JP6669539B2 - Image processing apparatus, operation method of image processing apparatus, and image processing program - Google Patents

Image processing apparatus, operation method of image processing apparatus, and image processing program Download PDF

Info

Publication number
JP6669539B2
JP6669539B2 JP2016048077A JP2016048077A JP6669539B2 JP 6669539 B2 JP6669539 B2 JP 6669539B2 JP 2016048077 A JP2016048077 A JP 2016048077A JP 2016048077 A JP2016048077 A JP 2016048077A JP 6669539 B2 JP6669539 B2 JP 6669539B2
Authority
JP
Japan
Prior art keywords
color
color difference
vector
image
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016048077A
Other languages
Japanese (ja)
Other versions
JP2017158929A (en
Inventor
弘亮 岩根
弘亮 岩根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2016048077A priority Critical patent/JP6669539B2/en
Publication of JP2017158929A publication Critical patent/JP2017158929A/en
Application granted granted Critical
Publication of JP6669539B2 publication Critical patent/JP6669539B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Description

本願発明は、萎縮性胃炎の診断時に用いる画像などを処理する画像処理装置、画像処理装置の作動方法、および画像処理プログラムに関する。   The present invention relates to an image processing apparatus that processes images used for diagnosing atrophic gastritis, an operation method of the image processing apparatus, and an image processing program.

医療分野においては、光源装置、電子内視鏡、およびプロセッサ装置を備える内視鏡システムを用いた診断が広く行われるようになってきた。特に、消化器内視鏡検査を行う病院では内視鏡粘膜切除術または内視鏡粘膜下層剥離術などの内視鏡治療を行う前の確定診断が必要であり、粘膜の変化の状態を観察するために変化を強調した内視鏡画像を観察するニーズが高くなっている。   In the medical field, diagnosis using an endoscope system including a light source device, an electronic endoscope, and a processor device has been widely performed. In particular, hospitals that perform gastrointestinal endoscopy require a definitive diagnosis before performing endoscopic treatment such as endoscopic mucosal resection or endoscopic submucosal dissection, and observe the state of mucosal changes Therefore, there is an increasing need to observe an endoscope image in which changes are emphasized.

変化を強調した観察方法には、光学法、デジタル法、光学デジタル法、および色素散布法などがあるが、表面構造の微細血管の観察や拾い上げには、デジタル法であるFICE(Flexible spectral Imaging Color Enhancement、登録商標)、光学デジタル法であるNBI(Narrow Band imaging、登録商標)、または、色素散布法であるインジゴカミン散布またはルゴール散布などが用いられている。内視鏡は一般的に白色光を用いて撮影するが、FICEは、信号処理を行うことにより分光画像を抽出して、組織の性状または血管などを見やくしている。一方、NBIは光学フィルタを用いて白色光を狭帯域化して照射することによって、生体の反射スペクトル情報を取得して強調表示している。   Optical methods, digital methods, optical digital methods, and dye scattering methods are examples of observation methods that emphasize changes. The digital method FICE (Flexible Spectral Imaging Color) is used for observing and picking up fine blood vessels in the surface structure. Enhancement (registered trademark), NBI (Narrow Band imaging, registered trademark), which is an optical digital method, or indigocamine spraying or Lugol spraying, which is a dye spraying method, are used. An endoscope generally uses white light to capture an image, while FICE extracts a spectral image by performing signal processing to make it easier to see the properties of a tissue or blood vessels. On the other hand, the NBI narrows down and irradiates white light using an optical filter, thereby acquiring and highlighting the reflected spectrum information of the living body.

本来、内視鏡画像は、赤色部分に集中しており色相の範囲が狭い範囲に集中する傾向があり、病変部と正常部の違いが少なく、違いを強調する処理が望まれる。そこで、色相および彩度を強調する色相彩強調型、または色相の違いを強調する色相強調型が提案されている(例えば、特許文献1)。特許文献1では、色相彩強調型では、画像中から輝度の影響を除いた2次元(R-YとB-Y)の色空間において平均色の色ベクトルを求め、その色ベクトルの位置を中心に放射線状に移動させた位置に色相の範囲を広げている。一方、色相協調型では、色ベクトルの位置を中心に色相を広げている。また、色素散布を行った場合と色素散布を行わなかった場合では、色相が異なるため、色素散布を行った場合と色素散布を行わなかった場合で変換するためのテーブルを変えることが開示されている。   Originally, an endoscope image tends to be concentrated in a red part and a hue in a narrow range, and there is little difference between a lesioned part and a normal part, and processing for emphasizing the difference is desired. Therefore, a hue / color enhancement type that emphasizes hue and saturation or a hue enhancement type that emphasizes a difference in hue has been proposed (for example, Patent Document 1). According to Patent Document 1, in the hue emphasis type, a color vector of an average color is obtained in a two-dimensional (RY and BY) color space in which an influence of luminance is removed from an image, and the color vector is radially formed around the position of the color vector. The hue range is expanded to the position where it was moved. On the other hand, in the hue cooperation type, the hue is expanded around the position of the color vector. In addition, it is disclosed that, in the case where the pigment dispersion is performed and the case where the pigment dispersion is not performed, since the hue is different, a table for converting is changed between the case where the pigment dispersion is performed and the case where the pigment dispersion is not performed. I have.

また、狭帯域化した光を用いた内視鏡では、血液中のヘモグロビンに吸収されやすい波長の光を照射して観察するため、粘膜表層の毛細血管と粘膜微細模様が強調された内視鏡画像となる。内視鏡画像の胃粘膜が正常である場合には、表面の粘膜層は厚みを帯びているため、この粘膜層で大部分の光が吸収された後に反射され、正常な胃粘膜下層内の血管は、内視鏡画像上ではほとんど観察することができない。一方、萎縮性胃炎が進行した胃粘膜の場合には、胃腺細胞の減少により粘膜層は薄くなっているため、このような萎縮性胃炎の進行に伴う胃粘膜内部構造の変化は、内視鏡画像上では、白に近い色の粘膜筋板が透けて見えることになり、萎縮粘膜部の色は正常部より退色した色になる。さらに、萎縮粘膜部では、萎縮に伴って粘膜層が薄くなるにつれて、粘膜下層の血管が透見されるようになる。そこで、萎縮性胃炎に基づく胃病変部の診断においては、上記の特徴を利用して、萎縮の進行度の判断や、正常部と胃炎部との境界の判別を行っている。   In addition, an endoscope using narrow-band light irradiates light with a wavelength that is easily absorbed by hemoglobin in the blood for observation. It becomes an image. When the gastric mucosa in the endoscopic image is normal, the surface mucosal layer is thick, so most of the light is absorbed by this mucosal layer and then reflected, Blood vessels can hardly be observed on an endoscopic image. On the other hand, in the case of gastric mucosa in which atrophic gastritis has progressed, the change in the internal structure of the gastric mucosa due to the progression of atrophic gastritis is due to the thinning of the mucosal layer due to the decrease in gastric gland cells. On the image, the mucosal muscularis of a color close to white is seen through, and the color of the atrophic mucosal part is a color faded from the normal part. Further, in the atrophic mucosa, blood vessels in the submucosal layer can be seen through as the mucosal layer becomes thinner with atrophy. Therefore, in the diagnosis of gastric lesions based on atrophic gastritis, the degree of atrophy progression is determined and the boundary between a normal part and a gastritis part is determined using the above characteristics.

特開平1−113018号公報JP-A 1-113018

しかし、狭帯域化した光を用いた内視鏡であっても、萎縮が高度に進んだ場合(例えば、ABC検診でC群やD群に含まれる萎縮の場合)には、内視鏡画像上で上記の特徴を明確に観察することができるが、萎縮があまり進行していない場合(例えば、ABC検診でB群やC群に含まれる萎縮の場合)には、内視鏡画像上での萎縮部と正常部との差は僅かであり、萎縮の進行度の判断や、正常部と胃炎部との境界の判別は困難な場合がある。したがって、内視鏡画像上において上記の特徴による違いを明確にして、正常部と胃炎部の境界を観察できるようにすることが求められている。   However, even with an endoscope using narrow-band light, when atrophy has advanced to a high degree (for example, in the case of atrophy included in group C or group D in an ABC examination), an endoscopic image is obtained. Although the above characteristics can be clearly observed above, when atrophy has not progressed much (for example, in the case of atrophy included in Group B or Group C in an ABC examination), it can be observed on an endoscopic image. The difference between the atrophied part and the normal part is slight, and it may be difficult to determine the degree of atrophy progression and the boundary between the normal part and the gastritis part. Therefore, it is required to clarify the difference between the above features on an endoscopic image so that the boundary between the normal part and the gastritis part can be observed.

本願発明は、萎縮性胃炎による胃の萎縮時に起こり得る粘膜等の色の変化を強調することができる画像処理装置、画像処理装置の作動方法、および画像処理プログラムを提供することを目的とする。   An object of the present invention is to provide an image processing apparatus, an operation method of the image processing apparatus, and an image processing program that can emphasize a change in color of a mucous membrane or the like that can occur when the stomach atrophy due to atrophic gastritis.

本願発明の画像処理装置は、狭帯域画像信号を含む画像信号により構成された内視鏡画像を取得する画像取得部と、輝度及び明度のうちの少なくとも1つの成分の座標軸を含む3次元の色空間において、内視鏡画像の正常部の色を表す基準色から内視鏡画像中の各注目画素の色までの、3次元の色空間における3次元のベクトルである色差ベクトルを取得する色差ベクトル取得部と、この色空間において、各注目画素の色を、注目画素の色差ベクトルと同一方向でありかつ色差ベクトルのベクトル量に強調量を加えたベクトル量の色差拡張ベクトルを基準色に加算した色に変換する色差拡張処理を施す色差拡張部と、色差拡張処理を内視鏡画像の全ての画素に施した正常部と異常部の色差を拡張した内視鏡画像を出力する出力部とを備え、色差ベクトル取得部は、予め定められた複数の基準色のうち内視鏡画像を代表する代表輝度値に対応して、該代表輝度値が高くなるほど輝度値が高い基準色を用い、該代表輝度値が低くなるほど輝度値が低い基準色を用いて色差ベクトルを取得する。
An image processing apparatus according to the present invention includes an image acquisition unit configured to acquire an endoscope image formed by an image signal including a narrow-band image signal, and a three-dimensional color including a coordinate axis of at least one component of luminance and brightness. A color difference vector for obtaining a color difference vector, which is a three-dimensional vector in a three-dimensional color space, from a reference color representing a color of a normal portion of an endoscope image to a color of each pixel of interest in the endoscope image in space; The acquisition unit and, in this color space, the color of each pixel of interest is added to the reference color in the same direction as the color difference vector of the pixel of interest, and the color difference expansion vector of the vector amount obtained by adding the enhancement amount to the vector amount of the color difference vector. A color difference extension unit that performs a color difference extension process for converting to a color, and an output unit that outputs an endoscope image in which the color difference between a normal portion and an abnormal portion obtained by applying the color difference extension process to all pixels of the endoscope image is extended. equipped, color The vector acquisition unit uses a reference color having a higher luminance value as the representative luminance value increases, corresponding to a representative luminance value representing the endoscope image among a plurality of predetermined reference colors, and using the representative luminance value. The color difference vector is obtained using a reference color having a lower luminance value as the value becomes lower .

本願発明の画像処理装置の作動方法は、画像取得部と、色差ベクトル取得部と、色差拡張部と、出力部とを備えた画像処理装置の作動方法であって、画像取得部が、狭帯域画像信号を含む画像信号により生成された内視鏡画像を取得する画像取得ステップと、色差ベクトル取得部が、輝度及び明度のうちの少なくとも1つの成分の座標軸を含む3次元の色空間において、狭帯域画像信号を含む画像信号により生成された内視鏡画像の正常部位の色を表す基準色から内視鏡画像中の各注目画素の色までの、3次元の色空間における3次元のベクトルである色差ベクトルを取得する色差ベクトル取得ステップと、色差拡張部が、この色空間において、各注目画素の色を、注目画素の色差ベクトルと同一方向でありかつ色差ベクトルのベクトル量に強調量を加えたベクトル量の色差拡張ベクトルを基準色に加算した色に変換する色差拡張処理を施す色差拡張ステップと、出力部が、色差拡張処理を内視鏡画像の全ての画素に施した正常部位と異常部位の色差を拡張した内視鏡画像を出力する出力ステップとを備え、色差ベクトル取得ステップは、予め定められた複数の基準色のうち内視鏡画像を代表する代表輝度値に対応して、該代表輝度値が高くなるほど輝度値が高い基準色を用い、該代表輝度値が低くなるほど輝度値が低い基準色を用いて色差ベクトルを取得する。
An operation method of the image processing apparatus according to the present invention is an operation method of an image processing apparatus including an image acquisition unit, a color difference vector acquisition unit, a color difference expansion unit, and an output unit, wherein the image acquisition unit has a narrow band. An image acquisition step of acquiring an endoscope image generated by an image signal including the image signal, and a color difference vector acquisition unit configured to narrow the color difference vector in a three-dimensional color space including a coordinate axis of at least one component of luminance and brightness. A three-dimensional vector in a three-dimensional color space from a reference color representing a color of a normal part of an endoscope image generated by an image signal including a band image signal to a color of each pixel of interest in the endoscope image. a chrominance vector obtaining step of obtaining certain chrominance vector, the color difference expansion unit in the color space, the color of each pixel of interest is the same direction as the color difference vector of the target pixel and the vector quantity of chrominance vector A color difference extension step of performing a color difference extension process of converting a color difference extension vector of a vector amount to which the adjustment is added to a reference color, and the output unit performs the color difference extension process on all pixels of the endoscope image. An output step of outputting an endoscope image in which the color difference between the normal part and the abnormal part is expanded, and the color difference vector obtaining step includes a step of obtaining a representative luminance value representing the endoscope image among a plurality of predetermined reference colors. Correspondingly, a color difference vector is obtained using a reference color having a higher luminance value as the representative luminance value increases, and using a reference color having a lower luminance value as the representative luminance value decreases .

