JP6670851B2 - ネットワークイベントタイマの最適化技術 - Google Patents

ネットワークイベントタイマの最適化技術 Download PDF

Info

Publication number
JP6670851B2
JP6670851B2 JP2017556520A JP2017556520A JP6670851B2 JP 6670851 B2 JP6670851 B2 JP 6670851B2 JP 2017556520 A JP2017556520 A JP 2017556520A JP 2017556520 A JP2017556520 A JP 2017556520A JP 6670851 B2 JP6670851 B2 JP 6670851B2
Authority
JP
Japan
Prior art keywords
data
transmission
node
time
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017556520A
Other languages
English (en)
Other versions
JP2018524837A (ja
Inventor
ハートマン ジェイムス
ハートマン ジェイムス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Landis and Gyr Innovations Inc
Original Assignee
Landis and Gyr Innovations Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Landis and Gyr Innovations Inc filed Critical Landis and Gyr Innovations Inc
Publication of JP2018524837A publication Critical patent/JP2018524837A/ja
Application granted granted Critical
Publication of JP6670851B2 publication Critical patent/JP6670851B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/002Mutual synchronization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Communication Control (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

電気電子技術者協会(IEEE)802.15.4ファミリーの規格で定義されるワイヤレスメッシュネットワーク等のネットワークにおいて、データ受信先からの確認応答が期待されるデータ送信が行われることがある。ネットワーク規格は、送信元が確認応答を受けるべきタイムアウト期間を定義することができる。タイムアウト期間中に確認応答を受け取れない場合、データの送信元は、受信先へのデータの再送信、エラー生成、および/またはその他の考えられる対応等の対応アクションを開始することができる。ネットワークが効率的に動作し、かつネットワーク規格に準拠するために、ネットワーク内で通信する装置は、データ送信と確認応答受け取りの間等の様々なネットワークイベント間の経過時間にある一定の精度で合致する必要がある。ネットワーク装置のクロックは十分に正確であるが、タイムアウトを測定するタイマは、状況によってはネットワーク規格に準拠するために必要な精度を欠いていることがある。
本発明の様々な態様は、ネットワーク内のノードのネットワークイベントタイマの最適化に関する。一実施形態において、ノードは、ネットワークを介してノードが送信するデータを取得する。ノードは、クロックのタイムインターバル(タイムインターバル)を、ネットワークに関連付けられたアクションの判断の根拠として用いる。ネットワークを介したデータの送信に必要な時間を表す送信にかかる時間は、ネットワークを介したデータ転送速度とデータのサイズに基づいて計算される。ノードは、各タイムインターバルの長さで割った送信にかかる時間から、残り時間に等しいオフセットを計算してもよい。また、ノードは、オフセットと各タイムインターバルの長さとの差異に等しい送信遅延を計算してもよい。
ノードは、送信にかかる時間に基づく送信遅延の後にネットワークを介してデータを送信する。送信遅延は、クロックのタイムインターバルのいずれかの完了に一致するまたはその後の閾値内に送信が完了する場合に、データ送信が始まるようにすることができる。データの送信は、タイムインターバルのいずれかの完了の後に始まってもよく、その後送信遅延に等しい長さの時間が続く。送信が完了すると、ノードはイベントタイマを開始し、イベントタイマは、イベントタイマの開始から経過したタイムインターバルのカウントに基づいて時間を測定する。イベントタイマは、ノードにより、受信先からデータの確認応答の受け取りを待機する時間の長さを測定するために用いることもできる。
本開示の多くの態様は、以下の図面を参照することでより良く理解される。各図の要素は縮尺通りとは限らず、本開示の原則を明確に表すことに重点を置いている。また、図面を通して、各図における類似の参照番号は対応する要素を示す。
図1は、本開示の様々な実施形態にかかるメッシュネットワークを示す図である。
