JP6671709B2 - Manufacturing method of electrolyte - Google Patents

Manufacturing method of electrolyte Download PDF

Info

Publication number
JP6671709B2
JP6671709B2 JP2016057145A JP2016057145A JP6671709B2 JP 6671709 B2 JP6671709 B2 JP 6671709B2 JP 2016057145 A JP2016057145 A JP 2016057145A JP 2016057145 A JP2016057145 A JP 2016057145A JP 6671709 B2 JP6671709 B2 JP 6671709B2
Authority
JP
Japan
Prior art keywords
group
compound
magnesium
atom
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016057145A
Other languages
Japanese (ja)
Other versions
JP2017174550A (en
Inventor
港 江頭
港 江頭
松原 公紀
公紀 松原
聖志 金村
聖志 金村
裕一 棟方
裕一 棟方
康宏 秋田
康宏 秋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Fukuoka University
Tokyo Metropolitan Public University Corp
Original Assignee
Nihon University
Fukuoka University
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University, Fukuoka University, Tokyo Metropolitan Public University Corp filed Critical Nihon University
Priority to JP2016057145A priority Critical patent/JP6671709B2/en
Publication of JP2017174550A publication Critical patent/JP2017174550A/en
Application granted granted Critical
Publication of JP6671709B2 publication Critical patent/JP6671709B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Secondary Cells (AREA)

Description

本発明は電解液、及び当該電解液を有するマグネシウム二次電池、並びに、電解液の製造方法に関する。より具体的には、本発明はマグネシウム二次電池用に好適な新規のマグネシウム錯体を含有する電解液に関する。   The present invention relates to an electrolytic solution, a magnesium secondary battery having the electrolytic solution, and a method for producing the electrolytic solution. More specifically, the present invention relates to an electrolyte containing a novel magnesium complex suitable for a magnesium secondary battery.

現在、様々分野においてリチウムイオン二次電池が広く用いられている。しかしながら一価のイオンを用いるリチウムイオン二次電池では、理論容量密度の改良に限界があることが知られており、近年では二価のマグネシウムイオンをキャリアとするマグネシウム二次電池が注目を集めている。   At present, lithium ion secondary batteries are widely used in various fields. However, it is known that lithium ion secondary batteries using monovalent ions have a limit in improving the theoretical capacity density. In recent years, magnesium secondary batteries using divalent magnesium ions as carriers have attracted attention. I have.

マグネシウム二次電池は、リチウムイオン二次電池に比して数倍〜十倍又はそれ以上の理論容量密度を有し得るとされている。加えてマグネシウム二次電池は、リチウムイオン二次電池のように、正極(例えば、コバルト系化合物からなる電極)や電解液(リチウムイオンを含有する電解液)に希少金属を使用せず、豊富な資源量を有し、安価且つ安全に使用可能なマグネシウム等の原料を電極や電解液に用いることができるという利点も有する。このような利点からも、マグネシウム二次電池の早期の実用化が望まれている。   It is said that a magnesium secondary battery can have a theoretical capacity density several times to ten times or more than that of a lithium ion secondary battery. In addition, magnesium secondary batteries, unlike lithium ion secondary batteries, do not use rare metals in the positive electrode (for example, an electrode made of a cobalt-based compound) or the electrolyte (electrolyte containing lithium ions), and are rich in There is also an advantage that a raw material such as magnesium, which has a resource amount and can be used safely and inexpensively, can be used for the electrode and the electrolyte. Because of these advantages, early commercialization of magnesium secondary batteries is desired.

マグネシウムの電気化学的析出及び溶解反応を負極反応とする非水系マグネシウム二次電池の構築にあたり、マグネシウムの電析を可逆的に進行させる電解液は重要な要素である。
マグネシウム二次電池用の電解液としては、電解液中でハロゲン化マグネシウム錯体を生成するようなマグネシウム化合物を含むものが、充電時と放電時の電圧差、いわゆる過電圧の低減に有効であることが知られている。ハロゲン化マグネシウム塩自体は非水溶媒に難溶であるため、ハロゲン化アルキルマグネシウム錯体のテトラヒドロフラン溶液であるグリニャール試薬が古くから提案されている(非特許文献1参照)。しかしながら、非特許文献1に記載された電解液は、反応性の高いグリニャール試薬を用いているため酸化に対する安定性が低く大気中での取り扱いが困難である上、高電圧下で不安定となるため、実用には適さないという問題があった。またグリニャール試薬の溶媒に用いられるテトラヒドロフランは沸点が70℃程度であり、高温下にさらされる二次電池の電解液溶媒としては必ずしも適さない。しかしながらグリニャール試薬においては、テトラヒドロフランを蒸発し除去すると発火のおそれがあり、溶媒を交換することが困難な点も問題であった。
In constructing a non-aqueous magnesium secondary battery in which electrochemical deposition and dissolution reaction of magnesium are performed as a negative electrode reaction, an electrolytic solution that reversibly advances the deposition of magnesium is an important factor.
As an electrolytic solution for a magnesium secondary battery, a solution containing a magnesium compound that generates a magnesium halide complex in the electrolytic solution is effective in reducing a voltage difference between charging and discharging, that is, so-called overvoltage. Are known. Grignard reagents, which are tetrahydrofuran solutions of alkylmagnesium halide complexes, have long been proposed since magnesium halide salts themselves are poorly soluble in non-aqueous solvents (see Non-Patent Document 1). However, the electrolyte described in Non-Patent Document 1 uses a highly reactive Grignard reagent, has low stability against oxidation, is difficult to handle in the atmosphere, and is unstable at high voltage. Therefore, there is a problem that it is not suitable for practical use. Further, tetrahydrofuran used as a solvent for the Grignard reagent has a boiling point of about 70 ° C., and is not necessarily suitable as an electrolyte solvent for a secondary battery exposed to high temperatures. However, in the Grignard reagent, if tetrahydrofuran is removed by evaporation, there is a risk of ignition, and there is also a problem that it is difficult to exchange the solvent.

グリニャール試薬の安定性を高める目的で、これまでグリニャール試薬に塩化エチルブチルアルミニウムなどルイス酸性を示す化合物を添加したものが報告されている(非特許文献2参照)。またハロゲン化マグネシウム錯体自体の安定性を向上させる目的で、配位子をアルキル基からアルコキシド基(非特許文献3参照)、あるいはアミノ基(非特許文献4参照)に変換した化合物が提案されている。しかしながら、グリニャール試薬の溶媒を交換する操作が可能な安定性と他の非水溶媒への高い溶解度を併せ持つマグネシウム錯体は、まだ提案されていない。   In order to enhance the stability of the Grignard reagent, there has been reported a Grignard reagent obtained by adding a compound exhibiting Lewis acidity such as ethylbutylaluminum chloride (see Non-Patent Document 2). For the purpose of improving the stability of the magnesium halide complex itself, compounds in which a ligand is converted from an alkyl group to an alkoxide group (see Non-Patent Document 3) or an amino group (see Non-Patent Document 4) have been proposed. I have. However, a magnesium complex having both stability that allows the operation of replacing the Grignard reagent with a solvent and high solubility in other non-aqueous solvents has not been proposed yet.

一方、近年では、マグネシウムビストリフルオロメタンスルホンイミド(以下、「Mg(TFSI)」ということがある。)とトリグライムとを含有する電解液が提案されている(特許文献1及び非特許文献5参照)。この電解液には沸点の高いトリグライム溶媒が用いられており、また電解質塩であるMg(TFSI)も安定である点で、二次電池電解液として適している。 On the other hand, recently, an electrolytic solution containing magnesium bistrifluoromethanesulfonimide (hereinafter, sometimes referred to as “Mg (TFSI) 2 ”) and triglyme has been proposed (see Patent Document 1 and Non-Patent Document 5). ). A triglyme solvent having a high boiling point is used for this electrolytic solution, and Mg (TFSI) 2 which is an electrolyte salt is also stable, so that it is suitable as a secondary battery electrolytic solution.

特開2014−186940号公報JP 2014-186940 A

C.Liebenow、Journal of Applied Electrochemistry、27巻、221〜225頁、1997年C. Liebenow, Journal of Applied Electrochemistry, 27, 221-225, 1997. Doron Aurbachら、Nature、407巻、724〜727頁、2000年Doron Aurbach et al., Nature, 407, 724-727, 2000. Chen Liaoら、Journal of Materials Chemistry A、2巻、581〜584頁、2014年Chen Liao et al., Journal of Materials Chemistry A, 2, 581-584, 2014. C. Liebenowら、Electrochemistry Communications、2巻、641〜645頁、2000年C. Liebenow et al., Electrochemistry Communications, 2, 641-645, 2000. Yuki Orikasaら、Scientific Reports、4、5622、2014年Yuki Orikasa et al., Scientific Reports, 4, 5622, 2014

マグネシウム二次電池の電解液への適用を企図した非水溶媒電解液において、現状では2系統の選択肢が取り得るが、それぞれ個別の課題を抱えている。すなわち、非特許文献1〜4に記載されたハロゲン化マグネシウム錯体/テトラヒドロフラン電解液では、溶媒の沸点が低いこと、ハロゲン化マグネシウム錯体の安定性および非水溶媒への溶解度のいずれかが低いことが課題となっている。
一方、特許文献1及び非特許文献5に記載されたMg(TFSI)/トリグライム電解液では、マグネシウムの析出反応と溶解反応との間に室温で1V程度の過電圧が生じ、充放電電圧の差が発生する結果としてエネルギー損失を招いていた。そのため、より高効率で充放電が可能なマグネシウム二次電池用の電解液が求められている。
In a non-aqueous solvent electrolyte intended to be applied to an electrolyte of a magnesium secondary battery, two options are currently available, but each has its own problems. That is, in the magnesium halide complexes / tetrahydrofuran electrolytes described in Non-Patent Documents 1 to 4, the low boiling point of the solvent, the stability of the magnesium halide complexes, and the low solubility in non-aqueous solvents are low. It has become a challenge.
On the other hand, in the Mg (TFSI) 2 / triglyme electrolyte described in Patent Literature 1 and Non-Patent Literature 5, an overvoltage of about 1 V occurs between the magnesium deposition reaction and the magnesium dissolution reaction at room temperature, resulting in a difference in charge / discharge voltage. As a result, energy loss is caused. Therefore, an electrolyte for a magnesium secondary battery that can be charged and discharged with higher efficiency is demanded.

本発明は、上記課題に鑑みてなされたものであって、良好な充放電効率を有し得るマグネシウム二次電池用の電解液であって、大気中、無溶媒下においても安定に取り扱い得る電解質を用いた電解液を提供することを目的とする。   The present invention has been made in view of the above problems, and is an electrolytic solution for a magnesium secondary battery that can have good charge and discharge efficiency, in the air, an electrolyte that can be stably handled even under a solvent-free condition. An object of the present invention is to provide an electrolytic solution using the same.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、特定の構造を有するマグネシウム錯体に着目し、当該マグネシウム錯体を電解液に用いることにより、大気中で取扱いが可能となり、且つ、過電圧を低減可能なことを見出し、本発明を完成させた。   The present inventors have conducted intensive studies to achieve the above object, and as a result, focused on a magnesium complex having a specific structure, and by using the magnesium complex as an electrolyte, handling in the atmosphere became possible, and And found that overvoltage can be reduced, and completed the present invention.

すなわち、本発明の解液の製造方法は、以下の特徴を有するものである。
[1] 下記一般式(1)で表される化合物(a)と、グリニャール試薬とを、溶媒中にて混合してマグネシウム錯体を得た後、当該マグネシウム錯体を、エーテル系溶媒に溶解させることを特徴とする電解液の製造方法。
化合物(a):1分子内に、窒素、酸素、硫黄、リン及びセレンからなる群から選択される少なくとも2種類の原子、及び少なくとも4個の炭素原子を含む化合物。
That is, the manufacturing method of the electrolytic solution of the present invention has the following features.
[1] After mixing a compound (a) represented by the following general formula (1) with a Grignard reagent in a solvent to obtain a magnesium complex, dissolving the magnesium complex in an ether-based solvent. A method for producing an electrolytic solution, comprising:
Compound (a): a compound containing at least two kinds of atoms selected from the group consisting of nitrogen, oxygen, sulfur, phosphorus and selenium, and at least four carbon atoms in a molecule.