本願発明の画像処理プログラムは、コンピュータを、狭帯域画像信号を含む画像信号により生成された内視鏡画像を取得する画像取得部と、輝度及び明度のうちの少なくとも1つの成分の座標軸を含む3次元の色空間において、内視鏡画像の正常部位の色を表す基準色から内視鏡画像中の各注目画素の色までの、3次元の色空間における3次元のベクトルである色差ベクトルを取得する色差ベクトル取得部と、この色空間において、各注目画素の色を、注目画素の色差ベクトルと同一方向でありかつ色差ベクトルのベクトル量に強調量を加えたベクトル量の色差拡張ベクトルを基準色に加算した色に変換する色差拡張処理を施す色差拡張部と、色差拡張処理を内視鏡画像の全ての画素に施した正常部位と異常部位の色差を拡張した内視鏡画像を出力する出力部として機能させ、色差ベクトル取得部は、予め定められた複数の基準色のうち内視鏡画像を代表する代表輝度値に対応して、該代表輝度値が高くなるほど輝度値が高い基準色を用い、該代表輝度値が低くなるほど輝度値が低い基準色を用いて色差ベクトルを取得する。
The image processing program of the present invention includes a computer, an image obtaining section that obtains an endoscopic image generated by the image signal containing the narrowband image signals, the axes of at least one component of the brightness and contrast 3 In a three-dimensional color space, a color difference vector that is a three-dimensional vector in a three-dimensional color space from a reference color representing a color of a normal part of an endoscope image to a color of each pixel of interest in the endoscope image is obtained. A color difference vector obtaining unit, and in this color space, the color of each pixel of interest is set in the same direction as the color difference vector of the pixel of interest, and the color difference extension vector of the vector amount obtained by adding the enhancement amount to the vector amount of the color difference vector is used as the reference color. A color difference expansion unit that performs color difference expansion processing that converts the color into a color added to the image, and an endoscope image obtained by expanding the color difference between a normal part and an abnormal part obtained by applying the color difference expansion processing to all pixels of the endoscope image To function as an output unit for outputting color difference vector acquisition unit, in response to the representative luminance value representing the out endoscopic image of a plurality of reference color predetermined higher the luminance value surrogate Table luminance value increases Using a reference color, a color difference vector is obtained using a reference color having a lower luminance value as the representative luminance value decreases .

「狭帯域画像信号」とは、狭帯域光を照射した検体を撮像して得られる画像信号をいい、「狭帯域画像信号を含む画像信号」とは、狭帯域光を含む光を照射した検体を撮像して得られる画像信号をいう。   “Narrowband image signal” refers to an image signal obtained by imaging a specimen irradiated with narrowband light, and “image signal including narrowband image signal” refers to a specimen irradiated with light including narrowband light. Means an image signal obtained by imaging the image.

「色空間」は、色を座標で指示することが可能な空間をいい、「輝度を含む色空間」とは、輝度の成分を含む3次元の色空間をいう。輝度とは、明るさの度合いを表す色成分をいう。輝度と同様に明度も明るさの度合いを表す成分として用いられ、色空間には、輝度で表される成分の座標軸を有する色空間と、明度で表される成分の座標軸を有する色空間があるが、本明細書では、輝度および明度はいずれも明るさの度合いを表す成分として区別しないものとする。   The “color space” refers to a space in which colors can be designated by coordinates, and the “color space including luminance” refers to a three-dimensional color space including luminance components. Luminance refers to a color component representing the degree of brightness. Similar to luminance, lightness is used as a component that represents the degree of brightness, and color spaces include a color space having a coordinate axis of a component represented by luminance and a color space having a coordinate axis of a component represented by lightness. However, in this specification, neither luminance nor brightness is distinguished as a component representing the degree of brightness.

「色差ベクトル」とは、3次元の色空間内における基準色の位置を表すベクトルと注目画素の色の位置を表すベクトルとの差を表す3次元のベクトルをいう。   The “color difference vector” refers to a three-dimensional vector representing a difference between a vector representing a position of a reference color in a three-dimensional color space and a vector representing a position of a color of a pixel of interest.

また、色差拡張部は、色差ベクトルのベクトル量が第1の閾値より小さい場合は、色差ベクトルのベクトル量が大きくなるほど強調量を大きくし、色差ベクトルのベクトル量が第1の閾値より大きい場合は、ベクトル量が大きくなるほど強調量を小さくするものが好ましい。Also, the color difference expansion unit increases the emphasis amount as the vector amount of the color difference vector becomes larger when the vector amount of the color difference vector is smaller than the first threshold, and when the vector amount of the color difference vector is larger than the first threshold, It is preferable that the emphasis amount is reduced as the vector amount increases.

また、複数の基準色を予め記憶する記憶部をさらに備えるようにして、色差ベクトル取得部が、記憶部の複数の基準色のうち内視鏡画像を代表する代表輝度値に対応して、代表輝度値が高くなるほど輝度値が高い基準色を用い、代表輝度値が低くなるほど輝度値が低い基準色を用いて色差ベクトルを取得するものであってもよい。   In addition, the image processing apparatus may further include a storage unit that stores a plurality of reference colors in advance, and the color difference vector obtaining unit may include a representative color value corresponding to a representative luminance value representing an endoscope image among the plurality of reference colors in the storage unit. A color difference vector may be obtained by using a reference color having a higher luminance value as the luminance value increases, and using a reference color having a lower luminance value as the representative luminance value decreases.

また、内視鏡画像の代表輝度値は、内視鏡画像の全ての画素の輝度値の平均値であってもよい。   Further, the representative luminance value of the endoscope image may be an average value of luminance values of all pixels of the endoscope image.

また、基準色は、内視鏡画像の全ての画素の平均値とするものであってもよい。   Further, the reference color may be an average value of all pixels of the endoscope image.

また、基準色は、内視鏡画像の各素の色成分のうち第2の閾値を越える少なくとも1つ以上の色成分を持つ画素以外の内視鏡画像の画素から算出されるものが望ましい。 The reference color, which is calculated from at least one or more pixels of the endoscopic image other than the pixels having the color component exceeds a second threshold value of the color components of each picture element of the endoscopic image is desired .

「第2の閾値を越える少なくとも1つ以上の色成分を持つ画素」とは、検体を撮影した時に通常現れる画像の色を越えた色成分であり、例えば、ハレーションなどを起こしている箇所の色成分を持つ画素や、検体以外のものを撮影した時に現れる色成分を持つ画素をいう。   “A pixel having at least one or more color components exceeding the second threshold” is a color component that exceeds the color of an image that normally appears when an image of a sample is taken, for example, a color at a location where halation or the like occurs. A pixel having a component or a pixel having a color component that appears when an image other than the sample is captured.

また、色空間は、Ycc色空間、Lab色空間、Luv色空間、HSB色空間、HSL色空間、およびHSV色空間のうちのいずれであってもよい。   Further, the color space may be any of the Ycc color space, the Lab color space, the Luv color space, the HSB color space, the HSL color space, and the HSV color space.

また、狭帯域画像信号は、血液に対する光吸収が他の帯域より多い狭帯域光で照明された検体を撮像して得られるものが望ましい。   Further, it is desirable that the narrow-band image signal is obtained by imaging a sample illuminated with narrow-band light that absorbs more blood than other bands.

また、狭帯域画像信号は、青色帯域の中で血液に対する光吸収が他の帯域より多い青色狭帯域光で照明された検体を撮像して得られる青色狭帯域画像信号、または緑色帯域の中で血液に対する光吸収が他の帯域より多い緑色狭帯域光で照明された検体を撮像して得られる緑色狭帯域画像信号であってもよい。   Further, the narrow band image signal is a blue narrow band image signal obtained by imaging a sample illuminated with blue narrow band light whose light absorption for blood is larger than other bands in the blue band, or in the green band. It may be a green narrow-band image signal obtained by imaging a sample illuminated with green narrow-band light that absorbs more blood than other bands.

さらに、内視鏡画像は、胃の内壁を撮影した画像である場合には、正常部は正常粘膜であり、異常部は異常粘膜である。   Furthermore, when the endoscopic image is an image of the inner wall of the stomach, the normal part is normal mucosa and the abnormal part is abnormal mucous membrane.

また、本願発明の他の画像処理装置は、狭帯域画像信号を含む画像信号により構成された内視鏡画像を取得する画像取得部と、予め定められた正常部の色を表す複数の基準色のうち内視鏡画像の輝度値の平均値に対応して、平均値が高くなるほど輝度値が高い基準色を用い、平均値が低くなるほど輝度値が低い基準色を用いて、輝度及び明度のうちの少なくとも1つの成分の座標軸を含む3次元の色空間において、基準色から内視鏡画像中の各注目画素の色までの、3次元の色空間における3次元のベクトルである色差ベクトルを取得する色差ベクトル取得部と、色空間において、各注目画素の色を、注目画素の色差ベクトルと同一方向でありかつ色差ベクトルのベクトル量に強調量を加えたベクトル量の色差拡張ベクトルを基準色に加算した色に変換する色差拡張処理を施す色差拡張部と、色差拡張処理を内視鏡画像の全ての画素に施した正常部と異常部の色差を拡張した内視鏡画像を出力する出力部とを備え、色差拡張部は、色空間における異常部の色と基準色との距離を第1の閾値として、色差ベクトルのベクトル量が第1の閾値より小さい場合は、色差ベクトルのベクトル量が大きくなるほど強調量を大きくし、色差ベクトルのベクトル量が第1の閾値より大きい場合は、ベクトル量が大きくなるほど強調量を小さくするものである。
Further, another image processing apparatus of the present invention includes an image acquisition unit that acquires an endoscope image constituted by an image signal including a narrow-band image signal, and a plurality of reference colors representing colors of a predetermined normal part. Of the endoscope image, the higher the average value, the higher the reference value, the lower the average value . In a three-dimensional color space including a coordinate axis of at least one of the components , a color difference vector that is a three-dimensional vector in a three-dimensional color space from a reference color to the color of each pixel of interest in an endoscope image is obtained. A color difference vector obtaining unit, and in the color space, the color of each pixel of interest is set in the same direction as the color difference vector of the pixel of interest, and the color difference extension vector of the vector amount obtained by adding the enhancement amount to the vector amount of the color difference vector is used as the reference color. Add A color difference extension unit that performs a color difference extension process for converting to a color, and an output unit that outputs an endoscope image in which the color difference between a normal portion and an abnormal portion obtained by applying the color difference extension process to all pixels of the endoscope image is extended. The color difference expansion unit includes a distance between the color of the abnormal portion and the reference color in the color space as a first threshold, and when the vector amount of the color difference vector is smaller than the first threshold, the larger the vector amount of the color difference vector, When the enhancement amount is increased and the vector amount of the color difference vector is larger than the first threshold, the enhancement amount is reduced as the vector amount increases.

また、本願発明の他の画像処理装置の作動方法は、画像取得部と、色差ベクトル取得部と、色差拡張部と、出力部とを備えた画像処理装置の作動方法であって、画像取得部が、狭帯域画像信号を含む画像信号により生成された内視鏡画像を取得する画像取得ステップと、色差ベクトル取得部が、予め定められた正常部の色を表す複数の基準色のうち内視鏡画像の輝度値の平均値に対応して、平均値が高くなるほど輝度値が高い基準色を用い、平均値が低くなるほど輝度値が低い基準色を用いて、輝度及び明度のうちの少なくとも1つの成分の座標軸を含む3次元の色空間において、基準色から内視鏡画像中の各注目画素の色までの、3次元の色空間における3次元のベクトルである色差ベクトルを取得する色差ベクトル取得ステップと、色差拡張部が、色空間において、各注目画素の色を、注目画素の色差ベクトルと同一方向でありかつ色差ベクトルのベクトル量に強調量を加えたベクトル量の色差拡張ベクトルを基準色に加算した色に変換する色差拡張処理を施す色差拡張ステップと、出力部が、色差拡張処理を内視鏡画像の全ての画素に施した正常部と異常部の色差を拡張した内視鏡画像を出力する出力ステップとを備え、色差拡張ステップは、色空間における異常部の色と基準色との距離を第1の閾値として、色差ベクトルのベクトル量が第1の閾値より小さい場合は、色差ベクトルのベクトル量が大きくなるほど強調量を大きくし、色差ベクトルのベクトル量が第1の閾値より大きい場合は、ベクトル量が大きくなるほど強調量を小さくするものである。
Also, operating method of another image processing apparatus of the present invention, an image acquisition unit, and a color difference vector acquisition unit, and the color difference extension, a method of operating an image processing apparatus having an output unit, the image acquisition unit An image acquisition step of acquiring an endoscope image generated by an image signal including a narrow-band image signal, and a color difference vector acquisition unit configured to perform endoscopic viewing of a plurality of reference colors representing colors of a predetermined normal part. Corresponding to the average value of the brightness values of the mirror image, at least one of the brightness and the brightness is used by using a reference color having a higher brightness value as the average value becomes higher and using a reference color having a lower brightness value as the average value becomes lower. A color difference vector acquisition for acquiring a color difference vector which is a three-dimensional vector in a three-dimensional color space from a reference color to a color of each pixel of interest in an endoscope image in a three-dimensional color space including coordinate axes of two components. Step and color difference The color portion is a color obtained by adding the color of each pixel of interest in the color space in the same direction as the color difference vector of the pixel of interest, and adding a color difference extension vector of a vector amount obtained by adding a vector amount of the color difference vector to the reference color. A color difference extension step of performing a color difference extension process for converting to an output, and an output unit that outputs an endoscope image in which the color difference between a normal part and an abnormal part obtained by applying the color difference extension process to all pixels of the endoscope image is extended. A color difference expanding step, wherein the distance between the color of the abnormal part in the color space and the reference color is set as a first threshold, and when the vector amount of the color difference vector is smaller than the first threshold, the vector amount of the color difference vector Is increased, the enhancement amount is increased. When the vector amount of the color difference vector is larger than the first threshold, the enhancement amount is decreased as the vector amount increases.