図2は、本開示の様々な実施形態にかかるネットワークにおけるノードの例示的なタイミング図である。 図3は、本開示の様々な実施形態にかかるネットワークにおけるノードの例示的なタイミング図である。
図4は、本開示の様々な実施形態にかかる図1のネットワークにおけるノードによって実施される機能の一例を示すフローチャートである。
図5は、本開示の様々な実施形態にかかる図1のネットワークにおいて用いられるノードの一例を示す模式的なブロック図である。
本明細書において開示される技術は、IEEE802.15.4ファミリーの規格で定義されるワイヤレスメッシュネットワークまたはその他の考えられる種類のネットワーク等、ネットワーク内の装置のネットワークイベントタイマの分解能の最適化を目的とするものである。例えば、メッシュネットワークにおいて、各ノードは、これと通信可能な他のノード(通常、隣接ノードと呼ばれる)を得るまたは識別することができ、これらノードについてのある種の情報およびパフォーマンスメトリックを取得して通信を容易にすることができる。ノードは、このメトリックを用いて、識別したノードのそれぞれをスコア付けし、識別されたノードのうち、メッセージを受信する送信先すなわち親ノードへの情報の送信にどのノードが最適なオプションであるかを判断することができる。親ノードを識別したノードは、同意的に、親ノードの子ノードと呼ぶことができる。
このように他のノードを識別し、これらのノードと通信リンクを確立することにより、各ノードは、メッシュネットワーク内における情報の送受信に利用可能な、自身のノードネットワークを確立する。ノードは、その親ノードに、例えば中央ノードまたは他のノードからのメッセージの受信を頼ってもよい。ネットワーク規格によっては、メッセージの受信が成功した際に受信ノードが送信元ノードに確認応答(通常、「ACK」と呼ばれる)を送信するように1以上のメッセージタイプを定義することができる。受信後に確認応答を送信する対象のメッセージを、「確認応答フレーム」と呼んでもよい。また、これらの規格はタイムアウト期間を定義してもよく、このタイムアウト期間中にメッセージ受信先から確認応答が受信されない場合、確認応答フレームの送信元が対応アクション(例:フレームの再送信)を開始する。このような規格を順守し、ネットワークにおける適切な動作を保証するために、ネットワーク内のノードは、タイムアウト期間等の定義された期間の時間を正確に測定するタイマを用いることになる。
ノードは十分に正確なクロックを使用することができるが、ノードのタイマは、ネットワークイベントにおけるタイマの開始から経過したクロック(clock)の「チック(ticks)」を単位として、ネットワークイベントの経過時間を、測定することができる。クロックのチックは、クロックのタイムインターバルの間の境界を示す。例えば、クロックは1ミリ秒(ms)のタイムインターバルを用いてもよく、これにより、クロックのチック間で経過する時間はタイムインターバルの1つ、この例では1msに等しい。タイマがタイムインターバルの開始時以外に開始された場合、次のクロックのチックまでの経過時間は、1タイムインターバルの全長未満となる。ただし、それでも、1タイムインターバルの全長が経過したものとしてクロックのチックをカウントするようノードのタイマを構成することができる。したがって、カウントの正確さを向上するために、本明細書の実施例においては、タイムインターバルの最初にタイマを開始するよう構成される。
このため、データ送信が完了するとイベントタイマが開始されることになる場合、ノードは、送信がタイムインターバルの終了と同時に完了するようなスケジュールでデータの送信にかかる時間を判断する必要がある。言うまでもなく、タイムインターバルの終了直後の許容できる範囲の閾値内にデータ送信が完了するようにしてもよい。このように、クロックのタイムインターバルの開始時以外にタイマを開始することによる経過時間のランダムな変化からタイマを離すことにより、任意の許容範囲内でネットワークタイマの正確さが最適化される。
本明細書において、「ノード」は、メッシュネットワークにおけるメッセージの分配に関する機能を果たすことができるインテリジェント装置を含む。あるシステムでは、ノードは、家やアパート等の施設におかれたガス、水道、電力等の公益資源の消費量を測定するメータであってもよい。このようなメータは、アドバンスド・メータリング・インフラストラクチャ(AMI)や、無線周波数(RF)ネットワークの一部であってもよい。ノードの他の例としては、ネットワークに取り付けられ、通信チャネル上で情報を送受信または転送することができる、ルータ、コレクタもしくは収集点、ホストコンピュータ、ハブ、またはその他の電子機器がある。
ノードは、本発明の実施例においてノードを機能させることができる複数の要素を含んでもよい。例えば、ノードは、ノードをメッシュネットワーク内の類似のノードおよび/または他の装置と通信可能とすることができる無線機を含んでもよい。各ノードの無線機は、この無線機をコンピュータのように機能させることができるプログラマブルロジックコントローラ(PLC)のような装置を含んでもよく、コンピュータ機能およびコマンド機能を実行し、本明細書に記載される本発明の実施例を実現することができる。また、ノードは、他のノードとの通信に関する情報を保存する記憶媒体を含んでもよい。このような記憶媒体には、例えば、ノードの内部に設けられた、またはネットワークを介してノードがアクセス可能な、メモリ、フロッピー(登録商標)ディスク、CD−ROM、DVD、またはその他の記憶装置がある。また、ノードは、計時を行う水晶発振器(すなわちクロック)と、バックアップ電源となるバッテリとを含んでもよい。ノードには、バッテリのみにより電力供給されるものもある。