Figure 0006671709
Figure 0006671709

[式中、Xは酸素原子、硫黄原子又はセレン原子であり;Yは窒素原子又はリン原子であり;RWherein X is an oxygen atom, a sulfur atom or a selenium atom; Y is a nitrogen atom or a phosphorus atom; 1 はヘテロ原子を有していてもよい炭化水素基であり;RIs a hydrocarbon group optionally having a hetero atom; 2 〜R~ R 6 はヘテロ原子を有していてもよい炭化水素基、又は水素原子である。]Is a hydrocarbon group which may have a hetero atom, or a hydrogen atom. ]

[2] 前記化合物と前記グリニャール試薬とのモル比が1:1.5〜2.5である、前記[1]に記載の電解液の製造方法。[2] The method for producing an electrolytic solution according to [1], wherein the molar ratio of the compound to the Grignard reagent is 1: 1.5 to 2.5.

本発明によれば、マグネシウムの析出/溶解の間の電圧差を低減することができ、その結果として、充放電時のエネルギー損失を低減することが可能となり、高い効率で充放電を行うことができる。また、本発明の電解液で用いるマグネシウム錯体は、大気中で無溶媒の状態とした場合にも安定であることから、本発明の電解液はマグネシウム二次電池に実装し得るものである。   ADVANTAGE OF THE INVENTION According to this invention, the voltage difference during precipitation / dissolution of magnesium can be reduced, and as a result, energy loss at the time of charge / discharge can be reduced, and charge / discharge can be performed with high efficiency. it can. Further, since the magnesium complex used in the electrolyte of the present invention is stable even in the absence of a solvent in the atmosphere, the electrolyte of the present invention can be mounted on a magnesium secondary battery.

試験例1におけるH−NMRの結果を示す図である。FIG. 4 is a diagram showing the results of 1 H-NMR in Test Example 1. 試験例2におけるH−NMRの結果を示す図である。FIG. 9 is a view showing a result of 1 H-NMR in Test Example 2. 試験例2におけるSEM/EDX測定の結果を示す図である。FIG. 9 is a diagram showing the results of SEM / EDX measurement in Test Example 2. 実施例1におけるサイクリックボルタンメトリー測定の結果を示す図である。FIG. 6 is a diagram showing the results of cyclic voltammetry measurement in Example 1. 実施例1における、エネルギー分散型X線分析装置による電析物解析の結果を示す図である。FIG. 3 is a diagram showing the results of deposit analysis by an energy dispersive X-ray analyzer in Example 1. 実施例2におけるサイクリックボルタンメトリー測定の結果を示す図である。FIG. 10 is a diagram showing the results of cyclic voltammetry measurement in Example 2. 実施例3における定電流電析測定の結果を示す図である。FIG. 9 is a diagram showing the results of constant current electrodeposition measurement in Example 3. 実施例4におけるサイクリックボルタンメトリー測定の結果を示す図である。FIG. 14 is a view showing a result of cyclic voltammetry measurement in Example 4. 実施例4における交流インピーダンス測定の結果を示す図である。FIG. 14 is a diagram illustrating a result of AC impedance measurement in Example 4. サイクリックボルタモグラムを説明する図である。It is a figure explaining a cyclic voltammogram. 比較例1、2、実施例6におけるマグネシウム析出/溶解のサイクリックボルタンメトリー測定の結果を示す図である。FIG. 9 is a diagram showing the results of cyclic voltammetry measurement of magnesium deposition / dissolution in Comparative Examples 1 and 2, and Example 6. 実施例7〜10におけるマグネシウム析出/溶解の測定の結果を示す図である。It is a figure which shows the result of the measurement of magnesium precipitation / dissolution in Examples 7-10.

<電解液>
本発明の電解液は、マグネシウム錯体と、エーテル系溶媒とを含有する電解液であって、前記マグネシウム錯体が、下記化合物(a)又は化合物(b)に由来する配位子と、ハロゲン原子と、マグネシウム原子とを含む。
化合物(a):1分子内に、窒素、酸素、硫黄、リン及びセレンからなる群から選択される少なくとも2種類の原子、及び少なくとも4個の炭素原子を含む化合物。
化合物(b):1分子内に、少なくとも2個の窒素原子、及び少なくとも4個の炭素原子を含む化合物(ただし、化合物(a)を除く。)。
<Electrolyte>
The electrolytic solution of the present invention is an electrolytic solution containing a magnesium complex and an ether solvent, wherein the magnesium complex comprises a ligand derived from the following compound (a) or compound (b), a halogen atom, , A magnesium atom.
Compound (a): a compound containing at least two kinds of atoms selected from the group consisting of nitrogen, oxygen, sulfur, phosphorus and selenium, and at least four carbon atoms in a molecule.
Compound (b): a compound containing at least two nitrogen atoms and at least four carbon atoms in one molecule (excluding the compound (a)).

(化合物(a)又は化合物(b))
化合物(a)としては、1分子内に、窒素、酸素、硫黄、リン及びセレンからなる群から選択される少なくとも2種類の原子、及び少なくとも4個の炭素原子を含み、マグネシウム錯体を形成し得る化合物であれば限定されず、ベンゼン環を含む化合物であることが好ましく、下記式(1)で表される化合物であることがより好ましい。
(Compound (a) or compound (b))
The compound (a) contains at least two types of atoms selected from the group consisting of nitrogen, oxygen, sulfur, phosphorus and selenium, and at least four carbon atoms in one molecule, and can form a magnesium complex. It is not limited as long as it is a compound, and is preferably a compound containing a benzene ring, and more preferably a compound represented by the following formula (1).

Figure 0006671709
[式中、Xは酸素原子、硫黄原子又はセレン原子であり;Yは窒素原子又はリン原子であり;Rはヘテロ原子を有していてもよい炭化水素基であり;R〜Rはヘテロ原子を有していてもよい炭化水素基、又は水素原子である。]
Figure 0006671709
[Wherein, X is oxygen atom, a sulfur atom or a selenium atom; Y is a nitrogen atom or a phosphorus atom; R 1 is a hydrocarbon group which may have a hetero atom; R 2 to R 6 Is a hydrocarbon group which may have a hetero atom, or a hydrogen atom. ]

式(1)で表される化合物(以下、「化合物(1)」ということがある。)は、そのまま、あるいはハロゲン化アルキルマグネシウム錯体との反応により一部が改変されることで配位子として機能し、マグネシウム原子又はマグネシウムイオンと共にマグネシウム錯体を形成するものである。
以下、化合物(1)について詳述する。
The compound represented by the formula (1) (hereinafter sometimes referred to as “compound (1)”) may be used as a ligand as it is or partially modified by a reaction with an alkylmagnesium halide complex. It functions and forms a magnesium complex with a magnesium atom or magnesium ion.
Hereinafter, the compound (1) will be described in detail.

・X
式(1)中、Xは酸素原子(−O−)、硫黄原子(−S−)又はセレン原子(−Se−)であって、式中の水素原子と結合してヒドロキシ基、チオール基又はセレノール基を形成する。なかでもXとしては、酸素原子が好ましい。
・ X
In the formula (1), X is an oxygen atom (—O—), a sulfur atom (—S—), or a selenium atom (—Se—), and is bonded to a hydrogen atom in the formula to form a hydroxy group, a thiol group, or Forms a selenol group. Among them, X is preferably an oxygen atom.

・Y
式(1)中、Yは窒素原子(=N−)又はリン原子(=P−)であって、窒素原子が好ましい。
・ Y
In the formula (1), Y is a nitrogen atom (= N-) or a phosphorus atom (= P-), and a nitrogen atom is preferable.

・R
式(1)中、Rはヘテロ原子を有していてもよい炭化水素基である。
のヘテロ原子を有していてもよい炭化水素基は、脂肪族炭化水素基であってもよく、芳香族炭化水素基であってもよく、脂肪族炭化水素基と芳香族炭化水素基との組み合わせであってもよい。
・ R 1
In the formula (1), R 1 is a hydrocarbon group which may have a hetero atom.
The hydrocarbon group optionally having a hetero atom for R 1 may be an aliphatic hydrocarbon group or an aromatic hydrocarbon group, and may be an aliphatic hydrocarbon group and an aromatic hydrocarbon group. May be combined.

脂肪族炭化水素基は飽和であっても不飽和であってもよいが、飽和であることが好ましい。また、脂肪族炭化水素基は、直鎖状又は分岐鎖状の脂肪族炭化水素基、環構造を含む脂肪族炭化水素基のいずれであってもよい。
なかでも、脂肪族炭化水素基としては、炭素数1〜30の直鎖状、分岐鎖状、又は環状のアルキル基が好ましい。
アルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、シクロプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、シクロブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、1−メチルブチル基、シクロペンチル基、n−ヘキシル基、2−メチルペンチル基、3−メチルペンチル基、2,2−ジメチルブチル基、2,3−ジメチルブチル基、シクロへキシル基、n−ヘプチル基、2−メチルヘキシル基、3−メチルヘキシル基、2,2−ジメチルペンチル基、2,3−ジメチルペンチル基、2,4−ジメチルペンチル基、3,3−ジメチルペンチル基、3−エチルペンチル基、2,2,3−トリメチルブチル基、シクロヘプチル基、ノルボルニル基、n−オクチル基、イソオクチル基、シクロオクチル基、ノニル基、シクロノニル基、デシル基、3,7−ジメチルオクチル基、シクロデシル基、アダマンチル基、イソボルニル基、ウンデシル基、ドデシル基、シクロドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ヘンイコシル基、ドコシル基等が挙げられる。
なかでも、炭素数1〜10の直鎖状、分岐鎖状、又は環状のアルキル基がより好ましく;メチル基、エチル基、n−プロピル基、イソプロピル基、シクロプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、シクロブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、1−メチルブチル基、シクロペンチル基、n−ヘキシル基、2−メチルペンチル基、3−メチルペンチル基、2,2−ジメチルブチル基、2,3−ジメチルブチル基、シクロへキシル基、n−ヘプチル基、2−メチルヘキシル基、3−メチルヘキシル基、2,2−ジメチルペンチル基、2,3−ジメチルペンチル基、2,4−ジメチルペンチル基、3,3−ジメチルペンチル基、3−エチルペンチル基、2,2,3−トリメチルブチル基、シクロヘプチル基、ノルボルニル基、n−オクチル基、イソオクチル基、シクロオクチル基等の炭素数1〜8のアルキル基が好ましく、炭素数1〜6のアルキル基がさらに好ましく;メチル基、エチル基、n−プロピル基、n−ブチル基、tert−ブチル基、n−ペンチル基又はn−ヘキシル基が特に好ましい。
The aliphatic hydrocarbon group may be saturated or unsaturated, but is preferably saturated. In addition, the aliphatic hydrocarbon group may be any of a linear or branched aliphatic hydrocarbon group and an aliphatic hydrocarbon group having a ring structure.
Among them, a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms is preferable as the aliphatic hydrocarbon group.
Examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, cyclobutyl group, n-pentyl group, isopentyl. Group, neopentyl group, tert-pentyl group, 1-methylbutyl group, cyclopentyl group, n-hexyl group, 2-methylpentyl group, 3-methylpentyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group , Cyclohexyl, n-heptyl, 2-methylhexyl, 3-methylhexyl, 2,2-dimethylpentyl, 2,3-dimethylpentyl, 2,4-dimethylpentyl, 3,3 -Dimethylpentyl group, 3-ethylpentyl group, 2,2,3-trimethylbutyl group, cycloheptyl group, norbornyl , N-octyl group, isooctyl group, cyclooctyl group, nonyl group, cyclononyl group, decyl group, 3,7-dimethyloctyl group, cyclodecyl group, adamantyl group, isobornyl group, undecyl group, dodecyl group, cyclododecyl group, tridecyl Group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, icosyl group, henycosyl group, docosyl group and the like.
Among them, a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms is more preferable; methyl, ethyl, n-propyl, isopropyl, cyclopropyl, n-butyl, isobutyl. Group, sec-butyl group, tert-butyl group, cyclobutyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, 1-methylbutyl group, cyclopentyl group, n-hexyl group, 2-methylpentyl group, 3-methylpentyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, cyclohexyl group, n-heptyl group, 2-methylhexyl group, 3-methylhexyl group, 2,2-dimethylpentyl Group, 2,3-dimethylpentyl group, 2,4-dimethylpentyl group, 3,3-dimethylpentyl group, 3-ethylpentyl group, 2 An alkyl group having 1 to 8 carbon atoms such as a 2,3-trimethylbutyl group, a cycloheptyl group, a norbornyl group, an n-octyl group, an isooctyl group, and a cyclooctyl group is preferable, and an alkyl group having 1 to 6 carbon atoms is more preferable. A methyl, ethyl, n-propyl, n-butyl, tert-butyl, n-pentyl or n-hexyl group is particularly preferred.

