JP6670310B2 - Preparation of synthetic intermediates for the preparation of tetrahydroquinoline derivatives - Google Patents

Preparation of synthetic intermediates for the preparation of tetrahydroquinoline derivatives Download PDF

Info

Publication number
JP6670310B2
JP6670310B2 JP2017528754A JP2017528754A JP6670310B2 JP 6670310 B2 JP6670310 B2 JP 6670310B2 JP 2017528754 A JP2017528754 A JP 2017528754A JP 2017528754 A JP2017528754 A JP 2017528754A JP 6670310 B2 JP6670310 B2 JP 6670310B2
Authority
JP
Japan
Prior art keywords
formula
compound
acid
preparation
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017528754A
Other languages
Japanese (ja)
Other versions
JP2017524742A5 (en
JP2017524742A (en
Inventor
フォード,ジョン
セールデン,ヨハンネス・パウルス・ゲラルドゥス
ルドリュ,アマンディーヌ
Original Assignee
デジマ・ファルマ・ベー・フェー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51429345&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6670310(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by デジマ・ファルマ・ベー・フェー filed Critical デジマ・ファルマ・ベー・フェー
Publication of JP2017524742A publication Critical patent/JP2017524742A/en
Publication of JP2017524742A5 publication Critical patent/JP2017524742A5/ja
Application granted granted Critical
Publication of JP6670310B2 publication Critical patent/JP6670310B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/472Non-condensed isoquinolines, e.g. papaverine
    • A61K31/4725Non-condensed isoquinolines, e.g. papaverine containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/38Nitrogen atoms
    • C07D215/42Nitrogen atoms attached in position 4

Description

本発明は、コレステリル転移タンパク質(CETP)に対して阻害活性を有し、HDLコレステロールレベルを増加させ、LDLコレステロールレベルを減少させる効果を示し、動脈硬化性疾患、高脂血症、脂質異常症等の疾患の処置及び/または予防に使用することができるテトラヒドロキノリン誘導体の調製に使用することができる合成中間体の調製方法に関する。   INDUSTRIAL APPLICABILITY The present invention has an inhibitory activity on cholesteryl transfer protein (CETP), has the effect of increasing HDL cholesterol level and decreasing LDL cholesterol level, The present invention relates to a method for preparing a synthetic intermediate which can be used for preparing a tetrahydroquinoline derivative which can be used for treating and / or preventing a disease of the present invention.

有望な疫学的試験では、低密度リポタンパクコレステロール(LDL−C)レベルと心血管疾患(CVD)リスクとの間に強い関連性があることが示されている[1]。これらの動脈硬化性LDL−Cレベルを減少させるために、後続のスタチン療法を適用することにより、CVD−関連罹患率及び死亡率が顕著に低下する。すなわち、LDL−Cが1mmol/L低下するごとに、CVD事象が22%減少し、かつ全死因死亡率が10%減少すると推定される[2]。これらの優れた利益にもかかわらず、個々の患者及び広範な医療コストの両方に対して大きな影響を及ぼす大きな疾病負担が残存している[3]。患者のこの残存CVDリスクをさらに減少させるために、新しい治療法が求められている。   Promising epidemiological studies have shown a strong association between low density lipoprotein cholesterol (LDL-C) levels and cardiovascular disease (CVD) risk [1]. Applying subsequent statin therapy to reduce these atherosclerotic LDL-C levels significantly reduces CVD-related morbidity and mortality. That is, it is estimated that each 1 mmol / L decrease in LDL-C reduces CVD events by 22% and all-cause mortality by 10% [2]. Despite these excellent benefits, there remains a significant burden of disease that has a significant impact on both individual patients and broad medical costs [3]. New therapies are needed to further reduce this risk of residual CVD in patients.

LDL−Cを減少させ、高密度リポタンパクコレステロール(HDL−C)レベルを上昇させる新たな1つのアプローチは、コレステロールエステル転移タンパク質(CETP)を阻害することである。CETPは、肝臓及び脂肪組織から主として分泌される血漿タンパク質である。CETPは、トリグリセリドとの交換において、コレステリルエステルのHDLからアポリポタンパク質B(Apo B)含有粒子(主にLDL及び極めて低密度のリポタンパク質VLDL)への転移を仲介し、これにより(V)LDLの含有量に有利になるようにHDL中のコレステロール含有量を低下させている。したがって、CETPの阻害は、HDL−C中のコレステリルエステルを保持し、かつ動脈硬化性Apo B画分のコレステロール含有量を減少させると仮定されている。   One new approach to reducing LDL-C and increasing high density lipoprotein cholesterol (HDL-C) levels is to inhibit cholesterol transesterification protein (CETP). CETP is a plasma protein secreted primarily by liver and adipose tissue. CETP mediates the transfer of cholesteryl ester from HDL to apolipoprotein B (Apo B) -containing particles (mainly LDL and very low density lipoprotein VLDL) in exchange for triglycerides, thereby (V) LDL conversion. The cholesterol content in HDL has been reduced to favor the content. Therefore, inhibition of CETP has been postulated to retain cholesteryl esters in HDL-C and reduce the cholesterol content of the atherosclerotic Apo B fraction.

心血管疾患の罹患率の減少におけるCETP阻害の潜在力を支持する証拠があるにもかかわらず、CETP阻害剤の臨床開発は容易ではない。第III相臨床試験へ進行する最初の化合物はトルセトラピブであり、これは有効性を示したが、アトルバスタチンと組み合わせた時に、アトルバスタチン単独と比較して心血管系事象及び死亡が予期できないこと等の安全性への懸念があるために、開発されなかった[4]。   Despite evidence supporting the potential of CETP inhibition in reducing the prevalence of cardiovascular disease, clinical development of CETP inhibitors is not easy. The first compound to progress to phase III clinical trials is torcetrapib, which has shown efficacy but has a greater safety profile when combined with atorvastatin, such as unexpected cardiovascular events and death compared to atorvastatin alone It was not developed due to concerns about gender [4].

第IIb相臨床試験に入った別のCETP阻害剤、ダルセトラピブは、LDL−C濃度に対して最小限の影響しか与えずにHDL−Cを30〜40%増加させたが、トルセトラピブのオフターゲット効果を提示することが認められなかった弱い阻害剤であることが示された[11−13]。近年、ダルセトラピブ開発もまた、この化合物を用いて行われた第III相試験が無益であったために終結された。   Another CETP inhibitor, darcetrapib, which entered phase IIb clinical trials increased HDL-C by 30-40% with minimal effect on LDL-C concentration, while the off-target effect of torcetrapib Were shown to be weak inhibitors [11-13]. In recent years, dalcetrapib development has also been terminated due to the futility of a Phase III study conducted with this compound.

さらに2種のCETP阻害剤、アナセトラピブ及びエバセトラピブは、近年、第III相臨床試験の段階にある。しかしながら、これらのCETP阻害剤の使用には、CETP阻害を得るために使用しなければならない用量が比較的多い、より強い副作用がより多く発生し得るという欠点がある。このことは、患者の肉体的健康及び患者のコンプライアンスの両方に悪影響を及ぼし得る。   Two additional CETP inhibitors, anacetrapib and evasetrapib, are currently in phase III clinical trials. However, the use of these CETP inhibitors has the disadvantage that relatively high doses must be used to obtain CETP inhibition, and more severe side effects can occur. This can have an adverse effect on both the patient's physical health and patient compliance.

本発明者は、強力な効能がありかつ忍容性が良好なCETP−阻害剤及びその医薬組成物を提供することにより、前述の欠点を首尾良く克服した。このCETP−阻害剤は、化合物Aと称されるテトラヒドロキノリン誘導体であり、下記の構造式:   The present inventors have successfully overcome the aforementioned disadvantages by providing potent and well-tolerated CETP-inhibitors and pharmaceutical compositions thereof. This CETP-inhibitor is a tetrahydroquinoline derivative referred to as Compound A and has the following structural formula:

Figure 0006670310
を有する。
Figure 0006670310
Having.

臨床試験は、化合物A(またはその塩)は強力な効能のあるCETP−阻害剤であることを示している。他の公知のCETP−阻害剤に比較して、化合物Aは、ほぼ完全なCETP阻害に到達するために、比較的少ない用量しか必要としない。典型的には、化合物Aを2.5mgの低い投与量での1日1回投与することを繰り返すことは、ほぼ完全なCETP阻害に到達するのに十分であることが既に証明されている。これらは、他のCETP−阻害剤に使用されるべき用量より、かなり低い用量である。さらに、臨床試験はまた、化合物Aの忍容性が良好でありであり、深刻な副作用をもたらさないことも示している。   Clinical trials have shown that Compound A (or a salt thereof) is a potent and potent CETP-inhibitor. Compared to other known CETP-inhibitors, Compound A requires relatively small doses to reach almost complete CETP inhibition. Typically, repeated administration of Compound A once daily at a low dose of 2.5 mg has already been demonstrated to be sufficient to reach almost complete CETP inhibition. These are significantly lower doses than those to be used for other CETP-inhibitors. In addition, clinical trials have also shown that Compound A is well tolerated and does not cause serious side effects.

化合物A等のテトラヒドロキノリン誘導体の調製では、式I:   In the preparation of tetrahydroquinoline derivatives such as compound A, the compounds of formula I:

Figure 0006670310
に従う中間体が使用されている。
Figure 0006670310
The intermediates according to are used.