本明細書において、「送信にかかる時間」は、所定量のデータの送信に必要な時間の長さを指す。ある実施例では、データは、ペイロードと、ネットワーク上でペイロードを送信するためのフレームとを含む。
次に図を参照すると、図1に、本明細書に記載の技術を実施可能な例示的メッシュネットワーク10を示す。メッシュネットワーク10は、コレクタノード20と無線ノード21〜31とを含むことができる。コレクタノード20は、ノード21〜31がノードに関連付けられた施設におけるガス、水道、電力の消費量の測定等の情報を送信する収集点として機能してもよい。すでに述べたように、ノード21〜31は、メッシュネットワーク内の他のノードと通信してそのような通信を容易にするためのインテリジェントな判断を行うために十分なネットワークワーキングおよび演算能力を備えることができる。「コレクタノード」は、少なくともノード21〜31と同じ機能と性能を備えるよう構成されてもよい。加えて、コレクタノード20は、ノード21〜31からの情報を格納するに十分なストレージ性能、およびいくつかの例では、ノードから受信した情報を処理するためのより高い演算能力を備えることができる。別の例では、コマンドセンタもしくは他のタイプのヘッドエンドシステム等のヘッドエンドシステム、またはその他のコンピュータ装置(不図示)を、ノードから受信した情報の処理に用いてもよい。
すでに述べたように、通常の動作中において、タイマがノードのクロックによって用いられるタイムインターバルとは非同期的に開始されるとき、ノード20〜31でのネットワークイベントで用いられるタイマが見せる正確さは低い。図2に、ノードのクロックとの非同期性によりノード20〜31のタイマの正確さが低減される状況の例を示すタイミング図を示す。
この例では、ノードがネットワークを介して送信するデータを取得する。ノードのクロックのタイムライン203において、クロックのタイムインターバル間の境界は、境界マーカT1〜T13で示されている。タイムインターバルの長さは任意の適切な時間であってよいが、この例においてはタイムインターバルの長さを1msとする。図に示すように、境界T2において、ノードが送信するデータが取得され、ネットワークを介して送信できるようになっている。データの送信にかかる時間206または送信完了時のクロックのタイムインターバル位置を考慮することなく、ノードはすぐに境界T2から開始するデータの送信を開始する。
境界T5およびT6の間のマーカ209において、ノードによるデータの送信が完了する。この例では、ノードにより送信されたデータは確認応答フレームであり、ネットワーク規格によりデータの送信元がデータの送信完了後5ms以内にACKを受信することが規定されている。また、ネットワーク規格は、確認応答フレームの送信後ACKが受信されない場合には、データの送信元がデータを再送信することを規定する。よって、確認応答フレームを送信するための5msの待機時間を満たすために、送信元ノードはタイマを確認応答フレームのデータ送信の完了後5msに設定する。そのため、タイマもマーカ209で開始されることになる。
既に述べたように、ノードのタイマは、経過クロックチックをカウントすることにより経過時間を測定するよう構成される。この例におけるタイマが5msに設定され、クロックチックのタイムインターバルが1msであるため、タイマは、セットされてから5クロックチックが経過した後に完了することになる。したがって、イベントタイマ時間212は、タイマがマーカ209で開始してから5クロックチック後であるT10で終了する。5クロックチックが経過しても、経過時間は5msの時間を意味する意図されたタイマ時間215よりも短いが、これはタイマがT5境界ではなくT5とT6の境界の間のマーカ209で開始されるからである。そのため、タイマの第1クロックチック(すなわちT6境界)における経過時間は、タイムインターバルの全長よりも短い。アラインメント差218は、5msの意図されたタイマ時間215と約4.5msとなる実際のイベントタイマ時間212との差を示す。
ノードのタイマが不正確であることの結果は、多様である。図2に示す状況では、タイマを短くすると、受信先へのデータの再送信、エラー生成、等のノードによる対応アクションが早すぎる(すなわち5msではなく4.5ms後)ことにつながり、ネットワーク規格が規定する5msの期間を満たすACKを無視することにもなり得る。実際には、ノードのアラインメント差218の長さには、ノードのクロックのタイムインターバルに対するタイマが開始されるポイントによって、ほぼゼロからほぼ1ms(すなわち1タイムインターバル)の間でばらつきがある。タイマがタイムインターバルの開始時点の近くで開始された場合にはアラインメント差はほぼゼロとなる一方、タイムインターバルが終了する直前で開始された場合には、アラインメント差がタイムインターバルの期間に近いものとなることがある。図2に示す例では、タイマは、ノードによるデータの送信後に開始される。よって、データの送信が1クロックチックまたはその後の閾値範囲内で完了する場合、各データ送信についてのアラインメント差はほぼゼロとなる。