これらのアルキル基は、アルキル基の水素原子を置換する1価の置換基を有していてもよく;アルキル基中の炭素原子を含む基(メチレン基等)を置換するヘテロ原子を含む2価の置換基を有していてもよい。   These alkyl groups may have a monovalent substituent substituting a hydrogen atom of the alkyl group; a divalent group containing a hetero atom substituting a group containing a carbon atom (such as a methylene group) in the alkyl group. May have a substituent.

ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
ハロゲン化アルキル基としては、Rのアルキル基として上述したアルキル基において、その水素原子の一部または全部を上記ハロゲン原子で置換した基が挙げられる。
アルコキシ基としては、炭素数1〜10のアルコキシ基が好ましい。
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
Examples of the halogenated alkyl group include groups in which part or all of the hydrogen atoms of the alkyl group described above as the alkyl group for R 1 have been substituted with the above-described halogen atoms.
As the alkoxy group, an alkoxy group having 1 to 10 carbon atoms is preferable.

また、ヘテロ原子を含む2価の置換基としては、−NH−、−N(CH)−、−O−、−C(=O)−、−C(=O)−NH−、−NH−C(=NH)−、−C(=O)−O−、−O−C(=O)−O−等が挙げられ、窒素原子を含む2価の置換基が好ましい。
これら2価の置換基において、NH中のHはさらに、アルキル基で置換されていてもよい。アルキル基としては、Rのアルキル基として上述したものと同様の基を用いることができる。
具体的には、ジメチルアミノメチル基、ジメチルアミノエチル基、ジエチルアミノエチル基、ジエチルアミノメチル基、メチルエチルアミノメチル基、メチルエチルアミノエチル基、メチルプロピルアミノメチル基、メチルプロピルアミノエチル基等が挙げられる。
Examples of the divalent substituent containing a hetero atom include —NH—, —N (CH 3 ) —, —O—, —C (= O) —, —C (= O) —NH—, and —NH. Examples include -C (= NH)-, -C (= O) -O-, -OC (= O) -O-, and a divalent substituent containing a nitrogen atom is preferable.
In these divalent substituents, H in NH may be further substituted with an alkyl group. As the alkyl group, the same groups as those described above as the alkyl group for R 1 can be used.
Specific examples include a dimethylaminomethyl group, a dimethylaminoethyl group, a diethylaminoethyl group, a diethylaminomethyl group, a methylethylaminomethyl group, a methylethylaminoethyl group, a methylpropylaminomethyl group, and a methylpropylaminoethyl group. .

芳香族炭化水素基は単環であっても多環であってもよく、炭素数は5〜30であることが好ましい。具体的には、フェニル基、ナフチル基、アントラセニル基等が挙げられる。
芳香族炭化水素基は、芳香環の水素原子を置換する1価の置換基を有していてもよく;芳香環中の炭素原子がヘテロ原子で置換された複素環基であってもよい。
水素原子を置換する1価の置換基としては、アルキル基、ハロゲン原子、ハロゲン化アルキル基、アルコキシ基、酸素原子(=O)、水酸基、カルボキシ基等が挙げられる。アルキル基、ハロゲン原子、ハロゲン化アルキル基、アルコキシ基としては、上記同様である。
複素環基としては、ヘテロ原子として、窒素原子、酸素原子、硫黄原子を含む複素環基が好ましく、ピロール、イミダゾール、ピラゾール、ピリジン、ピラジン、アゼピン、フラン、オキサゾール、チオフェン、キノリン、イソキノリン等の複素環から水素原子を1つ除いた基が挙げられる。
The aromatic hydrocarbon group may be monocyclic or polycyclic, and preferably has 5 to 30 carbon atoms. Specific examples include a phenyl group, a naphthyl group, and an anthracenyl group.
The aromatic hydrocarbon group may have a monovalent substituent that replaces a hydrogen atom of the aromatic ring; a heterocyclic group in which a carbon atom in the aromatic ring is substituted with a hetero atom.
Examples of the monovalent substituent for substituting a hydrogen atom include an alkyl group, a halogen atom, a halogenated alkyl group, an alkoxy group, an oxygen atom (OO), a hydroxyl group, a carboxy group and the like. The alkyl group, halogen atom, halogenated alkyl group and alkoxy group are the same as described above.
As the heterocyclic group, as a hetero atom, a nitrogen atom, an oxygen atom, a heterocyclic group containing a sulfur atom is preferable, and pyrrole, imidazole, pyrazole, pyridine, pyrazine, azepine, furan, oxazole, thiophene, quinoline, isoquinoline, etc. A group in which one hydrogen atom has been removed from a ring is exemplified.

また、脂肪族炭化水素基と芳香族炭化水素基との組み合わせの基としては、芳香族炭化水素基の芳香環又は複素環において、水素原子の1つをアルキレン基で置換した基が挙げられる。アルキレン基の炭素数は1〜5が好ましい。より具体的には、ベンジル基、フェネチル基、1−ナフチルメチル基、2−ナフチルメチル基、1−ナフチルエチル基、2−ナフチルエチル基、2−ピリジルメチル基、2−ピリジルエチル基、3−ピリジルメチル基、3−ピリジルエチル基等が挙げられる。   Examples of the combination of an aliphatic hydrocarbon group and an aromatic hydrocarbon group include groups in which one hydrogen atom has been substituted with an alkylene group in an aromatic ring or a heterocyclic ring of the aromatic hydrocarbon group. The alkylene group preferably has 1 to 5 carbon atoms. More specifically, benzyl, phenethyl, 1-naphthylmethyl, 2-naphthylmethyl, 1-naphthylethyl, 2-naphthylethyl, 2-pyridylmethyl, 2-pyridylethyl, 3- Examples include a pyridylmethyl group and a 3-pyridylethyl group.

なかでもRとしては、直鎖状若しくは分岐鎖状のアルキル基、直鎖状若しくは分岐鎖状のアルキル基においてヘテロ原子として窒素原子を有する基、ヘテロ原子として窒素原子を有する芳香族炭化水素基、又は、ヘテロ原子として窒素原子を有する芳香族炭化水素基とアルキル基との組み合わせの基が好ましく;炭素数1〜10の直鎖状若しくは分岐鎖状のアルキル基、炭素数1〜10の直鎖状若しくは分岐鎖状のアルキル基中の炭素原子が窒素原子で置換された基、又はピリジン環を有する基が特に好ましい。 Among them, R 1 is a linear or branched alkyl group, a group having a nitrogen atom as a hetero atom in a linear or branched alkyl group, or an aromatic hydrocarbon group having a nitrogen atom as a hetero atom. Or a combination of an aromatic hydrocarbon group having a nitrogen atom as a hetero atom and an alkyl group; a linear or branched alkyl group having 1 to 10 carbon atoms; A group in which a carbon atom in a chain or branched alkyl group is substituted with a nitrogen atom, or a group having a pyridine ring is particularly preferable.

・R〜R
式(1)中、R〜Rはヘテロ原子を有していてもよい炭化水素基、又は水素原子である。R〜Rの「ヘテロ原子を有していてもよい炭化水素基」としては、上記Rの「ヘテロ原子を有していてもよい炭化水素基」と同様のものが挙げられる。
なかでもR〜Rとしては、直鎖状若しくは分岐鎖状のアルキル基又は水素原子が好ましく;炭素数1〜5のアルキル基又は水素原子がより好ましく;R〜Rが水素原子であり、且つ、Rが炭素数1〜5のアルキル基又は水素原子であることが特に好ましい。
・ R 2 to R 6
In the formula (1), R 2 to R 6 are a hydrocarbon group which may have a hetero atom or a hydrogen atom. As the “hydrocarbon group optionally having a hetero atom” for R 2 to R 6, the same as the “hydrocarbon group optionally having a hetero atom” for R 1 can be mentioned.
Among them, as R 2 to R 6 , a linear or branched alkyl group or a hydrogen atom is preferable; an alkyl group having 1 to 5 carbon atoms or a hydrogen atom is more preferable; and R 2 to R 5 are a hydrogen atom. It is particularly preferable that R 6 is an alkyl group having 1 to 5 carbon atoms or a hydrogen atom.

化合物(1)の好ましい具体例としては、下記式で表される化合物が挙げられる。   Preferred specific examples of the compound (1) include a compound represented by the following formula.

Figure 0006671709
Figure 0006671709

Figure 0006671709
Figure 0006671709

化合物(1)の製造方法は特に限定されず、公知の方法により製造することができる。例えば、次式で表されるサリチルアルデヒド類にアミン類、アニリン類等(RNH)をアルコール等の溶媒中で反応させることにより合成することができる。 The method for producing the compound (1) is not particularly limited, and the compound (1) can be produced by a known method. For example, it can be synthesized by reacting a salicylaldehyde represented by the following formula with an amine, an aniline, or the like (R 1 NH 2 ) in a solvent such as an alcohol.

Figure 0006671709
[式中、Xは酸素原子、硫黄原子又はセレン原子であり;Rはヘテロ原子を有していてもよい炭化水素基であり;R〜Rはヘテロ原子を有していてもよい炭化水素基、又は水素原子である。]
Figure 0006671709
[Wherein, X is an oxygen atom, a sulfur atom, or a selenium atom; R 1 is a hydrocarbon group optionally having a hetero atom; and R 2 to R 6 may have a hetero atom. It is a hydrocarbon group or a hydrogen atom. ]

化合物(a)の好ましい具体例としては、下記式で表される化合物が挙げられる。   Preferred specific examples of the compound (a) include a compound represented by the following formula.

Figure 0006671709
Figure 0006671709

Figure 0006671709
Figure 0006671709

(マグネシウム錯体)
本発明におけるマグネシウム錯体は、前記の化合物(a)又は(b)に由来する配位子、ハロゲン原子、およびマグネシウムを有するものである。
ハロゲンとしては、塩素又は臭素が好ましい。
本発明におけるマグネシウム錯体は、後述する[電解液の製造方法]に従って製造されることが好ましい。
(Magnesium complex)
The magnesium complex in the present invention has a ligand, a halogen atom, and magnesium derived from the compound (a) or (b).
As the halogen, chlorine or bromine is preferable.
The magnesium complex in the present invention is preferably produced according to [Method for producing electrolyte solution] described later.

化合物(a)又は化合物(b)とグリニャール試薬との反応により製造されるマグネシウム錯体は、多様な配位状態による複雑な構造をもつことがある。
例えば、化合物(1)とハロゲン化アルキルマグネシウム(RaMgQ)との反応では、次式(2)の様に、化合物(1)中の−XHの水素原子が抜けてアルカン(RaH)が生成する。また、(2)’式の反応が推定される。
A magnesium complex produced by reacting compound (a) or compound (b) with a Grignard reagent may have a complex structure due to various coordination states.
For example, in the reaction of the compound (1) with an alkylmagnesium halide (RaMgQ), as shown in the following formula (2), the hydrogen atom of -XH in the compound (1) escapes to generate an alkane (RaH). Further, the reaction of the equation (2) ′ is estimated.

Figure 0006671709
Figure 0006671709

Figure 0006671709
[式中、Raはアルキル基であり、Qはハロゲン原子であり、Xは酸素原子、硫黄原子又はセレン原子であり;Yは窒素原子又はリン原子であり;Rはヘテロ原子を有していてもよい炭化水素基であり;R〜Rはヘテロ原子を有していてもよい炭化水素基、又は水素原子である。]
Figure 0006671709
Wherein Ra is an alkyl group, Q is a halogen atom, X is an oxygen atom, a sulfur atom or a selenium atom; Y is a nitrogen atom or a phosphorus atom; R 1 has a heteroatom R 2 to R 6 are a hydrocarbon group optionally having a hetero atom, or a hydrogen atom. ]

更に、化合物(1)中の−C(R)=Yの炭素原子にRa(マイナスイオン)が付加する。具体的には、次式(3)の様に、−C(R)=Yの二重結合が還元されたマグネシウム錯体が生成すると推定される。 Further, Ra (negative ion) is added to the carbon atoms of -C in the compound (1) (R 2) = Y. Specifically, as the following equation (3), -C (R 2 ) = double bond Y is estimated to magnesium complex which is reduced to produce.