また、本願発明の他の画像処理プログラムは、コンピュータを、狭帯域画像信号を含む画像信号により構成された内視鏡画像を取得する画像取得部と、予め定められた正常部の色を表す複数の基準色のうち内視鏡画像の輝度値の平均値に対応して、平均値が高くなるほど輝度値が高い基準色を用い、平均値が低くなるほど輝度値が低い基準色を用いて、輝度及び明度のうちの少なくとも1つの成分の座標軸を含む3次元の色空間において、基準色から内視鏡画像中の各注目画素の色までの、3次元の色空間における3次元のベクトルである色差ベクトルを取得する色差ベクトル取得部と、色空間において、各注目画素の色を、注目画素の色差ベクトルと同一方向でありかつ色差ベクトルのベクトル量に強調量を加えたベクトル量の色差拡張ベクトルを基準色に加算した色に変換する色差拡張処理を施す色差拡張部と、色差拡張処理を内視鏡画像の全ての画素に施した正常部と異常部の色差を拡張した内視鏡画像を出力する出力部として機能させるための画像処理プログラムであって、色差拡張部は、色空間における異常部の色と基準色との距離を第1の閾値として、色差ベクトルのベクトル量が第1の閾値より小さい場合は、色差ベクトルのベクトル量が大きくなるほど強調量を大きくし、色差ベクトルのベクトル量が第1の閾値より大きい場合は、ベクトル量が大きくなるほど強調量を小さくするものである。
また、本願発明の他の画像処理装置は、狭帯域画像信号を含む画像信号により構成された内視鏡画像を取得する画像取得部と、輝度及び明度のうちの少なくとも1つの成分の座標軸を含む3次元の色空間において、内視鏡画像の正常部の色を表す基準色から内視鏡画像中の各注目画素の色までの、3次元の色空間における3次元のベクトルである色差ベクトルを取得する色差ベクトル取得部と、色空間において、各注目画素の色を、該注目画素の色差ベクトルと同一方向であり、かつ色差ベクトルのベクトル量に強調量を加えたベクトル量の色差拡張ベクトルを基準色に加算した色に変換する色差拡張処理を施す色差拡張部と、色差拡張処理を内視鏡画像の全ての画素に施した正常部と異常部の色差を拡張した内視鏡画像を出力する出力部とを備え、基準色は、内視鏡画像の各画素の色成分のうち第2の閾値を越える少なくとも1つ以上の色成分を持つ画素以外の内視鏡画像の画素の平均値とする。
Further, another image processing program according to the present invention includes a computer, an image acquisition unit that acquires an endoscope image constituted by an image signal including a narrow-band image signal, and a plurality of images representing a predetermined normal part color. According to the average value of the luminance values of the endoscope image among the reference colors, the higher the average value, the higher the luminance value of the reference color, and the lower the average value, the lower the luminance value, the lower the luminance value, using the reference color. And a color difference that is a three-dimensional vector in the three-dimensional color space from the reference color to the color of each pixel of interest in the endoscope image in the three-dimensional color space including the coordinate axis of at least one component of lightness and brightness. A color difference vector acquisition unit for acquiring a vector, and a color difference extension vector of a vector amount in the color space, in which the color of each pixel of interest is in the same direction as the color difference vector of the pixel of interest and the amount of enhancement is added to the vector amount of the color difference vector. A color difference extension unit that performs color difference extension processing that converts the color to a color that has been added to the reference color, and an endoscope image that has extended the color difference between the normal part and the abnormal part in which the color difference extension processing has been applied to all pixels of the endoscope image An image processing program for functioning as an output unit for outputting a color difference vector, wherein the distance between the color of the abnormal part and the reference color in the color space is set as a first threshold, and the vector amount of the color difference vector is set to the first value. If the vector amount of the chrominance vector is larger than the first threshold, the enhancement amount is increased. If the vector amount of the chrominance vector is larger than the first threshold value, the enhancement amount is decreased as the vector amount is increased.
Further, another image processing apparatus according to the present invention includes an image acquisition unit configured to acquire an endoscope image configured by an image signal including a narrowband image signal, and a coordinate axis of at least one component of luminance and brightness. In a three-dimensional color space, a color difference vector which is a three-dimensional vector in a three-dimensional color space from a reference color representing a color of a normal portion of an endoscope image to a color of each pixel of interest in the endoscope image is represented by A color difference vector obtaining unit to obtain, and a color space of the target pixel in the color space in the same direction as the color difference vector of the target pixel, and a color difference extension vector of a vector amount obtained by adding the enhancement amount to the vector amount of the color difference vector. A color difference expansion unit that performs color difference expansion processing to convert to a color added to the reference color, and an endoscope image in which the color difference between the normal part and the abnormal part obtained by applying the color difference expansion processing to all pixels of the endoscope image is output Output section and It includes reference color is the average value of the pixel of at least one endoscopic image other than the pixels having the color component exceeds a second threshold value of the color component of each pixel of the endoscopic image.

「異常部の色」とは、異常部に現れる可能性が高い色をいい、異常部を代表する色をいう。例えば、異常部に現れる頻度が最も高い色であってもよいし、異常部の色を平均した色であってもよい。   The “color of the abnormal part” refers to a color that is likely to appear in the abnormal part, and is a color that represents the abnormal part. For example, the color that appears most frequently in the abnormal portion may be used, or the color of the abnormal portion may be averaged.

「色空間における異常部の色と基準色との距離」とは、色空間内で求めた基準色と異常部の色の差分ベクトルのベクトル量をいう。   The “distance between the color of the abnormal part in the color space and the reference color” refers to the vector amount of the difference vector between the reference color and the color of the abnormal part obtained in the color space.

本願発明によれば、狭帯域画像信号を含む画像信号により構成された内視鏡画像の各注目画素の色を、輝度を含む色空間において、正常部の色を表す基準色と各注目画素の色の色差を表す色差ベクトルの方向に色差を強調することで、たとえば萎縮性胃炎による胃の萎縮時に起こり得る粘膜等の異常部の色と正常部との色の違いを、輝度の違いも考慮して強調することができる。   According to the present invention, the color of each target pixel of an endoscope image formed by an image signal including a narrow-band image signal is defined as a reference color representing a normal part color and a target color of each target pixel in a color space including luminance. By emphasizing the color difference in the direction of the color difference vector representing the color difference of the color, the difference in color between an abnormal part such as a mucous membrane and a normal part, which may occur when the stomach is atrophied due to atrophic gastritis, and the difference in luminance are taken into account. Can be emphasized.

内視鏡システムの外観図。FIG. 1 is an external view of an endoscope system. 第1の実施形態の内視鏡システムの機能を示すブロック図。FIG. 2 is a block diagram illustrating functions of the endoscope system according to the first embodiment. 白色光の分光強度を示すグラフ。5 is a graph showing the spectral intensity of white light. 特殊光の分光強度を示すグラフ。4 is a graph showing the spectral intensity of special light. 異常領域強調部の内部構成を示すブロック図。FIG. 3 is a block diagram illustrating an internal configuration of an abnormal region emphasis unit. 輝度の成分の軸を持つ色空間での色差強調を説明するための図。FIG. 9 is a diagram for explaining color difference enhancement in a color space having a luminance component axis. 色差ベクトルのベクトル量と強調量の関係を示す図。FIG. 7 is a diagram illustrating a relationship between a vector amount of a color difference vector and an enhancement amount. 色空間内での異常部の色差強調と出血部の色差強調の違いを説明するための図。FIG. 7 is a diagram for explaining a difference between color difference enhancement of an abnormal part and color difference enhancement of a bleeding part in a color space. 色空間内での異常部の色差強調と正常部に近い色の色差強調の違いを説明するための図。FIG. 7 is a diagram for explaining a difference between color difference enhancement of an abnormal part and color difference enhancement of a color close to a normal part in a color space. 萎縮性胃炎の診断の流れを示すフローチャート。The flowchart which shows the flow of a diagnosis of atrophic gastritis. 第2の実施形態の内視鏡システムの機能を示すブロック図。FIG. 9 is a block diagram illustrating functions of the endoscope system according to the second embodiment. 光源の波長を示すグラフ。4 is a graph showing a wavelength of a light source.

図1に示すように、第1の実施形態の内視鏡システム10は、内視鏡12と、ユニバーサルコード13と、光源装置14と、プロセッサ装置16と、モニタ18と、入力装置20とを有する。内視鏡12は、ユニバーサルコード13を介して、光源装置14と光学的に接続されるとともに、プロセッサ装置16と電気的に接続される。内視鏡12は、検体内に挿入される挿入部21と、挿入部の基端部分に設けられた操作部22と、挿入部21の先端側に設けられる湾曲部23および先端部24を有している。操作部22のアングルノブ22aを操作することにより、湾曲部23は湾曲動作する。この湾曲動作に伴って、先端部24が所望の方向に向けられる。   As shown in FIG. 1, the endoscope system 10 according to the first embodiment includes an endoscope 12, a universal cord 13, a light source device 14, a processor device 16, a monitor 18, and an input device 20. Have. The endoscope 12 is optically connected to the light source device 14 via the universal cord 13 and is also electrically connected to the processor device 16. The endoscope 12 has an insertion section 21 inserted into a sample, an operation section 22 provided at a base end portion of the insertion section, and a bending section 23 and a distal section 24 provided at a distal end side of the insertion section 21. are doing. By operating the angle knob 22a of the operation section 22, the bending section 23 performs a bending operation. With this bending operation, the distal end portion 24 is directed in a desired direction.

また、操作部22には、アングルノブ22aの他、モード切替スイッチ(モード切替SW)22bと、ズーム操作部22cが設けられている。モード切替スイッチ22bは、通常観察モードと、特殊観察モードの2種類のモード間の切り替え操作に用いられる。通常観察モードは、検体内の照明に白色光を用いるモードである。特殊観察モードは、検体内の照明に青味を帯びた特殊光を用いるモードであり、萎縮性胃炎による胃の萎縮時に起こり得る粘膜の色の変化や血管の透見を強調するモードである。ズーム操作部22cは、内視鏡12内のズーミングレンズ47(図2参照)を駆動させて、検体を拡大させるズーム操作に用いられる。   The operation unit 22 includes a mode changeover switch (mode changeover SW) 22b and a zoom operation unit 22c in addition to the angle knob 22a. The mode switch 22b is used for switching between two types of modes, a normal observation mode and a special observation mode. The normal observation mode is a mode in which white light is used for illumination in the sample. The special observation mode is a mode in which bluish special light is used as illumination in the sample, and is a mode in which a change in the color of the mucous membrane and a see-through of blood vessels that may occur when the stomach atrophy due to atrophic gastritis is emphasized. The zoom operation unit 22c is used for a zoom operation for driving a zoom lens 47 (see FIG. 2) in the endoscope 12 to enlarge the sample.

プロセッサ装置16は、モニタ18および入力装置20と接続される。モニタ18は、画像情報等を表示する。入力装置20は、機能設定等の入力操作を受け付けるユーザーインターフェースとして機能する。なお、プロセッサ装置16には、画像情報等を記録するための外付けの記録部(図示省略)を接続してもよい。   The processor device 16 is connected to the monitor 18 and the input device 20. The monitor 18 displays image information and the like. The input device 20 functions as a user interface that receives input operations such as function settings. Note that an external recording unit (not shown) for recording image information and the like may be connected to the processor device 16.

図2に示すように、光源装置14は、中心波長445nmの青色レーザ光を発する青色レーザ光源(445LD)34と、中心波長405nmの青紫色レーザ光を発する青紫色レーザ光源(405LD)36とを発光源として備えている。これら各光源34、36の半導体発光素子からの発光は、光源制御部40により個別に制御されており、青色レーザ光源34の出射光と、青紫色レーザ光源36の出射光の光量比は変更自在になっている。光源制御部40は、通常観察モードの場合には、主として青色レーザ光源34を駆動させ、青紫色レーザ光をわずかに発光するように制御している。なお、この通常観察モードの場合に、青紫色レーザ光源36を駆動してもよい。ただし、この場合には、青紫色レーザ光源36の発光強度を低く抑えることが好ましい。   As shown in FIG. 2, the light source device 14 includes a blue laser light source (445LD) 34 that emits a blue laser light having a center wavelength of 445 nm and a blue-violet laser light source (405LD) 36 that emits a blue-violet laser light having a center wavelength of 405 nm. It is provided as a light source. Light emission from the semiconductor light emitting elements of these light sources 34 and 36 is individually controlled by the light source control unit 40, and the light amount ratio between the light emitted from the blue laser light source 34 and the light emitted from the blue violet laser light source 36 can be changed. It has become. In the normal observation mode, the light source control unit 40 mainly drives the blue laser light source 34 and controls so as to slightly emit blue-violet laser light. In the case of the normal observation mode, the blue-violet laser light source 36 may be driven. However, in this case, it is preferable to keep the emission intensity of the blue-violet laser light source 36 low.

これに対して、特殊観察モードの場合には、青色レーザ光源34と青紫色レーザ光源36の両方を駆動させるとともに、青色レーザ光の発光比率を青紫色レーザ光の発光比率よりも大きくなるように制御している。なお、青色レーザ光または青紫色レーザ光の半値幅は±10nm程度にすることが好ましい。また、青色レーザ光源34および青紫色レーザ光源36は、ブロードエリア型のInGaN系レーザダイオードが利用でき、また、InGaAsN系レーザダイオードやGaAsN系レーザダイオードを用いることもできる。また、上記光源として、発光ダイオード等の発光体を用いた構成としてもよい。   On the other hand, in the special observation mode, both the blue laser light source 34 and the blue-violet laser light source 36 are driven, and the emission ratio of the blue laser light is set to be larger than the emission ratio of the blue-violet laser light. Controlling. Note that the half width of the blue laser light or the blue-violet laser light is preferably set to about ± 10 nm. As the blue laser light source 34 and the blue-violet laser light source 36, a broad-area InGaN-based laser diode can be used, and an InGaAsN-based laser diode or a GaAsN-based laser diode can also be used. Further, a configuration using a light emitting body such as a light emitting diode may be used as the light source.

これら各光源34、36から出射されるレーザ光は、集光レンズ、光ファイバ、合波器などの光学部材(いずれも図示せず)を介して、ライトガイド(LG)41に入射する。ライトガイド41は、光源装置14、内視鏡12、およびユニバーサルコード(内視鏡12と光源装置14とを接続するためのコード)13内に内蔵されている。中心波長445nmの青色レーザ光または中心波長405nmの青紫色レーザ光は、ライトガイド41を介して、内視鏡12の先端部24まで伝搬される。なお、ライトガイド41としては、マルチモードファイバを使用することができる。一例として、コア径105μm、クラッド径125μm、外皮となる保護層を含めた径がφ0.3〜0.5mmの細径なファイバケーブルを使用することができる。   The laser light emitted from each of the light sources 34 and 36 is incident on a light guide (LG) 41 via an optical member (neither is shown) such as a condenser lens, an optical fiber, and a multiplexer. The light guide 41 is incorporated in the light source device 14, the endoscope 12, and the universal cord (cord for connecting the endoscope 12 and the light source device 14) 13. The blue laser light having a center wavelength of 445 nm or the blue-violet laser light having a center wavelength of 405 nm is transmitted to the distal end portion 24 of the endoscope 12 via the light guide 41. Note that a multimode fiber can be used as the light guide 41. As an example, a thin fiber cable having a core diameter of 105 μm, a cladding diameter of 125 μm, and a diameter of 0.3 to 0.5 mm including a protective layer serving as an outer cover can be used.

このような青色レーザ光および青紫色レーザ光による青色狭帯域光は、粘膜内の吸光物質、具体的には、消化器に多く含まれる血液(特に、ヘモグロビン)に対する吸収が大きく、特殊観察モードで撮影した時に正常な粘膜領域と萎縮粘膜領域の差が大きくなる。   Such blue narrow-band light by the blue laser light and the blue-violet laser light has a large absorption for light-absorbing substances in the mucous membrane, specifically, blood (particularly, hemoglobin) contained in a large amount in the digestive tract, and in the special observation mode. When photographed, the difference between the normal mucosal area and the atrophic mucosal area increases.