そのため、図3に、ノード20〜31のタイマの精度が、送信用のタイマがノードのクロックのクロックチックと一致して、またはそのクロックチックの後の閾値内に開始されるようにデータ送信をスケジューリングすることにより最適化される状況の例を示すタイミング図を示す。この例では、ノードは、ネットワークを介して送信する対象のデータを再度取得する。ノードのクロックのタイムライン303において、クロックのタイムインターバルの間の境界(すなわちクロックのチック)は、境界マーカT1〜T13で示される。タイムインターバルの長さは任意の適切な期間であってよいが、この例で議論するために、タイムインターバルの長さは図2と同じ1msとなっている。図に示すように、境界T2において、ノードが送信する対象のデータが取得されて、ネットワークを介して送信できるようになっている。図3のノードは、即座にまたはランダムな時間にデータを送信するのではなく、データの送信にかかる時間がどれくらいの長さかを判断する。ノードが通信する様々なネットワークにおいて、送信にかかる時間は、送信する対象のデータのサイズ、ネットワークの速度ならびに/または帯域、および場合によってはその他の留意事項に基づいてもよいことは言うまでもない。
図3に示す例において、送信にかかる時間は、送信する対象のデータのサイズおよびネットワークに基づいて3.5msと判断される。一般に、その後オフセットが計算されて、もしあるならば、タイムインターバルのどの部分がデータの送信に必要とされることになるかを判断する。ここで、クロックのタイムインターバルが1ms、送信時間が3.5msとすると、オフセットは、データの送信には3つの完全なタイムインターバルとさらに別のタイムインターバルの0.5msが必要となるため、0.5msとなる。ノードは、0.5msのオフセットおよび1msのタイムインターバルに基づいて、データ送信が後に続くタイムインターバル(すなわち後続クロックチック)の完了と同期的に完了するために必要なクロックチックからの遅延量を表す0.5msの送信遅延を計算する。すなわち、送信にかかる時間が3.5ms、タイムインターバルが1msとすると、データ送信が4タイムインターバル経過後に完了するよう、ノードは0.5msの送信遅延を用いることになる。送信遅延は、図3に送信遅延305と示す。
よって、データの送信が後続のタイムインターバルの終了と同時に完了するためには、ノードはデータの送信をクロックチックから0.5msだけ遅延させる。図3に示すように、ノードはT2境界の0.5ms後に送信を開始する。ノードにおける送信遅延305は、必要な精度を有するハードウェアタイマまたはその他のタイマ装置を用いることにより実現することができる。ノードは、T3〜T5で示すクロックのチックの間、データの送信を継続し、送信にかかる時間306はマーカT6でタイムインターバルの終了と同時に完了する。
この例では、図2の例のように、ノードによって送信されるデータは確認応答フレームであり、ネットワーク規格によりデータの受信先がデータ受信から5ms以内にACKを送信することが規定されている。また、ネットワーク規格は、確認応答フレームの送信後ACKが受信されない場合には、データの送信元がデータを再送信することを規定する。よって、確認応答フレームを送信するための5msの待機時間を満たすために、送信元ノードはタイマを確認応答フレームのデータ送信の完了後5msに設定する。そのため、タイマもマーカT6で開始されることになる。
上述のように、ノードのタイマは、経過クロックチックをカウントすることにより経過時間を測定するよう構成される。この例におけるタイマが5msに設定され、クロックチックのタイムインターバルが1msであるため、タイマは、セットされてから5クロックチックが経過した後に完了することになる。したがって、イベントタイマ時間312は、タイマがマーカT6で開始してから5クロックチック後であるT11に終了する。ここで、図2の例とは異なり、タイマがクロックチックと同時に開始されクロックのチック間の各タイムインターバルが完全な1msであるため、5クロックチックのカウントは5msの長さに等しい。よって、5msの長さを示す意図されたタイマ時間315もまたT11で終了する。この時、送信されたフレームの確認応答がまだノードにより受信されていない場合には、ノードはエラー報告やフレームの再送信等の任意に判断されたアクションを行ってもよい。タイマがデータ送信等のネットワークイベント後の経過時間を正確に測定するため、ノードはかかるイベントへの時宜を得たレスポンスを指定するネットワーク規格に準拠することができる。
図2および図3で議論した例は確認応答フレームの送信後のタイマに関するものであるが、本明細書に記載の技術は、データ送信後の経過時間の測定に用いられる任意のタイマに適用することができる。言うまでもないが、例えば、ノードは、あるタイムインターバルに従ってデータを送信(例:10msごとにフレームを送信)するよう構成されてもよいし、タイムアウト値内に別のノードからの回答としてデータを受信するよう構成されてもよいし、および/またはその他の考えられる状況であってもよい。
次に図4に、様々な実施形態にかかるネットワーク10におけるノード20〜31の方法400のタイマ最適化動作の一例を示すフローチャートを示す。言うまでもなく、図4のフローチャートは、本明細書に記載の方法400のタイマ最適化動作に実装可能な様々な種類の機能構成の一例を示すにすぎない。図4のフローチャートに示す動作は、ネットワーク10のノード20〜31が、送信完了後の経過時間を測定することになる送信対象データを取得することにより開始することができる。
ブロック403において、ノードはネットワークを介して送信する対象のデータを取得する。データは、IEEE802.15.4ファミリーの規格で定義される確認応答フレームであっても、周期的に送信されるデータであっても、ノードがタイムアウト値内に別のノードからの回答もしくはレスポンスを受信することになるデータであっても、および/またはその他の送信完了後の経過時間を測定することになる送信対象のデータであってもよい。