これらの種類の中間体は、化合物A等のテトラヒドロキノリン誘導体の調製に極めて有用であるが、WO2007/116922に記載されているようなこれらの種類の中間体の現在の調製方法を用いた場合、全体的な収率は比較的低いものとなる。さらに、比較的高価な出発材料及び触媒、例えば、それぞれ(R)−3−アミノバレリアン酸及びパラジウムを使用しなければならない。さらに、現在の調製方法では、残存フッ素による製造器具の腐食の問題がある。   While these types of intermediates are very useful for the preparation of tetrahydroquinoline derivatives such as Compound A, using current methods of preparing these types of intermediates as described in WO2007 / 116922, The overall yield will be relatively low. In addition, relatively expensive starting materials and catalysts, such as (R) -3-aminovaleric acid and palladium, respectively, must be used. Further, the current preparation method has a problem of corrosion of the production tool due to residual fluorine.

従って、化合物A等の、CETP阻害特性を有するテトラヒドロキノリン誘導体のさらに調製するために使用することができる、式Iに従う中間体を調製するための効率的かつ費用効率が良い方法が必要とされている。   Accordingly, there is a need for an efficient and cost-effective method for preparing intermediates according to Formula I that can be used to further prepare tetrahydroquinoline derivatives having CETP inhibiting properties, such as Compound A. I have.

本発明の第1の態様は、式I:   A first aspect of the present invention is a compound of formula I:

Figure 0006670310
の化合物またはその塩の調製方法であって、
(a)式II:
Figure 0006670310
A method for preparing a compound or a salt thereof,
(A) Formula II:

Figure 0006670310
に従う4−アミノベンゾトリフルオリドと、
式III:
Figure 0006670310
4-aminobenzotrifluoride according to
Formula III:

Figure 0006670310
に従うアルデヒド、及び式IV:
Figure 0006670310
And an aldehyde according to formula IV:

Figure 0006670310
に従う化合物とを、溶剤及び任意に1種以上の触媒の存在下で反応させて、式V:
Figure 0006670310
With a compound according to formula V in the presence of a solvent and optionally one or more catalysts,

Figure 0006670310
に従う化合物
(式中、RはHまたはC−Cアルキル、好ましくはCHCHであり、
はH、C−Cアルキルまたは
Figure 0006670310
Wherein R 1 is H or C 1 -C 3 alkyl, preferably CH 2 CH 3 ,
R 2 is H, C 1 -C 3 alkyl or

Figure 0006670310
である。)を形成する工程と、
(b)式Vの化合物を加水分解して式Iの化合物を形成する工程と、を含む、方法に関する。
Figure 0006670310
It is. ), And
(B) hydrolyzing the compound of Formula V to form a compound of Formula I.

本発明の方法を用いることにより、現在、比較的安価な出発材料で、副産物をほとんど生成することなく、かつ良好な収率で、式Iに従う中間化合物を効率的に調製することが可能である。前述のように、これらの化合物は、化合物A等のテトラヒドロキノリン誘導体のさらなる調製に使用することができる。   By using the process of the present invention, it is now possible to efficiently prepare intermediate compounds according to formula I with relatively inexpensive starting materials, little formation of by-products and in good yields . As mentioned above, these compounds can be used for further preparation of tetrahydroquinoline derivatives such as compound A.

本発明に従う方法において、いわゆる三成分ポヴァロフ反応が使用される。この方法の重要な工程は、式V:   In the process according to the invention, a so-called three-component Povarov reaction is used. An important step in this method is that of formula V:

Figure 0006670310
に従ういわゆるポヴァロフ生成物の形成である。この中間体は比較的安価な出発材料を用いて調製することができ、かつ効率的に加水分解して式Iに従う化合物を形成することができる。
Figure 0006670310
Is the formation of the so-called Povarov product. This intermediate can be prepared using relatively inexpensive starting materials and can be efficiently hydrolyzed to form compounds according to Formula I.

従って、本発明の第2の態様は、式Vに従う中間体に関する。この中間体は以前に調製されたことはなかった。   Accordingly, a second aspect of the present invention relates to an intermediate according to formula V. This intermediate has never been prepared before.

本発明の第3の態様は、式Iに従う化合物の調製、特に式I−aに従う2R,4Sエナンチオマーの調製における、式Vに従う中間体の使用に関する。エナンチオマーは化合物Aの調製に使用することができる。   A third aspect of the invention relates to the use of an intermediate according to formula V in the preparation of a compound according to formula I, in particular the preparation of a 2R, 4S enantiomer according to formula Ia. The enantiomer can be used for the preparation of compound A.

Figure 0006670310
Figure 0006670310

従って、本発明の最後の態様は、化合物Aの調製における式Vに従う化合物の使用に関する。   Accordingly, a last aspect of the invention relates to the use of a compound according to formula V in the preparation of compound A.

定義
本明細書に使用される用語「薬学的に許容可能な」は、その従来の意味を有し、過度の毒性、炎症、アレルギー反応なしで、かつ合理的な利益/リスク比に相応する他の問題を複雑化することなく、哺乳動物、特にヒトの組織との接触に適した正しい医学的判断の範囲内にある化合物、材料、組成物、及び/または投与形態を指す。
Definitions As used herein, the term "pharmaceutically acceptable" has its conventional meaning, without undue toxicity, inflammation, allergic reactions, and any other corresponding to a reasonable benefit / risk ratio. The compounds, materials, compositions and / or dosage forms within the scope of sound medical judgment suitable for contact with mammalian, especially human tissue, without complicating the problem of

本明細書に使用される用語「塩」は、その従来の意味を有し、酸付加体及び塩基塩(base salt)を含む。   The term “salt” as used herein has its conventional meaning and includes acid adducts and base salts.

本明細書に使用される用語「処置」は、その従来の意味を有し、治療処置、苦痛緩和処置、及び予防処置を指す。   The term "treatment" as used herein has its conventional meaning and refers to therapeutic, palliative, and prophylactic treatment.

用語「心血管疾患」は、その従来の意味を有し、動脈硬化、末梢血管疾患、高脂血症、混合型脂質異常症βリポタンパク血症、低αリポタンパク血症、高コレステロール血症、高トリグリセリド血症、家族性高コレステロール血症、狭心症、局所貧血、心虚血、脳卒中(stroke)、心筋梗塞、再灌流傷害、血管形成術後の再狭窄、高血圧症、脳梗塞及び脳卒中を含む。   The term “cardiovascular disease” has its conventional meaning, arteriosclerosis, peripheral vascular disease, hyperlipidemia, mixed dyslipidemia β lipoproteinemia, hypoalpha lipoproteinemia, hypercholesterolemia Hypertriglyceridemia, familial hypercholesterolemia, angina, local anemia, cardiac ischemia, stroke, myocardial infarction, reperfusion injury, restenosis after angioplasty, hypertension, cerebral infarction and stroke including.

用語「ハロ」、「ハロゲン原子」または「ハロゲン」は、フッ素、塩素、臭素またはヨウ素を指す。   The terms “halo”, “halogen atom” or “halogen” refer to fluorine, chlorine, bromine or iodine.

本明細書に使用される用語「アルキル」または「アルキル基」は、その従来の意味を有し、1〜10個の炭素原子を有する直鎖のまたは分岐の飽和炭化水素鎖及び3〜10個の炭素原子を有する環状の飽和炭化水素鎖を指す。   As used herein, the term "alkyl" or "alkyl group" has its conventional meaning and refers to a straight or branched saturated hydrocarbon chain having 1 to 10 carbon atoms and 3 to 10 carbon atoms. Refers to a cyclic saturated hydrocarbon chain having the following carbon atoms:

本明細書に使用される用語「C−Cアルキル」は、その従来の意味を有し、1〜3個の炭素原子を有するアルキル基を指す。このようなアルキル基の例として、メチル、エチル、プロピル及びイソプロピルを挙げることができる。 The term “C 1 -C 3 alkyl” as used herein has its conventional meaning and refers to an alkyl group having 1 to 3 carbon atoms. Examples of such alkyl groups include methyl, ethyl, propyl and isopropyl.

テトラヒドロキノリン誘導体の調製方法は、WO2007/116922に記載されている。化合物A等のテトラヒドロキノリン誘導体は上記の方法で調製することができるが、この方法は低収率のものであり、不要な副産物を高レベルで生成するものであった。さらに、(R)−3−アミノバレリアン酸等の高価な出発材料が、この方法では使用された。式Iに従う化合物(上記方法におけるDIAM等)の調製が特に煩雑で費用がかかることが分かった。   Methods for preparing tetrahydroquinoline derivatives are described in WO2007 / 116922. Tetrahydroquinoline derivatives, such as compound A, can be prepared by the methods described above, but with low yields and producing high levels of unwanted by-products. In addition, expensive starting materials such as (R) -3-aminovaleric acid were used in this method. It has been found that the preparation of compounds according to formula I (such as DIAM in the above method) is particularly cumbersome and expensive.

これらの問題を解決するため、式Iに従う化合物を調製するための改良方法が本発明者により開発された。驚くべきことに、式Iに従う化合物を、いわゆる三成分ポヴァロフ反応を用いて調製することができることが見出された。   To solve these problems, an improved method for preparing compounds according to formula I has been developed by the present inventors. Surprisingly, it has been found that compounds according to formula I can be prepared using a so-called three-component Povarov reaction.

ポヴァロフ反応は、cis−2−アルキル−4−アミノ−1,2,3,4−テトラヒドロキノンがアニリン、アルデヒド、及びエナミンの1つの立体選択的工程で形成される三成分反応である(Tetrahedron 2009,65,2721)。この反応の使用はこの文献で報告されているが、薬学的活性成分の調製におけるその適用は貯蔵安定性及び生成物純度に関して懸念があるために制限されている。   The Povarov reaction is a ternary reaction in which cis-2-alkyl-4-amino-1,2,3,4-tetrahydroquinone is formed in one stereoselective step of aniline, aldehyde, and enamine (Tetrahedron 2009). , 65, 2721). The use of this reaction has been reported in this document, but its application in preparing pharmaceutically active ingredients has been limited due to concerns regarding storage stability and product purity.