Figure 0006671709
[式中、Raはアルキル基であり、Qはハロゲン原子であり、Xは酸素原子、硫黄原子又はセレン原子であり;Yは窒素原子又はリン原子であり;Rはヘテロ原子を有していてもよい炭化水素基であり;R〜Rはヘテロ原子を有していてもよい炭化水素基、又は水素原子である。]
Figure 0006671709
Wherein Ra is an alkyl group, Q is a halogen atom, X is an oxygen atom, a sulfur atom or a selenium atom; Y is a nitrogen atom or a phosphorus atom; R 1 has a heteroatom R 2 to R 6 are a hydrocarbon group optionally having a hetero atom, or a hydrogen atom. ]

より具体的に、化合物(1)においてXを酸素,Yを窒素,Rをジメチルアミノエチル基,R〜Rを−H,Rをtert−ブチル基とする化合物(L1)と、塩化メチルマグネシウムとを、テトラヒドロフラン(THF)内で反応させたとき、X線回折により、下記式(4)〜(5)の反応と、下記式(6)、(7)のマグネシウム錯体の存在が推定できた。 More specifically, in the compound (1), a compound (L1) in which X is oxygen, Y is nitrogen, R 1 is a dimethylaminoethyl group, R 2 to R 5 are —H, and R 6 is a tert-butyl group, When methylmagnesium chloride was reacted in tetrahydrofuran (THF), X-ray diffraction showed that the reactions of the following formulas (4) to (5) and the presence of the magnesium complexes of the following formulas (6) and (7) were obtained. Could be estimated.

Figure 0006671709
Figure 0006671709

Figure 0006671709
Figure 0006671709

Figure 0006671709
Figure 0006671709

Figure 0006671709
Figure 0006671709

Figure 0006671709
Figure 0006671709

化合物(L1)と、グリニャール試薬とのモル比は、グリニャール試薬を過剰にして反応させることが好ましく、例えば、その比は1:1.5〜2.5とすることがより好ましく、1対2とすることが特に好ましい。
本発明において、化合物(a)又は(b)、或いは化合物(1)に由来する配位子を含むマグネシウム錯体は、化合物(a)又は(b)、或いは化合物(1)を配位子としていてもよく、上記のように、これらの化合物(a)又は(b)、或いは化合物(1)が、グリニャール試薬と反応して、一部が改変されて配位子としてもよい。
The molar ratio of the compound (L1) to the Grignard reagent is preferably such that the Grignard reagent is reacted in excess, for example, the ratio is more preferably 1: 1.5 to 2.5, and the ratio is preferably 1: 2 to 2.5. It is particularly preferred that
In the present invention, the magnesium complex containing a ligand derived from the compound (a) or (b) or the compound (1) is obtained by using the compound (a) or (b) or the compound (1) as a ligand. As described above, the compound (a) or (b) or the compound (1) may be reacted with a Grignard reagent and partially modified into a ligand.

本発明の電解液中、溶質であるマグネシウム錯体の含有量は特に限定されるものではないが、0.05〜1Mが好ましい。   The content of the solute magnesium complex in the electrolytic solution of the present invention is not particularly limited, but is preferably 0.05 to 1M.

(エーテル系溶媒)
本発明の電解液は、エーテル系溶媒を含有する。
エーテル系溶媒は特に限定されず、テトラヒドロフラン、2−メチルテトラヒドロフラン、2,2,3,3−テトラフルオロプロピルジフルオロメチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル等のモノエーテルであってもよく、ポリエーテルであってもよい。
ポリエーテルとしては、R11−O(CHCHO)−R12(R11、R12はそれぞれ独立に炭素数1〜10のアルキル基であり、nは1〜10の整数である。)で表される化合物が好ましく、エチレングリコールジメチルエーテル(グライム)、ジエチレングリコールジメチルエーテル(ジグライム)、トリエチレングリコールジメチルエーテル(トリグライム)、エチレングリコールジエチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテルが好ましい例として挙げられる。
なかでもエーテル系溶媒としては、ポリエーテルが好ましく、トリグライムが特に好ましい。
エーテル系溶媒は1種を単独で用いてもよく、2種以上を混合して混合溶媒として用いてもよい。
(Ether solvent)
The electrolytic solution of the present invention contains an ether solvent.
The ether solvent is not particularly limited, and may be a monoether such as tetrahydrofuran, 2-methyltetrahydrofuran, 2,2,3,3-tetrafluoropropyldifluoromethyl ether, ethylene glycol monomethyl ether, and ethylene glycol monoethyl ether. Or a polyether.
As the polyether, R 11 —O (CH 2 CH 2 O) n —R 12 (R 11 and R 12 are each independently an alkyl group having 1 to 10 carbon atoms, and n is an integer of 1 to 10. Are preferred, and preferred examples thereof include ethylene glycol dimethyl ether (glyme), diethylene glycol dimethyl ether (diglyme), triethylene glycol dimethyl ether (triglyme), ethylene glycol diethyl ether, diethylene glycol diethyl ether, and diethylene glycol dibutyl ether.
Among them, as the ether solvent, polyether is preferable, and triglyme is particularly preferable.
The ether solvents may be used alone or as a mixture of two or more.

(その他の成分)
本発明の電解液は、上述したマグネシウム錯体及びエーテル系溶媒に加えて、その他の成分を含有していてもよい。その他の成分としては例えば、マグネシウム錯体以外の他の溶質や、エーテル系溶媒以外の他の溶媒が挙げられる。
(Other components)
The electrolytic solution of the present invention may contain other components in addition to the magnesium complex and the ether-based solvent described above. Other components include, for example, other solutes other than the magnesium complex, and other solvents other than the ether-based solvent.

他の溶質としては例えば、マグネシウム二次電池電解液用の電解質として従来公知の化合物を用いることができ、例えばMg(N(SO21)(SO22))が挙げられる。
Mg(N(SO21)(SO22))中、R21及びR22は、それぞれ独立に、ハロゲン原子、炭素数1〜10のアルキル基、又は炭素数1〜10のハロゲン化アルキル基である。
21、R22のハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
21、R22のアルキル基としては、炭素数1〜5が好ましく、メチル基、エチル基、プロピル基、又はブチル基がより好ましい。
21、R22のハロゲン化アルキル基としては、上記R21、R22のアルキル基において、その水素原子の一部または全部を上記ハロゲン原子で置換した基が挙げられる。なかでも、フッ素化アルキル基が好ましく、パーフルオロアルキル基がより好ましく、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基が特に好ましい。
本発明の電解液においては、マグネシウム錯体を溶質の第二成分(添加剤成分)として用い、且つ、上述のような従来公知の電解質を主たる電解質(溶質)として用いてもよい。そのような場合、従来公知の電解質(例えばMg(N(SO21)(SO22)))は、上述のようなエーテル溶媒1モルに対して0.01〜0.5モルが好ましく、0.05〜0.4モルがより好ましく、0.1〜0.3モルがさらに好ましい。
As the other solute, for example, a conventionally known compound can be used as an electrolyte for a magnesium secondary battery electrolyte, and for example, Mg (N (SO 2 R 21 ) (SO 2 R 22 )) 2 can be mentioned.
In Mg (N (SO 2 R 21 ) (SO 2 R 22 )) 2 , R 21 and R 22 are each independently a halogen atom, an alkyl group having 1 to 10 carbon atoms, or a halogen having 1 to 10 carbon atoms. Alkyl group.
Examples of the halogen atom for R 21 and R 22 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
The alkyl group for R 21 and R 22 preferably has 1 to 5 carbon atoms, and more preferably a methyl group, an ethyl group, a propyl group, or a butyl group.
Examples of the halogenated alkyl group of R 21, R 22, the alkyl group of the R 21, R 22, include some or all of the hydrogen atoms group substituted with the halogen atom. Among them, a fluorinated alkyl group is preferable, a perfluoroalkyl group is more preferable, and a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, and a nonafluorobutyl group are particularly preferable.
In the electrolytic solution of the present invention, the magnesium complex may be used as the second component (additive component) of the solute, and the above-mentioned conventionally known electrolyte may be used as the main electrolyte (solute). In such a case, a conventionally known electrolyte (for example, Mg (N (SO 2 R 21 ) (SO 2 R 22 )) 2 ) is used in an amount of 0.01 to 0.5 mol based on 1 mol of the ether solvent as described above. Is preferably 0.05 to 0.4 mol, more preferably 0.1 to 0.3 mol.

さらに、他の溶質としては、マグネシウム錯体の形成に用いられた化合物や、マグネシウム錯体形成時の副産物等も挙げられる。
例えば、マグネシウム錯体の形成時に、化合物(1)と、マグネシウム化合物としてマグネシウム塩であるMgX(Xはマグネシウムカチオンに対して対イオンとなり得る成分)とを用いた場合であれば、マグネシウム塩のXに由来する化合物が電解液中に存在する可能性がある。
また、マグネシウム化合物としてグリニャール試薬であるR31MgQ(R31は有機基であり、Qはハロゲン原子である。詳細は後述する。)を用いた場合であれば、R31MgQの化合物自体;R31の有機基のみに由来する化合物;R31Mgに由来する化合物;MgQに由来する化合物、等が電解液中に存在する可能性がある。
Furthermore, examples of other solutes include compounds used for forming a magnesium complex, and by-products at the time of forming a magnesium complex.
For example, when the compound (1) and a magnesium salt MgX 1 (X 1 is a component that can be a counter ion to a magnesium cation) are used as a magnesium compound when forming a magnesium complex, compounds derived from X 1 may be present in the electrolyte.
Further, when R 31 MgQ (R 31 is an organic group and Q is a halogen atom; details will be described later) which is a Grignard reagent as the magnesium compound, the compound of R 31 MgQ itself; compounds derived from only the organic group of 31; compound derived from R 31 Mg; MGQ derived compounds, etc. may be present in the electrolyte.

他の溶媒としては、用いるエーテル系溶媒との相溶性が高い溶媒であれば特に限定されない。   The other solvent is not particularly limited as long as it has high compatibility with the ether solvent used.

<マグネシウム二次電池>
本発明のマグネシウム二次電池は、マグネシウム又はマグネシウム合金を含む負極と、上述した電解液とを有する。
<Magnesium secondary battery>
The magnesium secondary battery of the present invention has a negative electrode containing magnesium or a magnesium alloy, and the above-mentioned electrolyte.

(負極)
負極は、マグネシウム又はマグネシウム合金を含むものであって、マグネシウムイオン(Mg2+)を放出し得る電極であれば特に限定されるものではない。好ましくは、マグネシウムのみからなる負極、マグネシウムとアルミニウムとの合金からなる負極、マグネシウムとマンガンとの合金からなる負極、マグネシウムと亜鉛との合金からなる負極等が挙げられる。
(Negative electrode)
The negative electrode contains magnesium or a magnesium alloy, and is not particularly limited as long as it can release magnesium ions (Mg 2+ ). Preferably, a negative electrode composed of only magnesium, a negative electrode composed of an alloy of magnesium and aluminum, a negative electrode composed of an alloy of magnesium and manganese, a negative electrode composed of an alloy of magnesium and zinc, and the like are included.

(正極)
正極は、マグネシウムイオンを好適に挿入及び脱離可能な材料であれば特に限定されるものではなく、例えば、金属酸化物、金属硫化物、硫黄含有有機ポリマー等の正極活物質と、金属薄膜等からなる正極集電体と、必要に応じて含有される導電助剤やバインダーとを有する電極が挙げられる。正極活物質、正極集電体、導電助剤、バインダーとしては従来公知の材料を用いて、公知慣用の方法により正極を形成することができる。
(Positive electrode)
The positive electrode is not particularly limited as long as it is a material capable of suitably inserting and removing magnesium ions. For example, a positive electrode active material such as a metal oxide, a metal sulfide, a sulfur-containing organic polymer, and a metal thin film Having a positive electrode current collector composed of the above and a conductive auxiliary and a binder contained as necessary. As the positive electrode active material, the positive electrode current collector, the conductive auxiliary agent, and the binder, a positive electrode can be formed by a conventionally known material using a conventionally known material.

<電解液の製造方法>
本発明の電解液は、前記化合物(a)又は化合物(b)と、グリニャール試薬とを、溶媒中にて混合してマグネシウム錯体を得た後、当該マグネシウム錯体を、エーテル系溶媒に溶解させる方法により製造されることが好ましい。
以下、詳細に説明する。
<Method for producing electrolyte solution>
The electrolytic solution of the present invention is a method of mixing the compound (a) or the compound (b) with a Grignard reagent in a solvent to obtain a magnesium complex, and then dissolving the magnesium complex in an ether solvent. It is preferred to be manufactured by
The details will be described below.