次に、ノードは、ノードのクロックのタイムインターバルの終了と一致してまたはその後の閾値内にデータの送信が完了するために必要な送信遅延を判断する。送信遅延の判断動作の考えられる構成を、ブロック406〜412に示す。
ブロック406において、ノードは、まず、データの送信にかかる送信にかかる時間を判断する。ノードが通信する様々なネットワークにおいて、送信にかかる時間は、送信する対象のデータのサイズ、ネットワークの速度ならびに/または帯域(「データ転送速度」または「ビットレート」と呼ぶ)、および場合によってはその他の留意事項に基づいてもよいことは言うまでもない。一般に、送信にかかる時間は以下の数式で表すことができる。
(数1)
送信時間=(送信されたオクテットの数)(8ビット/オクテット)
(ネットワークビットレート)
例えば、250キロビット/秒(kb/s)のネットワークデータビットレートで64オクテット(バイトと呼ばれることもある)のデータを送信するためには、以下の計算式に示されるように、送信にかかる時間は0.002048秒または2.048msと判断される。
(数2)
送信時間=0.002048s=(64オクテット)(8ビット/オクテット)
(250kb/s)
そして、ブロック409において、オフセットが計算されて、もしあるならば、データの送信に必要とされるタイムインターバルの部分を判断する。オフセットは以下の数式で表すことができる。
(数3)
オフセット=(送信時間)mod(タイムインターバルの長さ)
前の例に戻ると、ノードのタイムインターバルの長さが1msである場合、以下の計算式に示されるように、オフセットは0.048msまたは48マイクロ秒(μs)となる。
(数4)
オフセット=0.048ms=(2.048ms)mod(1ms)
続けて、ブロック412において、送信遅延が計算され、タイムインターバルの終了と一致してまたはその後の閾値内に連続送信を完了させるためにノードがデータの送信の遅延に用いることになるタイムインターバル境界(すなわちクロックのチック)の後の時間の長さを判断する。送信遅延の計算式は以下の通りである。
(数5)
送信遅延=(タイムインターバルの長さ)−(オフセット)
前の例に戻ると、オフセットが0.048ms、タイムインターバルの長さが1msである場合、以下の計算式に示されるように、送信遅延は0.952ms(952μs)となる。
(数6)
送信遅延=0.952ms=(1ms)−(0.048ms)
次に、ブロック415において、ノードは、データの送信に先立って送信遅延を開始する基準点としての使用する対象のタイムインターバル境界を待つ。データの送信を促すため、ノードは送信遅延が計算された後に来る最初のタイムインターバル境界を用いることがある。しかしながら、ネットワークイベントタイマを最適化するために、代わりにその後に続くタイムインターバル境界を用いてもよい。使用する対象のタイムインターバル境界が来ていない場合、方法400の処理は、ブロック415に戻って待機を継続する。
代替的に、使用する対象のタイムインターバル境界が検出された場合には、ブロック418において、ノードは送信遅延を開始し、その後データがネットワークへ送信される。これを実行するために、ノードは、送信遅延値が設定された補助タイマを用いてもよく、このタイマはタイムインターバル境界が来ると開始される。言うまでもなく、タイマ自体が精度の許容範囲内にある意図された時刻にデータの送信を開始するために十分な分解能を有する必要がある。ある実施形態では、補助タイマノードは、ノードに用いられるクロックよりも分解能が高いハードウェアタイマであってもよい。
次に、ブロック421において、ノードは、送信が完了したか否かを判断する。送信が完了していない場合、処理はブロック421に戻る。そうではなく、データの送信が完了した場合、ブロック424において、ノードは、データ送信の後の待機時間に関連付けられたネットワークイベントタイマを開始する。言うまでもないが、すでに述べたように、この待機時間の目的は、受信先からデータ送信の確認応答の受信待ち、追加データの送信に先立つ期間の待機(すなわちデータを10msごとに送信する)、および/またはその他の考えられる目的等、様々であってよい。その後、図示するように、ノードにおいて実施される方法400のこの部分の処理が終了する。方法400は、ノードにより、自身が任意のデータ送信を行うために実行することができ、このデータ送信の後に時間定義された待機時間が続く。
次に、図5に、ワイヤレスメッシュネットワークまたはその他のデータネットワークにおいて、本明細書において開示される技術を実施するために用いられるノード20〜31の一例を示すブロック図を示す。ノード20〜31は、処理装置502を含んでもよい。処理装置502の非限定的な例として、マイクロプロセッサ、特定用途向け集積回路(「ASIC」)、状態機械、またはその他の適切な処理装置がある。処理装置502は、1を含む任意の数の処理装置を含むことができる。処理装置502は、記憶装置504等のコンピュータ可読媒体に通信可能に連結されてもよい。処理装置502は、それぞれ記憶装置504に格納されたコンピュータ実行可能なプログラム命令を実行するおよび/または情報にアクセスすることができる。