従って、本発明の第1の態様は、
式I:
Therefore, the first aspect of the present invention is:
Formula I:

Figure 0006670310
の化合物またはその塩の調製する方法であって、
(a)式II:
Figure 0006670310
A method for preparing a compound or a salt thereof, comprising:
(A) Formula II:

Figure 0006670310
に従う4−アミノベンゾトリフルオリドと、
式III:
Figure 0006670310
4-aminobenzotrifluoride according to
Formula III:

Figure 0006670310
に従うアルデヒド及び、式IV:
Figure 0006670310
And an aldehyde according to formula IV:

Figure 0006670310
に従う化合物とを、溶剤及び任意に1種以上の触媒の存在下に反応させて、式V:
Figure 0006670310
With a compound according to formula V in the presence of a solvent and optionally one or more catalysts,

Figure 0006670310
に従う化合物(式中、Rは、HまたはC−Cアルキル、好ましくはCHCHであり、
は、H、C−Cアルキルまたは
Figure 0006670310
Wherein R 1 is H or C 1 -C 3 alkyl, preferably CH 2 CH 3 ,
R 2 is H, C 1 -C 3 alkyl or

Figure 0006670310
である。)を形成する工程と、
(b)式Vの化合物を加水分解して式Iの化合物を形成する工程と、を含む、方法に関する。
Figure 0006670310
It is. ), And
(B) hydrolyzing the compound of Formula V to form a compound of Formula I.

本発明の方法を用いて、現在、比較的安価な出発材料で、多くの不要な副産物を生成することなく、かつ良好な収率で、式Iの化合物を効率的に調製することが可能である。   Using the process of the present invention, it is now possible to efficiently prepare compounds of formula I with relatively inexpensive starting materials, without the production of many unwanted by-products, and in good yields. is there.

化合物Aの調製では、その方法において本発明の化合物(式中、RはCHCHであり、RはHである)の使用が好ましい。このような場合、式IIIに従うアルデヒドはプロピオンアルデヒドであり、式IVに従う化合物はN−ビニルホルムアミドである。 In the preparation of compound A, the use of a compound of the invention (wherein R 1 is CH 2 CH 3 and R 2 is H) in the process is preferred. In such a case, the aldehyde according to formula III is propionaldehyde and the compound according to formula IV is N-vinylformamide.

本発明の方法の工程a)及びb)が行われた後、式Iに従う重要な中間体が得られ、これを化合物A等のテトラヒドロキノリン誘導体のさらなる調製に使用することができる。   After steps a) and b) of the process according to the invention have been carried out, an important intermediate according to formula I is obtained, which can be used for the further preparation of tetrahydroquinoline derivatives such as compound A.

式Iに従う化合物はキラルであるため、式Iの化合物の異なるエナンチオマーを少なくとも部分的に分離または精製することが望ましい。このような分離または精製は当該技術においては周知であり、当業者は、複数の方法を容易に利用して、このような分離または精製を行うことができる。   Because compounds according to Formula I are chiral, it is desirable to at least partially separate or purify the different enantiomers of the compound of Formula I. Such separations or purifications are well-known in the art, and those skilled in the art can easily utilize a plurality of methods to perform such separations or purifications.

異なるエナンチオマーを少なくとも部分的に分離または精製する1つの好ましい方法は、L−酒石酸、またはその誘導体(ジ−p−トルオイル−L−酒石酸等)等のキラル分割剤の使用である。   One preferred method of at least partially separating or purifying the different enantiomers is the use of a chiral resolving agent such as L-tartaric acid, or a derivative thereof (such as di-p-toluoyl-L-tartaric acid).

CETP阻害特性を有するテトラヒドロキノリン誘導体(例えば化合物A)の調製では、式Iに従う化合物の2R,4Sエナンチオマーの使用が必要とされる場合が最も多い。従って、本発明の方法のさらなる工程c)においては、式I−a:   The preparation of tetrahydroquinoline derivatives having CETP inhibitory properties (eg compound A) most often requires the use of the 2R, 4S enantiomer of the compound according to formula I. Thus, in a further step c) of the process of the invention, in formula Ia:

Figure 0006670310
に従う2R,4Sエナンチオマーが他の立体異性体から分離されることが好ましい。
Figure 0006670310
It is preferred that the 2R, 4S enantiomer according to is separated from other stereoisomers.

化合物Aの調製に関して、他の立体異性体から化合物B(WO2007/116922で(2R,4S)−2−エチル−6−トリフルオロエチル−1,2,3,4−テトラヒドロキノリン−4−イルアミンとも称される):。   With respect to the preparation of compound A, compound B ((2R, 4S) -2-ethyl-6-trifluoroethyl-1,2,3,4-tetrahydroquinolin-4-ylamine in WO2007 / 116922) Called) :.

Figure 0006670310
を分離することが好ましい。
Figure 0006670310
Is preferably separated.

式Iに従う化合物の分離または精製によって、式I−aに従う化合物または化合物Bが少なくとも99%鏡像体過剰率(enantiomeric excess)(e.e.)、好ましくは少なくとも99.6%鏡像体過剰率、さらに好ましくは少なくとも99.7%鏡像体過剰率で得られることが好ましい。   Separation or purification of the compound according to formula I results in a compound according to formula Ia or compound B having at least 99% enantiomeric excess (ee), preferably at least 99.6% enantiomeric excess, More preferably, it is preferably obtained with an enantiomeric excess of at least 99.7%.

これらの化合物を得た後、これらを、WO2007/116922に記載されるものと同様の方法を用いることにより反応させて、CETP阻害特性を有するテトラヒドロキノリン誘導体(例えば化合物A)とすることができる。   After obtaining these compounds, they can be reacted by using methods similar to those described in WO2007 / 116922 to give tetrahydroquinoline derivatives having CETP inhibitory properties (eg compound A).

本発明の1つの好ましい実施形態において、式IIIを有するアルデヒドと式IVを有するアミド化合物と式IIを有する4−アミノベンゾトリフルオリドとの間の反応の化学量論は、それぞれ0.5〜5(:)1(:)0.5〜1の範囲にある。   In one preferred embodiment of the invention, the stoichiometry of the reaction between the aldehyde having formula III, the amide compound having formula IV and the 4-aminobenzotrifluoride having formula II is 0.5-5 (:) 1 (:) is in the range of 0.5 to 1.

式Iに従う化合物の収率は、工程a)で使用される溶剤にも依存し得る。使用される溶剤がジクロロメタン、アセトニトリル、酢酸エチル、トルエン、またはこれらの混合物であることが好ましい。RがCHCHであり、かつRがHである場合、工程a)の反応は、ジクロロメタン、アセトニトリル、またはトルエンとジクロロメタンとの混合物で行うことが好ましい。 The yield of compounds according to formula I may also depend on the solvent used in step a). Preferably, the solvent used is dichloromethane, acetonitrile, ethyl acetate, toluene, or a mixture thereof. When R 1 is CH 2 CH 3 and R 2 is H, the reaction of step a) is preferably carried out in dichloromethane, acetonitrile or a mixture of toluene and dichloromethane.

本発明の好ましい実施形態において、本発明の工程a)で使用される触媒が酸、好ましくはブレンステッド酸、またはルイス酸である。   In a preferred embodiment of the invention, the catalyst used in step a) of the invention is an acid, preferably a Bronsted acid, or a Lewis acid.

本発明のさらに好ましい実施態様において、式IIIを有するアルデヒドと式IVを有するアミド化合物と式IIを有する4−アミノベンゾトリフルオリドとの間の反応が、酸触媒の4−トルエンスルホン酸の存在下で行われる。所望の生成物を首尾良くもたらすことができる多くの添加モードがある。同時添加のモードが好ましく、これにより除去が困難な生成物関連不純物の形成を防止することができる。   In a further preferred embodiment of the invention, the reaction between the aldehyde having the formula III and the amide compound having the formula IV and 4-aminobenzotrifluoride having the formula II is carried out in the presence of an acid-catalyzed 4-toluenesulfonic acid. Done in There are many modes of addition that can successfully provide the desired product. A simultaneous addition mode is preferred, which can prevent the formation of product-related impurities that are difficult to remove.

本発明の方法の工程a)において、式IIに従う4−アミノベンゾトリフルオリドと触媒との混合物を、式IVに従う化合物の添加と同時に、式IIIに従うアルデヒドに添加することが好ましい。   In step a) of the process according to the invention, preference is given to adding the mixture of 4-aminobenzotrifluoride according to formula II and the catalyst to the aldehyde according to formula III simultaneously with the addition of the compound according to formula IV.

代替として、式IIIに従うアルデヒド、式IVに従う化合物、及び式IIに従う4−アミノベンゾトリフルオリドを、まず本発明の溶剤中で混合し、その後化合物と触媒とを接触させる。   Alternatively, the aldehyde according to formula III, the compound according to formula IV, and the 4-aminobenzotrifluoride according to formula II are first mixed in a solvent according to the invention, after which the compound is contacted with the catalyst.

代替として、式IIIに従うアルデヒドと式IIに従う4−アミノベンゾトリフルオリドとを、まず本発明の溶剤中で混合し、その後これらと式IVに従う化合物及び本発明の触媒とを接触させる。   Alternatively, the aldehyde according to formula III and the 4-aminobenzotrifluoride according to formula II are first mixed in a solvent according to the invention, after which they are contacted with a compound according to formula IV and a catalyst according to the invention.