まず、化合物(1)とマグネシウム化合物とを溶媒中で混合してマグネシウム錯体を得る。
より具体的には、化合物(1)を溶媒中に溶解させる。また、化合物(1)が溶解された溶媒と同一の溶媒又は当該溶媒と相溶性を有する溶媒中に溶解したマグネシウム化合物を準備する。そして、これらを混合することにより、マグネシウム錯体を得ることができる。
化合物(1)としては前記同様である。
First, compound (1) and a magnesium compound are mixed in a solvent to obtain a magnesium complex.
More specifically, the compound (1) is dissolved in a solvent. In addition, a magnesium compound dissolved in the same solvent as the solvent in which the compound (1) is dissolved or a solvent compatible with the solvent is prepared. Then, a magnesium complex can be obtained by mixing these.
Compound (1) is the same as described above.

マグネシウム化合物としては、化合物(a)又は(b)、或いは化合物(1)と混合することにより、少なくとも化合物(a)又は(b)、或いは化合物(1)に由来する配位子を含むマグネシウム錯体を形成し得る化合物であれば特に限定されるものではないが、「R31MgQ」で表されるグリニャール試薬であることが好ましい。
グリニャール試薬において、R31は有機基であって、炭化水素基として、アルキル基、アルキレン基、フェニル基等が挙げられ、その他の有機基としてアルコキシ基等が挙げられ、マグネシウム錯体形成後に脱離するR31が揮発しやすいものとなることから、メチル基又はエチル基が特に好ましい。
グリニャール試薬において、Qはハロゲン原子であって、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、塩素原子又は臭素原子が好ましい。
As the magnesium compound, a magnesium complex containing a ligand derived from at least the compound (a) or (b) or the compound (1) by mixing with the compound (a) or (b) or the compound (1) The compound is not particularly limited as long as it is a compound capable of forming a compound of formula (I), but is preferably a Grignard reagent represented by “R 31 MgQ”.
In the Grignard reagent, R 31 is an organic group, examples of the hydrocarbon group include an alkyl group, an alkylene group, and a phenyl group, and examples of the other organic group include an alkoxy group. A methyl group or an ethyl group is particularly preferable because R 31 is easily volatilized.
In the Grignard reagent, Q is a halogen atom, and includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and a chlorine atom or a bromine atom is preferable.

溶媒としては特に限定されるものではないが、グリニャール試薬の特性上、エーテル系溶媒を用いることが好ましく、テトラヒドロフラン又はジエチルエーテルが好ましい。   Although the solvent is not particularly limited, it is preferable to use an ether-based solvent in view of the characteristics of the Grignard reagent, and tetrahydrofuran or diethyl ether is preferable.

化合物(1)とマグネシウム化合物との使用割合は特に限定されず、形成されるマグネシウム錯体の推定構造に応じたモル比で用いることが好ましい。
また、化合物(1)とマグネシウム化合物との錯体形成には時間を要する場合もあるため、溶媒中で混合した後、その状態で一定時間静置することも好ましい。静置の時間は化合物(1)及びマグネシウム化合物の構造、並びに、形成されるマグネシウム錯体の構造に応じて適宜決定することができるが、数日〜数週間が好ましく、1〜10日がより好ましく、3〜7日がさらに好ましい。
必要に応じて静置を行った後、用いた溶媒を揮発させることにより、固体状のマグネシウム錯体を得ることができる。揮発をさせる際には必要に応じて加熱などを行ってもよい。
The ratio of the compound (1) and the magnesium compound to be used is not particularly limited, and it is preferable to use the compound in a molar ratio corresponding to the estimated structure of the formed magnesium complex.
In some cases, it takes time to form a complex between the compound (1) and the magnesium compound. Therefore, after mixing in a solvent, it is preferable to leave the mixture in the solvent for a certain period of time. The standing time can be appropriately determined according to the structures of the compound (1) and the magnesium compound, and the structure of the formed magnesium complex, but is preferably several days to several weeks, more preferably 1 to 10 days. More preferably, 3 to 7 days.
After standing if necessary, the solvent used is volatilized to obtain a solid magnesium complex. When volatilizing, heating or the like may be performed as necessary.

次いで、得られたマグネシウム錯体を、エーテル系溶媒に溶解させることにより、本発明の電解液を得る。
エーテル系溶媒としては前記同様のものを用いることができる。
このとき、エーテル系溶媒には、上述のような他の溶質(例えば、Mg(N(SO21)(SO22)))を溶解させておくことができる。
Next, the obtained magnesium complex is dissolved in an ether-based solvent to obtain the electrolytic solution of the present invention.
The same solvent as described above can be used as the ether-based solvent.
At this time, other solutes (for example, Mg (N (SO 2 R 21 ) (SO 2 R 22 )) 2 ) can be dissolved in the ether-based solvent.

[合成例1:化合物(L1)の製造]
丸底フラスコに撹拌子を入れ、エタノール200mL、N,N−ジメチルエチレンジアミン0.88g、3−tert−ブチルサリチルアルデヒド1.78gを加え、室温で24時間撹拌した。反応後、NMR分析により、サリチルアルデヒドが残っていないことを確認し、減圧下で低沸点の化合物を留去した。ジクロロメタンを加えて抽出し、分液ロートを用いた分液操作により親水性成分を除いたのち、溶媒を留去した。これにより、下記式(L1)で表される化合物(化合物(L1))を得た(収率:87%)。
[Synthesis Example 1: Production of Compound (L1)]
A stirring bar was put in the round bottom flask, and 200 mL of ethanol, 0.88 g of N, N-dimethylethylenediamine, and 1.78 g of 3-tert-butylsalicylaldehyde were added, and the mixture was stirred at room temperature for 24 hours. After the reaction, it was confirmed by NMR analysis that salicylaldehyde did not remain, and the compound having a low boiling point was distilled off under reduced pressure. After extraction by adding dichloromethane, the hydrophilic component was removed by a separating operation using a separating funnel, and then the solvent was distilled off. Thus, a compound (compound (L1)) represented by the following formula (L1) was obtained (yield: 87%).

得られた化合物についてNMR分析を行うことにより、得られた化合物(L1)が下記式(L1)で表される化合物であることを確認した。
H−NMR:14.0 (s, 1H, OH), 8.37 (s, 1H, N=CH), 7.31 (dd, J = 1.6, 7.7 Hz, 1H), 7.10 (dd, J = 1.6, 7.7 Hz, 1H), 6.80 (t, J = 7.7 Hz, 1H), 3.71 (t, J = 7.0 Hz, 2H, =N-CH2-), 2.67 (t, J = 7.0 Hz, 2H, -CH2-N), 2.30 (s, 6H, N(CH3)2), 1.43 (s, 9H, butyl) ppm
13C−NMR:166.25 (N=CH), 160.48, 137.37, 129.57, 129.26, 118.68, 117.69, 60.00, 57.66, 45.77, 34.79, 29.32 ppm
By NMR analysis of the obtained compound, it was confirmed that the obtained compound (L1) was a compound represented by the following formula (L1).
1 H-NMR: 14.0 (s , 1H, OH), 8.37 (s, 1H, N = CH), 7.31 (dd, J = 1.6, 7.7 Hz, 1H), 7.10 (dd, J = 1.6, 7.7 Hz, 1H), 6.80 (t, J = 7.7 Hz, 1H), 3.71 (t, J = 7.0 Hz, 2H, = N-CH 2- ), 2.67 (t, J = 7.0 Hz, 2H, -CH 2 -N ), 2.30 (s, 6H, N (CH 3 ) 2 ), 1.43 (s, 9H, butyl) ppm
13 C-NMR: 166.25 (N = CH), 160.48, 137.37, 129.57, 129.26, 118.68, 117.69, 60.00, 57.66, 45.77, 34.79, 29.32 ppm

Figure 0006671709
Figure 0006671709

[合成例2:化合物(L2)の製造]
減圧コックを付けた丸底フラスコに撹拌子を入れ、エタノール40mL、3−tert−ブチルサリチルアルデヒド1.78g、2−ピコリルアミン1.09gを加え、真空ポンプを用いて減圧し、窒素ガス置換を行った。その後、遮光しながら室温で24時間撹拌した。反応後、NMR分析により、サリチルアルデヒドが残っていないことを確認し、減圧下で低沸点の化合物を留去した。エーテルに溶解させ、分液ロートに加えて分液処理を行った。有機相を取り出し、減圧下溶媒を留去した。これにより、下記式(L2)で表される化合物(化合物(L2))を得た(収率:89%)。
[Synthesis Example 2: Production of Compound (L2)]
A stirrer was placed in a round bottom flask equipped with a pressure reducing cock, 40 mL of ethanol, 1.78 g of 3-tert-butylsalicylaldehyde, and 1.09 g of 2-picolylamine were added. The pressure was reduced using a vacuum pump, and nitrogen gas replacement was performed. went. Thereafter, the mixture was stirred at room temperature for 24 hours while shielding light. After the reaction, it was confirmed by NMR analysis that salicylaldehyde did not remain, and the compound having a low boiling point was distilled off under reduced pressure. It was dissolved in ether and added to a separating funnel to perform a separating treatment. The organic phase was taken out and the solvent was distilled off under reduced pressure. Thus, a compound (compound (L2)) represented by the following formula (L2) was obtained (yield: 89%).

得られた化合物(L2)についてNMR分析を行うことにより、得られた化合物が下記式(L2)で表される化合物であることを確認した。
H−NMR:13.8 (s, 1H, OH), 8.56 (d, J = 7.9 Hz, 1H), 8.52 (s, 1H, N=CH), 7.68 (dd, J = 1,8, 7,7 Hz, 1H), 7.39 (d, J = 8.1 Hz, 1H), 7.34 (dd, J = 1.6, 7.7 Hz, 1H), 7.19 (t, J = 7.7 Hz, 1H), 7.15 (dd, J = 1.6, 7.6 Hz, 1H), 6.82 (t, J = 6.8 Hz, 1H), 4.92 (s, 2H, =N-CH2-), 1.44 (s, 9H, butyl) ppm
13C−NMR:167.52 (N=CH), 169.29, 158.03, 149.24, 137.34, 136.86, 129.92, 129.60, 122.27, 122.02, 118.68, 117.91, 64.90, 34.75, 29.26 ppm
NMR analysis of the obtained compound (L2) confirmed that the obtained compound was a compound represented by the following formula (L2).
1 H-NMR: 13.8 (s , 1H, OH), 8.56 (d, J = 7.9 Hz, 1H), 8.52 (s, 1H, N = CH), 7.68 (dd, J = 1,8, 7,7 Hz, 1H), 7.39 (d, J = 8.1 Hz, 1H), 7.34 (dd, J = 1.6, 7.7 Hz, 1H), 7.19 (t, J = 7.7 Hz, 1H), 7.15 (dd, J = 1.6 , 7.6 Hz, 1H), 6.82 (t, J = 6.8 Hz, 1H), 4.92 (s, 2H, = N-CH2-), 1.44 (s, 9H, butyl) ppm
13 C-NMR: 167.52 (N = CH), 169.29, 158.03, 149.24, 137.34, 136.86, 129.92, 129.60, 122.27, 122.02, 118.68, 117.91, 64.90, 34.75, 29.26 ppm

Figure 0006671709
Figure 0006671709

[合成例3:化合物(L5)の製造]
丸底フラスコに撹拌子を入れ、エタノール200mL、ベンジルアミン1.56g、3−tert−ブチルサリチルアルデヒド2.60gを加え、室温で24時間撹拌した。反応後、NMR分析により、サリチルアルデヒドが残っていないことを確認し、減圧下で低沸点の化合物を留去した。黄色固体が得られたため、1−プロパノールを20mL程度加え、ホットプレートであたためながら溶解させた。−30℃で1日以上静置したのち、上澄みの溶液を取り除いた。少量の冷却した1−プロパノールで結晶を洗浄し、得られた結晶を減圧乾燥させた。これにより、下記式(L5)で表される化合物(化合物(L5))を得た(収率:89%)。
[Synthesis Example 3: Production of Compound (L5)]
A stirrer was placed in the round bottom flask, and 200 mL of ethanol, 1.56 g of benzylamine, and 2.60 g of 3-tert-butylsalicylaldehyde were added, and the mixture was stirred at room temperature for 24 hours. After the reaction, it was confirmed by NMR analysis that salicylaldehyde did not remain, and the compound having a low boiling point was distilled off under reduced pressure. Since a yellow solid was obtained, about 20 mL of 1-propanol was added and dissolved while warming on a hot plate. After standing at −30 ° C. for one day or more, the supernatant solution was removed. The crystals were washed with a small amount of cooled 1-propanol, and the obtained crystals were dried under reduced pressure. Thus, a compound (compound (L5)) represented by the following formula (L5) was obtained (yield: 89%).