内視鏡12の先端部24は照明光学系24aと撮像光学系24bを有している。照明光学系24aには、ライトガイド41からの中心波長445nmの青色レーザ光または中心波長405nmの青紫色レーザ光が入射する蛍光体44と、照明レンズ45が設けられている。蛍光体44に、青色レーザ光が照射されることで、蛍光体44から蛍光が発せられる。また、一部の青色レーザ光は、そのまま蛍光体44を透過する。青紫色レーザ光は、蛍光体44を励起させることなく透過する。蛍光体44を出射した光は、照明レンズ45を介して、検体内に照射される。   The distal end portion 24 of the endoscope 12 has an illumination optical system 24a and an imaging optical system 24b. The illumination optical system 24a is provided with a phosphor 44 to which a blue laser beam having a center wavelength of 445 nm or a blue-violet laser beam having a center wavelength of 405 nm from the light guide 41 is incident, and an illumination lens 45. When the phosphor 44 is irradiated with the blue laser light, the phosphor 44 emits fluorescence. Some blue laser light passes through the phosphor 44 as it is. The blue-violet laser light is transmitted without exciting the phosphor 44. The light emitted from the phosphor 44 is radiated into the sample via the illumination lens 45.

ここで、通常観察モードにおいては、主として青色レーザ光が蛍光体44に入射するため、図3Aに示すような、青色レーザ光、および青色レーザ光により蛍光体44から励起発光する蛍光を合波した白色光が、検体内に照射される。一方、特殊観察モードにおいては、青紫色レーザ光と青色レーザ光の両方が蛍光体44に入射するため、図3Bに示すような、青紫色レーザ光、青色レーザ光、および青色レーザ光により蛍光体44から励起発光する蛍光を合波した特殊光が、検体内に照射される。この特殊観察モードでは、青色成分に発光強度が高い青色レーザ光に加えて、青紫色レーザ光が含まれているため、特殊光は、青色成分を多く含み且つ波長範囲がほぼ可視光全域に及ぶ広帯域光となっている。   Here, in the normal observation mode, mainly blue laser light is incident on the phosphor 44, and therefore, as shown in FIG. 3A, blue laser light and fluorescence excited and emitted from the phosphor 44 by the blue laser light are combined. White light is irradiated into the specimen. On the other hand, in the special observation mode, since both the blue-violet laser light and the blue laser light enter the phosphor 44, the blue-violet laser light, the blue laser light, and the blue laser light as shown in FIG. The special light obtained by multiplexing the fluorescent light excited and emitted from 44 is irradiated into the sample. In this special observation mode, the blue component contains a blue-violet laser beam in addition to the blue laser beam having a high emission intensity, so that the special light contains a large amount of the blue component and the wavelength range covers almost the entire visible light range. It is a broadband light.

なお、蛍光体44は、青色レーザ光の一部を吸収して、緑色〜黄色に励起発光する複数種の蛍光体(例えばYAG(イットリウム・アルミニウム・ガーネット)系蛍光体、或いはBAM(BaMgAl1017)等の蛍光体)を含んで構成されるものを使用することが好ましい。本構成例のように、半導体発光素子を蛍光体44の励起光源として用いれば、高い発光効率で高強度の白色光が得られ、白色光の強度を容易に調整できる上に、白色光の色温度、色度の変化を小さく抑えることができる。 The phosphor 44 absorbs a part of the blue laser light and excites and emits green to yellow light (for example, YAG (yttrium aluminum garnet) -based phosphor, or BAM (BaMgAl 10 O). 17 ) It is preferable to use a material containing a phosphor). When a semiconductor light emitting element is used as an excitation light source for the phosphor 44 as in the present configuration example, high intensity white light can be obtained with high luminous efficiency, the intensity of the white light can be easily adjusted, and the color of the white light can be easily adjusted. Changes in temperature and chromaticity can be kept small.

図2に示すように、内視鏡12の撮像光学系24bは、撮像レンズ46、ズーミングレンズ47、撮像センサ48を有している。検体からの反射光は、撮像レンズ46およびズーミングレンズ47を介して、撮像センサ48に入射する。これにより、撮像センサ48に検体の反射像が結像される。ズーミングレンズ47は、ズーム操作部22cを操作することで、テレ端とワイド端との間を移動する。ズーミングレンズ47がワイド端側に移動すると検体の反射像が縮小する一方で、テレ端側に移動することで、検体の反射像が拡大する。   As shown in FIG. 2, the imaging optical system 24b of the endoscope 12 has an imaging lens 46, a zooming lens 47, and an imaging sensor 48. The reflected light from the specimen enters the imaging sensor 48 via the imaging lens 46 and the zooming lens 47. As a result, a reflected image of the sample is formed on the image sensor 48. The zoom lens 47 moves between the telephoto end and the wide end by operating the zoom operation unit 22c. When the zooming lens 47 moves to the wide end side, the reflection image of the specimen is reduced, and when the zooming lens 47 moves to the tele end side, the reflection image of the specimen is enlarged.

撮像センサ48はカラーのイメージセンサであり、検体の反射像を撮像して画像信号を出力する。なお、撮像センサ48は、CCD(Charge Coupled Device)イメージセンサまたはCMOS(Complementary Metal-Oxide Semiconductor)イメージセンサ等であることが好ましい。本願発明で用いられるイメージセンサは、撮像面にRGBカラーフィルタが設けられたRGBchを有するRGBイメージセンサであり、各chで光電変換をすることによって、R(赤)のカラーフィルタが設けられたR画素からR画像信号を出力し、G(緑)のカラーフィルタが設けられたG画素からG画像信号を出力し、B(青)のカラーフィルタが設けられたB画素からB画像信号を出力する。   The imaging sensor 48 is a color image sensor, and captures a reflected image of the specimen and outputs an image signal. Note that the image sensor 48 is preferably a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal-Oxide Semiconductor) image sensor. The image sensor used in the present invention is an RGB image sensor having RGB channels in which an RGB color filter is provided on an imaging surface, and performs an R, R, and B color filter by performing photoelectric conversion in each channel. An R image signal is output from the pixel, a G image signal is output from a G pixel provided with a G (green) color filter, and a B image signal is output from a B pixel provided with a B (blue) color filter. .

なお、撮像センサ48としては、撮像面にC(シアン)、M(マゼンタ)、Y(イエロー)およびG(緑)のCMYGフィルタを備えたイメージセンサであっても良い。CMYGフィルタを備えたイメージセンサの場合には、CMYGの4色の画像信号から色変換によってRGBの3色の画像信号を得ることができる。この場合には、CMYGの4色の画像信号からRGBの3色の画像信号に色変換する色変換手段を、内視鏡12、光源装置14またはプロセッサ装置16のいずれかに備えている必要がある。   The image sensor 48 may be an image sensor having C (cyan), M (magenta), Y (yellow), and G (green) CMYG filters on the imaging surface. In the case of an image sensor provided with a CMYG filter, RGB three-color image signals can be obtained by color conversion from four CMYG color image signals. In this case, it is necessary to provide any one of the endoscope 12, the light source device 14, and the processor device 16 with a color conversion unit for performing color conversion from the four CMYG image signals to the three RGB image signals. is there.

撮像センサ48から出力される画像信号は、CDS(correlated double sampling)・AGC(Automatic Gain Control)回路50に送信される。CDS・AGC回路50は、アナログ信号である画像信号に相関二重サンプリング(CDS)や自動利得制御(AGC)を行う。CDS・AGC回路50を経た画像信号は、ガンマ変換部51でガンマ変換が施される。これにより、モニタ18などの出力デバイスに適した階調を有する画像信号が得られる。このガンマ変換後の画像信号は、A/D変換器(A/Dコンバータ)52により、デジタル画像信号に変換される。A/D変換されたデジタル画像信号は、プロセッサ装置16に入力される。   The image signal output from the image sensor 48 is transmitted to a CDS (correlated double sampling) / AGC (Automatic Gain Control) circuit 50. The CDS / AGC circuit 50 performs correlated double sampling (CDS) and automatic gain control (AGC) on an image signal that is an analog signal. The image signal that has passed through the CDS / AGC circuit 50 is subjected to gamma conversion by a gamma conversion unit 51. As a result, an image signal having a gradation suitable for an output device such as the monitor 18 is obtained. The image signal after the gamma conversion is converted into a digital image signal by an A / D converter (A / D converter) 52. The A / D-converted digital image signal is input to the processor device 16.

プロセッサ装置16は、受信部54と、画像処理切替部60と、通常光画像処理部62と、特殊光画像処理部64と、画像表示信号生成部66とを備えている。受信部54は内視鏡12からのデジタル画像信号を受信する。この受信部54は、DSP(Digital Signal Processor)56とノイズ除去部58を備えている。DSP56は、デジタル画像信号に対してガンマ補正、色補正処理を行う。ノイズ除去部58は、DSP56でガンマ補正等が施されたデジタル画像信号に対してノイズ除去処理(例えば移動平均法やメディアンフィルタ法等)を施すことによって、デジタル画像信号からノイズを除去する。ノイズが除去されたデジタル画像信号は、画像処理切替部60に送信される。   The processor device 16 includes a receiving unit 54, an image processing switching unit 60, a normal light image processing unit 62, a special light image processing unit 64, and an image display signal generating unit 66. The receiving unit 54 receives a digital image signal from the endoscope 12. The receiving section 54 includes a DSP (Digital Signal Processor) 56 and a noise removing section 58. The DSP 56 performs gamma correction and color correction processing on the digital image signal. The noise removing unit 58 removes noise from the digital image signal by performing a noise removal process (for example, a moving average method, a median filter method, or the like) on the digital image signal that has been subjected to gamma correction or the like by the DSP 56. The digital image signal from which the noise has been removed is transmitted to the image processing switching unit 60.

画像処理切替部60は、モード切替スイッチ22bにより通常観察モードにセットされている場合には、デジタル画像信号を通常光画像処理部62に送信し、特殊観察モードに設定されている場合には、デジタル画像信号を特殊光画像処理部64に送信する。   The image processing switching unit 60 transmits a digital image signal to the normal light image processing unit 62 when the mode is set to the normal observation mode by the mode switching switch 22b, and when the mode is set to the special observation mode, The digital image signal is transmitted to the special light image processing unit 64.

通常光画像処理部62は、画像取得部68と、色彩強調部70と、構造強調部72とを有する。画像取得部68は、入力されたRGB3チャンネルのデジタル画像信号を、それぞれR画像データ、G画像データ、B画像データに割り付けて、RGB画像データを取得する。さらに、RGB画像データは、3×3のマトリックス処理、階調変換処理、3次元LUT処理などの色変換処理を行ったものであってもよい。   The normal light image processing unit 62 includes an image acquisition unit 68, a color enhancement unit 70, and a structure enhancement unit 72. The image acquisition unit 68 acquires RGB image data by allocating the inputted RGB three-channel digital image signals to R image data, G image data, and B image data, respectively. Further, the RGB image data may have been subjected to color conversion processing such as 3 × 3 matrix processing, gradation conversion processing, and three-dimensional LUT processing.

色彩強調部70は、RGB画像データに対して、各種色彩強調処理を施す。構造強調部72は、RGB画像データに対して、空間周波数強調等の構造強調処理を行う。構造強調部72で構造強調処理が施されたRGB画像データは、通常光画像として通常光画像処理部62から画像表示信号生成部66に入力される。   The color emphasizing unit 70 performs various color emphasizing processes on the RGB image data. The structure enhancement unit 72 performs a structure enhancement process such as spatial frequency enhancement on the RGB image data. The RGB image data on which the structure enhancement processing has been performed by the structure enhancement section 72 is input from the normal light image processing section 62 to the image display signal generation section 66 as a normal light image.

特殊光画像処理部64は、画像取得部74と、異常領域強調部77と、構造強調部78とを有する。画像取得部74は、画像取得部68と同様にRGB画像データを取得する。異常領域強調部77は、正常粘膜領域(正常部)と、委縮粘膜または胃癌などの病変部を含む可能性がある異常領域(異常部)の色の差を強調する色差拡張処理を行う。この異常領域強調部77の詳細については後述する。構造強調部78は、色差拡張処理済みのRGB画像データに対して、空間周波数強調等の構造強調処理を行う。構造強調部78で構造強調処理が施されたRGB画像データは、特殊光画像として特殊光画像処理部64から画像表示信号生成部66に入力される。   The special light image processing unit 64 includes an image acquisition unit 74, an abnormal region enhancement unit 77, and a structure enhancement unit 78. The image acquisition unit 74 acquires RGB image data in the same manner as the image acquisition unit 68. The abnormal region emphasizing unit 77 performs a color difference expansion process that emphasizes a color difference between a normal mucosal region (normal portion) and an abnormal region (abnormal portion) that may include a lesion such as atrophied mucosa or gastric cancer. Details of the abnormal area emphasizing unit 77 will be described later. The structure enhancement unit 78 performs a structure enhancement process such as a spatial frequency enhancement on the RGB image data on which the color difference expansion process has been performed. The RGB image data subjected to the structure enhancement processing by the structure enhancement unit 78 is input from the special light image processing unit 64 to the image display signal generation unit 66 as a special light image.

画像表示信号生成部66は、通常光画像処理部62または特殊光画像処理部64から入力された通常光画像または特殊光画像を、モニタ18で表示可能画像として表示するための表示画像信号に変換する。この変換後の表示画像信号をモニタ18に出力し、モニタ18は、表示画像信号を通常光画像または特殊光画像として表示する。   The image display signal generation unit 66 converts the normal light image or the special light image input from the normal light image processing unit 62 or the special light image processing unit 64 into a display image signal for displaying as a displayable image on the monitor 18. I do. The converted display image signal is output to the monitor 18, and the monitor 18 displays the display image signal as a normal light image or a special light image.