式Iに従う化合物の収率及び純度をさらに改善するために、本発明者は、工程a)で形成される式Vの化合物(すなわち、ポヴァロフ生成物)を反応混合物から分離した後に、後続の工程b)を行うことが有益であることを見出した。   In order to further improve the yield and purity of the compounds according to formula I, the present inventors have separated the compounds of formula V formed in step a) (ie the Povarov product) from the reaction mixture, It has been found that performing b) is beneficial.

式Vの化合物は、工程b)の前に、沈殿及び/または濾過手順により分離されることが好ましい。式Vの化合物の反応生成物からの沈殿は、非極性溶剤を該反応混合物に添加することにより行うことができる。非極性溶剤は、ヘプタン、シクロヘキサン、またはこれらの混合物であることが好ましい。   Preferably, the compound of formula V is separated by a precipitation and / or filtration procedure before step b). Precipitation of the compound of formula V from the reaction product can be performed by adding a non-polar solvent to the reaction mixture. Preferably, the non-polar solvent is heptane, cyclohexane, or a mixture thereof.

必要に応じて、式Vの化合物を用いて2段階の沈殿方法により精製を行う。このために、式Vを有する化合物は、第1段階でヘプタン、またはシクロヘキサン、またはこれらの混合物で沈殿され、次いで第2沈殿段階でアセトン、イソプロパノール、酢酸エチル、またはメチルtert−ブチルエーテルで再結晶されることが好ましい。さらに、沈殿及び/または再結晶は、式Vを有する化合物の純度をさらに高めるために行うことができる。   If necessary, purification is carried out with the compound of the formula V by a two-stage precipitation method. To this end, the compound having formula V is precipitated in a first stage with heptane or cyclohexane, or a mixture thereof, and then recrystallized in a second precipitation stage with acetone, isopropanol, ethyl acetate or methyl tert-butyl ether. Preferably. Further, precipitation and / or recrystallization can be performed to further increase the purity of the compound having Formula V.

本発明の方法の工程b)において、式Vを有する化合物は加水分解され、式Iの化合物が形成される。このような加水分解は、式Vの化合物を含む混合物を、水溶性酸、好ましくは塩酸の存在下、45〜80℃の温度で1〜3時間温めることにより行われることが好ましい。   In step b) of the process of the invention, the compound having formula V is hydrolyzed to form a compound of formula I. Such hydrolysis is preferably carried out by warming the mixture containing the compound of formula V in the presence of a water-soluble acid, preferably hydrochloric acid, at a temperature of 45 to 80 ° C for 1 to 3 hours.

本発明の方法の好ましい実施形態において、式Vに従う化合物はアルコール、好ましくはエタノール、及び水溶性酸の存在下で加水分解される。   In a preferred embodiment of the process according to the invention, the compound according to formula V is hydrolyzed in the presence of an alcohol, preferably ethanol, and a water-soluble acid.

式I−aに従う化合物、特に化合物Bは、WO2007/116922に記載されるものと同種の方法を用いることにより、CETP阻害特性を有するテトラヒドロキノリン誘導体(例えば化合物A)の調製にさらに使用されることが好ましい。   Compounds according to formula Ia, in particular compound B, may be further used for the preparation of tetrahydroquinoline derivatives having CETP inhibitory properties (for example compound A) by using a method similar to that described in WO2007 / 116922. Is preferred.

本発明の第2の態様は、式V:   A second aspect of the present invention provides a compound of formula V:

Figure 0006670310
(式中、Rは、H、C−Cアルキル、または
Figure 0006670310
Wherein R 2 is H, C 1 -C 3 alkyl, or

Figure 0006670310
である。)
に従う化合物に関する。
Figure 0006670310
It is. )
According to the invention.

式Vの化合物はいわゆるポヴァロフ化合物であり、以前に合成されたことはない。式Vに従う化合物(式中、RはCHCHであり、RはHである)は、化合物Aの調製において使用するのに極めて効率的であるため、特に好ましい。 The compound of formula V is a so-called Povalov compound and has never been synthesized before. Compounds according to Formula V, wherein R 1 is CH 2 CH 3 and R 2 is H, are particularly preferred because they are extremely efficient for use in preparing Compound A.

本発明の第3の態様は、式I−aに従う化合物の調製、特に化合物Bの調製における、これらの化合物の使用に関する。   A third aspect of the invention relates to the use of these compounds in the preparation of compounds according to formula Ia, in particular in the preparation of compound B.

本発明の最後の態様は、化合物Aの調製における、式Vの化合物の使用に関する。   A last aspect of the invention relates to the use of a compound of formula V in the preparation of compound A.

本発明は、以下の非限定実施例によりさらに説明されるが、これらに限定されるものではない。   The present invention is further described by, but not limited to, the following non-limiting examples.

実施例1:ラセミcis−N−(2−エチル−6−(トリフルオロメチル)−1,2,3,4−テトラヒドロキノリン−4−イル)ホルムアミド(ポヴァロフ生成物)の調製 Example 1: Preparation of racemic cis-N- (2-ethyl-6- (trifluoromethyl) -1,2,3,4-tetrahydroquinolin-4-yl) formamide (Povarov product)

Figure 0006670310
実施例1a)同時添加を用いた、3mol%のトルエンスルホン酸(TsOH)触媒三成分ポヴァロフ反応(50gスケール)
反応器Aに、プロピオンアルデヒド(90g、5当量(eq))及びアセトニトリル(50ml)を添加し、反応器Bにp−トルエンスルホン酸(1.77g、3mol%)、4−トリフルオロメチルアニリン(50g、1当量)及びアセトニトリル(100mL)を添加し、反応器Cに、N−ビニルホルムアミド(26.5g、1.2当量)及びアセトニトリル(100mL、2容量(vols))を添加した。
Figure 0006670310
Example 1a) 3 mol% toluene sulfonic acid (TsOH) catalyzed ternary Povalov reaction using simultaneous addition (50 g scale)
To the reactor A, propionaldehyde (90 g, 5 equivalents (eq)) and acetonitrile (50 ml) were added, and to the reactor B, p-toluenesulfonic acid (1.77 g, 3 mol%), 4-trifluoromethylaniline ( 50 g, 1 eq) and acetonitrile (100 mL) were added and to reactor C was added N-vinylformamide (26.5 g, 1.2 eq) and acetonitrile (100 mL, 2 vols).

反応器B及び反応器Cの内容物を約4時間にわたって反応器Aに同時に添加し、その間反応器Aの内容物の温度を20〜30℃に維持した。添加後、反応器Aの反応混合物を20〜25℃にて16時間撹拌した。その後、混合物を0〜5℃に冷却し、3時間撹拌した。沈殿を濾過し、冷アセトニトリル(100mL)で洗浄した。その後、その固体を40℃にて16時間真空下で乾燥させ、31gのポヴァロフ生成物(収率37%)を得た。   The contents of Reactor B and Reactor C were simultaneously added to Reactor A over a period of about 4 hours, while maintaining the temperature of the contents of Reactor A at 20-30 ° C. After the addition, the reaction mixture in reactor A was stirred at 20-25 <0> C for 16 hours. Thereafter, the mixture was cooled to 0-5 ° C and stirred for 3 hours. The precipitate was filtered and washed with cold acetonitrile (100 mL). Thereafter, the solid was dried under vacuum at 40 ° C. for 16 hours to obtain 31 g of Povarov product (37% yield).