得られた化合物(L5)についてNMR分析を行うことにより、得られた化合物が下記式(L6)で表される化合物であることを確認した。
H−NMR:13.93 (s, 1H, OH), 8.45 (s, 1H, N=CH), 7.52 (m, 6H), 7.13 (dd, J = 1.6, 8.0 Hz, 1H), 6.81 (t, J = 8.0 z, 1H), 4.80 (s, 2H, =N-CH2-), 1.43 (s, 9H) ppm
By NMR analysis of the obtained compound (L5), it was confirmed that the obtained compound was a compound represented by the following formula (L6).
1 H-NMR: 13.93 (s , 1H, OH), 8.45 (s, 1H, N = CH), 7.52 (m, 6H), 7.13 (dd, J = 1.6, 8.0 Hz, 1H), 6.81 (t, J = 8.0 z, 1H), 4.80 (s, 2H, = N-CH 2- ), 1.43 (s, 9H) ppm

Figure 0006671709
Figure 0006671709

[合成例4:化合物(L6)の製造]
丸底フラスコに撹拌子を入れ、エタノール200mL、アニリン1.24g、3−tert−ブチルサリチルアルデヒド2.00gを加え、120℃で24時間撹拌した。反応後、NMR分析により、サリチルアルデヒドが残っていないことを確認し、減圧下で低沸点の化合物を留去した。オレンジ色固体が得られたため、ヘキサンを10mL程度加え、ホットプレートであたためながら溶解させた。−30度で1日以上静置したのち、上澄みの溶液を取り除いた。少量の冷却したヘキサンで結晶を洗浄し、得られた結晶を減圧乾燥させた。これにより、下記式(L6)で表される化合物(化合物(L6))を得た(収率:71%)。
[Synthesis Example 4: Production of Compound (L6)]
A stirrer was placed in a round bottom flask, and 200 mL of ethanol, 1.24 g of aniline, and 2.00 g of 3-tert-butylsalicylaldehyde were added, and the mixture was stirred at 120 ° C for 24 hours. After the reaction, it was confirmed by NMR analysis that salicylaldehyde did not remain, and the compound having a low boiling point was distilled off under reduced pressure. Since an orange solid was obtained, about 10 mL of hexane was added and dissolved while warming on a hot plate. After allowing to stand at −30 ° C. for 1 day or more, the supernatant solution was removed. The crystals were washed with a small amount of cooled hexane, and the obtained crystals were dried under reduced pressure. Thus, a compound (compound (L6)) represented by the following formula (L6) was obtained (yield: 71%).

得られた化合物(L6)についてNMR分析を行うことにより、得られた化合物が下記式(L6)で表される化合物であることを確認した。
H−NMR:13.89 (s, 1H, OH), 8.64 (s, 1H, N=CH), 7.42 (m, 3H), 7.28 (m, 4H), 6.88 (t, J = 7.6 z, 1H), 1.48 (s, 9H) ppm
By performing NMR analysis on the obtained compound (L6), it was confirmed that the obtained compound was a compound represented by the following formula (L6).
1 H-NMR: 13.89 (s , 1H, OH), 8.64 (s, 1H, N = CH), 7.42 (m, 3H), 7.28 (m, 4H), 6.88 (t, J = 7.6 z, 1H) , 1.48 (s, 9H) ppm

Figure 0006671709
Figure 0006671709

[合成例5:化合物(L7)の製造]
丸底フラスコに撹拌子を入れ、エタノール200mL、ブチルアミン1.09g、3−tert−ブチルサリチルアルデヒド1.78gを加え、室温で24時間撹拌した。反応後、NMR分析により、サリチルアルデヒドが残っていないことを確認し、減圧下で低沸点の化合物を留去した。これにより、下記式(L7)で表される化合物(化合物(L7))を得た(収率:99%)
[Synthesis Example 5: Production of Compound (L7)]
A stirrer was placed in the round bottom flask, and 200 mL of ethanol, 1.09 g of butylamine, and 1.78 g of 3-tert-butylsalicylaldehyde were added, followed by stirring at room temperature for 24 hours. After the reaction, it was confirmed by NMR analysis that salicylaldehyde did not remain, and the compound having a low boiling point was distilled off under reduced pressure. Thus, a compound represented by the following formula (L7) (compound (L7)) was obtained (yield: 99%).

得られた化合物(L2)についてNMR分析を行うことにより、得られた化合物が下記式(L2)で表される化合物であることを確認した。
H−NMR:14.20 (s, 1H, OH), 8.33 (s, 1H, N=CH), 7.31 (dd, J = 1.6, 8.0 Hz, 1H), 7.09 (dd, J = 1.6, 8.0 Hz, 1H), 6.80 (t, J = 8.0 z, 1H), 3.59 (dt, J = 1.0, 6.8 Hz, 2H, =N-CH2-), 1.70 (m, 2H), 1.45 (m, 2H), 1.44 (s, 9H), 0.96 (t, J = 7.5 Hz, 3H) ppm
NMR analysis of the obtained compound (L2) confirmed that the obtained compound was a compound represented by the following formula (L2).
1 H-NMR: 14.20 (s , 1H, OH), 8.33 (s, 1H, N = CH), 7.31 (dd, J = 1.6, 8.0 Hz, 1H), 7.09 (dd, J = 1.6, 8.0 Hz, 1H), 6.80 (t, J = 8.0 z, 1H), 3.59 (dt, J = 1.0, 6.8 Hz, 2H, = N-CH 2- ), 1.70 (m, 2H), 1.45 (m, 2H), 1.44 (s, 9H), 0.96 (t, J = 7.5 Hz, 3H) ppm

Figure 0006671709
Figure 0006671709

[試験例1:マグネシウム錯体(Mg−L1−Cl)の製造]
まず、グリニャール試薬であるCHMgClのテトラヒドロフラン(以下、「THF」ということがある。)溶液を用意した。上記において得られた化合物(L1)を、THFに溶解させた溶液を用意し、この化合物(L1)のTHF溶液を、グリニャール試薬のTHF溶液と室温のグローブボックス内において混合した。この時、化合物(L1)と、グリニャール試薬とのモル比は、1:2となるように調整した。
混合後、室温で4日間静置した後、1.0×10Pa以下に減圧しつつ110℃で加熱することによりTHFを揮発させて、固体状のマグネシウム錯体(Mg−L1−Cl)を得た。
得られたマグネシウム錯体のH−NMRの結果を図1に示す。図1中、下段は化合物(L1)のみの場合のNMRデータであり、上段はマグネシウム錯体とした際のNMRデータである。
H−NMRにおいて、OHプロトンのピークの消失と、芳香環に起因するピークのシフトとが確認されたことから、得られたマグネシウム錯体は、化合物(L1)に由来する配位子を含むことが確認でき、また、X線回折により、下記式(4)〜(5)の反応と、下記式(6)、(7)のマグネシウム錯体の存在が推定できた。(7)の様に、化合物(L1)のイミノ部位へのメチル基の付加は、窒素を含む同部位の柔軟性を増加させ、マグネシウムへの配位を容易にしているものと推測される。
[Test Example 1: Production of magnesium complex (Mg-L1-Cl)]
First, a solution of CH 3 MgCl, which is a Grignard reagent, in tetrahydrofuran (hereinafter sometimes referred to as “THF”) was prepared. A solution prepared by dissolving the compound (L1) obtained above in THF was prepared, and a THF solution of the compound (L1) was mixed with a Grignard reagent THF solution in a glove box at room temperature. At this time, the molar ratio between the compound (L1) and the Grignard reagent was adjusted to be 1: 2.
After mixing, the mixture was allowed to stand at room temperature for 4 days, and then heated at 110 ° C. while reducing the pressure to 1.0 × 10 4 Pa or less to volatilize the THF to form a solid magnesium complex (Mg-L1-Cl). Obtained.
FIG. 1 shows the 1 H-NMR results of the obtained magnesium complex. In FIG. 1, the lower part shows NMR data when only the compound (L1) is used, and the upper part shows NMR data when a magnesium complex is used.
Since the disappearance of the peak of the OH proton and the shift of the peak due to the aromatic ring were confirmed in 1 H-NMR, the obtained magnesium complex contains a ligand derived from the compound (L1). Was confirmed, and the presence of the magnesium complexes of the following formulas (6) and (7) and the reactions of the following formulas (4) to (5) were estimated by X-ray diffraction. As in (7), addition of a methyl group to the imino moiety of compound (L1) is presumed to increase the flexibility of the moiety containing nitrogen and facilitate coordination to magnesium.

Figure 0006671709
Figure 0006671709

Figure 0006671709
Figure 0006671709

Figure 0006671709
Figure 0006671709

Figure 0006671709
Figure 0006671709

Figure 0006671709
Figure 0006671709

[試験例2:マグネシウム錯体(Mg−L1−Br)の製造]
グリニャール試薬としてCHMgBrを用いた以外は試験例1と同様にして、化合物(L1):CHMgBr=1:2のモル比で混合した。
混合後すぐに110℃で加熱してTHFを揮発させた場合と、室温で一定期間静置した後に、110℃で加熱してTHFを揮発させた場合との錯体構造について、H−NMR測定、SEM/EDX測定を行った。
[Test Example 2: Production of magnesium complex (Mg-L1-Br)]
Compound (L1): CH 3 MgBr was mixed at a molar ratio of 1: 2 in the same manner as in Test Example 1 except that CH 3 MgBr was used as the Grignard reagent.
1 H-NMR measurement of the complex structure between the case where the mixture was heated at 110 ° C. immediately after mixing to evaporate THF and the case where the THF was volatilized by heating at 110 ° C. after standing at room temperature for a certain period and then heated at 110 ° C. , SEM / EDX measurement.

また、図2に、混合直後と混合後1週間静置後とを比較したH−NMRの結果を示す。
図3は、SEM/EDX測定の結果であって、混合直後と混合後1週間静置後とを、それぞれ3つのスポットに関して測定した結果である。
FIG. 2 shows the results of 1 H-NMR comparing the state immediately after mixing and the state after standing for one week after mixing.
FIG. 3 shows the results of the SEM / EDX measurement, which are the results obtained by measuring three spots immediately after mixing and after standing for one week after mixing.

図2に示すH−NMR測定の結果から、混合直後と混合後に1週間程度の静置を行った場合とでは、配位状態が異なる可能性が示唆された。特にH−NMRにおける2〜5ppm付近では明らかな違いが確認された。
また、図3に示すSEM/EDX測定の結果から、静置前後で含有されているMgとBrとの比率に変化がないことが確認できた。
The results of the 1 H-NMR measurement shown in FIG. 2 suggested that the coordination state may be different between immediately after mixing and when left standing for about one week after mixing. In particular, a clear difference was confirmed at around 2 to 5 ppm in 1 H-NMR.
Further, from the results of the SEM / EDX measurement shown in FIG. 3, it was confirmed that there was no change in the ratio between the contained Mg and Br before and after standing.

H−NMRにおいて、OHプロトンのピークの消失と、芳香環に起因するピークのシフトとが確認されたことから、得られたマグネシウム錯体は、化合物(L1)に由来する配位子を含むことが確認でき、下記式(8)〜(9)の反応と、下記式(11)のマグネシウム錯体の存在が推定できる。 Since the disappearance of the peak of the OH proton and the shift of the peak due to the aromatic ring were confirmed in 1 H-NMR, the obtained magnesium complex contains a ligand derived from the compound (L1). Can be confirmed, and the reaction of the following formulas (8) to (9) and the presence of the magnesium complex of the following formula (11) can be estimated.

Figure 0006671709
Figure 0006671709

Figure 0006671709
Figure 0006671709

Figure 0006671709
Figure 0006671709

Figure 0006671709
Figure 0006671709

Figure 0006671709
Figure 0006671709

[実施例1]
上記合成例1、試験例2と同様にして、マグネシウム錯体(L1−Mg−Br)を得た。
[Example 1]
A magnesium complex (L1-Mg-Br) was obtained in the same manner as in Synthesis Example 1 and Test Example 2.