記憶装置504は、処理装置502により実行されると処理装置502に本明細書に記載の動作を行わせる命令を格納することができる。記憶装置504は、プロセッサにコンピュータ可読命令を与えることができる、電子、光学、磁気、またはその他のストレージ装置(ただしこれに限らない)等の、コンピュータ可読媒体であってもよい。このような光学、磁気、またはその他のストレージ装置の非限定的な例としては、リードオンリー(「ROM」)装置、ランダムアクセスメモリ(「RAM」)装置、磁気ディスク、磁気テープもしくはその他の磁気ストレージ、メモリチップ、ASIC、設定されたプロセッサ、光学ストレージ装置、またはコンピュータプロセッサが命令を読み取ることのできるその他の任意の媒体がある。この命令は、任意の適切なコンピュータプログラム言語で記述されたコードからコンパイラおよび/またはインタプリタによって生成されたプロセッサ固有の命令を含んでもよい。適切なコンピュータプログラム言語の非限定的な例としては、C言語、C++、C#、Visual Basic、Java(登録商標)、Python、Perl、JavaScript(登録商標)、等がある。
ノード20〜31は、ノード20〜31の1以上の構成要素を通信可能に連結することのできるバス506を含んでもよい。図5には、プロセッサ502、メモリ504、バス506を互いに通信する独立した構成要素として図示しているが、その他の実施例も考えられる。例えば、プロセッサ502、メモリ504、バス506は、ノード20〜31に設けてプログラムコードを格納および実行することのできるプリント回路基板またはその他の適切な装置の構成要素であってもよい。
また、ノード20〜31は、ネットワークインターフェース装置508を含んでもよい。ネットワークインターフェース装置508は、アンテナ510を介して1以上のワイヤレス通信リンクを確立するよう構成された送受信装置であってもよい。ネットワークインターフェース装置508の非限定的な例としては、RF送受信機があり、メッシュネットワーク10内の他のノード20〜31と通信リンクを確立する1以上の要素を含むことができる。
本明細書においては、請求項に記載された主題の十分な理解を与えられるよう、数多くの具体的詳細を説明している。しかしながら、これらの具体的詳細がなくても請求項に記載された主題が実現可能であることは、当業者には言うまでもないことであろう。当業者に知られるその他の例、方法、装置、またはシステムについては、請求項に記載された主題が曖昧にならないよう、詳細な説明を省いている。
コンピュータメモリ等のコンピュータシステムメモリに保存されるデータビットや2値デジタル信号での動作のアルゴリズムや記号表現との関連で提示される部分もある。これらのアルゴリズム的記述または表現は、データ処理分野の当業者によって仕事の内容を別の当業者に伝達するために用いられる技術の例である。アルゴリズムは、所望の結果をもたらすための、首尾一貫した動作のシーケンスまたは類似の処理である。この文脈では、動作または処理は、物理量を有する物理的操作を含むものである。必須ではないが、通常、このような物理量は、保存、転送、結合、比較、またはその他の操作を行うことが可能な電気または磁気信号の形をとる。このような信号を、ビット、データ、数値、要素、記号、文字、用語、番号、数字、等と呼ぶことが、主として一般的な用法上の理由から、便利な場合があることがわかっている。しかしながら、これら全ておよび類似の用語が適切な物理量と関連付けられるべきものであり、単に便利なラベルにすぎないことは言うまでもない。特に記載がない限り、本明細書を通じて、「処理」「演算」「計算」「判断」「識別」等の用語を用いた議論は、メモリ、レジスタ、またはその他の記憶装置内の物理的な電子量または磁気量として表現されるデータの操作または変換を行う1以上のコンピュータまたは類似の電子計算装置等の計算装置、送信装置、またはコンピュータプラットフォームの表示装置の、動作または処理を指すものであることは言うまでもない。
本明細書で論じたシステムまたは複数のシステムは、特定のハードウェア構造や構成に限定されるものではない。計算装置は、1以上の関数呼び出しによって条件付けられる結果をもたらす要素の任意の適切な配列を含んでもよい。適切な計算装置は、本発明の主題の1以上の様態を実施するものである汎用演算装置から専用演算装置までを含む演算システムをプログラムするまたは構成する格納されたソフトウェアにアクセスする、多目的マイクロプロセッサベースのコンピュータシステムを含むことができる。任意の適切なプログラム、スクリプト、またはその他のタイプの言語、または言語の組み合わせを用いて、計算装置のプログラムまたは構成に用いられることになるソフトウェアにおいて、本明細書に記載の技術を実施することができる。
本開示の方法の態様は、このような計算装置の動作において行うことができる。これらの例で提示されたブロックの順番は、例えばブロックの並び替え、結合、および/またはサブブロックへの分解等、変更可能である。いくつかのブロックまたは処理を並行して行うこともできる。
本明細書における「に適している」または「よう構成される」という表現の使用は、非限定的かつ包括的な言語を意味し、追加的なタスクやステップを行うことに適したりそのように構成されたりする装置を除外するものではない。加えて、「基づく」の使用は、非限定的かつ包括的な意味であり、1以上の規定の条件または値に「基づく」プロセス、ステップ、計算、またはその他の動作は、実際には、規定外の追加的な条件または値に基づいてもよい。本明細書の見出し、リスト、および番号は、単に説明をわかりやすくするためのものであり、限定を意味するものではない。
本発明の主題をその具体的な態様に関して詳細に説明したが、上記内容の理解を得られるならば、当業者にはこれら態様の修正例、変形例、および等価例を生み出すことが容易に可能であることは言うまでもない。したがって、本開示は限定のためではなく例示のために提示されたものであること、ならびに当業者には容易にわかるように、本発明の主題へのかかる修正、変更、および/または追加の包含を除外するものではないことは言うまでもない。