実施例1b)ジクロロメタン中で一晩かけた、2mol%のトルエンスルホン酸(TsOH)触媒三成分ポヴァロフ反応(100gスケール)
4−アミノベンゾトリフルオリド(100g、78mL、0.62mol)を室温でCHCl(200mL)に溶解した。プロピオンアルデヒド(44.7mL、0.62mol)、次いでCHCl(200mL)を添加した。その透明な溶液を室温で1時間撹拌し、イミンの淡黄色溶液を得た。反応混合物をさらにCHCl(300mL)で希釈し、氷上で冷却した。N−ビニルホルムアミド(86.8mL、1.24mol、2.0当量)を上述のように、インサイチュ調製イミン溶液に一度に添加した。TsOH(2.36g、12.4mmol、2mol%)を反応混合物に添加し、この反応混合物を氷上で0℃〜室温にて一晩撹拌した。ヘプタン(700mL)をその懸濁液に添加した。5分後、スラリーをガラスフィルタで吸引濾過した。オフホワイトの結晶を、フィルタ上にてヘプタン(2×200mL)で吸引洗浄した。得られた固体を、ロータリーエバポレータを用いて減圧下50℃で乾燥し、生成物(99g、収率59%)をオフホワイトの固体として得た。液体クロマトグラフィ−質量分析(LCMS)及びH−核磁気共鳴(NMR)により、生成物を確認した。次に、粗固体を高温アセトンから再結晶した。溶解しなかった固体は、濾過により高温アセトン溶液から除去した。得られた透明溶液を5℃で一晩保存した。得られた濃いスラッシュをガラスフィルタで濾過し、ヘプタン(2×200mL)で洗浄した。これにより、52.5gの白色固体が得られた(収率32%)。母液を蒸発させ、イソプロパノール(IPA)(±100mL)から再結晶させ、13.5gの白色固体を得た。両方のバッチを合わせ、66gの収量が得られた(収率39%)。H NMR (300MHz, CDCl) δ 8.40 (s, 1 H), 7.34 (t, 1 H), 7.26 (d, J = 7.7 Hz, 1 H), 6.52 (d, J = 8.4 Hz, 1 H), 5.88 − 5.54 (m, J = 26.6 Hz, 1H), 5.52 − 5.36 (m, 1H), 4.85 − 4.67 (m, J = 16.3, 10.8 Hz, 1 H), 4.14 (s, 1 H), 3.58 − 3.31 (m, 1 H), 2.45 − 2.30 (m, 1 H), 1.80 − 1.36(m, 4H), 1.03 (t, 3 H)。
Example 1b) 2 mol% toluenesulfonic acid (TsOH) catalyzed ternary Povalov reaction (100 g scale) in dichloromethane overnight
4-amino-benzotrifluoride are dissolved (100g, 78mL, 0.62mol) in CH 2 Cl 2 (200mL) at room temperature. Propionaldehyde (44.7mL, 0.62mol), followed by the addition of CH 2 Cl 2 (200mL). The clear solution was stirred at room temperature for 1 hour to give a light yellow solution of the imine. The reaction mixture was further diluted with CH 2 Cl 2 (300mL), and cooled on ice. N-vinylformamide (86.8 mL, 1.24 mol, 2.0 equiv) was added in one portion to the in situ prepared imine solution as described above. TsOH (2.36 g, 12.4 mmol, 2 mol%) was added to the reaction mixture, and the reaction mixture was stirred on ice at 0 ° C. to room temperature overnight. Heptane (700 mL) was added to the suspension. After 5 minutes, the slurry was suction filtered through a glass filter. Off-white crystals were suction washed on the filter with heptane (2 × 200 mL). The obtained solid was dried at 50 ° C. under reduced pressure using a rotary evaporator to obtain a product (99 g, yield 59%) as an off-white solid. The product was confirmed by liquid chromatography-mass spectrometry (LCMS) and 1 H-nuclear magnetic resonance (NMR). Next, the crude solid was recrystallized from hot acetone. Undissolved solids were removed from the hot acetone solution by filtration. The resulting clear solution was stored at 5 ° C. overnight. The resulting thick slush was filtered through a glass filter and washed with heptane (2 × 200 mL). This resulted in 52.5 g of a white solid (32% yield). The mother liquor was evaporated and recrystallized from isopropanol (IPA) (± 100 mL) to give 13.5 g of a white solid. Both batches were combined to give a yield of 66 g (39% yield). 1 H NMR (300 MHz, CDCl 3 ) δ 8.40 (s, 1 H), 7.34 (t, 1 H), 7.26 (d, J = 7.7 Hz, 1 H), 6.52 (D, J = 8.4 Hz, 1H), 5.88-5.54 (m, J = 26.6 Hz, 1H), 5.52-5.36 (m, 1H), 4.85 -4.67 (m, J = 16.3, 10.8 Hz, 1H), 4.14 (s, 1H), 3.58-3.31 (m, 1H), 2.45- 2.30 (m, 1H), 1.80-1.36 (m, 4H), 1.03 (t, 3H).

実施例2:化合物Bの調製
実施例2a)ラセミ2−エチル−6−(トリフルオロメチル)−1,2,3,4−テトラヒドロキノリン−4−アミン(ラセミ−化合物B)
ポヴァロフ生成物(20g、73.5mmmol)と、濃HCl(22.3mL)と、エタノール(60mL)との混合物を50℃で5時間加熱した。30〜40℃に冷却した後、混合物を蒸発させて総容量を60mLとした。その後、混合物を冷却し、ジクロロメタン(160mL)を添加し、次いで6MのNaOH(60mL)で塩基性化しpH12〜13とした。層を分離し、液相をジクロロメタン(40mL)で抽出した。有機層を合わせて水(40mL)で洗浄し、硫酸ナトリウムで乾燥し、蒸発乾固させ、17.6gのラセミ化合物Bを得た(収率95%)。
Example 2 Preparation of Compound B Example 2a) Racemic 2-ethyl-6- (trifluoromethyl) -1,2,3,4-tetrahydroquinolin-4-amine (racemic-Compound B)
A mixture of the Povarov product (20 g, 73.5 mmol), concentrated HCl (22.3 mL), and ethanol (60 mL) was heated at 50 ° C. for 5 hours. After cooling to 30-40 ° C., the mixture was evaporated to a total volume of 60 mL. Thereafter, the mixture was cooled, dichloromethane (160 mL) was added, and then basified with 6 M NaOH (60 mL) to pH 12-13. The layers were separated and the liquid phase was extracted with dichloromethane (40mL). The combined organic layers were washed with water (40 mL), dried over sodium sulfate and evaporated to dryness to give 17.6 g of racemic compound B (95% yield).

実施例2b)ラセミ2−エチル−6−(トリフルオロメチル)−1,2,3,4−テトラヒドロキノリン−4−アミン(ラセミ−化合物B)(アセトニトリル中で、次いで硫酸加水分解が続く)
4−アミノベンゾトリフルオリド(6.3mL、50.0mmol)をCHCN(40mL)に室温(RT)で溶解した。プロピオンアルデヒド(4.3mL、60mmol、1.2当量、4℃で保存)を一度に添加した。温度を25℃に上昇させた。その透明溶液を室温(冷却するため水浴内で)5分間撹拌し、イミンの淡黄色溶液を得た。N−ビニルホルムアミド(4.4mL、63mmol、1.25当量、4℃で保存)をインサイチュ調製イミン溶液に一度で添加し、次いでTsOH(160mg、0.017当量)を添加した。温度を27℃に上昇させた。5分後、沈殿が生成した。混合物を窒素雰囲気下室温で一晩撹拌した。NMR分析により、成分がポヴァロフ生成物に完全に転化されたことを示した。混合物に水(140mL)を添加し、次いでHSO(14mL)を添加し、その混合物を60℃に温めた。0.5時間後、NMRにより、ポヴァロフ生成物がラセミ化合物Bに完全に転化されたことを明らかにした。混合物をトルエン(50mL)で抽出した。水層は、濃NaOH水溶液でpH10に塩基性化された。塩基性の水層をトルエン(200mL)で抽出し、トルエン層を乾燥し(NaSO)、濃縮して、7.3g(60%)の粗2−エチル−6−(トリフルオロメチル)−1,2,3,4−テトラヒドロキノリン−4−アミン(ラセミ化合物B)をNMRによる80〜90%の純度の褐色固体として得た。H NMR (300MHz, CDCl) δ 7.62 (s, 1H), 7.28 (d, 1 H), 6.45 (d, J = 8.4 Hz, 1 H), 4.03 (s, 2 H), 4.00 (s, 1 H), 3.48 − 3.28 (m, J = 2.8 Hz, 1 H), 2.27 − 2.08 (m, 1 H), 1.67 − 1.32 (m, 6 H), 1.00 (t, 3H )。
Example 2b) Racemic 2-ethyl-6- (trifluoromethyl) -1,2,3,4-tetrahydroquinolin-4-amine (racemic compound B) (in acetonitrile followed by sulfuric acid hydrolysis)
It was dissolved at room temperature (RT) with 4-amino-benzotrifluoride (6.3 mL, 50.0 mmol) and CH 3 CN (40mL). Propionaldehyde (4.3 mL, 60 mmol, 1.2 eq, stored at 4 ° C.) was added in one portion. The temperature was raised to 25C. The clear solution was stirred at room temperature (in a water bath for cooling) for 5 minutes to give a pale yellow solution of the imine. N-vinylformamide (4.4 mL, 63 mmol, 1.25 eq, stored at 4 ° C.) was added in one portion to the in situ prepared imine solution, followed by TsOH (160 mg, 0.017 eq). The temperature was raised to 27C. After 5 minutes, a precipitate had formed. The mixture was stirred overnight at room temperature under a nitrogen atmosphere. NMR analysis indicated that the components had been completely converted to the Povarov product. Water (140 mL) was added to the mixture, followed by H 2 SO 4 (14 mL) and the mixture was warmed to 60 ° C. After 0.5 hour, NMR revealed that the Povarov product had been completely converted to racemic compound B. The mixture was extracted with toluene (50mL). The aqueous layer was basified to pH 10 with concentrated aqueous NaOH. The basic aqueous layer was extracted with toluene (200 mL), the toluene layer was dried (Na 2 SO 4 ), concentrated and 7.3 g (60%) of crude 2-ethyl-6- (trifluoromethyl) -1,2,3,4-Tetrahydroquinolin-4-amine (racemic compound B) was obtained as a brown solid of 80-90% purity by NMR. 1 H NMR (300 MHz, CDCl 3 ) δ 7.62 (s, 1 H), 7.28 (d, 1 H), 6.45 (d, J = 8.4 Hz, 1 H), 4.03 ( s, 2H), 4.00 (s, 1H), 3.48-3.28 (m, J = 2.8 Hz, 1H), 2.27-2.08 (m, 1H) , 1.67-1.32 (m, 6H), 1.00 (t, 3H).

実施例2c)分割によるエナンチオピュアな(2R,4S)−2−エチル−6−(トリフルオロメチル)−1,2,3,4−テトラヒドロキノリン−4−アミン(化合物B)
ジ−p−トルオイル−L−酒石酸1水和物(134.7g、0.33mol、0.75当量)を粗ラセミ化合物B(108.4g)のメタノール(1L、9V)溶液に添加し、結晶が形成するまで撹拌した。得られたスラッシュを加熱還流し、室温まで冷却させ、その後氷上で冷却した。結晶が生成し、これを濾過により採取し、乾燥させた(99.9g固体)。この材料をメタノール(750mL、7V)から再び結晶化させ、メチルtert−ブチルエーテル(TBME)(200mL、2V)で洗浄し、99.5%鏡像体過剰率を有する、81.6gの化合物Bジトルオイル酒石酸(B−DTTA)塩(収率27%)を得た。
Example 2c) Enantiopure (2R, 4S) -2-ethyl-6- (trifluoromethyl) -1,2,3,4-tetrahydroquinolin-4-amine (Compound B) by resolution
Di-p-toluoyl-L-tartaric acid monohydrate (134.7 g, 0.33 mol, 0.75 eq) was added to a solution of crude racemic compound B (108.4 g) in methanol (1 L, 9 V), and the crystals were added. The mixture was stirred until. The resulting slush was heated to reflux, allowed to cool to room temperature, and then cooled on ice. Crystals formed which were collected by filtration and dried (99.9 g solid). This material was recrystallized from methanol (750 mL, 7V), washed with methyl tert-butyl ether (TBME) (200 mL, 2V) and 81.6 g of compound B ditoluoyltartaric acid with 99.5% enantiomeric excess (B-DTTA) salt (yield 27%) was obtained.