図4に示すように、異常領域強調部77は、色空間変換部80と、色差ベクトル取得部82と、色差拡張部84と、色空間逆変換部86、記憶部88とを備えている。内視鏡画像の胃の内壁の胃粘膜が正常部である場合には、正常な胃粘膜下層内の血管は、内視鏡画像上ではほとんど観察することができないが、萎縮粘膜などの異常粘膜(異常部)の場合には、胃腺細胞の減少により粘膜層は薄くなり、白に近い色の粘膜筋板が透けて見えるため異常部の色は正常部より退色した色になる。しかし、胃壁を撮影した内視鏡画像は、赤色部分に集中しており色空間内の狭い範囲に集中する傾向があり、正常部と異常部の色の違いは、熟練した観察者でなければ目視では判別するのは難しい。そこで、正常粘膜の色を基準色として、画像データの各画素の色と基準色の差に応じて色差を拡張する色差拡張処理を施す。   As illustrated in FIG. 4, the abnormal region emphasizing unit 77 includes a color space conversion unit 80, a color difference vector acquisition unit 82, a color difference expansion unit 84, a color space inverse conversion unit 86, and a storage unit 88. When the gastric mucosa on the inner wall of the stomach in the endoscopic image is a normal part, blood vessels in the normal gastric submucosa can hardly be observed on the endoscopic image, but abnormal mucosa such as atrophic mucosa. In the case of (abnormal portion), the mucosal layer becomes thinner due to the decrease in gastric gland cells, and the color of the abnormal portion becomes faded from that of the normal portion because the mucosal muscle plate of a color close to white can be seen through. However, endoscopic images taken of the stomach wall are concentrated in the red part and tend to concentrate in a narrow range in the color space, and the color difference between the normal part and the abnormal part is only for a skilled observer. It is difficult to determine visually. Therefore, a color difference expansion process for expanding the color difference according to the difference between the color of each pixel of the image data and the reference color is performed using the color of the normal mucous membrane as the reference color.

まず、色空間変換部80は、画像取得部74によって取得されたRGB画像データのRGB色空間で表された各画素のR値、G値、B値を、輝度または明度の成分を持つ3次元の色空間の値に変換する。輝度または明度の成分を持つ色空間には、輝度の成分を表すY軸と色差成分を表すCb軸とCr軸を持つYcc色空間、明度の成分を表すL軸と補色の成分を表すa軸とb軸を持つLab色空間、明度の成分を表すL軸と彩度と色相の成分を表すu軸とv軸を持つLuv色空間、色相H・彩度S・明度B(または明度V)の成分の軸からなるHSB色空間(またはHSV色空間)、または、色相H・彩度S・輝度Lの成分の軸からなるHSL色空間があるが、輝度または明度の成分を含む色空間であればいずれの色空間であってもよい。さらに、輝度または明度の成分を表す軸を持たないRGB色空間であってもよい。以下、本実施形態では、輝度または明度の成分を表す軸を持つ色空間に変換した後に色差拡張処理を行う場合について説明する。また、変換後の色空間には、輝度と明度の成分を表す軸を持つものがあるが、以下、輝度と明度を区別することなく、便宜上、輝度として説明する。   First, the color space conversion unit 80 converts the R value, the G value, and the B value of each pixel represented in the RGB color space of the RGB image data acquired by the image acquisition unit 74 into a three-dimensional image having a luminance or brightness component. To the value of the color space. A color space having a luminance or brightness component includes a Y-axis representing a luminance component, a Ycc color space having a Cb axis and a Cr axis representing a color difference component, an L-axis representing a brightness component, and an a-axis representing a complementary color component. A Lab color space having a hue and a b-axis, an L-axis representing a lightness component, a Luv color space having a u-axis and a v-axis representing a saturation and a hue component, a hue H / saturation S / lightness B (or lightness V) There is an HSB color space (or an HSV color space) composed of the axes of the components of the above, or an HSL color space composed of the axes of the components of the hue H, the saturation S, and the luminance L. Any color space may be used. Further, the color space may be an RGB color space having no axis representing a component of luminance or brightness. Hereinafter, in the present embodiment, a case will be described in which color difference expansion processing is performed after conversion to a color space having an axis representing a luminance or brightness component. Some color spaces after the conversion have axes representing the components of luminance and lightness. Hereinafter, the luminance will be described as luminance for convenience without distinguishing between luminance and lightness.

色差ベクトル取得部82は、内視鏡画像の正常部である正常粘膜の色を表す基準色から内視鏡画像中の各注目画素の色までの色の差を、輝度の軸を持つ色空間で、各注目画素の色の位置のベクトルから基準色の位置のベクトルを引いた3次元の色差ベクトルとして取得する。   The color difference vector acquisition unit 82 calculates the color difference between the reference color representing the color of the normal mucous membrane, which is the normal part of the endoscope image, and the color of each pixel of interest in the endoscope image in a color space having a luminance axis. Thus, a three-dimensional color difference vector is obtained by subtracting the vector of the reference color position from the vector of the color position of each pixel of interest.

内視鏡画像全体が明るい画像であるか暗い画像であるかによって、正常粘膜の色は異なる。そこで、基準色として、内視鏡画像の輝度値に応じた複数の基準色を記憶部88に予め記憶しておき、内視鏡画像の輝度に応じた基準色を用いて、基準色と各画素の色の色差ベクトルを取得する。これらの基準色は、過去撮影した内視鏡画像から、内視鏡画像の正常粘膜に統計的に現れる可能性の高い色を、内視鏡画像の様々な輝度値に応じてそれぞれ決定することができる。具体的には、内視鏡画像の輝度値が高い場合には、基準色の輝度値も高くなり、内視鏡画像の輝度値が低い場合には、基準色の輝度値も低くなる。そこで、複数の輝度値に対応して異なる基準色を設定したテーブルを記憶部88に記憶しておき、色差拡張処理の対象となっている内視鏡画像に最も近い輝度値に対応した基準色を取り出すようにする。あるいは、輝度値が高い時の基準色と輝度値が低い時の基準色を記憶しておき、色差拡張処理の対象となっている内視鏡画像の輝度値がその間の輝度値である場合には、基準色は、輝度値が高い時の基準色と輝度値が低い時の基準色を内挿補間して求め、内視鏡画像の輝度値がその範囲外であるときは、輝度値が高い時の基準色と輝度値が低い時の基準色を外挿補間して求めるようにしてもよい。   The color of the normal mucous membrane differs depending on whether the entire endoscopic image is a bright image or a dark image. Therefore, a plurality of reference colors corresponding to the luminance value of the endoscope image are stored in the storage unit 88 in advance as the reference colors, and the reference colors and the respective colors are used by using the reference colors corresponding to the luminance of the endoscope image. Get the color difference vector of the pixel color. These reference colors are to determine colors that are likely to appear statistically on the normal mucous membrane of the endoscopic image from the endoscopic images captured in the past according to various brightness values of the endoscopic image. Can be. Specifically, when the luminance value of the endoscope image is high, the luminance value of the reference color is high, and when the luminance value of the endoscope image is low, the luminance value of the reference color is low. Therefore, a table in which different reference colors are set corresponding to a plurality of brightness values is stored in the storage unit 88, and the reference color corresponding to the brightness value closest to the endoscope image that is the target of the color difference expansion processing is stored. To take out. Alternatively, the reference color when the luminance value is high and the reference color when the luminance value is low are stored, and when the luminance value of the endoscope image that is the target of the color difference expansion process is the luminance value between them. Is obtained by interpolation between the reference color when the luminance value is high and the reference color when the luminance value is low, and when the luminance value of the endoscope image is out of the range, the luminance value is The reference color when the luminance value is high and the reference color when the luminance value is low may be obtained by extrapolation.

また、内視鏡画像の輝度値として、内視鏡画像の全ての画素の輝度を代表する代表輝度値を用いることができる。例えば、内視鏡画像の全ての画素の輝度値の平均値、あるいは、内視鏡画像の全ての画素の輝度値の中央値を代表輝度値としてもよい。   Also, a representative luminance value representing the luminance of all pixels of the endoscope image can be used as the luminance value of the endoscope image. For example, the average value of the luminance values of all the pixels of the endoscope image or the median value of the luminance values of all the pixels of the endoscope image may be used as the representative luminance value.

色差拡張部84は、正常粘膜である正常部と異常粘膜である異常部の違いを明確にするために、輝度の軸を持つ色空間において、各注目画素の色を、色差ベクトル取得部82で取得した各注目画素の色差ベクトルと同一方向であり、かつ、色差ベクトルのベクトル量に強調量を加えたベクトル量の色差拡張ベクトルを基準色に加算した色差強調色に変換して、正常部と異常部の色の差を大きくする。   The color difference expansion unit 84 uses the color difference vector acquisition unit 82 to determine the color of each pixel of interest in a color space having a luminance axis in order to clarify the difference between a normal portion that is a normal mucosa and an abnormal portion that is an abnormal mucosa. The obtained color difference vector of each pixel of interest is in the same direction as the color difference vector, and the color difference expansion vector of the vector amount obtained by adding the enhancement amount to the vector amount of the color difference vector is converted into a color difference enhanced color obtained by adding the reference color to the normal portion. Increase the color difference of the abnormal part.

図5を用いて、輝度(明度)の成分の軸を持つLab色空間での色差強調について具体的に説明する。図5では、L軸が輝度(明度)成分となり、a軸およびb軸が補色の成分になる。Lab色空間における基準色の位置Sと、注目している画素の色の位置がPである場合、色差ベクトルはpである。下式(1)に示すように、色差ベクトルpのベクトル量|p|に対応する強調量dを色差ベクトルpの方向に延ばした位置の色差強調色Qに変更する。このように、Lab色空間内で、基準色と各画素の色との差を表す色差ベクトルと同一方向に基準色と各画素の色の差を拡張することにより、異常部と正常部の違いを自然にかつ明確にすることができる。   The color difference emphasis in the Lab color space having the axis of the luminance (brightness) component will be specifically described with reference to FIG. In FIG. 5, the L axis is a luminance (brightness) component, and the a axis and the b axis are complementary color components. When the position S of the reference color in the Lab color space and the position of the color of the pixel of interest are P, the color difference vector is p. As shown in the following equation (1), the emphasis amount d corresponding to the vector amount | p | of the color difference vector p is changed to the color difference emphasizing color Q extending in the direction of the color difference vector p. In this way, by expanding the color difference between the reference color and each pixel in the same direction as the color difference vector representing the difference between the reference color and the color of each pixel in the Lab color space, the difference between the abnormal part and the normal part is obtained. Can be made natural and clear.

また、基準色に近い色の画素、つまり、正常粘膜に近い色を持つ画素についてはそのままの色を維持するのが好ましいため強調量dを小さくし、異常粘膜の色に近いところは正常粘膜との違いが明確になるように強調量dを大きくすることが好ましい。一方、粘膜の色から大きく外れるところは、出血部または色素散布が行われた部分などの粘膜色ではない可能性が高いため強調は行わない方が好ましい。   In addition, pixels having a color close to the reference color, that is, pixels having a color close to the normal mucous membrane are preferably maintained as they are, so the emphasis amount d is reduced. It is preferable to increase the emphasis amount d so that the difference between the two becomes clear. On the other hand, it is more preferable that no emphasis is performed on a portion that largely deviates from the color of the mucous membrane because it is highly likely that the color is not a mucous membrane color, such as a bleeding part or a part where the pigment is applied.

図6に強調量dとベクトル量|p|の関係を示す一例を示す。図5に示すように、全体に自然に色が変化し、かつ、異常粘膜に現れる色と基準色との違いが明確になるように、異常粘膜に現れる典型的な色と基準色の色差ベクトルpのベクトル量(距離)|p|に近い値を第1の閾値R1として、色差ベクトルpのベクトル量|p|が第1の閾値R1より小さい時は、色差ベクトルpのベクトル量|p|が大きくなるほど強調量dを大きくし、色差ベクトルpのベクトル量|p|が第1の閾値R1より大きい時は、ベクトル量|p|が大きくなるほど強調量dを小さくする。具体的には、各基準色ごとに、色差ベクトルのベクトル量|p|と強調量dに対応関係を定めたルックアップテーブルを予め記憶部88に記憶しておき、基準色Sと色差ベクトルpのベクトル量|p|に応じた強調量dを引き出して、色差拡張処理を施した色を算出する。このように色差ベクトルのベクトル量が第1の閾値R1の付近にあるときに強調量を大きくすることによって、異常粘膜の色と正常粘膜の色(基準色)の色差を拡張して、正常粘膜や通常の粘膜色とは明らかに異なる色は変更しないようにする。これにより、異常部が認識しやすくなり、正常粘膜のような正常部や粘膜以外のものが撮影されている部分の色は本来の色のまま観察することができる。   FIG. 6 shows an example showing the relationship between the enhancement amount d and the vector amount | p |. As shown in FIG. 5, the color difference vector between the typical color and the reference color appearing on the abnormal mucous membrane so that the color changes naturally as a whole and the difference between the color appearing on the abnormal mucous membrane and the reference color becomes clear. When a value close to the vector amount (distance) | p | of p is set as the first threshold value R1 and the vector amount | p | of the color difference vector p is smaller than the first threshold value R1, the vector amount | p | Is larger, the enhancement amount d is increased. When the vector amount | p | of the color difference vector p is larger than the first threshold R1, the enhancement amount d is reduced as the vector amount | p | Specifically, a look-up table that defines the correspondence between the vector amount | p | of the color difference vector and the enhancement amount d is stored in advance in the storage unit 88 for each reference color, and the reference color S and the color difference vector p are stored. Of the emphasis amount d corresponding to the vector amount | p | As described above, by increasing the emphasis amount when the vector amount of the color difference vector is near the first threshold value R1, the color difference between the color of the abnormal mucous membrane and the color of the normal mucous membrane (reference color) is expanded, And do not change colors that are clearly different from the normal mucous membrane color. As a result, the abnormal part can be easily recognized, and the color of the part where a part other than the normal part or the mucous membrane is photographed, such as the normal mucous membrane, can be observed with the original color.

図7A、図7Bを用いて、Lab色空間内の基準色の位置Sと各画素の色の位置との色差ベクトルのベクトル量に応じて強調量を変えたときの変換後の各画素の色差強調色の色空間の位置を説明する。図7AのP1は異常粘膜であると考えられる部分の色の色空間内の位置を示し、異常粘膜に近い色の付近では強調量d1は大きくして色差強調色はQ1にする。一方、図7AのP2は正常粘膜との色差が大きく出血部であると考えられる部分の色の色空間内の位置を示し、通常の粘膜色とは異なる色であるため強調量d2(<d1)は小さくして色差強調色はQ2にする。   7A and 7B, the color difference of each pixel after conversion when the amount of enhancement is changed according to the vector amount of the color difference vector between the position S of the reference color in the Lab color space and the position of the color of each pixel. The position of the color space of the emphasized color will be described. P1 in FIG. 7A indicates the position in the color space of the color of the portion considered to be the abnormal mucous membrane, and near the color close to the abnormal mucous membrane, the enhancement amount d1 is increased and the color difference emphasis color is set to Q1. On the other hand, P2 in FIG. 7A indicates the position in the color space of the color of a part considered to be a bleeding part with a large color difference from the normal mucous membrane, and is a color different from the normal mucous membrane color, so that the enhancement amount d2 (<d1 ) Is reduced and the color difference emphasis color is set to Q2.