Claims (20)

  1. ネットワークにおけるノードのネットワークイベントタイマを最適化する方法であって、
    前記ネットワークを介して前記ノードが送信するデータを取得し、前記ノードは前記ネットワークに関連付けられたアクションを判断する根拠としてクロックのタイムインターバルを用いるものであり、
    この方法はさらに、前記ネットワークのデータ転送速度と前記データのサイズとに基づいて、前記ネットワークを介して前記データを送信する時間に対応する送信にかかる時間を計算し、
    前記送信にかかる時間に基づいて送信遅延を計算し、該送信遅延は、クロック間隔よりも短く、前記ノードが前記データの送信を完了する時を制御するものであり、
    この方法はさらに、前記送信遅延の終了後、前記データを送信し、
    受信先からの前記データの確認応答の受信を待機し、前記データの送信が完了するとイベントタイマが開始され、前記イベントタイマが、前記イベントタイマが開始してから経過した前記タイムインターバルのカウントに基づいて時間を測定する、方法。
  2. さらに、
    前記タイムインターバルの長さで割った前記送信にかかる時間から、残り時間に等しいオフセットを計算し、
    前記オフセットと前記タイムインターバルの長さとの差異に等しい前記送信遅延を計算する、請求項1に記載の方法。
  3. 前記データの送信は、前記タイムインターバルのうち1以上のタイムインターバルが経過した後に、前記送信遅延に等しい長さの時間に続いて開始される、請求項1に記載の方法。
  4. 前記ネットワークが、電気電子技術者協会(IEEE)802.15.4規格を使用する、請求項1に記載の方法。
  5. 前記ノードは、さらに、前記クロックよりも分解能が高い送信タイマを備え、前記送信タイマは、いつ前記データを送信するかを判断する、請求項1に記載の方法。
  6. 前記ネットワークを介して送信された前記データは、前記データの前記受信先からの前記確認応答の送信を必要とし、前記イベントタイマは前記確認応答の受信のタイムアウトと関連付けられている、請求項1に記載の方法。
  7. 前記データは、ペイロードと、前記ネットワーク上で前記ペイロードを送信するフレームとを含む、請求項1に記載の方法。
  8. ノードにおいて実行可能なプログラムを具現する非一時的なコンピュータ可読媒体であって、前記プログラムはコードを含み、
    該コードは前記ノードにネットワークを介して前記ノードが送信するデータを取得させるものであり、前記ノードは前記ネットワークに関連付けられたアクションを判断する根拠としてクロックのタイムインターバルを用いるものであり、
    前記コードは前記ノードに、前記ネットワークのデータ転送速度と前記データのサイズとに基づいて、前記ネットワークを介して前記データを送信する時間に対応する送信にかかる時間を計算させ、
    前記送信にかかる時間に基づいて送信遅延を計算させるものであり、該送信遅延は、クロック間隔よりも短くかつ前記ノードが前記データの送信を完了する時を制御するものであり、
    前記コードは前記ノードに、前記送信遅延の終了後、前記データを送信させ、
    前記データの送信が完了するとイベントタイマを開始させるものであり、前記イベントタイマは前記イベントタイマが開始してから経過した前記タイムインターバルのカウントに基づいて時間を測定するものである、非一時的なコンピュータ可読媒体。
  9. 前記データの送信は、前記タイムインターバルのうち1以上のタイムインターバルが経過した後に、前記送信遅延に等しい長さの時間に続いて開始される、請求項8に記載の非一時的なコンピュータ可読媒体。
  10. 前記プログラムはさらに、
    前記タイムインターバルの長さで割った前記送信にかかる時間から、残り時間に等しいオフセットを計算するコードと、
    前記オフセットと前記タイムインターバルの長さとの差異に等しい前記送信遅延を計算するコードとを含む、請求項8に記載の非一時的なコンピュータ可読媒体。
  11. 前記ノードは、さらに、前記クロックよりも分解能が高い送信タイマを備え、前記送信タイマは、いつ前記データを送信するかを判断する、請求項8に記載の非一時的なコンピュータ可読媒体。
  12. 前記データは、ペイロードと、前記ネットワーク上で前記ペイロードを送信するフレームとを含む、請求項8に記載の非一時的なコンピュータ可読媒体。
  13. 前記ネットワークを介して送信された前記データは、前記データの受信先からの確認応答の送信を必要とし、前記イベントタイマは前記確認応答の受信のタイムアウトと関連付けられている、請求項8に記載の非一時的なコンピュータ可読媒体。
  14. ノードであって、
    プロセッサと、
    ネットワーク上で通信するためのネットワークインターフェースと、
    前記ノードにおいて実行されるタイマ最適化アプリケーションによって構成されるメモリと、を備え、
    前記タイマ最適化アプリケーションは、前記ノードに、
    前記ネットワークを介して前記ノードが送信するデータを取得させ、前記ネットワークに関連付けられたアクションを判断する根拠としてクロックのタイムインターバルを用いさせ、
    前記ネットワークのデータ転送速度と前記データのサイズとに基づいて、前記ネットワークを介して前記データを送信する時間に対応する送信にかかる時間を計算させ、
    前記送信にかかる時間に基づいて送信遅延を計算させ、該送信遅延は、クロック間隔よりも短く、前記ノードが前記データの送信を完了する時を制御するものであり、
    前記送信遅延の終了後、前記データを送信させ、
    受信先からの前記データの確認応答の受信を待機させるものであり、
    前記データの送信が完了するとイベントタイマが開始され、前記イベントタイマは前記イベントタイマが開始してから経過した前記タイムインターバルのカウントに基づいて時間を測定するものである、ノード。
  15. 前記データの送信は、前記タイムインターバルのうち1以上のタイムインターバルが経過した後に、前記送信遅延に等しい長さの時間に続いて開始される、請求項14に記載のノード。
  16. 前記ノードは、さらに、前記クロックよりも分解能が高い送信タイマを備え、前記送信タイマは、いつ前記データを送信するかを判断する、請求項14に記載のノード。
  17. 前記タイマ最適化アプリケーションは、さらに、前記ノードに、
    前記タイムインターバルの長さで割った前記送信にかかる時間から、残り時間に等しいオフセットを計算させ、
    前記オフセットと前記タイムインターバルの長さとの差異に等しい前記送信遅延を計算させる、請求項14に記載のノード。
  18. 前記ネットワークを介して送信された前記データは、前記データの前記受信先からの前記確認応答の送信を必要とし、前記イベントタイマは前記確認応答の受信のタイムアウトと関連付けられている、請求項14に記載のノード。
  19. 前記データは、ペイロードと、前記ネットワーク上で前記ペイロードを送信するフレームとを含む、請求項14に記載のノード。
  20. 前記タイムインターバルのうちある1つのタイムインターバルの経過後の許容範囲の閾値内に、前記データの送信が完了する、請求項14に記載のノード。
JP2017556520A 2015-04-28 2016-04-05 ネットワークイベントタイマの最適化技術 Active JP6670851B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/697,931 US9629109B2 (en) 2015-04-28 2015-04-28 Techniques for optimizing network event timers
US14/697,931 2015-04-28
PCT/US2016/026019 WO2016175988A1 (en) 2015-04-28 2016-04-05 Techniques for optimizing network event timers

