odor component in the saturated state only by the conventional physical adsorption.

本発明によれば、炭化物の製造方法、水質浄化、土耕栽培、脱臭への利用可能性を挙げることができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of a carbide | carbonized_material, water quality purification, soil cultivation, applicability to deodorization can be mentioned.

Claims (5)

木質系バイオマスを炭化処理する第1の工程、前記第1工程を経た炭化物を過熱蒸気と反応させる第2の工程、を有する炭化物の製造方法において、前記第2の工程を経て得られた炭化物の木炭硬度計による硬度を指標とし、前記硬度の炭化物が得られた過熱蒸気反応時間よりも反応時間をさら短く又は長くして新たな炭化物を製造し、その硬度がより小さくなる反応時間を新たな反応時間としてフィードバックすることで平均硬度が1以下となる反応時間を導き出し、当該反応時間で過熱蒸気処理することを特徴とする炭化物の製造方法。 First step of carbonizing the woody biomass, the second step reacting the first step carbide superheated vapor through the manufacturing method of the carbide having a carbide obtained through the second step Using a hardness measured by a charcoal hardness tester as an index, a new carbide is produced by further shortening or lengthening the reaction time of the superheated steam reaction time in which the carbide having the above hardness is obtained. A method for producing a carbide, wherein a reaction time at which the average hardness becomes 1 or less is derived by feeding back the reaction time as an appropriate reaction time, and superheated steam treatment is performed at the reaction time. 木質系バイオマスを炭化処理する第1の工程、前記第1工程を経た炭化物を過熱蒸気と反応させる第2の工程、を有する炭化物の製造方法において、前記第2の工程を経て得られた炭化物の木炭硬度計による硬度を指標とし、前記硬度の炭化物が得られた過熱蒸気反応時間よりも反応時間をさら短く又は長くして新たな炭化物を製造し、その硬度がより小さくなる反応時間を新たな反応時間としてフィードバックすることで平均硬度1以下、かつ、比表面積が450〜900m /gとなる反応時間を導き出し、当該反応時間で過熱蒸気処理することを特徴とする炭化物の製造方法。 A first step of carbonizing the woody biomass, the second step of reacting the first step carbide superheated steam passed through the, in the manufacturing method of the carbide having a carbide obtained through the second step Using a hardness measured by a charcoal hardness tester as an index, a new carbide is produced by further shortening or lengthening the reaction time of the superheated steam reaction time in which the carbide having the above hardness is obtained. A method for producing a carbide, wherein a reaction time at which an average hardness is 1 or less and a specific surface area is 450 to 900 m 2 / g is derived by feeding back as a reaction time, and a superheated steam treatment is performed at the reaction time. 炭化物の用途が水質浄化材であることを特徴とする請求項1又は2に記載の炭化物の製造方法。The method for producing a carbide according to claim 1 or 2, wherein the use of the carbide is a water purification material. 炭化物の用途が土壌改良材であることを特徴とする請求項1又は2に記載の炭化物の製造方法。The method for producing a carbide according to claim 1 or 2, wherein the use of the carbide is a soil improvement material. 炭化物の用途が脱臭材であることを特徴とする請求項1又は2に記載の炭化物の製造方法。The method for producing a carbide according to claim 1 or 2, wherein the use of the carbide is a deodorizing material.
JP2019190922A 2019-10-18 2019-10-18 Carbide and method for producing carbide Active JP6675566B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019190922A JP6675566B1 (en) 2019-10-18 2019-10-18 Carbide and method for producing carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019190922A JP6675566B1 (en) 2019-10-18 2019-10-18 Carbide and method for producing carbide

Publications (2)

Publication Number Publication Date
JP6675566B1 true JP6675566B1 (en) 2020-04-01
JP2021066612A JP2021066612A (en) 2021-04-30

Family

ID=70001000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019190922A Active JP6675566B1 (en) 2019-10-18 2019-10-18 Carbide and method for producing carbide

Country Status (1)