実施例2d)化合物Bジ−p−トルオイル−L−酒石酸塩のメタンスルホン酸塩への転化
10gの化合物B−DTTA塩(94%鏡像体過剰率)に、トルエン(100mL)及び2NのNaOH(100mL)を添加した。混合物を10分間撹拌し、その後層を分離した。水相をトルエン(2×100mL)で抽出した。次に、合わせたトルエン層を塩水で洗浄し、NaSOで乾燥させ、蒸発乾固して乾燥した。これにより褐色油を得、これに3Vのイソプロパノールを添加した。メタンスルホン酸(MsOH)(1mL)を得られた懸濁液に滴下した。まず懸濁液が透明混合液になった。数分後、固体を形成し始めた。これらの固体を採取し、TBME(2×)で洗浄し、乾燥させた。これにより4g(化合物B−TA塩から75%の収率)の化合物BMsOH塩を98.6%の鏡像体過剰率で得た。
Example 2d) Conversion of compound B di-p-toluoyl-L-tartrate to methanesulfonate To 10 g of compound B-DTTA salt (94% enantiomeric excess), toluene (100 mL) and 2N NaOH ( 100 mL) was added. The mixture was stirred for 10 minutes, after which the layers were separated. The aqueous phase was extracted with toluene (2 × 100 mL). Next, the combined toluene layers were washed with brine, dried over Na 2 SO 4 and evaporated to dryness. This gave a brown oil to which 3V of isopropanol was added. Methanesulfonic acid (MsOH) (1 mL) was added dropwise to the resulting suspension. First, the suspension became a clear mixture. After a few minutes, a solid began to form. These solids were collected, washed with TBME (2x) and dried. This gave 4 g (75% yield from compound B-TA salt) of compound BMsOH salt with an enantiomeric excess of 98.6%.

10Vのイソプロパノール(IPA)(40mL)を添加し、得られた懸濁液を5分間加熱還流し、その後室温まで冷却させた。固体が形成され、これを濾過により採取してTBMEで洗浄した。これにより、2.58g(48%の収率)の化合物BMsOH塩を99.7%の鏡像体過剰率で得た。   10 V of isopropanol (IPA) (40 mL) was added and the resulting suspension was heated at reflux for 5 minutes and then allowed to cool to room temperature. A solid formed which was collected by filtration and washed with TBME. This gave 2.58 g (48% yield) of the compound BMsOH salt with an enantiomeric excess of 99.7%.

実施例2e)化合物Bメタンスルホン酸塩の化合物Aへの転化
化合物Bメタンスルホン酸塩を化合物Aに転化するために、WO2007/116922に記載のものと類似の方法を用いた。
Example 2e) Conversion of compound B methanesulfonate to compound A To convert compound B methanesulfonate to compound A, a method similar to that described in WO2007 / 116922 was used.

化合物Aの化学名及び式 Chemical name and formula of compound A

Figure 0006670310
{4−[(2−{[3,5−ビス(トリフルオロメチル)ベンジル][(2R,4S)−1―(エトキシカルボニル)−2−エチル−6−(トリフルオロメチル)−1,2,3,4−テトラヒドロキノリン−4−イル]アミノ}ピリジン−5−イル)オキシ]ブタン酸}
Figure 0006670310
{4-[(2-} [3,5-bis (trifluoromethyl) benzyl] [(2R, 4S) -1- (ethoxycarbonyl) -2-ethyl-6- (trifluoromethyl) -1,2 , 3,4-Tetrahydroquinolin-4-yl] amino {pyridin-5-yl) oxy] butanoic acid

参考文献
1. The Emerging Risk Factors Collaboration. Major lipids, apolipoproteins, and risk of vascular disease. JAMA.2009;302:1993−2000.

2. Cholesterol Treatment Trialists (CTT) Collaboration. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta−analysis of data from 170000 participants in 26 randomised trials. Lancet. 2010;13:1670−1681.

3.Roger VL, Go AS, Lloyd−Jones DM et al.,Heart disease and stroke statistics−2012 Update: A report from the American Heart Association. Circulation. 2012;125:e12−e230.

4.Barter PJ, Caulfield M, Eriksson M et al.,Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357:21009−2122.

5.Kastelein JJP, van Leuven SI, Burgess L et al., Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia. N Engl J Med.2007;356:1620−1630.

6.Nicholls SJ, Tuzcu EM, Brennan DM, Tardif J−C, Nissen SE. Cholesteryl ester transfer protein inhibition, high−density lipoprotein raising, and progression of coronary atherosclerosis. Insights from ILLUSTRATE (Investigation of Lipid Level Management Using Coronary Ultrasound to Assess Reduction of Atherosclerosis by CETP Inhibition and HDL Elevation). Circulation. 2008;118:2506−2514.

7.Vergeer M, Bots ML, van Leuven SI, Basart DC, Sijbrands EJ, Evans GW, Grobbee DE, Visseren FL, Stalenhoef AF, Stroes ES, Kastelein JJP. Cholesteryl ester transfer protein inhibitor torcetrapib and off−target toxicity: pooled analysis of the rating atherosclerotic disease change by imaging with a new CETP inhibitor (RADIANCE) trials. Circulation.2008;118:2515−2522.

8.Forrest MJ, Bloomfield D, Briscoe RJ et al., Torcetrapib−induced blood pressure elevation is independent of CETP inhibition and is accompanied by increasing circulating levels of aldosterone. Br J Pharmacol.2008;154:1465−1473.

9.Simic B, Hermann M, Shaw SG et al., Torcetrapib impairs endothelial function in hypertension. Eur Heart J. 2012;33:1615−1624.

10.Barter PJ, Rye K−A, Beltangady MS et al., Relationship between atorvastatin dose and the harm caused by torcetrapib. J Lipid Res.2012;53:2436−2442.

11.Schwartz GG, Olsson AG, Abt M et al.,Effects of dalcetrapib in patients with recent acute coronary syndrome. N Engl J Med.2012;367:2089−2099.

12.Stein EA, Stroes ES, Steiner G, et al., Safety and tolerability of dalcetrapib. Am J Cardiol. 2009;104:82−91.

13.Luscher TF, Taddei S, Kaski JC, et al., Vascular effects and safety of dalcetrapib in patients with or at risk of coronary heart disease: the dal−VESSEL randomized clinical trial. Eur Heart J. 2012;33:857−65.

14.Krishna R, Bergman AJ, Fallon et al., Multiple−dose pharmacodynamics and pharmacokinetics of anacetrapib, a potent cholesteryl ester transfer protein (CETP) inhibitor, in healthy subjects. Clin Pharmacol Ther.2008;84:679−683.

15.Bloomfield D, Carlson GL, Aditi Sapre BS et al., Efficacy and safety of the cholesteryl ester transfer protein inhibitor anacetrapib as monotherapy and coadministered with atorvastatin in dyslipidemic patients. Am Heart J. 2009;157:352−360.

16.Nicholls SJ, Brewer HB, Kastelein JJP et al., Effects of the CETP inhibitor evacetrapib administered as monotherapy or in combination with statins on HDL and LDL cholesterol. JAMA.2011;306:2099−2109.

17.Am. J. Cardiol., 2014 Jan 1;113(1):76−83: Evaluation of Lipids, Drug Concentration, and Safety Parameters Following Cessation of Treatment With the Cholesteryl Ester Transfer Protein Inhibitor Anacetrapib in Patients With or at High Risk for Coronary Heart Disease. Antonio M. Gotto Jr. et al.

18.Okamoto M, Sakuragi A, Mori Y, Hamada T, Kubota H, Nakamura Y, Higashijima T, Hayashi N. Tanabe Seiyako Co. Ltd. A process for preparing tetrahydroquinoline derivatives WO2007/116922 A1.

19.Govindan CK. An improved process for the preparation of benzyl−N−vinyl carbamate. Org Proc Res Dev. 2002;6:74−77.

20.Am Ende DJ, DeVries KM, Clifford PJ, Brenek SJ. A Calorimetric Investigation To Safely Scale−Up a Curtius Rearrangement of Acryloyl Azide Org Proc Res Dev. 1998;2:382−392.

21.Damon DB, Dugger RW, Magnus−Aryitey G, Ruggeri RB, Wester RT, Tu M, Abramov Y. Synthesis of the CETP Inhibitor Torcetrapib: The Resolution Route and Origin of Stereoselectivity in the Iminium Ion Cyclization. Org Proc Res Dev. 2006;10:464−471.

22.Liu H, Dagousset G, Masson G, Retailleau P, Zhu J.Chiral Bronsted Acid−Catalyzed Enantioselective Three−Component Povarov Reaction. J Am Chem Soc. 2009;131:4598−4599.

23.Dagousset G, Zhu J, Masson G. Chiral Phosphoric Acid−Catalyzed Enantioselective Three−Component Povarov Reaction Using Enecarbamates as Dienophiles: Highly Diastereo− and Enantioselective Synthesis of Substituted 4−Aminotetrahydroquinolines. J Am Chem Soc. 2011;133:14804−14813.