図7Aと同様に、図7BのP1は異常粘膜であると考えられる部分の色の色空間内の位置を示し、異常粘膜に近い色の付近では強調量d1は大きくして色差強調色はQ1にする。一方、図7BのP3は正常粘膜に近い色の色空間内の位置を示し、基準色Sとの色差が小さく正常部の色に近い色であるため強調量d3(<d1)を小さくして色差強調色はQ3にする。   Similarly to FIG. 7A, P1 in FIG. 7B indicates the position in the color space of the color of the portion considered to be the abnormal mucous membrane, and near the color close to the abnormal mucosa, the enhancement amount d1 is large and the color difference emphasis color is Q1. To On the other hand, P3 in FIG. 7B indicates a position in the color space of a color close to the normal mucous membrane, and since the color difference from the reference color S is small and close to the color of the normal part, the enhancement amount d3 (<d1) is reduced. The color difference emphasis color is set to Q3.

色空間逆変換部86は、色差拡張部84で得られた色差強調色をRGB画像データに再変換する。さらに、必要に応じて、RGB画像データに対してガンマ変換を施す。これにより、モニタ18などの出力デバイスに適した階調を有する色差強調済みのRGB画像データが得られる。なお、本願発明の出力部は色空間逆変換部86と画像表示信号生成部66で構成される。   The color space inverse conversion unit 86 reconverts the color difference emphasized color obtained by the color difference expansion unit 84 into RGB image data. Further, if necessary, gamma conversion is performed on the RGB image data. As a result, color difference emphasized RGB image data having a gradation suitable for an output device such as the monitor 18 is obtained. The output unit of the present invention includes a color space inverse conversion unit 86 and an image display signal generation unit 66.

次に、本実施形態における一連の検査時の内視鏡の操作および処理の流れを図8のフローチャートに沿って説明する。まず、通常観察モードにセットし(S1)、内視鏡12の挿入部21を検体内に挿入する。通常光画像を観察しながら先端部24を検体内に進め(S2−N)、挿入部21の先端部24が胃に到達したら(S2−Y)、萎縮性胃炎が起こっているかどうかを診断する(S3)。ここで、通常光画像から、粘膜が退色調になっており、または、樹枝状の深層血管が透見している部位と透見していない部位の境界(内視鏡的腺境界と呼ぶ)を読み取ることができた場合には(S3−Y)、ドクターは、萎縮性胃炎により胃癌などの病変が発生している病的所見と判断する(S11)。   Next, the operation of the endoscope at the time of a series of examinations and the flow of processing in the present embodiment will be described with reference to the flowchart of FIG. First, the normal observation mode is set (S1), and the insertion section 21 of the endoscope 12 is inserted into the sample. While observing the normal light image, the tip 24 is advanced into the sample (S2-N). When the tip 24 of the insertion section 21 reaches the stomach (S2-Y), it is diagnosed whether atrophic gastritis has occurred. (S3). Here, from the normal light image, the mucous membrane has a fading tone, or the boundary between the part where the dendritic deep blood vessels are transparent and the part where it is not transparent (referred to as an endoscopic gland boundary). Can be read (S3-Y), the doctor judges that a pathological finding that a lesion such as gastric cancer has occurred due to atrophic gastritis (S11).

一方、通常光画像からは、退色調の粘膜、または、内視鏡的腺境界の存在を読み取ることができなかった場合には(S3−N)、さらに確実に診断を行うために、モード切替スイッチ22bを操作して、特殊観察モードに切り替える(S4)。この特殊観察モードの切り替えにより、青色レーザ光および青紫色レーザ光の両方を含む特殊光が発光される。この特殊光発光時に得られるRGB画像信号からRGB画像データを画像取得部74で取得する。   On the other hand, if the presence of the bleached mucous membrane or the endoscopic gland boundary cannot be read from the normal light image (S3-N), the mode switching is performed in order to more securely diagnose. By operating the switch 22b, the mode is switched to the special observation mode (S4). By switching the special observation mode, special light including both the blue laser light and the blue-violet laser light is emitted. The RGB image data is acquired by the image acquisition unit 74 from the RGB image signals obtained when the special light is emitted.

まず、色空間変換部80によって、RGB色空間で表された各画素のR値、G値、B値を、例えば、Lab色空間の値に変換する(S5)。全ての内視鏡画像の画素の輝度値(L値)から代表輝度値を求める。次に、記憶部88より代表輝度値に対応する基準色を取り出して、各画素と基準色の色差ベクトルを算出する(S6)。さらに、基準色に対応するルックアップテーブルを用いて、色差ベクトルのベクトル量に応じた強調量を決定する。各画素の色を、色差ベクトルと同一方向に強調量を加えたベクトル量の色差拡張ベクトルを基準色に加算した色差強調色に変換する(S7)。   First, the color space conversion unit 80 converts the R, G, and B values of each pixel expressed in the RGB color space into, for example, values in the Lab color space (S5). A representative luminance value is determined from the luminance values (L values) of the pixels of all the endoscope images. Next, a reference color corresponding to the representative luminance value is extracted from the storage unit 88, and a color difference vector between each pixel and the reference color is calculated (S6). Further, the look-up table corresponding to the reference color is used to determine the enhancement amount according to the vector amount of the color difference vector. The color of each pixel is converted into a color difference enhanced color obtained by adding the color difference extended vector of the vector amount obtained by adding the enhancement amount in the same direction as the color difference vector to the reference color (S7).

この色差強調色に変換された画像データに基づいて色空間逆変換部86でRGB色空間に戻して、モニタ18に特殊光画像が表示される(S8)。   Based on the image data converted to the color difference emphasizing color, the color space inverse conversion unit 86 returns the color space to the RGB color space, and the special light image is displayed on the monitor 18 (S8).

特殊光画像上では、胃の萎縮が全く無い場合には、粘膜は通常通りの色で表示される。この場合には(S9−N)、ドクターは、萎縮性胃炎による胃癌などの病変部の発生は無い正常所見と判断する(S10)。これに対して、胃の萎縮が僅かでも進んでいる場合には、萎縮粘膜の色は退色調で表示される(S9−Y)。これにより、内視鏡的腺境界を明瞭に表示することができる。したがって、実際の胃の中は、萎縮粘膜の色はさほど退色調で表示されていない場合であっても、ドクターは、萎縮性胃炎により胃癌などの病変が発生している病的所見と判断することができるようになる(S11)。   On the special light image, when there is no stomach atrophy, the mucous membrane is displayed in a normal color. In this case (S9-N), the doctor judges that there is no occurrence of a lesion such as gastric cancer due to atrophic gastritis (S10). On the other hand, when the atrophy of the stomach is slightly advanced, the color of the atrophy mucosa is displayed in a fading tone (S9-Y). This allows the endoscopic gland boundaries to be clearly displayed. Therefore, even in the actual stomach, even if the color of the atrophic mucosa is not so much displayed in fading color, the doctor judges that the disease is a pathological finding that atrophy such as gastric cancer is caused by atrophic gastritis. (S11).

上述では基準色は、内視鏡画像の輝度値に応じて決定する場合について説明したが、内視鏡画像の全ての画素の色の平均値を用いてもよい。ただし、この場合の基準色は、内視鏡画像の全ての画素の色成分のうち、少なくとも1つの色成分が特定の値を超えた場合に粘膜色とは異なると考えられる色成分から外れた値を持つ色を第2の閾値を用いて、第2の閾値を越える色の成分を持つ画素を除いて平均値を算出する。粘膜色とは異なる色があらわれる部分は、例えば、ハレーションなどを起こしている箇所の色成分を持つ画素や、残滓、色素散布された部分、または出血部など検体以外のものを撮影した時に現れる色成分を持つ画素である。色成分のうち粘膜色とは異なる成分を持つ画素の判定は、RGBの値で判定しても良いが、輝度の成分を持つ色空間に変換した後に判定してもよい。あるいは、RGBの値の組み合わせから、粘膜の色とは異なる色を持つ画素を判定して、粘膜の色とは異なる色を持つ画素を除いて平均値を算出するようにしてもよい。または、輝度の成分を持つ色空間に変換した後の色成分の組み合わせから粘膜の色とは異なる色を持つ画素を判定してもよい。   Although the case where the reference color is determined according to the luminance value of the endoscope image has been described above, the average value of the colors of all the pixels of the endoscope image may be used. However, the reference color in this case deviates from the color component considered to be different from the mucous membrane color when at least one color component among the color components of all pixels of the endoscope image exceeds a specific value. An average value is calculated for colors having values using a second threshold value, excluding pixels having components of colors exceeding the second threshold value. Areas where a color different from the mucous membrane color appears are, for example, pixels that have color components in areas where halation has occurred, or colors that appear when images other than the specimen are photographed, such as residues, pigment-dispersed areas, or bleeding areas. It is a pixel having a component. The determination of a pixel having a component different from the mucous membrane color among the color components may be made based on RGB values, or may be made after conversion into a color space having a luminance component. Alternatively, a pixel having a color different from the color of the mucous membrane may be determined from a combination of RGB values, and an average value may be calculated excluding pixels having a color different from the color of the mucous membrane. Alternatively, a pixel having a color different from the color of the mucous membrane may be determined from the combination of the color components after the conversion into the color space having the luminance component.

上記の実施形態では、RGB色空間を輝度または明度の成分を表す軸を持つ色空間に変換した後に、色差拡張処理を行ない、再度、色差拡張処理が行われた色をRGB色空間に変換する場合について説明したが、RGB色空間から他の色空間に変換することなく、RGB色空間内で色差ベクトル取得部82と、色差拡張部84による色差拡張処理を行うようにしてもよい。   In the above embodiment, after the RGB color space is converted into a color space having axes representing luminance or lightness components, the color difference expansion process is performed, and the color subjected to the color difference expansion process is converted again into the RGB color space. Although the case has been described, the color difference expansion processing may be performed by the color difference vector acquisition unit 82 and the color difference expansion unit 84 in the RGB color space without converting from the RGB color space to another color space.

なお、上記実施形態では、粘膜の吸収物質に対して光吸収性が高い青色狭帯域光(青色レーザ光および青紫色レーザ光)を含む特殊光を用いる場合について説明したが、粘膜の吸収物質に対して光吸収性が高い緑色狭帯域光(例えば、540〜560nmの波長成分)を含む光を用いるようにしてもよい。   In the above-described embodiment, a case has been described in which special light including blue narrow-band light (blue laser light and blue-violet laser light) having high light absorbency with respect to the mucous membrane absorbing substance is used. On the other hand, light containing green narrow band light (for example, a wavelength component of 540 to 560 nm) having high light absorption may be used.

前述の実施形態では、光源が半導体発光素子である場合について説明したが、第2の実施形態では、光源にLEDを用いた内視鏡について図9および図10を用いて説明する。第2の実施形態は、内視鏡の光源装置14および先端部24の照明光学系24c以外の構成は第1の実施形態とほぼ同一であるので、同一符号を付して詳細な説明は省略する。また、検査時の内視鏡の操作および処理の流れは、第1の実施形態とほぼ同一であるので、詳細な説明は省略する。   In the above embodiment, the case where the light source is a semiconductor light emitting element has been described. In the second embodiment, an endoscope using an LED as the light source will be described with reference to FIGS. 9 and 10. In the second embodiment, the configuration other than the light source device 14 of the endoscope and the illumination optical system 24c of the distal end portion 24 is almost the same as that of the first embodiment, and therefore, the same reference numerals are given and detailed description is omitted. I do. The operation of the endoscope during the examination and the flow of the processing are substantially the same as those in the first embodiment, and thus detailed description is omitted.

図9に示すように、光源装置14は、V−LED(Violet Light Emitting Diode)42a、B−LED(Blue Light Emitting Diode)42b、G−LED(Green Light Emitting Diode)42c、R−LED(Red Light Emitting Diode)42d、これら4色のLED42a〜42dの駆動を光源制御部40で制御するようにしてもよい。この構成では、4色のLED42a〜42dから発せられる4色の光の光路を結合する光路結合部43が設けられ、光路結合部43で結合された光は、挿入部21内に挿通されたライトガイド(LG)41および照明レンズ45を介して、被検体内に照射される。なお、LEDの代わりに、LD(Laser Diode)を用いてもよい。   As shown in FIG. 9, the light source device 14 includes a V-LED (Violet Light Emitting Diode) 42a, a B-LED (Blue Light Emitting Diode) 42b, a G-LED (Green Light Emitting Diode) 42c, and an R-LED (Red). The driving of the four-color LEDs 42a to 42d may be controlled by the light source control unit 40. In this configuration, an optical path coupling unit 43 that couples the optical paths of the four colors of light emitted from the four color LEDs 42 a to 42 d is provided, and the light coupled by the optical path coupling unit 43 is a light inserted into the insertion unit 21. The light is radiated into the subject via the guide (LG) 41 and the illumination lens 45. Note that an LD (Laser Diode) may be used instead of the LED.

図10に示すように、V−LED42aは、中心波長405±10nm、波長範囲380〜420nmの紫色光Viを発生する。B−LED42bは、中心波長460±10nm、波長範囲420〜500nmの青色光Blを発生する。G−LED42cは、波長範囲が480〜600nmにおよぶ緑色光Grを発生する。R−LED42dは、中心波長620〜630nmで、波長範囲が600〜650nmに及ぶ赤色光Reを発生する。   As shown in FIG. 10, the V-LED 42a generates violet light Vi having a center wavelength of 405 ± 10 nm and a wavelength range of 380 to 420 nm. The B-LED 42b generates blue light B1 having a center wavelength of 460 ± 10 nm and a wavelength range of 420 to 500 nm. The G-LED 42c generates green light Gr having a wavelength range of 480 to 600 nm. The R-LED 42d generates red light Re having a center wavelength of 620 to 630 nm and a wavelength range of 600 to 650 nm.