Country Link
JP (1) JP6675566B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112774632A (en) * 2021-01-12 2021-05-11 河南省高新技术实业有限公司 Preparation method and application of carbon-based adsorption material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6257525A (en) * 1985-09-06 1987-03-13 宮田 義延 Toothpick receiver
JPWO2010103819A1 (en) * 2009-03-10 2012-09-13 出雲 諭明 Filter material for water purification of eutrophication polluted water by nitrogen and phosphorus using activated coal particulate material, water purification facility using the same, sludge treatment method using activated coal fine powder as ion exchange material, and method Recycled materials manufactured through
JP2014005432A (en) * 2012-06-25 2014-01-16 Kinki Univ Bio-hard charcoal
JP6759492B2 (en) * 2016-06-29 2020-09-23 新和環境株式会社 Carbide production equipment, carbide production methods, and carbide production systems
CN106433706B (en) * 2016-11-22 2020-04-10 刘艳 Distillation carbonization device resistant to high-temperature water vapor environment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112774632A (en) * 2021-01-12 2021-05-11 河南省高新技术实业有限公司 Preparation method and application of carbon-based adsorption material

Also Published As

Publication number Publication date
JP2021066612A (en) 2021-04-30

Similar Documents

Publication Publication Date Title
Akdeniz A systematic review of biochar use in animal waste composting
Shareef et al. The fundamentals of biochar as a soil amendment tool and management in agriculture scope: an overview for farmers and gardeners
Bernal et al. Current approaches and future trends in compost quality criteria for agronomic, environmental, and human health benefits
Alavi et al. Investigating the efficiency of co-composting and vermicomposting of vinasse with the mixture of cow manure wastes, bagasse, and natural zeolite
Li et al. Nutrient transformations during composting of pig manure with bentonite
Andraskar et al. Challenges and control strategies of odor emission from composting operation
Vaughn et al. Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates
Al-Wabel et al. Advances in pyrolytic technologies with improved carbon capture and storage to combat climate change
Gao et al. The effect of aeration rate on forced-aeration composting of chicken manure and sawdust
Hosseini et al. Evaluation of thermochemical pretreatment and continuous thermophilic condition in rice straw composting process enhancement
Sun et al. Influence of bulking agents on CH4, N2O, and NH3 emissions during rapid composting of pig manure from the Chinese Ganqinfen system
Akyol et al. Anaerobic co‐digestion of cow manure and barley: Effect of cow manure to barley ratio on methane production and digestion stability
Gong et al. Biochar improves compost humification, maturity and mitigates nitrogen loss during the vermicomposting of cattle manure-maize straw
Ammari et al. Composting sewage sludge amended with different sawdust proportions and textures and organic waste of food industry–assessment of quality
US9919976B1 (en) Soil conditioners and method of making them
Gascó et al. Valorization of biochars from pinewood gasification and municipal solid waste torrefaction as peat substitutes
Du et al. Rice straw addition and biological inoculation promote the maturation of aerobic compost of rice straw biogas residue
Mutolib et al. Biochar from agricultural waste for soil amendment candidate under different pyrolysis temperatures
Soares et al. Co-composting of eggshell waste in self-heating reactors: Monitoring and end product quality
JP6675566B1 (en) Carbide and method for producing carbide
Soni et al. Composting process: Fundamental and molecular aspects
Pottipati et al. Bioconversion of Eichhornia crassipes into vermicompost on a large scale through improving operational aspects of in-vessel biodegradation process: Microbial dynamics
Elsgaard et al. Knowledge synthesis on biochar in Danish agriculture-biochar production, use and effect in soil agroecosystems (part 1) and economic assessment of biochar production and use (part 2).
Shan et al. The properties and dynamic changes of DOM subfractions during food waste and sugarcane leaves co-composting
Oh et al. Characterization of the pyrolytic solid derived from used disposable diapers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191018

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191018

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200217

R150 Certificate of patent or registration of utility model

Ref document number: 6675566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250