24.Huang D, Xu F, Chen T, Wang Y, Lin X. Highly enantioselective three−component Povarov reaction catalyzed by SPINOL−phosphoric acids. RSC Advances. 2013;3:573.
Reference 1. The Emerging Risk Factors Collation. Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009; 302: 1993-2000.

2. Cholesterol Treatment Trialists (CTT) Collation. Efficiency and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 partsicipants in 26 randomized. Lancet. 2010; 13: 1670-1681.

3. Roger VL, Go AS, Lloyd-Jones DM et al. , Heart disease and stroke statistics-2012 Update: A report from the American Heart Association. Circulation. 2012; 125: e12-e230.

4. Barter PJ, Caulfield M, Ericsson M et al. , Effects of torcetrapib in patents at high risk for colony events. N Engl J Med. 2007; 357: 21009-2122.

5. Kastelein JP, van Leuven SI, Burgess L et al. , Effect of torcetrapib on carotid atherosclerosis in family hypercholesterolemia. N Engl J Med. 2007; 356: 1620-1630.

6. Nichols SJ, Tuzcu EM, Brennan DM, Tardif JC, Nissen SE. Cholesteryl ester transfer protein inhibition, high-density lipoprotein rasing, and progression of coronary atherosclerosis. Insights from ILLUSTRATE (Investigation of Lipid Level Management Using Coronary Ultrasound to Assessment Reduction of ETHERION REDIVATION CERTIFICATION CERTIFICATION Circulation. 2008; 118: 2506-2514.

7. Vergeer M, Bots ML, van Leuven SI, Basart DC, Sijbrands EJ, Evans GW, Grobbee DE, Visseren FL, Stalenhoef, St.JoeS. Cholesteryl ester transfer protein inhibitor torchitrap and off-target toxicity: pooled analysis of the trading tie-gathering tie-gathering disease Circulation. 2008; 118: 2515-2522.

8. Forrest MJ, Bloomfield D, Briscoe RJ et al. , Torcetrapib-induced blood pressure evolution is independence of CETP inhibtion and is is companied by inducing circulating levels. Br J Pharmacol. 2008; 154: 1465-1473.

9. Simic B, Hermann M, Shaw SG et al. , Torcetrapib impairs endothelial function in hypertension. Eur Heart J. 2012; 33: 1615-1624.

10. Barter PJ, Rye KA, Beltagady MS et al. , Relationship between atorvastin dose and the charm caused by torcetrapib. J Lipid Res. 2012; 53: 2436-2442.

11. Schwartz GG, Olsson AG, Abt M et al. , Effects of dalceptrapib in patients with the recent colony syndrome. N Engl J Med. 2012; 367: 2089-2099.

12. Stein EA, Stroes ES, Steiner G, et al. , Safety and tolerability of dalcetrapib. Am J Cardiol. 2009; 104: 82-91.

13. Luscher TF, Taddei S, Kaski JC, et al. , Vascular effects and safety of dalpectrapib in patients with or at risk of coronary heart disease: the dal-VESSEL randomized. Eur Heart J. 2012; 33: 857-65.

14. Krishna R, Bergman AJ, Fallon et al. , Multiple-dose pharmacodynamics and pharmacokinetics of anacetrapib, a potent cholesteryl ester transfer protein (CETP) inhibitor, biotechnology Clin Pharmacol Ther. 2008; 84: 679-683.

15. See Bloomfield D, Carlson GL, Aditi Sapre BS et al. , Efficiency and safety of the cholesteryl ester transfer protein inhibitor inhibitor acetrapib as monotherapy and cooperated with the applicant attained independence in the country Am Heart J. 2009; 157: 352-360.

16. Nicholls SJ, Brewer HB, Kastelein JJP et al. , Effects of the CETP inhibitor evaporator administered as a monotherapy or in combination with statuses on HDL and LDL cholesterol. JAMA. 2011; 306: 2099-2109.

17. Am. J. Cardiol. , 2014 Jan 1; 113 (1): 76-83: Evaluation of Lipids, Drug Concentration, and Safety Parameters Following Cessation of Treatment With the Cholesteryl Ester Transfer Protein Inhibitor Anacetrapib in Patients With or at High Risk for Coronary Heart Disease. Antonia M. Goto Jr. et al.

18. Okamoto M, Sakuragi A, Mori Y, Hamada T, Kubota H, Nakamura Y, Higashijima T, Hayashi N. Tanabe Seiyako Co. Ltd. A process for preparing tetrahydroquinoline derivatives WO2007 / 116922 A1.

19. Govindan CK. An improved process for the preparation of benzyl-N-vinyl carbamate. Org Proc Res Dev. 2002; 6: 74-77.

20. Am Ende DJ, DeVries KM, Clifford PJ, Brenk SJ. A Calorimetric Investigation To Safely Scale-Up a Curtious Rearrangement of Acryl Azide Org Proc Res Dev. 1998; 2: 382-392.

21. Damon DB, Dugger RW, Magnus-Aryity G, Rugeri RB, Wester RT, TuM, Abramov Y. Synthesis of the CETP Inhibitor Torcetrapib: The Resolution Route and Origin of Stereoselectivity in the Minimum Ion Cyclization. Org Proc Res Dev. 2006; 10: 464-471.

22. Liu H, Dagousset G, Masson G, Retailleau P, Zhu J. Chiral Bronsted Acid-Catalyzed Enantioselective Three-Component Povalov Reaction. J Am Chem Soc. 2009; 131: 4598-4599.

23. Dagousset G, Zhu J, Masson G. Chiral Phosphoric Acid-Catalyzed Enantioselective Three-Component Povarov Reaction Using Enecarbamates as Dienophiles: Highly Diastereo- and Enantioselective Synthesis of Substituted 4-Aminotetrahydroquinolines. J Am Chem Soc. 2011; 133: 14804-14813.

24. Huang D, XuF, Chen T, Wang Y, Lin X. Highly enantioselective three-component Povarov reaction cataloged by SPINOL-phosphoric acids. RSC Advances. 2013; 3: 573.

Claims (18)

式I:
Figure 0006670310
ラセミ化合物またはその塩を調製する方法であって、
(a)式II:
Figure 0006670310
に従う4−アミノベンゾトリフルオリドと、
式III:
Figure 0006670310
に従うアルデヒド及び、式IV:
Figure 0006670310
に従う化合物とを、溶剤及び任意に1種以上の触媒の存在下で同時に反応させて、式V:
Figure 0006670310
の化合物(式中、Rは、HまたはC−Cアルキルであり、
は、H、C−Cアルキルまたは
Figure 0006670310
である。)を形成する工程と、
(b)式Vの化合物を加水分解して式(I)の化合物を形成する工程と、
を含み、前記工程(b)の前に、式(V)の化合物を工程(a)の反応混合物から分離する、前記方法。
Formula I:
Figure 0006670310
A method for preparing a racemic compound or a salt thereof,
(A) Formula II:
Figure 0006670310
4-aminobenzotrifluoride according to
Formula III:
Figure 0006670310
And an aldehyde according to formula IV:
Figure 0006670310
Are reacted simultaneously in the presence of a solvent and optionally one or more catalysts, to give a compound of formula V:
Figure 0006670310
Wherein R 1 is H or C 1 -C 3 alkyl;
R 2 is H, C 1 -C 3 alkyl or
Figure 0006670310
It is. ), And
(B) hydrolyzing the compound of formula V to form a compound of formula (I);
Only including, prior to said step (b), separating the compound of formula (V) from the reaction mixture of step (a), the said method.
が、CHCHである、請求項1に記載の方法。 The method of claim 1, wherein R 1 is CH 2 CH 3 . がCHCHであり、RがHである、請求項1に記載の方法。 The method of claim 1, wherein R 1 is CH 2 CH 3 and R 2 is H. 前記使用される溶剤がジクロロメタン、アセトニトリル、酢酸エチル、トルエン、またはこれらの混合物である、請求項1〜3のいずれか1項に記載の方法。   The method according to any one of claims 1 to 3, wherein the solvent used is dichloromethane, acetonitrile, ethyl acetate, toluene, or a mixture thereof. 前記工程a)で使用される触媒が酸である、請求項1〜4のいずれかに記載の方法。   5. The method according to claim 1, wherein the catalyst used in step a) is an acid. 前記工程a)で使用される触媒がブレンステッド酸またはルイス酸である、請求項5に記載の方法。   The method according to claim 5, wherein the catalyst used in step a) is a Bronsted acid or a Lewis acid. 前記触媒が4−トルエンスルホン酸である、請求項5または6に記載の方法。   The method according to claim 5 or 6, wherein the catalyst is 4-toluenesulfonic acid. 前記式Vの化合物を、沈殿及び/または濾過により前記工程a)の反応混合物から分離し、前記沈殿が、非極性溶剤を前記反応混合物に添加することにより実施される、請求項に記載の方法。 Said compound of formula V, by precipitation and / or filtration to separate from the reaction mixture of step a), said precipitation, a nonpolar solvent is carried out by adding to the reaction mixture, according to claim 1 Method. 前記非極性溶剤がヘプタン、シクロヘキサン、またはこれらの混合物である、請求項に記載の方法。 The method according to claim 8 , wherein the non-polar solvent is heptane, cyclohexane, or a mixture thereof. 前記工程b)において、前記式Vの化合物を、水溶性酸の存在下、前記化合物を含む混合物を45℃〜80℃で1〜3時間温めることにより加水分解する、請求項1〜のいずれかに記載の方法。 10. The method according to any one of claims 1 to 9 , wherein in the step b), the compound of the formula V is hydrolyzed by heating a mixture containing the compound at 45C to 80C for 1 to 3 hours in the presence of a water-soluble acid. The method described in Crab. 前記式Vの化合物が、水溶性酸及びアルコールの存在下で加水分解される、請求項10に記載の方法。 The method according to claim 10 , wherein the compound of formula V is hydrolyzed in the presence of a water-soluble acid and an alcohol. 前記酸が塩酸である、請求項10または11に記載の方法。 The method according to claim 10 or 11 , wherein the acid is hydrochloric acid. 前記アルコールがエタノールである、請求項11または12に記載の方法。 The method according to claim 11 or 12 , wherein the alcohol is ethanol. さらなる工程c)において、式I−a:
Figure 0006670310
(式中、RはHまたはC−Cアルキルである。)
に従う、前記ラセミ化合物の2R,4S−エナンチオマーを分離する、請求項1〜13のいずれかに記載の方法。
In a further step c), the formula Ia:
Figure 0006670310
Wherein R 1 is H or C 1 -C 3 alkyl.
According to, 2R of the racemate, separating 4S- enantiomers A method according to any one of claims 1 to 13.
前記式I−aに従うエナンチオマーの分離を、キラル分割剤で分割することにより行う、請求項14に記載の方法。 15. The method of claim 14 , wherein the separation of the enantiomers according to Formula Ia is performed by resolution with a chiral resolving agent. 前記キラル分割剤が、L−酒石酸、またはジ−p−トルオイル−L−酒石酸である、請求項15に記載の方法。 The method according to claim 15 , wherein the chiral resolving agent is L-tartaric acid or di-p-toluoyl-L-tartaric acid. がCHCHである、請求項1416のいずれか1項に記載の方法。 R 1 is CH 2 CH 3, The method according to any one of claims 14-16. 式I−aに従う化合物またはその塩が、下記式の化合物A:
Figure 0006670310
の調製に使用される、請求項1417のいずれか1項に記載の方法。
A compound according to Formula Ia or a salt thereof is a compound A of the following formula:
Figure 0006670310
18. The method according to any one of claims 14 to 17 , which is used for the preparation of
JP2017528754A 2014-08-12 2015-07-29 Preparation of synthetic intermediates for the preparation of tetrahydroquinoline derivatives Active JP6670310B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NLPCT/NL2014/050556 2014-08-12
NL2014050556 2014-08-12
PCT/NL2015/050555 WO2016024858A1 (en) 2014-08-12 2015-07-29 Process for preparing synthetic intermediates for preparing tetrahydroquinoline derivatives