Publications (2)

Publication Number Publication Date
JP2018524837A JP2018524837A (ja) 2018-08-30
JP6670851B2 true JP6670851B2 (ja) 2020-03-25

Family

ID=55806779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017556520A Active JP6670851B2 (ja) 2015-04-28 2016-04-05 ネットワークイベントタイマの最適化技術

Country Status (5)

Country Link
US (1) US9629109B2 (ja)
JP (1) JP6670851B2 (ja)
CA (1) CA2981712C (ja)
MX (1) MX362433B (ja)
WO (1) WO2016175988A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9629109B2 (en) 2015-04-28 2017-04-18 Landis+Gyr Innovations, Inc. Techniques for optimizing network event timers
US10313978B2 (en) * 2016-01-13 2019-06-04 Samsung Electronics Co., Ltd. Electronic apparatus and control method thereof
US10433272B2 (en) * 2016-05-17 2019-10-01 Googel LLC Distributed coordination of mesh network configuration updates
US10992602B2 (en) * 2019-08-19 2021-04-27 Landis+Gyr Innovations, Inc. Sequential storage of collected data from heterogeneous intervals

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9497715B2 (en) * 2011-03-02 2016-11-15 Blackbird Technology Holdings, Inc. Method and apparatus for addressing in a resource-constrained network
JP5738474B2 (ja) 2012-03-09 2015-06-24 三菱電機株式会社 通信装置および通信方法
US9445431B2 (en) * 2013-08-08 2016-09-13 Mediatek Inc. Wireless communications devices supporting WiFi and LTE communications and methods for transmission control thereof
US9629109B2 (en) 2015-04-28 2017-04-18 Landis+Gyr Innovations, Inc. Techniques for optimizing network event timers

Also Published As

Publication number Publication date
MX362433B (es) 2019-01-17
WO2016175988A1 (en) 2016-11-03
US20160323837A1 (en) 2016-11-03
CA2981712C (en) 2021-09-14
JP2018524837A (ja) 2018-08-30
CA2981712A1 (en) 2016-11-03
MX2017013719A (es) 2018-03-02
US9629109B2 (en) 2017-04-18

Similar Documents

Publication Publication Date Title
JP6670851B2 (ja) ネットワークイベントタイマの最適化技術
JP5834580B2 (ja) 無線通信システム、子局装置及び無線通信システム制御方法
US20130300577A1 (en) Collecting utility data information and conducting reconfigurations, such as demand resets, in a utility metering system
US8614956B2 (en) Placement of wireless repeaters in a wireless communication network
US9325368B2 (en) Gateway wireless communication instrument, wireless communication system, and communication control method
JP6572848B2 (ja) 距離推定システム
CN106656642B (zh) 一种往返时延的测量方法、装置及系统
US11411602B2 (en) Electronic device for performing ranging by using ultra wide band communication and operating method thereof
JPWO2014199559A1 (ja) 中継装置、および中継装置の制御方法
EP3419325B1 (en) Distance measurement method using wireless fidelity (wi-fi), related device, and system
CN107925527B (zh) 控制数据分组传送的重试的方法、设备、装置和存储介质
JP6402456B2 (ja) 無線通信ネットワークシステム、無線端末、時刻補正方法、プログラム
JP5998909B2 (ja) メッシュ無線通信ネットワークシステム、無線通信方法、および、無線端末
TWI772574B (zh) 通用序列匯流排裝置及其操作方法
JP2012253728A (ja) 無線通信方法及び装置
JP6607194B2 (ja) 設定装置、設定方法、設定プログラム、通信システム、クライアント装置、及び、サーバ装置
Palattella et al. Performance analysis of the IEEE 802.15. 4 MAC layer
JP2007243834A (ja) 通信システム,通信装置,通信方法,およびコンピュータプログラム
EP3327995A1 (en) System and method for measuring multicast network performance in a wireless building automation network
EP2532146B1 (en) Automatic message generation in wireless communication systems
JP2009188469A (ja) 非同期通信方法、非同期通信システム、並びに非同期通信システムに用いる受信装置および送信装置
JP2006325045A (ja) 受信タイミング設定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200302

R150 Certificate of patent or registration of utility model

Ref document number: 6670851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250