一方、Mg(SOCF/トリグライム(以下、「G3」ということがある。)=1:5(モル比)の溶液を用意した。そして、このMg(SOCF/G3溶液に、マグネシウム錯体(L1−Mg−Br)を最終濃度が0.2Mとなるように添加して電解液を得た。
この電解液と、厚み0.5ミリメートルの金板からなる作用極と、厚み0.1ミリメートルのマグネシウム板からなる対極と、直径4ミリメートルのマグネシウム棒(断面のみ)からなる参照極とを用いた3電極セルを作製し、アルゴン雰囲気下、室温(298K)で1サイクルの後、333Kで3サイクル、その後再度298Kで1サイクルのサイクリックボルタンメトリー測定を行った。測定結果として、サイクリックボルタモグラムを図4A〜Cに示す。
図4Aに示す結果から、本発明の電解液を用いた場合、マグネシウムの可逆的析出溶解反応が室温で非常に良好に行われることが確認された。また、図4B〜Cに示す結果から、当該析出溶解反応は333K(約60℃)条件で3サイクル電位走査させた際にも、その後室温(約25℃)条件に戻した際にも良好に行われることが確認できた。
さらに、本発明の電解液を用いた場合、特に333Kでのサイクル履歴により、Mg過電圧が大幅に低減され、充放電時の電圧差が大幅に低減されることが確認できた。
過電圧の評価方法を、図10のサイクリックボルタモグラムで示した。
On the other hand, a solution of Mg (SO 2 CF 3 ) 2 / triglyme (hereinafter sometimes referred to as “G3”) = 1: 5 (molar ratio) was prepared. Then, the Mg (SO 2 CF 3) 2 / G3 solution, magnesium complex (L1-Mg-Br) final concentration was obtained added to the electrolyte solution so that 0.2 M.
This electrolyte solution, a working electrode made of a 0.5 mm thick metal plate, a counter electrode made of a 0.1 mm thick magnesium plate, and a reference electrode made of a 4 mm diameter magnesium rod (only cross section) were used. A three-electrode cell was prepared, and cyclic voltammetry measurement was performed in an argon atmosphere at room temperature (298 K) for one cycle, then at 333 K for three cycles, and then again at 298 K for one cycle. As measurement results, cyclic voltammograms are shown in FIGS.
From the results shown in FIG. 4A, it was confirmed that when the electrolytic solution of the present invention was used, the reversible precipitation and dissolution reaction of magnesium was performed very well at room temperature. Further, from the results shown in FIGS. 4B to 4C, the precipitation-dissolution reaction was favorably performed when the potential was scanned for 3 cycles under the condition of 333 K (about 60 ° C.) and when the temperature was returned to the room temperature (about 25 ° C.). It was confirmed that it was done.
Furthermore, in the case of using the electrolytic solution of the present invention, it was confirmed that the Mg overvoltage was significantly reduced and the voltage difference during charging and discharging was significantly reduced, particularly due to the cycle history at 333K.
The evaluation method of the overvoltage was shown by a cyclic voltammogram in FIG.

上記サイクリックボルタンメトリー測定後、電極の電析物に関し、A地点及びB地点の2カ所についてエネルギー分散型X線分析装置を用いて分析した。A地点、B地点、及びエリア内平均の結果を図5に示す。
Mg、O、Au、C、S、F等のピークのうち、Auは電析に用いている基板、C、S、Fは試料を洗浄する際取り除けなかった電解質塩の成分である。MgとOに当たる位置のピークが、同程度の大きさで現れており、MgOであることを示唆している。電析後測定までに大気中にさらしているため、電析したMgが酸化したものを観測したと考えられる。
図5により、電析したものが確かにマグネシウムであることを確認した。
After the cyclic voltammetry measurement, the electrodeposits of the electrode were analyzed at two points, point A and point B, using an energy dispersive X-ray analyzer. FIG. 5 shows the results of the point A, the point B, and the average in the area.
Among peaks such as Mg, O, Au, C, S, and F, Au is a substrate used for electrodeposition, and C, S, and F are components of an electrolyte salt that could not be removed when the sample was washed. The peaks at the positions corresponding to Mg and O appear with similar magnitudes, suggesting that it is MgO. It is probable that the deposited Mg was oxidized because it was exposed to the air before the measurement after the deposition.
From FIG. 5, it was confirmed that the electrodeposited material was indeed magnesium.

[実施例2]
上記合成例2に従って得られた化合物(L2)を用いた以外は上記試験例2等と同様にして、マグネシウム錯体(L2−Mg−Br)を得た。
[Example 2]
A magnesium complex (L2-Mg-Br) was obtained in the same manner as in Test Example 2 except that the compound (L2) obtained according to Synthesis Example 2 was used.

得られたマグネシウム錯体(L2−Mg−Br)を用い、且つ、マグネシウム錯体(L2−Mg−Br)のMg(SOCF/G3溶液への添加量を0.1Mとした以外は実施例1と同様にして、サイクリックボルタンメトリー測定を行った。
室温(298K)、1サイクル時のサイクリックボルタモグラムを図6Aに示す。また、その後333Kにおいて3サイクル電位走査した際のサイクリックボルタモグラムを図6Bに示す。
これらの結果から、マグネシウム錯体(L2−Mg−Br)を用いた際にも、マグネシウムの可逆的析出溶解反応が良好に行われることが確認できた。
The resulting magnesium complex (L2-Mg-Br), and, except that the amount of the Mg (SO 2 CF 3) 2 / G3 solution of magnesium complex (L2-Mg-Br) and 0.1M is Cyclic voltammetry measurement was performed in the same manner as in Example 1.
FIG. 6A shows a cyclic voltammogram at room temperature (298 K) for one cycle. FIG. 6B shows a cyclic voltammogram obtained by scanning the potential at 333K for three cycles.
From these results, it was confirmed that even when the magnesium complex (L2-Mg-Br) was used, the reversible precipitation and dissolution reaction of magnesium was favorably performed.

[実施例3]
マグネシウム電析において、定電流電析測定を行った。
Mg(SOCF/G3(モル比1:5)を用いた例を図7Aに、Mg(SOCF/G3(モル比1:5)に0.1Mのマグネシウム錯体(L1−Mg−Br)を添加した電解液を用いた例を図7Bに示す。
図7A〜Bの結果から、マグネシウム錯体を用いることにより、析出(充電)と溶解(放電)との電圧差が小さくなり、エネルギー効率が向上し得ることが確認できた。
[Example 3]
In magnesium deposition, constant current deposition measurement was performed.
An example using Mg (SO 2 CF 3 ) 2 / G 3 (molar ratio 1: 5) is shown in FIG. 7A. A 0.1 M magnesium complex is added to Mg (SO 2 CF 3 ) 2 / G 3 (molar ratio 1: 5). FIG. 7B shows an example using an electrolytic solution to which (L1-Mg-Br) is added.
From the results of FIGS. 7A and 7B, it was confirmed that by using the magnesium complex, the voltage difference between deposition (charge) and dissolution (discharge) was reduced, and energy efficiency could be improved.

[実施例4]
サイクリックボルタンメトリー測定及び交流インピーダンス測定を行った。
具体的には、Mg(SOCF/G3(モル比1:5)電解液、Mg(SOCF/G3(モル比1:5)に、0.05M又は0.1Mのマグネシウム錯体(L1−Mg−Br)を添加した電解液を用いて、サイクリックボルタンメトリー測定を行った。温度を25℃、サイクル数を1とした以外は、実施例1と同様である。結果をそれぞれ図8A〜Cに示す。
また、このサイクリックボルタンメトリー前後の電解液を用いて、交流インピーダンス測定を行った結果を、図9A〜Cに示す。
図8A〜Cの結果から、0.05M又は0.1Mのマグネシウム錯体(L1−Mg−Br)を添加することにより、充放電特性が良好となることが確認できた。
また、図9A〜Cの結果から、0.05M又は0.1Mのマグネシウム錯体を添加することにより、特にサイクリックボルタンメトリー後(After CV)において、複素平面上で円弧状にプロットされ、円弧の直径も増大することから、CVにより電極上に皮膜が生じていることが確認された。
[Example 4]
Cyclic voltammetry measurement and AC impedance measurement were performed.
Specifically, 0.05M or 0.1M is added to Mg (SO 2 CF 3 ) 2 / G3 (molar ratio 1: 5) electrolytic solution and Mg (SO 2 CF 3 ) 2 / G3 (molar ratio 1: 5). Cyclic voltammetry measurement was performed using an electrolytic solution to which a 1M magnesium complex (L1-Mg-Br) was added. Same as Example 1 except that the temperature was 25 ° C. and the number of cycles was 1. The results are shown in FIGS.
9A to 9C show the results of AC impedance measurement using the electrolyte solution before and after the cyclic voltammetry.
From the results of FIGS. 8A to 8C, it was confirmed that the addition of the 0.05M or 0.1M magnesium complex (L1-Mg-Br) improves the charge / discharge characteristics.
Also, from the results of FIGS. 9A to 9C, addition of a 0.05M or 0.1M magnesium complex is plotted in an arc shape on a complex plane, especially after cyclic voltammetry (After CV), and the diameter of the arc is shown. It was also confirmed that a film was formed on the electrode by CV.

[比較例1]
Mg(N(SO2CF322塩(Mg(TFSA)2)をトリエチレングリコールジメチルエーテル(トリグライム、G3)に分子比1:5で溶解した基準電解液(Mg(TFSA)2/G3)を調製した。
この基準電解液を、ビーエーエス社製プレート電極測定セル(作用極:Au、参照極:Ag/Ag、対極:Mg)に加えて測定用セルとし、Solartron社1260+1287測定装置を用いて電位掃引法によりマグネシウムの電気化学的析出/溶解反応を行った。掃引速度は5 mV s-1、掃引範囲は-4〜1 V vs. Agとした。
この基準電解液中でのマグネシウム電気化学的析出/溶解の電位−電流曲線(サイクリックボルタモグラム)を図11(a)に示す。下向きの還元(マグネシウム析出;充電反応)電流が-2.2 V vs. Ag付近で流れはじめるのに対し、上向きの酸化(マグネシウム溶解;放電反応)電流は-1 V vs. Agから見られ、1.2 V程度の過電圧が生じている。
[Comparative Example 1]
A reference electrolyte (Mg (TFSA) 2 / G3) in which Mg (N (SO 2 CF 3 ) 2 ) 2 salt (Mg (TFSA) 2 ) was dissolved in triethylene glycol dimethyl ether (triglyme, G3) at a molecular ratio of 1: 5. ) Was prepared.
This reference electrolytic solution was added to a plate electrode measuring cell (working electrode: Au, reference electrode: Ag / Ag + , counter electrode: Mg) manufactured by BAS Inc. to make a cell for measurement, and the potential was measured using a Solartron 1260 + 1287 measuring device. The electrochemical deposition / dissolution reaction of magnesium was performed by the sweep method. The sweep speed was 5 mV s-1 and the sweep range was -4 to 1 V vs. Ag.
FIG. 11A shows a potential-current curve (cyclic voltammogram) of magnesium electrochemical deposition / dissolution in the reference electrolyte. A downward reduction (magnesium deposition; charge reaction) current begins to flow around -2.2 V vs. Ag, while an upward oxidation (magnesium dissolution; discharge reaction) current is seen from -1 V vs. Ag, 1.2 V Overvoltage has occurred.