Publications (3)

Publication Number Publication Date
JP2017524742A JP2017524742A (en) 2017-08-31
JP2017524742A5 JP2017524742A5 (en) 2018-09-06
JP6670310B2 true JP6670310B2 (en) 2020-03-18

Family

ID=51429345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017528754A Active JP6670310B2 (en) 2014-08-12 2015-07-29 Preparation of synthetic intermediates for the preparation of tetrahydroquinoline derivatives

Country Status (26)

Country Link
US (1) US10112904B2 (en)
EP (2) EP3180314B1 (en)
JP (1) JP6670310B2 (en)
KR (1) KR102572626B1 (en)
CN (1) CN107108558B (en)
AR (1) AR101509A1 (en)
AU (1) AU2015302407B2 (en)
BR (1) BR112017002873B1 (en)
CA (1) CA2958040C (en)
CL (1) CL2017000367A1 (en)
DK (1) DK3180314T3 (en)
EA (1) EA034357B1 (en)
ES (1) ES2926775T3 (en)
HR (1) HRP20221061T1 (en)
HU (1) HUE059947T2 (en)
IL (1) IL250525B (en)
LT (1) LT3180314T (en)
MA (1) MA40378B1 (en)
MX (1) MX367908B (en)
PL (1) PL3180314T3 (en)
PT (1) PT3180314T (en)
RS (1) RS63575B1 (en)
SG (1) SG11201701077XA (en)
SI (1) SI3180314T1 (en)
TW (1) TWI691490B (en)
WO (1) WO2016024858A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2022231417A1 (en) 2021-03-05 2023-10-19 Newamsterdam Pharma B.V. Obicetrapib for treatment of dementias
IL310115A (en) 2021-07-26 2024-03-01 Newamsterdam Pharma B V Treatment of his hyporesponders
WO2023129595A1 (en) 2021-12-30 2023-07-06 Newamsterdam Pharma B.V. Obicetrapib and sglt2 inhibitor combination
US20240010630A1 (en) * 2022-07-05 2024-01-11 NewAmsterdam Pharma BV (Dutch Registration No. 55971946) Salts of Obicetrapib and Processes for their Manufacture and Intermediates Thereof
WO2024042061A1 (en) 2022-08-22 2024-02-29 Newamsterdam Pharma B.V. Obicetrapib and ezetimibe combination treatment and fixed dose pharmaceutical compositions

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197786B1 (en) * 1998-09-17 2001-03-06 Pfizer Inc 4-Carboxyamino-2-substituted-1,2,3,4-tetrahydroquinolines
RU2259355C2 (en) * 2001-04-30 2005-08-27 Пфайзер Продактс Инк. Method for preparing cetp inhibitor, intermediate substance and method for its preparing
UA90269C2 (en) * 2004-04-02 2010-04-26 Мицубиси Танабе Фарма Корпорейшн Tetrahydroquinoline derivatives and a process for preparing the same
UY30244A1 (en) * 2006-03-30 2007-11-30 Tanabe Seiyaku Co A PROCESS TO PREPARE DERIVATIVES OF TETRAHYDROQUINOLINE
CN101466679A (en) * 2006-03-30 2009-06-24 田边三菱制药株式会社 A process for preparing tetrahydroquinoline derivatives

Also Published As

Publication number Publication date
CN107108558B (en) 2019-11-19
CA2958040A1 (en) 2016-02-18
ES2926775T3 (en) 2022-10-28
EP4083022A1 (en) 2022-11-02
LT3180314T (en) 2022-11-10
TW201613868A (en) 2016-04-16
WO2016024858A1 (en) 2016-02-18
HUE059947T2 (en) 2023-01-28
SG11201701077XA (en) 2017-03-30
MA40378B1 (en) 2022-10-31
DK3180314T3 (en) 2022-08-29
US20170267640A1 (en) 2017-09-21
PL3180314T3 (en) 2022-11-21
MX367908B (en) 2019-09-11
EA034357B1 (en) 2020-01-30
CL2017000367A1 (en) 2018-02-09
BR112017002873A2 (en) 2018-07-17
US10112904B2 (en) 2018-10-30
RS63575B1 (en) 2022-10-31
MA40378A (en) 2017-06-21
MX2017001930A (en) 2018-03-01
HRP20221061T1 (en) 2022-11-25
BR112017002873B1 (en) 2023-03-28
EP3180314A1 (en) 2017-06-21
AU2015302407A1 (en) 2017-03-02
TWI691490B (en) 2020-04-21
IL250525A0 (en) 2017-03-30
CN107108558A (en) 2017-08-29
CA2958040C (en) 2022-09-13
EA201790364A1 (en) 2017-07-31
KR102572626B1 (en) 2023-08-30
IL250525B (en) 2019-08-29
AR101509A1 (en) 2016-12-21
PT3180314T (en) 2022-09-02
EP3180314B1 (en) 2022-06-22
JP2017524742A (en) 2017-08-31
AU2015302407B2 (en) 2019-09-19
KR20170102204A (en) 2017-09-08
SI3180314T1 (en) 2022-11-30
BR112017002873A8 (en) 2022-11-08

Similar Documents

Publication Publication Date Title
JP6670310B2 (en) Preparation of synthetic intermediates for the preparation of tetrahydroquinoline derivatives
US11274084B2 (en) 3-aryl-4-amido-bicyclic [4,5,0] hydroxamic acids as HDAC inhibitors
RU2346945C2 (en) Derivatives of n-heterocyclylmethylmenzamides, obtainment and application in therapy
JP6621329B2 (en) Novel compounds, their synthesis and their use
JP2015536940A (en) Antiviral phosphonate analogs and methods for their production
AU2013326850B2 (en) Novel compounds, their preparation and their uses
AU7315400A (en) Preventives or remedies for myocarditis, dilated cardiomyopathy and cardiac insufficiency containing NF-kappab inhibitors as the active ingredient
EP2185561B1 (en) 1,2,3,4-tetrahydropyrrolo(1,2-a)pyrazine-6-carboxamide and 2,3,4,5-tetrahydropyrrolo(1,2-a)-diazepine-7-carboxamide derivatives, preparation and therapeutic use thereof
JP2010510253A (en) Novel process for the preparation of 4,4 &#39;-(1-methyl-1,2-ethanediyl) -bis- (2,6-piperazinedione)
WO2021243018A1 (en) Substituted indoles with inhibitory activity
JP6526060B2 (en) Substituted triazolobenzodiazepines
WO2019189717A1 (en) Method for producing tetrahydronaphthylurea derivative
TWI466887B (en) Substituted xanthine derivatives
JP7134982B2 (en) Method for producing dialkyldihydronaphthalene derivative
WO2022234069A1 (en) Novel 2-aminooxazoles derivatives and use thereof for treating infectious diseases
WO2019118961A1 (en) Inhibitors for the β-catenin/b-cell lymphoma 9 (bcl9) protein–protein interaction
JP2000191663A (en) Production of condensed pyridazine derivative

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190628

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200228

R150 Certificate of patent or registration of utility model

Ref document number: 6670310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250