光源制御部40は、通常観察モード、および特殊観察モードのいずれの観察モードにおいても、V−LED42a、B−LED42b、G−LED42c、R−LED42dを点灯する。したがって、紫色光Vi、青色光Bl、緑色光Gr、および赤色光Reの4色の光が混色した光が、観察対象に照射される。また、光源制御部40は、通常観察モード時には、紫色光Vi、青色光Bl、緑色光Gr、赤色光Re間の光量比がVi:Bl:Gr:Reとなるように、各LED42a〜42dを制御する。一方、光源制御部40は、特殊観察モード時には、紫色光Vi、青色光Bl、緑色光Ge、赤色光Re間の光量比がVi:Bl:Ge:Reとなるように、各LED42a〜42dを制御する。 The light source control unit 40 turns on the V-LED 42a, the B-LED 42b, the G-LED 42c, and the R-LED 42d in any of the normal observation mode and the special observation mode. Therefore, the observation target is irradiated with light in which the four colors of the purple light Vi, the blue light Bl, the green light Gr, and the red light Re are mixed. The light source control unit 40, in the normal observation mode, violet light Vi, blue light Bl, green light Gr, quantity ratio between red light Re is Vi c: Bl c: Gr c : as a Re c, each The LEDs 42a to 42d are controlled. On the other hand, the light source control unit 40, the special observation mode, violet light Vi, blue light Bl, green light Ge, the light intensity ratio between red light Re Vi s: Bl s: Ge s: As a Re s, each The LEDs 42a to 42d are controlled.

内視鏡12の先端部24には、照明光学系24cと撮像光学系24bが設けられている。照明光学系24cは照明レンズ45を有しており、この照明レンズ45を介して、ライトガイド41からの光が観察対象に照射される。撮像光学系24bは、第1の実施形態とほぼ同じ構成である。   The distal end portion 24 of the endoscope 12 is provided with an illumination optical system 24c and an imaging optical system 24b. The illumination optical system 24c has an illumination lens 45, and the light from the light guide 41 is applied to the observation target via the illumination lens 45. The imaging optical system 24b has substantially the same configuration as in the first embodiment.

上記の第1および第2の実施形態ではプロセッサ装置16で異常領域強調部77の処理が行われる場合について説明したが、プロセッサ装置16における異常領域強調部77の処理は、外部に置かれたコンピュータに、上記の画像取得部、色差ベクトル取得部、色差拡張部、および出力部として機能させるための画像処理プログラムをインストールして、外部のコンピュータでプロセッサ装置16に外付けの記録部などに記録された内視鏡画像に対して異常領域強調部77の処理を実行するようにしてもよい。   In the first and second embodiments, the case where the processing of the abnormal area emphasizing unit 77 is performed by the processor device 16 has been described. In addition, an image processing program for functioning as the image acquisition unit, the color difference vector acquisition unit, the color difference expansion unit, and the output unit described above is installed, and is recorded on an external recording unit or the like in the processor device 16 by an external computer. The processing of the abnormal region emphasizing unit 77 may be performed on the endoscope image.

10 内視鏡システム
12 内視鏡
13 ユニバーサルコード
14 光源装置
16 プロセッサ装置
18 モニタ
20 入力装置
21 挿入部
22 操作部
22a アングルノブ
22b モード切替スイッチ
22c ズーム操作部
23 湾曲部
24 先端部
24a、24c 照明光学系
24b 撮像光学系
34 青色レーザ光源
36 青紫色レーザ光源
40 光源制御部
41 ライトガイド
42a〜42d LED
43 光路結合部
44 蛍光体
45 照明レンズ
46 撮像レンズ
47 ズーミングレンズ
48 撮像センサ
50 CDS・AGC回路
51 ガンマ変換部
52 A/D変換器
54 受信部
56 DSP
58 ノイズ除去部
60 画像処理切替部
62 通常光画像処理部
64 特殊光画像処理部
66 画像表示信号生成部
68 画像取得部
70 色彩強調部
72 構造強調部
74 画像取得部
77 異常領域強調部
78 構造強調部
80 色空間変換部
82 色差ベクトル取得部
84 色差拡張部
86 色空間逆変換部
88 記憶部
Reference Signs List 10 Endoscope system 12 Endoscope 13 Universal cord 14 Light source device 16 Processor device 18 Monitor 20 Input device 21 Insertion unit 22 Operation unit 22a Angle knob 22b Mode switch 22c Zoom operation unit 23 Curved unit 24 Tip unit 24a, 24c Lighting Optical system 24b Imaging optical system 34 Blue laser light source 36 Blue-violet laser light source 40 Light source control unit 41 Light guides 42a to 42d LED
43 optical path coupling unit 44 phosphor 45 illumination lens 46 imaging lens 47 zooming lens 48 imaging sensor 50 CDS / AGC circuit 51 gamma conversion unit 52 A / D converter 54 reception unit 56 DSP
58 Noise removal unit 60 Image processing switching unit 62 Normal light image processing unit 64 Special light image processing unit 66 Image display signal generation unit 68 Image acquisition unit 70 Color enhancement unit 72 Structure enhancement unit 74 Image acquisition unit 77 Abnormal area enhancement unit 78 Structure Emphasis unit 80 color space conversion unit 82 color difference vector acquisition unit 84 color difference expansion unit 86 color space inverse conversion unit 88 storage unit

Claims (13)

狭帯域画像信号を含む画像信号により構成された内視鏡画像を取得する画像取得部と、
輝度及び明度のうちの少なくとも1つの成分の座標軸を含む3次元の色空間において、前記内視鏡画像の正常部の色を表す基準色から前記内視鏡画像中の各注目画素の色までの、前記3次元の色空間における3次元のベクトルである色差ベクトルを取得する色差ベクトル取得部と、
前記色空間において、前記各注目画素の色を、該注目画素の色差ベクトルと同一方向でありかつ前記色差ベクトルのベクトル量に強調量を加えたベクトル量の色差拡張ベクトルを前記基準色に加算した色に変換する色差拡張処理を施す色差拡張部と、
前記色差拡張処理を前記内視鏡画像の全ての画素に施した前記正常部と異常部の色差を拡張した内視鏡画像を出力する出力部とを備え、
前記色差ベクトル取得部は、予め定められた複数の基準色のうち前記内視鏡画像を代表する代表輝度値に対応して、該代表輝度値が高くなるほど輝度値が高い基準色を用い、該代表輝度値が低くなるほど輝度値が低い基準色を用いて前記色差ベクトルを取得する画像処理装置。
An image acquisition unit that acquires an endoscope image constituted by an image signal including a narrowband image signal,
In a three-dimensional color space including a coordinate axis of at least one component of luminance and lightness, a reference color representing a color of a normal part of the endoscope image to a color of each pixel of interest in the endoscope image. A color difference vector acquisition unit that acquires a color difference vector that is a three-dimensional vector in the three-dimensional color space ;
In the color space, the color of each pixel of interest is added to the reference color in the same direction as the color difference vector of the pixel of interest, and a color difference extension vector of a vector amount obtained by adding the enhancement amount to the vector amount of the color difference vector is added. A color difference expansion unit that performs color difference expansion processing for converting to color,
An output unit that outputs an endoscope image obtained by expanding the color difference between the normal part and the abnormal part, wherein the color difference expansion process is performed on all pixels of the endoscope image,
The color difference vector acquisition unit corresponds to a representative luminance value representing the endoscope image among a plurality of predetermined reference colors, and uses a reference color having a higher luminance value as the representative luminance value increases. An image processing device for acquiring the color difference vector using a reference color having a lower luminance value as the representative luminance value decreases .
前記色差拡張部は、前記色差ベクトルのベクトル量が第1の閾値より小さい場合は、前記色差ベクトルのベクトル量が大きくなるほど強調量を大きくし、前記色差ベクトルのベクトル量が前記第1の閾値より大きい場合は、前記ベクトル量が大きくなるほど強調量を小さくする請求項1に記載の画像処理装置。  When the vector amount of the color difference vector is smaller than a first threshold, the color difference expanding unit increases the enhancement amount as the vector amount of the color difference vector increases, and the vector amount of the color difference vector is smaller than the first threshold. The image processing apparatus according to claim 1, wherein when the vector amount is large, the emphasis amount is reduced as the vector amount increases. 前記内視鏡画像の代表輝度値は、前記内視鏡画像の全ての画素の輝度値の平均値である請求項1又は2記載の画像処理装置。 Representative luminance value of the endoscope image, the image processing apparatus according to claim 1 or 2, wherein the average value of the luminance values of all the pixels of the endoscopic image. 前記色空間は、Ycc色空間、Lab色空間、Luv色空間、HSB色空間、HSL色空間、およびHSV色空間のうちのいずれかである請求項1〜のいずれか1項記載の画像処理装置。 The image processing according to any one of claims 1 to 3 , wherein the color space is one of a Ycc color space, a Lab color space, a Luv color space, an HSB color space, an HSL color space, and an HSV color space. apparatus. 前記狭帯域画像信号は、血液に対する光吸収が他の帯域より多い狭帯域光で照明された検体を撮像して得られる請求項1〜のいずれか1項記載の画像処理装置。 The narrow-band image signals, the image processing apparatus of light absorption according to any one of claims 1-4 obtained by imaging the illuminated sample narrowband light more than the other bands for blood. 前記狭帯域画像信号は、青色帯域の中で血液に対する光吸収が他の帯域より多い青色狭帯域光で照明された検体を撮像して得られる青色狭帯域画像信号、または緑色帯域の中で血液に対する光吸収が他の帯域より多い緑色狭帯域光で照明された検体を撮像して得られる緑色狭帯域画像信号である請求項記載の画像処理装置。 The narrow-band image signal is a blue narrow-band image signal obtained by imaging a sample illuminated with blue narrow-band light, which absorbs more blood than other bands in the blue band, or blood in the green band. 6. The image processing apparatus according to claim 5 , wherein the image processing apparatus is a green narrow-band image signal obtained by imaging a sample illuminated with green narrow-band light having more light absorption than other bands. 前記内視鏡画像は、胃の内壁を撮影した画像であり前記正常部は正常粘膜であり、前記異常部は異常粘膜である請求項1〜のいずれか1項記載の画像処理装置。 The endoscopic image, the normal portion is an image obtained by photographing the inner wall of the stomach is normal mucosa, the image processing apparatus according to any one of the abnormal portion is abnormal mucosa claims 1-6. 画像取得部と、色差ベクトル取得部と、色差拡張部と、出力部とを備えた画像処理装置の作動方法であって、
前記画像取得部が、狭帯域画像信号を含む画像信号により生成された内視鏡画像を取得する画像取得ステップと、
前記色差ベクトル取得部が、輝度及び明度のうちの少なくとも1つの成分の座標軸を含む3次元の色空間において、狭帯域画像信号を含む画像信号により生成された内視鏡画像の正常部位の色を表す基準色から前記内視鏡画像中の各注目画素の色までの、前記3次元の色空間における3次元のベクトルである色差ベクトルを取得する色差ベクトル取得ステップと、
前記色差拡張部が、前記色空間において、前記各注目画素の色を、該注目画素の色差ベクトルと同一方向でありかつ前記色差ベクトルのベクトル量に強調量を加えたベクトル量の色差拡張ベクトルを前記基準色に加算した色に変換する色差拡張処理を施す色差拡張ステップと、
前記出力部が、前記色差拡張処理を前記内視鏡画像の全ての画素に施した前記正常部位と異常部位の色差を拡張した内視鏡画像を出力する出力ステップとを備え、
前記色差ベクトル取得ステップは、予め定められた複数の基準色のうち前記内視鏡画像を代表する代表輝度値に対応して、該代表輝度値が高くなるほど輝度値が高い基準色を用い、該代表輝度値が低くなるほど輝度値が低い基準色を用いて前記色差ベクトルを取得する画像処理装置の作動方法。
An image acquisition unit, a color difference vector acquisition unit, a color difference expansion unit, an operation method of an image processing apparatus including an output unit,
An image acquisition step in which the image acquisition unit acquires an endoscope image generated by an image signal including a narrowband image signal,
The color difference vector acquisition unit is configured to determine a color of a normal part of an endoscope image generated by an image signal including a narrowband image signal in a three-dimensional color space including a coordinate axis of at least one component of luminance and lightness. A color difference vector obtaining step of obtaining a color difference vector that is a three-dimensional vector in the three-dimensional color space from a reference color to be displayed to a color of each pixel of interest in the endoscope image;
The color difference expansion unit sets a color of the target pixel in the color space in the same direction as the color difference vector of the target pixel, and a color difference expansion vector of a vector amount obtained by adding an enhancement amount to the vector amount of the color difference vector. A color difference expanding step of performing a color difference expanding process of converting the color into a color added to the reference color;
The output unit includes an output step of outputting an endoscope image obtained by expanding the color difference between the normal part and the abnormal part obtained by performing the color difference expansion process on all pixels of the endoscope image,
The color difference vector obtaining step corresponds to a representative luminance value representing the endoscope image among a plurality of predetermined reference colors, and uses a reference color having a higher luminance value as the representative luminance value increases. An operation method of the image processing apparatus for acquiring the color difference vector using a reference color having a lower luminance value as the representative luminance value decreases .
コンピュータを、
狭帯域画像信号を含む画像信号により生成された内視鏡画像を取得する画像取得部と、
輝度及び明度のうちの少なくとも1つの成分の座標軸を含む3次元の色空間において、前記内視鏡画像の正常部位の色を表す基準色から前記内視鏡画像中の各注目画素の色までの、前記3次元の色空間における3次元のベクトルである色差ベクトルを取得する色差ベクトル取得部と、
前記色空間において、前記各注目画素の色を、該注目画素の色差ベクトルと同一方向でありかつ前記色差ベクトルのベクトル量に強調量を加えたベクトル量の色差拡張ベクトルを前記基準色に加算した色に変換する色差拡張処理を施す色差拡張部と、
前記色差拡張処理を前記内視鏡画像の全ての画素に施した前記正常部位と異常部位の色差を拡張した内視鏡画像を出力する出力部として機能させるための画像処理プログラムであって、
前記色差ベクトル取得部は、予め定められた複数の基準色のうち前記内視鏡画像を代表する代表輝度値に対応して、該代表輝度値が高くなるほど輝度値が高い基準色を用い、該代表輝度値が低くなるほど輝度値が低い基準色を用いて前記色差ベクトルを取得する画像処理プログラム。
Computer
An image acquisition unit that acquires an endoscope image generated by an image signal including a narrowband image signal,
In a three-dimensional color space including a coordinate axis of at least one component of luminance and lightness, a reference color representing a color of a normal part of the endoscope image to a color of each pixel of interest in the endoscope image. A color difference vector acquisition unit that acquires a color difference vector that is a three-dimensional vector in the three-dimensional color space ;
In the color space, the color of each pixel of interest is added to the reference color in the same direction as the color difference vector of the pixel of interest, and a color difference extension vector of a vector amount obtained by adding the enhancement amount to the vector amount of the color difference vector is added. A color difference expansion unit that performs color difference expansion processing for converting to color,
An image processing program for functioning as an output unit that outputs an endoscope image obtained by expanding the color difference between the normal part and the abnormal part obtained by performing the color difference expansion processing on all pixels of the endoscope image,
The color difference vector acquisition unit corresponds to a representative luminance value representing the endoscope image among a plurality of predetermined reference colors, and uses a reference color having a higher luminance value as the representative luminance value increases. An image processing program for acquiring the color difference vector using a reference color having a lower luminance value as the representative luminance value decreases .
狭帯域画像信号を含む画像信号により構成された内視鏡画像を取得する画像取得部と、
予め定められた正常部の色を表す複数の基準色のうち前記内視鏡画像の輝度値の平均値に対応して、該平均値が高くなるほど輝度値が高い基準色を用い、該平均値が低くなるほど輝度値が低い基準色を用いて、輝度及び明度のうちの少なくとも1つの成分の座標軸を含む3次元の色空間において、該基準色から前記内視鏡画像中の各注目画素の色までの、前記3次元の色空間における3次元のベクトルである色差ベクトルを取得する色差ベクトル取得部と、
前記色空間において、前記各注目画素の色を、該注目画素の色差ベクトルと同一方向でありかつ前記色差ベクトルのベクトル量に強調量を加えたベクトル量の色差拡張ベクトルを前記基準色に加算した色に変換する色差拡張処理を施す色差拡張部と、
前記色差拡張処理を前記内視鏡画像の全ての画素に施した前記正常部と異常部の色差を拡張した内視鏡画像を出力する出力部とを備え、
前記色差拡張部は、前記色空間における前記異常部の色と前記基準色との距離を第1の閾値として、前記色差ベクトルのベクトル量が前記第1の閾値より小さい場合は、前記色差ベクトルのベクトル量が大きくなるほど強調量を大きくし、前記色差ベクトルのベクトル量が前記第1の閾値より大きい場合は、前記ベクトル量が大きくなるほど強調量を小さくする画像処理装置。
An image acquisition unit that acquires an endoscope image constituted by an image signal including a narrowband image signal,
Corresponding to the average value of the luminance values of the endoscope image among a plurality of reference colors representing the color of the predetermined normal part, the higher the average value, the higher the reference value, the higher the reference value, and the higher the average value, In a three-dimensional color space including a coordinate axis of at least one component of luminance and lightness, a color of each pixel of interest in the endoscope image is calculated using a reference color having a lower luminance value as the value becomes lower. A color difference vector acquisition unit that acquires a color difference vector that is a three-dimensional vector in the three-dimensional color space up to;
In the color space, the color of each pixel of interest is added to the reference color in the same direction as the color difference vector of the pixel of interest, and a color difference extension vector of a vector amount obtained by adding the enhancement amount to the vector amount of the color difference vector is added. A color difference expansion unit that performs color difference expansion processing for converting to color,
An output unit that outputs an endoscope image obtained by expanding the color difference between the normal part and the abnormal part, wherein the color difference expansion process is performed on all pixels of the endoscope image,
The color difference expansion unit sets a distance between the color of the abnormal part and the reference color in the color space as a first threshold, and when a vector amount of the color difference vector is smaller than the first threshold, the color difference vector An image processing apparatus that increases the enhancement amount as the vector amount increases, and decreases the enhancement amount as the vector amount increases when the vector amount of the color difference vector is greater than the first threshold.
画像取得部と、色差ベクトル取得部と、色差拡張部と、出力部とを備えた画像処理装置の作動方法であって、
前記画像取得部が、狭帯域画像信号を含む画像信号により生成された内視鏡画像を取得する画像取得ステップと、
前記色差ベクトル取得部が、予め定められた正常部の色を表す複数の基準色のうち前記内視鏡画像の輝度値の平均値に対応して、該平均値が高くなるほど輝度値が高い基準色を用い、該平均値が低くなるほど輝度値が低い基準色を用いて、輝度及び明度のうちの少なくとも1つの成分の座標軸を含む3次元の色空間において、該基準色から前記内視鏡画像中の各注目画素の色までの、前記3次元の色空間における3次元のベクトルである色差ベクトルを取得する色差ベクトル取得ステップと、
前記色差拡張部が、前記色空間において、前記各注目画素の色を、該注目画素の色差ベクトルと同一方向でありかつ前記色差ベクトルのベクトル量に強調量を加えたベクトル量の色差拡張ベクトルを前記基準色に加算した色に変換する色差拡張処理を施す色差拡張ステップと、
前記出力部が、前記色差拡張処理を前記内視鏡画像の全ての画素に施した前記正常部と異常部の色差を拡張した内視鏡画像を出力する出力ステップとを備え、
前記色差拡張ステップは、前記色空間における前記異常部の色と前記基準色との距離を第1の閾値として、前記色差ベクトルのベクトル量が前記第1の閾値より小さい場合は、前記色差ベクトルのベクトル量が大きくなるほど強調量を大きくし、前記色差ベクトルのベクトル量が前記第1の閾値より大きい場合は、前記ベクトル量が大きくなるほど強調量を小さくする画像処理装置の作動方法。
An image acquisition unit, and a color difference vector acquisition unit, and the color difference extension, a method of operating an image processing apparatus having an output unit,
An image acquisition step in which the image acquisition unit acquires an endoscope image generated by an image signal including a narrowband image signal,
The color difference vector obtaining unit corresponds to an average value of the luminance values of the endoscope image among a plurality of reference colors representing predetermined normal portion colors , and the higher the average value is, the higher the luminance value is. Using a color and a reference color having a lower luminance value as the average value becomes lower, in the three-dimensional color space including a coordinate axis of at least one component of luminance and lightness, from the reference color and the endoscope image. A color difference vector obtaining step of obtaining a color difference vector that is a three-dimensional vector in the three-dimensional color space up to the color of each target pixel in the color space ;
The color difference expansion unit sets a color of the target pixel in the color space in the same direction as the color difference vector of the target pixel, and a color difference expansion vector of a vector amount obtained by adding an enhancement amount to the vector amount of the color difference vector. A color difference expanding step of performing a color difference expanding process of converting the color into a color added to the reference color;
The output unit includes an output step of outputting an endoscope image obtained by expanding the color difference between the normal part and the abnormal part obtained by performing the color difference expansion process on all pixels of the endoscope image,
The color difference expanding step includes, when a distance between the color of the abnormal portion and the reference color in the color space is a first threshold, and when a vector amount of the color difference vector is smaller than the first threshold, the color difference vector An operation method of an image processing apparatus, wherein the enhancement amount is increased as the vector amount increases, and when the vector amount of the color difference vector is larger than the first threshold, the enhancement amount is decreased as the vector amount increases.
コンピュータを、
狭帯域画像信号を含む画像信号により構成された内視鏡画像を取得する画像取得部と、
予め定められた正常部の色を表す複数の基準色のうち前記内視鏡画像の輝度値の平均値に対応して、該平均値が高くなるほど輝度値が高い基準色を用い、該平均値が低くなるほど輝度値が低い基準色を用いて、輝度及び明度のうちの少なくとも1つの成分の座標軸を含む3次元の色空間において、該基準色から前記内視鏡画像中の各注目画素の色までの、前記3次元の色空間における3次元のベクトルである色差ベクトルを取得する色差ベクトル取得部と、
前記色空間において、前記各注目画素の色を、該注目画素の色差ベクトルと同一方向でありかつ前記色差ベクトルのベクトル量に強調量を加えたベクトル量の色差拡張ベクトルを前記基準色に加算した色に変換する色差拡張処理を施す色差拡張部と、
前記色差拡張処理を前記内視鏡画像の全ての画素に施した前記正常部と異常部の色差を拡張した内視鏡画像を出力する出力部として機能させるための画像処理プログラムであって、
前記色差拡張部は、前記色空間における前記異常部の色と前記基準色との距離を第1の閾値として、前記色差ベクトルのベクトル量が前記第1の閾値より小さい場合は、前記色差ベクトルのベクトル量が大きくなるほど強調量を大きくし、前記色差ベクトルのベクトル量が前記第1の閾値より大きい場合は、前記ベクトル量が大きくなるほど強調量を小さくする画像処理プログラム。
Computer
An image acquisition unit that acquires an endoscope image constituted by an image signal including a narrowband image signal,
Corresponding to the average value of the luminance values of the endoscope image among a plurality of reference colors representing the color of the predetermined normal part, the higher the average value, the higher the reference value, the higher the reference value, and the higher the average value, In a three-dimensional color space including a coordinate axis of at least one component of luminance and lightness, a color of each pixel of interest in the endoscope image is calculated using a reference color having a lower luminance value as the value becomes lower. A color difference vector acquisition unit that acquires a color difference vector that is a three-dimensional vector in the three-dimensional color space up to;
In the color space, the color of each pixel of interest is added to the reference color in the same direction as the color difference vector of the pixel of interest, and a color difference extension vector of a vector amount obtained by adding the enhancement amount to the vector amount of the color difference vector is added. A color difference expansion unit that performs color difference expansion processing for converting to color,
An image processing program for functioning as an output unit that outputs an endoscope image obtained by expanding the color difference between the normal part and the abnormal part obtained by performing the color difference expansion processing on all pixels of the endoscope image,
The color difference expansion unit sets a distance between the color of the abnormal part and the reference color in the color space as a first threshold, and when a vector amount of the color difference vector is smaller than the first threshold, the color difference vector An image processing program for increasing the enhancement amount as the vector amount increases, and reducing the enhancement amount as the vector amount increases when the vector amount of the color difference vector is greater than the first threshold.
狭帯域画像信号を含む画像信号により構成された内視鏡画像を取得する画像取得部と、An image acquisition unit that acquires an endoscope image constituted by an image signal including a narrowband image signal,
輝度及び明度のうちの少なくとも1つの成分の座標軸を含む3次元の色空間において、前記内視鏡画像の正常部の色を表す基準色から前記内視鏡画像中の各注目画素の色までの、前記3次元の色空間における3次元のベクトルである色差ベクトルを取得する色差ベクトル取得部と、In a three-dimensional color space including a coordinate axis of at least one component of luminance and lightness, a reference color representing a color of a normal part of the endoscope image to a color of each pixel of interest in the endoscope image. A color difference vector acquisition unit that acquires a color difference vector that is a three-dimensional vector in the three-dimensional color space;
前記色空間において、前記各注目画素の色を、該注目画素の色差ベクトルと同一方向であり、かつ前記色差ベクトルのベクトル量に強調量を加えたベクトル量の色差拡張ベクトルを前記基準色に加算した色に変換する色差拡張処理を施す色差拡張部と、In the color space, the color of each pixel of interest is added in the same direction as the color difference vector of the pixel of interest, and a color difference extension vector of a vector amount obtained by adding an enhancement amount to the vector amount of the color difference vector is added to the reference color. A color difference expansion unit that performs color difference expansion processing for converting the color
前記色差拡張処理を前記内視鏡画像の全ての画素に施した前記正常部と異常部の色差を拡張した内視鏡画像を出力する出力部とを備え、An output unit that outputs an endoscope image obtained by expanding the color difference between the normal part and the abnormal part, wherein the color difference expansion process is performed on all pixels of the endoscope image,
前記基準色は、前記内視鏡画像の各画素の色成分のうち第2の閾値を越える少なくとも1つ以上の色成分を持つ画素以外の前記内視鏡画像の全ての画素の平均値とする画像処理装置。The reference color is an average value of all pixels of the endoscope image other than pixels having at least one color component exceeding a second threshold among color components of each pixel of the endoscope image. Image processing device.
JP2016048077A 2016-03-11 2016-03-11 Image processing apparatus, operation method of image processing apparatus, and image processing program Active JP6669539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016048077A JP6669539B2 (en) 2016-03-11 2016-03-11 Image processing apparatus, operation method of image processing apparatus, and image processing program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016048077A JP6669539B2 (en) 2016-03-11 2016-03-11 Image processing apparatus, operation method of image processing apparatus, and image processing program

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020031548A Division JP6855610B2 (en) 2020-02-27 2020-02-27 Image processing device, operation method of image processing device, and image processing program

Publications (2)

Publication Number Publication Date
JP2017158929A JP2017158929A (en) 2017-09-14
JP6669539B2 true JP6669539B2 (en) 2020-03-18

Family

ID=59853286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016048077A Active JP6669539B2 (en) 2016-03-11 2016-03-11 Image processing apparatus, operation method of image processing apparatus, and image processing program

Country Status (1)

Country Link
JP (1) JP6669539B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115209784A (en) * 2020-03-13 2022-10-18 奥林巴斯株式会社 Endoscope apparatus, processor, and color emphasis method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149977A (en) * 1986-12-12 1988-06-22 Olympus Optical Co Ltd Color enhancement circuit of color emphasis system
JPS63173182A (en) * 1987-01-13 1988-07-16 Olympus Optical Co Ltd Color image processing system
JP2902691B2 (en) * 1989-11-16 1999-06-07 オリンパス光学工業株式会社 Monitor image capture device
JP4767591B2 (en) * 2005-06-01 2011-09-07 オリンパスメディカルシステムズ株式会社 Endoscope diagnosis support method, endoscope diagnosis support device, and endoscope diagnosis support program
EP3072439B1 (en) * 2013-10-28 2018-09-05 Fujifilm Corporation Image processing device and operation method therefor
JP5932894B2 (en) * 2014-03-24 2016-06-08 富士フイルム株式会社 Medical image processing apparatus and operating method thereof
JP6121368B2 (en) * 2014-06-27 2017-04-26 富士フイルム株式会社 MEDICAL IMAGE PROCESSING DEVICE, ITS OPERATION METHOD, AND ENDOSCOPE SYSTEM

Also Published As

Publication number Publication date
JP2017158929A (en) 2017-09-14

Similar Documents

Publication Publication Date Title
US10779714B2 (en) Image processing apparatus, method for operating image processing apparatus, and image processing program
US9582878B2 (en) Image processing device and operation method therefor
JP5460506B2 (en) Endoscope apparatus operating method and endoscope apparatus
US9545187B2 (en) Image processing device and method for operating endoscope system
JP5789280B2 (en) Processor device, endoscope system, and operation method of endoscope system
US9538902B2 (en) Image processing device and method for operating endoscope system
JP2012029703A (en) Method for controlling endoscope apparatus, and endoscope apparatus
US9595117B2 (en) Image processing device and method for operating endoscope system
US10003774B2 (en) Image processing device and method for operating endoscope system
US20190246874A1 (en) Processor device, endoscope system, and method of operating processor device
JP6669539B2 (en) Image processing apparatus, operation method of image processing apparatus, and image processing program
JP6855610B2 (en) Image processing device, operation method of image processing device, and image processing program
JP2022160298A (en) Medical image processing device and operation method thereof
CN114786560A (en) Endoscope device and observation method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170908

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170908

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200227

R150 Certificate of patent or registration of utility model

Ref document number: 6669539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250