[実施例5]
試験例1と同様にして、化合物(L1):CHMgBr=1:2のモル比で混合し、室温で4日間静置して、マグネシウム錯体(L1−Mg−Br)を得た。これを110℃で減圧乾燥した後に、Mg(N(SO2CF322 (Mg(TFSA)2)塩をトリエチレングリコールジメチルエーテル(トリグライム、G3)に分子比1:5で溶解した電解液中に、0.1 mol L-1の濃度で溶解した。
この電解液を用いて、比較例1と同じく、ビーエーエス社製プレート電極測定セル(作用極:Au、参照極:Ag/Ag、対極:Mg)に加えて測定用セルとし、Solartron社1260+1287測定装置を用いて電位掃引法によりマグネシウムの電気化学的析出/溶解反応を行った。掃引速度は5 mV s-1、掃引範囲は−4〜1 V vs. Agとした。測定セルは自作の密封容器に入れ、環境試験機(ESPEC SU-221)で温度を制御した。
CHMgBrと化合物(L1)から合成した錯体を0.1 mol L-1溶解したMg(TFSA)/G3電解液中での、マグネシウム電気化学的析出/溶解の電位−電流曲線(サイクリックボルタモグラム)を図11(b)に示す。
過電圧が0.8 V程度に低減した。
[Example 5]
In the same manner as in Test Example 1, compound (L1): CH 3 MgBr was mixed at a molar ratio of 1: 2, and allowed to stand at room temperature for 4 days to obtain a magnesium complex (L1-Mg-Br). This was dried at 110 ° C. under reduced pressure, and then Mg (N (SO 2 CF 3 ) 2 ) 2 (Mg (TFSA) 2 ) salt was dissolved in triethylene glycol dimethyl ether (triglyme, G3) at a molecular ratio of 1: 5. The solution was dissolved at a concentration of 0.1 mol L-1.
Using this electrolytic solution, in the same manner as in Comparative Example 1, in addition to a plate electrode measuring cell manufactured by BS (working electrode: Au, reference electrode: Ag / Ag + , counter electrode: Mg), a cell for measurement was used, and Solartron 1260+ The electrochemical deposition / dissolution reaction of magnesium was performed by a potential sweep method using a 1287 measuring device. The sweep speed was 5 mV s-1 and the sweep range was -4 to 1 V vs. Ag. The measurement cell was placed in a self-made sealed container, and the temperature was controlled with an environmental tester (ESPEC SU-221).
Potential-current curve of magnesium electrochemical deposition / dissolution (Mg (TFSA) 2 / G3 electrolytic solution in which 0.1 mol L-1 of a complex synthesized from CH 3 MgBr and compound (L1) was dissolved (cyclic) The voltammogram is shown in FIG.
Overvoltage was reduced to about 0.8 V.

[実施例6]
実施例5に続いてさらに、このセルを一旦60℃に加温して電位掃引後、再び25℃に戻して掃引すると、過電圧がほどんどなくなり、また、マグネシウム析出と溶解の開始電位がほぼ一致した(図11(c))。
[Example 6]
Following Example 5, the cell was heated to 60 ° C. once, and after the potential was swept back to 25 ° C. and swept again, the overvoltage was almost negligible, and the starting potential of magnesium deposition and dissolution almost coincided. (FIG. 11C).

[実施例7]
化合物(L1)を下記化合物(L4)に変更した他は、実施例6と同様にして、25℃→60℃→25℃の処理を行った場合の、化合物(L4)に由来する配位子を含むマグネシウム錯体を含有する電解液のサイクリックボルタモグラムを図12(e)に示す。
化合物(L4)に由来する配位子を含むマグネシウム錯体を添加したことにより、過電圧がほどんどなくなり、また、マグネシウム析出と溶解の開始電位がほぼ一致した。
[Example 7]
Ligand derived from compound (L4) when treated in the same manner as in Example 6, except that compound (L1) was changed to the following compound (L4), at 25 ° C. → 60 ° C. → 25 ° C. FIG. 12 (e) shows a cyclic voltammogram of the electrolytic solution containing the magnesium complex containing.
By adding a magnesium complex containing a ligand derived from the compound (L4), the overpotential was almost eliminated, and the onset potential of magnesium precipitation and dissolution almost coincided.

Figure 0006671709
Figure 0006671709

[実施例8]
化合物(L1)を、合成例3で合成した上記化合物(L5)に変更した他は、実施例6と同様にして、25℃→60℃→25℃の処理を行った場合の、化合物(L5)に由来する配位子を含むマグネシウム錯体を含有する電解液のサイクリックボルタモグラムを図12(f)に示す。
化合物(L5)に由来する配位子を含むマグネシウム錯体を添加したことにより、過電圧がほどんどなくなり、また、マグネシウム析出と溶解の開始電位がほぼ一致した。
Example 8
Compound (L5) was obtained in the same manner as in Example 6, except that compound (L1) was changed to the above compound (L5) synthesized in Synthesis Example 3 at 25 ° C. → 60 ° C. → 25 ° C. FIG. 12 (f) shows a cyclic voltammogram of the electrolytic solution containing the magnesium complex containing the ligand derived from (1).
By adding the magnesium complex containing a ligand derived from the compound (L5), the overpotential was almost eliminated, and the onset potential of magnesium precipitation and dissolution almost coincided.

[実施例9]
化合物(L1)を、合成例4で合成した上記化合物(L6)に変更した他は、実施例5と同様にして、錯体を合成し、電解液を作成した。このとき、化合物(L6)に由来する配位子を含むマグネシウム錯体は、上記電解液への溶解度が十分ではなく、0.1 mol L-1の濃度で溶解せず、過飽和の状態の電解液とした。この他は、実施例6と同様にして、25℃→60℃→25℃の処理を行った場合の、化合物(L6)に由来する配位子を含むマグネシウム錯体を含有する電解液のサイクリックボルタモグラムを図12(g)に示す。
化合物(L6)に由来する配位子を含むマグネシウム錯体を添加したことにより、過電圧がほどんどなくなり、また、マグネシウム析出と溶解の開始電位がほぼ一致した。
[Example 9]
A complex was synthesized in the same manner as in Example 5 except that the compound (L1) was changed to the compound (L6) synthesized in Synthesis Example 4 to prepare an electrolyte solution. At this time, the magnesium complex containing a ligand derived from the compound (L6) has insufficient solubility in the above-mentioned electrolyte solution, does not dissolve at a concentration of 0.1 mol L-1, and is in a supersaturated electrolyte solution. And Otherwise, in the same manner as in Example 6, when the treatment was performed at 25 ° C. → 60 ° C. → 25 ° C., the cyclic solution of the electrolytic solution containing the magnesium complex containing the ligand derived from the compound (L6) was obtained. The voltammogram is shown in FIG.
By adding a magnesium complex containing a ligand derived from the compound (L6), the overpotential was almost eliminated, and the onset potential of magnesium precipitation and dissolution almost coincided.

[実施例10]
化合物(L1)を、合成例5で合成した上記化合物(L7)に変更した他は、実施例6と同様にして、25℃→60℃→25℃の処理を行った場合の、化合物(L7)に由来する配位子を含むマグネシウム錯体を含有する電解液のサイクリックボルタモグラムを図12(h)に示す。
化合物(L7)に由来する配位子を含むマグネシウム錯体を添加したことにより、過電圧がほどんどなくなり、また、マグネシウム析出と溶解の開始電位がほぼ一致した。
[Example 10]
Compound (L7) was obtained in the same manner as in Example 6, except that Compound (L1) was changed to Compound (L7) synthesized in Synthesis Example 5 above. FIG. 12 (h) shows a cyclic voltammogram of the electrolytic solution containing the magnesium complex containing the ligand derived from (1).
By adding a magnesium complex containing a ligand derived from the compound (L7), the overpotential was almost eliminated, and the onset potential of magnesium deposition and dissolution almost coincided.

Claims (2)

下記一般式(1)で表される化合物(a)と、グリニャール試薬とを、溶媒中にて混合してマグネシウム錯体を得た後、当該マグネシウム錯体を、エーテル系溶媒に溶解させることを特徴とする電解液の製造方法。
化合物(a):1分子内に、窒素、酸素、硫黄、リン及びセレンからなる群から選択される少なくとも2種類の原子、及び少なくとも4個の炭素原子を含む化合物。
Figure 0006671709
[式中、Xは酸素原子、硫黄原子又はセレン原子であり;Yは窒素原子又はリン原子であり;R はヘテロ原子を有していてもよい炭化水素基であり;R 〜R はヘテロ原子を有していてもよい炭化水素基、又は水素原子である。]
A compound (a) represented by the following general formula (1) and a Grignard reagent are mixed in a solvent to obtain a magnesium complex, and then the magnesium complex is dissolved in an ether solvent. Method for producing an electrolytic solution.
Compound (a): a compound containing at least two kinds of atoms selected from the group consisting of nitrogen, oxygen, sulfur, phosphorus and selenium, and at least four carbon atoms in a molecule.
Figure 0006671709
[Wherein, X is oxygen atom, a sulfur atom or a selenium atom; Y is a nitrogen atom or a phosphorus atom; R 1 is a hydrocarbon group which may have a hetero atom; R 2 to R 6 Is a hydrocarbon group which may have a hetero atom, or a hydrogen atom. ]
前記化合物と前記グリニャール試薬とのモル比が1:1.5〜2.5である、請求項に記載の電解液の製造方法。 The method for producing an electrolytic solution according to claim 1 , wherein the molar ratio of the compound to the Grignard reagent is 1: 1.5 to 2.5.
JP2016057145A 2016-03-22 2016-03-22 Manufacturing method of electrolyte Expired - Fee Related JP6671709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016057145A JP6671709B2 (en) 2016-03-22 2016-03-22 Manufacturing method of electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016057145A JP6671709B2 (en) 2016-03-22 2016-03-22 Manufacturing method of electrolyte

Publications (2)

Publication Number Publication Date
JP2017174550A JP2017174550A (en) 2017-09-28
JP6671709B2 true JP6671709B2 (en) 2020-03-25

Family

ID=59973912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016057145A Expired - Fee Related JP6671709B2 (en) 2016-03-22 2016-03-22 Manufacturing method of electrolyte

Country Status (1)

Country Link
JP (1) JP6671709B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018016444A1 (en) * 2016-07-19 2019-03-14 富士フイルム株式会社 Non-aqueous secondary battery electrolyte and non-aqueous secondary battery
CN111527637A (en) * 2018-12-05 2020-08-11 松下知识产权经营株式会社 Nonaqueous electrolyte for magnesium secondary battery and magnesium secondary battery using the same
WO2023238912A1 (en) * 2022-06-09 2023-12-14 株式会社村田製作所 Electrolyte solution for magnesium batteries, and magnesium battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003020689A1 (en) * 2001-08-30 2003-03-13 Akzo Nobel N.V. Chelating agents and their metal chelates
JP5076321B2 (en) * 2006-01-12 2012-11-21 ソニー株式会社 battery
EP2738862B1 (en) * 2011-07-28 2020-12-16 FUJIFILM Wako Pure Chemical Corporation Electrolyte solution for electrochemical devices
CN104969406B (en) * 2013-01-25 2018-11-02 富士胶片和光纯药株式会社 Electrochemical device electrolyte and electrochemical device
WO2014198022A1 (en) * 2013-06-09 2014-12-18 Lanxess Deutschland Gmbh Ruthenium- or osmium-based complex catalysts

Also Published As

Publication number Publication date
JP2017174550A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
US9409925B2 (en) Compounds containing hydrido-tricyano-borate anions
US11784348B2 (en) Electrolytes for magnesium-ion batteries
JP6301924B2 (en) Magnesium borohydride and its derivatives as magnesium transport media
JP4695802B2 (en) Tris (oxalato) phosphate, process for its preparation and use of said compounds
JP2003536229A (en) Electrolyte salt for lithium battery
JP5753073B2 (en) Boron or aluminum complex
US9318775B2 (en) Magnesium borohydride and its derivatives as magnesium ion transfer media
US11929462B2 (en) Stable, non-corrosive electrolyte with high performance for rechargeable ion batteries
KR20140050058A (en) Compounds containing alkyl-cyano-borate or alkyl-cyano-fluoroborate anions
JP6914486B2 (en) Magnesium salt
US10700382B2 (en) Chelating ionic liquids for magnesium battery electrolytes and systems
JP6671709B2 (en) Manufacturing method of electrolyte
US11189862B2 (en) High voltage 10, 11, and 12-vertex carborane and borane electrolytes, their use in rechargable batteries, and processes for their preparation
TW201223960A (en) Electrolyte formulations containing cyano-alkoxy-borate anions
US20020160261A1 (en) Borate salts for use in electrochemical cells
JP2017043776A (en) Use of specific polymer as charge storage body
Cho et al. Effect of 1-allyl-1-methylpyrrolidinium chloride addition to ethylmagnesium bromide electrolyte on a rechargeable magnesium battery
EP2824751A1 (en) Bisamide-based electrolyte for magnesium battery
JP6293804B2 (en) Electrolyte solution containing magnesium salt and method for producing magnesium salt
CN107086323A (en) Magnesium salts
CN117652049A (en) Liquid electrolyte composition and electrochemical cell having the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160519

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200221

R150 Certificate of patent or registration of utility model

Ref document number: 6671709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees